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Abstract: Equivalent circuit models have gained significant use in lithium-ion battery management
systems, because of their computational efficiency and convenience for use. However, none of the
existing ones by design is suitable for charging/discharging across low to high C-rates. In this paper,
we propose a new equivalent circuit model, called BattX, to address the challenge. The BattX model
develops and combines circuit analogs to not only simulate the main dynamic processes in the electrode
and electrolyte phases and in the temperature evolution, but also capture their effects on the terminal
voltage. The design presents a correspondence with electrochemical modeling to comprehensively
grasp a battery’s dynamic behavior, thus ensuring a predictive capability over broad C-rate ranges. We
further present a multi-pronged parameter identification approach to extract the model’s parameters from
measurement data. Extensive simulations involving different scenarios and load profiles are conducted
to show the model’s high predictive accuracy when the current ranges are wide.
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models

1. INTRODUCTION

A breakthrough in electrochemical energy storage, lithium-
ion batteries (LiBs) has penetrated into various key sectors
to drive electrification and decarbonization. They stand on
some significant merits such as high energy and power density
and long life but still rely on battery management systems to
provide desired levels of performance, safety, and longevity.
Many battery management tasks increasingly require the use
of dynamic models, among which equivalent circuit models
(ECMs) have proven useful and promising.

ECMs are circuit analogs composed of electrical components to
simulate a cell’s dynamic behavior, capture different phenom-
ena in charging/discharging, and track state-of-charge (SoC)
and power capability. With simple structures, they are easy to
calibrate and scalable to large LiB systems comprising many
cells. Further, they are governed by a set of several first-order
ordinary differential equations and thus amenable to compu-
tation and implementation. Due to these benefits, they have
emerged as the most popular models especially for real-world
battery management systems with limited computing resources.
The literature has presented an array of ECMs. A basic one,
called the Rint model, cascades an open-circuit voltage (OCV)
source with an internal resistor, in which the voltage source
is SoC-dependent (He et al., 2011). One can add to the Rint
model a set of serially connected RC pairs to describe the
transient behavior in a cell’s voltage response, leading to the so-
called Thevenin’s model (Mousavi G. and Nikdel, 2014; Plett,
2015). Depending on the number of RC pairs used, the model
can be set to capture transients at multiple time scales (Tian
et al., 2020b). Different ways have been studied to modify the
Thevenin’s model for better accuracy. For example, the study

� Contact: N. Biju (biju@gtisoft.com); H. Fang (fang@ku.edu).

in (Plett, 2015; Wang et al., 2017) incorporates hysteresis in
charging/discharging; in (Lee et al., 2018; Chen and Rincon-
Mora, 2006; Hu et al., 2012; Weng et al., 2014), different circuit
parameters (e.g., the internal resistance) are made dependent
on the SoC, temperature, or current loads, and the OCV is
parameterized using different function forms for higher fitting
accuracy. Recently, a growing number of investigations have
explored to develop ECMs drawing upon electrochemical mod-
eling, even though these two modeling approaches used to be
disparate. The work in (Tian et al., 2018, 2020a) proposes the
nonlinear double capacitor model to approximate the ion diffu-
sion in the electrodes of a cell and characterizes the nonlinear
voltage behavior simultaneously. This model is interpretable
as a reduced-order version of the single particle model, and
it is further supplemented in (Movahedi et al., 2022) with a
data-based voltage hysteresis model to attain better accuracy.
The study in (Li et al., 2021) derives an ECM using circuit
elements to describe charge transfer and diffusion potentials;
the derivation also helps explain some conventional ECMs from
an electrochemical perspective.

The structural simplicity of ECMs facilitates fast computation,
but also imposes restrictions on the prediction accuracy. Most
of today’s ECMs are accurate enough for only low to medium
currents, around or below 1C. Although this level of accuracy
is acceptable for many applications, it falls short from meeting
the needs of some emerging battery-powered systems. One
example is electric Vertical Takeoff and Landing (eVTOL)
vehicles, which involves high C-rate discharging in the take-
off and landing phases and necessitates precise models to fulfill
high-stakes safety requirements (Bills et al., 2020). This poses
an interesting and important question: Is it possible to develop
an ECM that can present accurate prediction over broad C-rate
ranges, and how?



Fig. 1. The BattX model comprising: sub-circuit A to simulate the lithium-ion diffusion in the electrode phase; sub-circuit B to
simulate the lithium-ion diffusion in the electrolyte phase; sub-circuit C to simulate heat conduction and convection; and
sub-circuit D to simulate the terminal voltage.

To answer the question, we turn attention to electrochemi-
cal modeling. This model approach explicitly describes elec-
trochemical reactions, transport of lithium ions, and distri-
bution of charge and potential inside a LiB cell. Compared
to ECMs, electrochemical models, e.g., the Doyle-Fuller-
Newman model (Doyle et al., 1993), generally present finer-
grained description and thus higher accuracy over wide current
rages, while being more expensive computationally. Taking in-
spirations from electrochemical modeling, we propose to use
coupled circuits to simulate a LiB cell’s electrode, electrolyte,
and thermal dynamics as well as their effects on the termi-
nal voltage. This then leads to a new ECM for LiBs, called
BattX, which, for the first time, expands the reach of ECMs
to prediction over low to high currents. The BattX model also
retains compact and physically interpretable structures to of-
fer high computational efficiency and invoke conduciveness to
understanding. Based on the above, this paper delivers three
contributions. First, we show the principled design of the BattX
model and explain the rationale underlying the design. Second,
we develop a multi-pronged parameter identification approach
to extract the parameters of the BattX model from measure-
ment data made on LiBs. Finally, to validate the BattX model,
we perform extensive simulations to evaluate its effectiveness
and accuracy, using a pseudo-two-dimensional electrochemical
model as a benchmark reference.

The rest of the paper is organized as follows. Section 2 presents
the BattX model design and the essential reasoning behind it.
Section 3 develops the parameter identification pipeline of the
model. Section 4 evaluates the model using experimental data.
Finally, Section 5 offers concluding remarks.

2. THE BATTX MODEL

In this section, we show the circuit structure and governing
equations of the BattX model and delineate the main idea of the
circuit design. For the detailed modeling rationale, the reader is
referred to (Biju and Fang, 2023).

At the core, the BattX model attempts to characterize the
multiple major dynamic processes innate to a LiB cell in
order to capture the cell’s behavior from low to high current

rates. This is akin to electrochemical modeling to a certain
extent, but a main difference is that the BattX model leverages
circuit analogs to simulate the processes. Fig. 1 shows the
overarching structure of the model. As is seen, it consists of
four coupled sub-circuits, which are labeled as A to D. These
sub-circuits are designed to approximate the cell’s electrode-
phase diffusion, electrolyte-phase diffusion, thermal evolution,
and voltage response, respectively.

To begin with, sub-circuit A uses a chain of resistors and capac-
itors to approximate the lithium-ion diffusion in the electrode
phase. Its governing equations are

V̇s,1(t) =
Vs,2(t)− Vs,1(t)

Cs,1Rs,1
+

I(t)

Cs,1
, (1a)

V̇s,i(t) =
Vs,i−1(t)− Vs,i(t)

Cs,iRs,i−1
+

Vs,i+1(t)− Vs,i(t)

Cs,iRs,i
, (1b)

V̇s,N (t) =
Vs,N−1(t)− Vs,N (t)

Cs,NRs,N−1
, (1c)

where i = 2, . . . , N − 1. Here, I is the applied current, with
I > 0 for charging and I < 0 for discharging, Vs,j for j =
1, . . . , N are the voltages across the individual capacitors Cs,j ,
Rs,j are the resistors that the current must flow through, and
the subscript s refers to the solid phase. We set 0 ≤ Vs,j ≤ 1
for the purpose of normalization and then define the SoC as the
percentage ratio of the currently available charge over the total
charge capacity, which is

SoC =

∑N
j=1 Cs,jVs,j∑N

j=1 Cs,j

× 100%.

That is, SoC = 100% when Vs,j = 1 for all j, and SoC = 0
when Vs,j = 0 for all j. A brief interpretation of sub-circuit
A is as follows, with more details available in (Biju and Fang,
2023). Overall, the charge transfer between the capacitors in
the circuit mimics the diffusion of lithium ion in the solid phase
or electrode. Then, Vs,j for j = 1, . . . , N correspond to the
lithium-ion concentrations at N different locations, from the
surface to the center, that spread along the radius of an electrode
sphere; Cs,j for j = 1, . . . , N are analogous to the volumes of
the subdomains if one subdivides the electrode sphere at these



discrete locations; Rs,j for j = 1, . . . , N − 1 resist the charge
transfer or equivalently, the solid-phase diffusion, and are hence
inversely proportional to the diffusivity.

Along similar lines to sub-circuit A, sub-circuit B uses a
resistor-capacitor chain to approximate the lithium-ion diffu-
sion in the electrolyte. Its dynamics is governed by

V̇e,1(t) =
Ve,2(t)− Ve,1(t)

CeRe
+

I(t)

Ce
, (2a)

V̇e,2(t) =
Ve,1(t)− 2Ve,2(t) + Ve,3(t)

CeRe
, (2b)

V̇e,3(t) =
Ve,2(t)− Ve,3(t)

CeRe
− I(t)

Ce
, (2c)

where the notations in above have similar meanings as in (1),
and the subscript e refers to the electrolyte. We let Ve,j = 1200
for j = 1, 2, 3 when the cell is at equilibrium. One can interpret
sub-circuit B as analogous to the one-dimensional electrolyte-
phase diffusion that is discretized along the spatial coordinate.
In particular, Ve,j for j = 1, 2, 3 can be associated with
the lithium-ion concentrations at the locations of the anode,
separator, and cathode, and Re embodies resistance to the
diffusion. The spatial discretization is assumed to be uniform,
thus leading to the same values of Re and Ce for each region as
shown in (2).

Sub-circuit C is a lumped circuit model for the thermal dynam-
ics, with the design inspired by (Lin et al., 2014). Here, we con-
sider the cell to be a cylindrical one without loss of generality
and concentrate its spatial dimensions into two singular points
that represent the surface and core, respectively. This simplifi-
cation allows to describe the evolution of the temperatures at
these two points, Tsurf and Tcore, by

Ṫcore(t) =
Q(t)

Ccore
+

Tsurf(t)− Tcore(t)

RcoreCcore
, (3a)

Ṫsurf(t) =
Tamb(t)− Tsurf(t)

RsurfCsurf
− Tsurf(t)− Tcore(t)

RcoreCsurf
, (3b)

where Tamb is the ambient temperature, Csurf/core and Rsurf/core

represent the thermal capacitance and resistance at the surface
and core, respectively, and Q is the internal heat generation rate
accompanying electrochemical reactions inside the cell during
charging/discharging. From a heat transfer perspective, (3a)
approximately describes the heat conduction between the cell’s
surface and core, and (3b) grasps the convection between the
surface and the ambient environment. Further, Q is character-
ized as

Q = −I [Us (SOC)− Us(Vs,1)−Ro,T I] , (4)

where Us(·) is the nonlinear OCV function, Vs,1 is defined in
sub-circuit A, and Ro,T is the internal resistance.

Finally, sub-circuit D summarizes the effects of the solid-
phase and electrolyte-phase dynamics on the terminal voltage.
It contains two voltage sources, Us and Ue, in series with an
internal resistance Ro,T . The terminal U is given by

U = Us(Vs,1(t)) + Ue(Ve,1(t), Ve,3(t)) +Ro,T I(t). (5)

Here, Us simulates the solid-phase OCV. The open-circuit po-
tential of solid material relies on the lithium-ion concentration
at the surface of the electrode, Us should come as a function
of Vs,1, and its exact form will depend on the cell. The opti-
mal function to capture this relationship often varies with the
cell (Weng et al., 2014).

In electrochemical modeling, the electrolyte potential depends
on the electrolyte concentration at the anode and cathode. We
hence make Ue as a function of Ve,1 and Ve,3 and express it as

Ue(t) = β1ln

(
Ve,1(t)

Ve,3(t)

)
, (6)

where β1 is a constant coefficient. As the last element of the
model, Ro,T is not a constant and instead depends on Vs,1 and
Tcore. It is given by

Ro,T = Ro(Vs,1) · exp
(
κ1

(
1

Tcore
− 1

Tamb

))
, (7)

where κ1 is a constant coefficient. In above, the first term
Ro(Vs,1) captures the dependence of Ro,T on Vs,1 and can
be approximated by a polynomial. The second term shows the
temperature dependence due to the Arrhenius law. Similarly, an
Arrhenius relationship can be used to capture the relationship
between the electrode-phase diffusion constant and tempera-
ture:

Rs,1,T = Rs,1 · exp
(
κ2

(
1

Tcore
− 1

Tamb

))
. (8)

Putting together all the above equations, we will obtain a com-
plete description of the BattX model. This model is the first
ECM that can predict over broad current ranges, due to the inte-
gration of the circuits approximating the electrode, electrolyte,
and thermal dynamics into a whole. The model design also
leads to profound comparability with electrochemical model-
ing. We will address the identification of the model parameters
in the next section.

3. PARAMETER IDENTIFICATION FOR THE BATTX
MODEL

In this section, we investigate how to determine the parameters
of the BattX model. To this end, we separate the model’s pa-
rameters into different groups based on the dynamic processes
that they belong to or prominently influence. We then design
experiments accordingly and use different current profiles to
excite different dynamic processes and obtain voltage or tem-
perature data suitable for the identification of the corresponding
parameter groups. Finally, we extract the parameters from the
data, group by group, through data fitting and some empirical
tuning.

The identification of the SoC/OCV relationship is a standard
practice and thus skipped here. We start with setting up the
following parameter groups for the BattX model:

• ΘRo = {γi, i = 1, 2, 3}, which includes the parameters in
Ro in sub-circuit D;

• Θs = {Cs,i, i = 1, . . . , N,Rs,j , j = 1, . . . , N − 1}, which
includes the parameters of sub-circuit A;

• ΘTh = {Csurf , Rsurf , Ccore, Rcore}, which includes the
parameters in the lumped thermal model in sub-circuit C;

• Θe = {Ce, Re, β1}, which includes the parameters in sub-
circuit B and the parameters in Ue in sub-circuit D;

• ΘArr = {κ1, κ2}, which includes the Arrhenius-law-
related parameters.

By grouping the parameters as above, we can design different
current input profiles to stimulate different parts of the cell’s
dynamics so as to identify the parameters of the corresponding
groups. This multi-pronged approach includes the following
steps.



Step 1: Identification of ΘRo . Ro is an integral part of the
internal resistance Ro,T , and Ro = Ro,T when T = Tref . To
identify ΘRo , we apply a 0.5 C pulse current profile, which
includes long enough rest periods between two consecutive
pulses to allow for sufficient voltage recovery, to discharge the
cell from 100% to 0% of SoC when the ambient temperature
is Tref . With discharging at 0.5 C, the cell will see only a
negligible increase in its temperature, and Ue ≈ 0. For the
terminal voltage U , we will see a sharp drop or jump at the
beginning or end of every pulse, and this is almost solely due
to the voltage change across Ro. Therefore, using the voltage
jump, one can approximate Ro as

R̃o(t∗) =
∣∣∣∣U(t∗ − 1)− U(t∗)

I

∣∣∣∣ , (9)

where t∗ is the instant after a pulse is applied. Note that we
can readily determine Vs,1 with the idea that Vs,1 = SoC when
the cell reaches equilibrium after a long rest period and that
SoC can be calculated via Coulomb counting. Collecting Ro

for all t∗, we can formulate the following data fitting problem
to estimate ΘRo :

Θ̂Ro
= argmin

ΘRo

∑
t∗

[
R̃o(t∗)−Ro(ΘRo

; t∗)
]2

. (10)

Step 2: Identification of Θs. The number of parameters in
Θs depends on N , and when N is large, Θs will be poorly
identifiable to defy accurate estimation. To formulate a tractable
identification problem, we assume that

Cs,i = λiCs,1, Rs,j = σjRs,1, (11)

where λi and σi for i = 1, . . . N and j = 1, . . . N − 1 are pre-

specified coefficients with λ1 = σ1 = 1, and
∑N

i=1 λiCs,i is
the total capacity of the cell. This allows us to consider only
two parameters, i.e., Θs = {Cs,1, Rs,1}, greatly facilitating
the parameter estimation. Going forward, we apply a 0.5 C
constant-current profile to discharge the cell from full to zero
SoC. In this setting, sub-circuit A is excited, but the dynamics
of sub-circuits B and C have no appreciable effects. That is, the
cell’s temperature remains almost the same, and Ue ≈ 0. We
can conduct data fitting as below to find out Θs:

Θ̂s = argmin
Θs

∑
tk

[
U(tk)−Ro

(
Θ̂Ro

; tk

)
I(tk)

−Us

(
Vs,1 (Θs; tk) ; Θ̂Us

)]2
, (12)

where Θ̂Us and Θ̂Ro have been obtained in Steps 1 and 2, and
the form of Vs,1(Θs, t) is shown in (Biju and Fang, 2023).

Step 3: Identification of ΘTh, Θe and ΘArr. These three groups
of parameters can be identified together because both the ther-
mal and electrolyte dynamics will substantially manifest them-
selves under high C-rate loads. We can fully discharge the cell
at 1.5 C and a 2 C separately and then use both datasets to
determine the parameters. To identify ΘTh, the following data
fitting problem can be considered:

Θ̂Th = argmin
ΘTh

∑
tk

[
T (tk)− Tsurf

(
Θ̂Th; tk

)]2
. (13)

For the identification of Θe and ΘArr, the corresponding data
fitting problem is shown in (14). However, these two problems
are non-trivial to solve, because no closed-form expression
exists for Us since the appreciably changing temperature makes
sub-circuit A become a time-varying system. Instead, we resort
to the built-in optimizer tool in GT-SUITE, which is a multi-

physics simulation tool to be used in our model validation in
Section 4. The optimizer leverages an iterative procedure to
search for global minima. Briefly speaking, it runs the model
using initial guesses of the parameters. Then, it evaluates the
outputs of the model against the data and determines the next
estimates of the parameters. The procedure repeats itself until
the achievement of convergence. What underlies the procedure
is an accelerated genetic algorithm.

The above steps together constitute our parameter identification
approach for the BattX model. Further remarks are as below.
Remark 1. The data fitting problems outlined in Steps 1-3 are
nonlinear non-convex optimization. The non-convexity can eas-
ily get the parameter search stuck in local minima to produce
physically meaningless parameter estimates. To mitigate the
issue, it is sensible to constrain the search within a believably
correct parameter space (Tian et al., 2020b). Specifically, one
can set up approximate lower and upper bounds for every
possible parameter and then limit the numerical optimization
within the resultant parameter space. The prior knowledge used
to establish such bounds can be derived from both experience
and observation or analysis of the measurement data. Other
helpful ways to overcome the local minima issue include adding
regularization terms that encode prior knowledge of some pa-
rameters and applying different initial guesses to repeatedly run
the numerical optimization (Tian et al., 2020b).
Remark 2. We consider a pouch cell to be used in the model
validation (see Section 4) as a baseline when selecting the
discharging C-rates in each step of the above approach. How-
ever, a user or practitioner may need to adjust the specific C-
rates, depending on the cells to apply the model to. The overall
guiding rule is yet the same—using current profiles of different
C-rates to excite different dynamic processes to obtain data
informative for the identification of the parameters associated
with each process.

4. VALIDATION OF THE BATTX MODEL

This section shows simulation results to validate the BattX
model. All simulations are carried out using GT-SUITE Version
2023, a multi-physics systems simulation platform (Gamma
Technologies, LLC, 2022). GT-SUITE executes a pseudo-two-
dimensional electrochemical model through the GT-AutoLion
template. We set the electrochemical model to simulate an
NMC811 energy-dense pouch cell with a nominal capacity
of 18 Ah and run it to generate synthetic datasets. We then
calibrate the BattX model using the datasets and compare its
prediction performance relative to the electrochemical model.

4.1 Model Identification

The model identification procedure are as follows.

• First, the electrochemical model was run with a 0.5 C
pulse load profile shown in Fig. 2. The voltage from the
simulation was used to calculate Ro using (9) and then

(10) to find Θ̂Ro . The calibrated R̂o is given by

R̂o = −0.0383V 3
s1 + 0.0875V 2

s,1 − 0.0655Vs,1 + 0.0226.

Fig. 2 compares R̂o with the benchmark truth, showing
satisfactory accuracy.

• Next, the OCV-SOC relationship from the electrochemi-
cal model was transferred into the BattX table in a table



Fig. 2. Terminal voltage profile under intermittent discharging

at 0.5 C to identify ΘRo and fitting of Ro(SoC) with R̃o

based on Θ̂Ro

Fig. 3. Terminal voltage fitting under 0.5 C constant-current

discharging based on Θ̂Us

lookup format. Then, using some knowledge of the elec-
trochemical model and of the spatial discretization, we can
specify

λi = {1, 0.6066, 0.3115, 0.1148, 0.0164} ,
σj = {1, 1.77, 4.00, 15.98} .

Then, a 0.5 C constant-current discharge was applied to
the electrochemical model. The voltage output from the

simulation was used to identify Θ̂s. The identified pa-
rameters are summarized in Table 1, and the comparison
between the predicted terminal voltage and the benchmark
is shown in Fig. 3.

Table 1. Estimation of Θs

Cs,1 Rs,1

Initial Guess 33316 0.07
Lower Bound 30000 0.01
Upper Bound 35000 0.15
Optimal Value 33124 0.02

• Finally, the electrochemical model was simulated under
1.5 C and 2 C constant-current discharge loads separately.
The voltage and average temperature data from the sim-

ulation were used to identify Θ̂Th, Θ̂e, and Θ̂Arr. The

Fig. 4. Terminal voltage and temperature fitting under 1.5 C

and 2 C constant-current discharging based on Θ̂e, Θ̂Th,

and Θ̂Arr

optimal parameters are summarized in Tables 2 and 3 with
the prediction results shown in Fig. 4.

Table 2. Estimation of ΘTh

Rsurf Rcore Csurf Ccore

Initial Guess 0.65 0.25 120 250
Lower Bound 0.59 0.10 100 180
Upper Bound 0.75 0.50 150 320
Optimal Value 0.71 0.12 117 189

Table 3. Estimation of Θe and ΘArr

β0 Re Ce κ1 κ2

Initial Guess 1.2 45000 1e-4 18 40
Lower Bound 0.9 35000 8.0e-5 15.0 10.0
Upper Bound 2.0 70000 1.2e-4 22.0 50.0
Optimal Value 1.9 53088 8.6e-5 21.6 27.1

The above summarizes the identification of the BattX model.
Next, we apply the identified model to new datasets to further
validate it.

4.2 Model Testing and Validation

To test the predictive capability of the calibrated BattX model,
we generated new datasets based on the electrochemical model.
The first tests assess the model using low and high constant
current discharge profiles. Fig. 5 shows the voltage prediction
at 0.25 C and 3 C constant-current discharge. It is seen that the
BattX model can deliver good accuracy in both cases.

The next dataset was generated based on a profile from the
Worldwide harmonized Light vehicles Test Cycles (WLTC),
which are real-world dynamometer tests by light-duty vehicles.
Here, we normalized the power loads to be appropriate for the
cell, supplying the cell with currents varying from −2 to 3 C.
The voltage and temperature prediction by the BattX model
are shown in Fig. 6, showing excellent agreement with the
benchmark.

Θ̂e, Θ̂Arr = arg min
Θe,ΘArr

∑
tk

[
U(tk)−Ro,T

(
Θ̂Ro ,ΘArr,ΘTh; tk

)
I(tk)− Us

(
Vs,1

(
Θ̂s,ΘArr,ΘTh; tk

)
; Θ̂Us

)

− Ue (Θe; tk)
]2

(14)



Fig. 5. Voltage prediction by the BattX model versus the bench-
mark truth at 0.25 C and 3 C constant-current discharge

Fig. 6. Voltage and temperature prediction by the BattX model
versus the benchmark results for a WLTC cycle

The third dataset was intended for LiB-powered eVTOL. Al-
though eVTOL has attracted increasing interest as a promising
solution to urban air mobility and decarbonization of avia-
tion, conventional ECMs are hardly suitable for them, because
they require high-rate discharging in the takeoff and landing
phases (Bills et al., 2020). The proposed BattX model holds a
promise to overcome the issue. We consider a notional eVTOL
flight here, which includes three phases, takeoff, cruising, and
landing. The three phases are assumed to require discharging at
2.8 C, 0.8 C, and 2.8 C. The corresponding discharging power
for the considered cell is 54 W, 16 W, and 54 W, respectively.
Accordingly, we generated a current load profile sequentially
comprising multiple flight cycles with the three-phase pattern
until the cell reaches its cutoff voltage. Fig. 7 shows that the
BattX model achieves accurate prediction compared with the
benchmark truth. Especially, the accuracy is found satisfactory
at the times of high discharge rates. The surface temperature
prediction in Fig. 7 also well agrees with the actual temperature.

To sum up, the testing and validation results show the high
accuracy and fidelity of the BattX model across low to high
currents in different use scenarios.

5. CONCLUSIONS

LiBs have immense impacts on contemporary society and in-
dustry. Their wide use presents a pressing demand for high-
fidelity and computationally fast ECMs. This need, however,
has not been met yet for applications or systems that involve

Fig. 7. Voltage and surface temperature prediction by the BattX
model versus the benchmark results for multiple eVTOL
cycles

charging/discharging from low to high currents. In this paper,
we develop a novel ECM named BattX to fill this gap. The
BattX model draws inspirations from electrochemical model-
ing and is characterized by using separate yet coupled circuits
to simulate the electrode-phase, electrolyte-phase, and thermal
dynamic processes as well as their effects on the terminal volt-
age. The grasp of the different key dynamics endows the model
with the predictive capability to fulfill the above need. Further,
a multi-pronged identification approach is custom-built for the
BattX model. Extensive simulations based on different current
profiles show that the model can provide accurate prediction
over broad C-rate ranges. The BattX model, for the first time,
expands the reach of ECMs to use scenarios that low- to high-
current charging/discharging and can find potential use in vari-
ous applications including eVTOLs.
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