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1 Introduction

Cosmological phase transitions and cross-overs represent a dramatic change in the proper-

ties of the Universe over a relatively short period of its history, and may play an important

role in our understanding of conditions today. Already in the Standard Model (SM),

the QCD cross-over at which SU(3) color confines [1, 2] is thought to separate a phase

dominated by free quarks and gluons from one where the relevant degrees of freedom are

baryons, and the electroweak (EW) cross-over demarcates a period where the electroweak

gauge symmetry is exact from one in which the weak bosons and SM fermions have non-

zero masses. In the context of physics beyond the Standard Model (BSM), first order

phase transitions (FOPTs) are frequently invoked to catalyze interesting dynamics. For

instance, the interactions between the thermal bath and the expanding bubbles of true

vacuum typically present in a FOPT play a central role in mechanisms such as electroweak

baryogenesis [3–6], where the FOPT realizes a departure from thermal equilibrium — one

of the three necessary conditions required for baryogenesis [7].

In this article, we investigate a FOPT producing a large shift in the mass of a BSM

particle χ, and explore how this leads to an interesting interplay between the role of χ decay

and χχ annihilation into SM particles during the FOPT itself. After bubbles of the true

vacuum nucleate, the χ mass can be radically different inside and outside. As the bubbles

expand and collide (using the terminology of ref. [8]), segmented “pockets” of unbroken

phase remain, and experience contraction as the bubbles grow to fill the entire Universe.

While this happens, χ particles in the pockets reflect off the bubble walls due to the large

M in
χ /T in the broken phase and as a result are trapped in the pockets, “squeezing” them

together.

We focus on the interplay between decay and annihilation processes during the pocket

collapse, and analyze under which situations one or the other can become the dominant

mechanism depleting the particles. Generically, one would expect that decays, if allowed,
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would dominate over annihilation processes such that the depletion is governed by the

decays alone. However, as they are squeezed inside a contracting pocket, the particle

densities may grow large enough to provide enough enhancement of the annihilation rate

that a significant number of χ annihilate rather than decay, even for large decay widths.

We find that depending on the parameters of the theory, the decay and annihilation can

compete or be relevant at different times during the phase transition. This mechanism thus

provides a novel relationship between the depletion processes, and can open up large regions

of the parameter space in which annihilation can become important or even dominate over

decay.

As a specific application, we apply this scenario to baryogenesis. Interference between

tree-level and loop-level diagrams can lead to a CP asymmetry in both decay and annihila-

tion, and even if the decay and annihilation processes are governed by the same couplings

(which they need not be), there are additional contributions to a CP asymmetry from the

annihilation processes, and therefore the asymmetries generated by decay and annihilation

are not constrained to be the same. We work in a generic framework, in which a FOPT

traps the particles to decay or annihilate in the pockets of unbroken phase. Previous related

work [9, 10] has examined baryogenesis in a similar context with relativistic bubble walls,

but under the assumption that the effect of reflection off of the bubble walls is negligible.

Recent studies have investigated similar ideas in the context of dark matter (DM),

and how the DM relic abundance may be set by interactions with non-relativistic bubble

walls via a “filtering” effect [11–14], leading to an exponentially suppressed abundance

of DM inside the bubbles. The DM relic abundance has been studied in the context of

ultra-relativistic bubble wall as well [15]. Other work has focused on the fate of the DM

particles that reflect off the bubble wall and are trapped in the unbroken phase. The

particles trapped in the pockets are eventually “squeezed” together, leading to a number

of possible outcomes, depending on the specifics of their interactions. The squeezing could

enhance their annihilation rate, which may determine the DM relic density [8], or increase

the density sufficiently enough to create compact objects such as primordial black holes

or Fermi-balls [16–20], which may themselves play the role of dark matter in the Universe

today.

Our paper is organized as follows. Section 2 introduces the general framework and

outlines the relevant features of a first order phase transition. Section 3 examines the

interplay between decay and squeezed annihilation via the Boltzmann equation, and deter-

mines whether decay or annihilation is the dominant depletion process. Section 4 discusses

the asymmetry that is generated for different amounts of decay and annihilation. Sec-

tion 5 shows the gravitational wave spectrum that could be produced within this general

framework. We reserve section 6 for our conclusions and outlook.

2 General scenario

We consider a scenario where a fermion χ is coupled to a complex scalar Φ described by

the Lagrangian,

L = χ(i /D)χ − yΦχχ + h.c. − V (Φ) (2.1)
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where we assume for simplicity that both χ and Φ are SM singlets. In order to consider a

wide spectrum of scenarios, we assume that there are couplings which mediate both the de-

cay and annihilation of χ into appropriate SM states, but do not specify their specific form.

To successfully realize baryogenesis, there must be a source of CP violation in either

the new sector itself or couplings between the new sector and the SM. If there are multiple

flavors of χi, this CP violation may come directly from the Φ couplings,

LCP ⊃ yijΦχiχj + y∗

ijΦ∗χjχi (2.2)

which could generate CP violation via vertex corrections, self-energy corrections, and other

loop level processes involving Φ. For now, we consider χ to be the lightest species of

the multiple generations, with any heavier states showing up only inside these loop-level

processes. The Sakharov conditions additionally require the presence of C and baryon

number violation, which constrains the space of the generic couplings.

We assume that the thermal potential for Φ is such that at some temperature in the

early Universe it undergoes a first order phase transition, nucleating bubbles in the process.

The form of eq. (2.1) is such that at temperatures above the Φ phase transition, the χ have

zero tree level mass. After the Φ phase transition, the χ are massive inside the bubbles

of broken phase (the phase where Φ has a vev) and their mass is M in

χ = y〈Φ〉. If the

ratio M in
χ /T ≫ 1, then only the high momentum modes of χ can penetrate the bubble

wall, resulting in a large number of the χ particles being trapped in the unbroken phase.

Altogether this amounts to an out-of-equilibrium process with C, CP, and baryon number

violation: all of the necessary ingredients to generate a baryon asymmetry.

Throughout the remainder of the paper, we will use terminology introduced in ref. [8].

The regions we refer to as bubbles are the usual FOPT bubbles that nucleate and expand.

As these bubbles collide, segmented regions of unbroken phase contract, which we refer to

as “pockets”.

As the bubbles nucleate and expand, the particles with insufficient kinetic energy to

enter the broken phase reflect off the bubble wall. The bubbles eventually collide, and

isolated pockets of unbroken phase are left to contract (see figure 1). During this pocket

collapse, both decay and annihilation processes can both be important in the depletion of

χ as shown in figure 2 for a specific choice of parameters. Although the tree-level mass is

zero in the unbroken phase, the thermal mass can allow the decays to become kinematically

accessible. If the decay lifetime of χ is shorter than the collapse time, then the χ will start

depleting via decays. Simultaneously, the pocket contracts, enhancing the annihilation

processes as the pocket squeezing increases the density of the leftover χ. Whether the

decay or annihilation processes dominate in depleting the χ abundance depends on the

relationship between the decay width, Γχ, annihilation cross section, 〈σv〉, and the pocket

collapse rate.

2.1 Phase transition

In general, the properties of the phase transition are largely governed by the potential V (φ)

(including thermal corrections). Typically (even in the absence at tree-level), a cubic term
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arises from the high temperature expansion of the thermal loop corrections. This creates

a barrier between the two minima, inducing a first order phase transition. By expanding

the scalar field as |Φ| = φ/
√

2, one can generically write the finite temperature potential

as [21]

V (φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λ(T )

4
φ4 (2.3)

with D, E, and λ(T ) determined by a combination of tree level potential parameters

and both thermal and zero-temperature loop corrections. These parameters determine

the critical temperature, Tc, nucleation temperature, Tn, and the strength of the phase

transition, with a strong first-order phase transition satisfying the condition 〈|Φ|〉/Tc ∼
E/λ(Tc) ≫ 1. In a specific theory, the coefficients D, E, and λ can be computed, where

E typically is generated by bosonic fields coupled to φ. For example, if the vev of φ

is responsible for breaking a new gauge symmetry, loops including the gauge bosons in

the theory would be responsible for generating the finite temperature cubic term in the

potential, and E would be calculable from those loops. A strong FOPT could then be

satisfied via substantial gauge couplings, generating a large E, as well as modest quartic

couplings. Rather than get distracted by these specific details however, we treat them as

parameters that we can freely tune to realize a FOPT with various properties. We also

assume that the phase transition completes quickly enough that the temperature can be

treated as a constant throughout its progress.

The typical initial size of the pockets will directly influence the dynamics and timescales

that govern the χ particles during the pocket collapse. The average number of bubbles that

nucleate per Hubble volume scales as Nb ∼ β3
H , where βH , is typically of order O(10 − 104)

for strongly FOPTs [9], but could be as large as O(1011) [22]. This determines the initial size

of the pockets by specifying the number density of bubbles that nucleate, nb ∼ β3
HH3, and

the distance between bubble centers scales as db ∼ n
−1/3

b ∼ RH/βH where RH ≡ 1/H [23].

We consider both small and large initial pocket sizes by exploring two representative choices

of the initial radii, R0 = RH , corresponding to a handful of bubbles per Hubble volume,

and R0 = 5 × 10−6 RH , corresponding to numerous bubbles per Hubble volume.

The bubble wall velocity vw influences the rate at which the pockets contract. vw can

be estimated as ∼ (Tc − T )/Tc [24], which however this neglects the pressure exerted by χ

particles reflecting off the wall, which could slow down the bubble expansion considerably [8,

18, 19]. We consider both relativistic and non-relativistic wall velocities, where the larger

the wall velocity, the larger the mass needs to be in the broken phase in order to trap

χ in the pockets. We choose vw = 0.9, M in
χ /T = 102 and vw = 10−3, M in

χ /T = 10 as

two representative examples, and assume that the wall velocity is approximately constant

throughout the phase transition.

3 Decays and squeezed annihilation

Throughout the process of collapse, interactions with the thermal bath generate a thermal

mass for χ of order Π2
χ ∼ g2T 2 (where g represents a generic coupling to the thermal
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bath). The particles that are trapped in these pockets are subsequently squeezed together

and effectively obtain a Casimir mass, M cas
χ ∼ 1/R, where R is the pocket radius. This

Casimir energy is an inherently quantum mechanical effect, due to the χ wave-functions’

energies being bounded from below because of the size of the pocket they are confined

within. For sufficiently confined χ, this mass can allow χ to rapidly decay even when its

tree level/thermal mass would otherwise forbid it from doing so. We denote the decay

width of χ in the pocket as Γχ. We further assume that χχ is also able to annihilate into

SM final states with an annihilation cross section 〈σv〉.
As the pocket radius decreases to R ∼ 1/M in

χ , the Casimir energy overcomes the poten-

tial energy barrier between the unbroken and broken phases, and the remaining abundance

of χ is forced into the bubbles where they eventually decay away. In figure 2, we show

an example of the evolution of the number of χ throughout pocket collapse. Decays start

immediately, governing the abundance early on in the phase transition. As the radius

shrinks, there is less time left in the phase transition to allow for decays to occur, and the

abundance due to decays flattens. However, at smaller radii, the density of χ increases

enough to enhance the annihilation rate appreciably, allowing for a new depletion process

to become relevant.

3.1 Boltzmann equation

We track the abundance of χ throughout the pocket collapse by solving a Boltzmann

equation for the number density of χ confined inside the contracting pocket

dnχ

dt
+ 3

Ṙ

R
nχ = − 〈σv〉(n2

χ − n2
eq)

− Γχ(nχ − neq). (3.1)

We assume that χ have sufficiently strong interactions with the SM plasma that they have

their equilibrium abundance at the beginning of the phase transition, and we approximate

the pocket to be spherical with a constant wall velocity, vw. We use a thin-wall approxima-

tion since this drastically simplifies the interactions between χ and the bubble wall, while

at the cost of a loss on control at the end of the phase transition when the pockets are very

small. However, the dominant processes operate much earlier than when the Boltzmann

equation breaks down. The Boltzmann equation can be recast into an equation differential

in the radius of the pocket by making use of the relation
dnχ

dt =
dnχ

dR
dR
dt = −vw

dnχ

dR ,

−vw
dnχ

dR
− 3

vw

R
nχ = − 〈σv〉(n2

χ − n2
eq)

− Γχ(nχ − neq). (3.2)

For a generic point in parameter space, both annihilation and decay may be significant.

The total number of χ inside the pocket is Nχ = 4πR3nχ/3, for which:

dNχ

dR
= −4πR3

3vw

(

〈σv〉(n2
χ − n2

eq) + Γχ(nχ − neq)

)

. (3.3)
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In the eq. (3.3), we assume that the density is constant throughout the pockets. While

there would be some over-densities of χ near the bubble walls, non-relativistic bubble walls

would typically expand too slowly to produce a pile-up of relativistic χ. In the case of

relativistic bubble walls, where pile-up is more likely to occur, it would in principle enhance

the annihilation near the bubble wall, and suppress the annihilation near the centers of the

bubbles. The interplay of these two processes could be complicated, and to demonstrate

the mechanism, we approximate the density to be uniform throughout the pocket.

To determine the dominant process responsible for depleting the abundance inside

the pocket, we compute the fraction of the depletion that was from annihilation, fA =

∆Nannihilation/∆Ntotal, by comparing the integral of the corresponding terms in the Boltz-

mann equation,

fA =
1

∆Ntotal

∫

dNannihilation (3.4)

=

∫ 1/M
R0

R3dR 〈σv〉(n2
χ − n2

eq)

∫ 1/M
R0

R3dR

(

〈σv〉(n2
χ − n2

eq) + Γχ(nχ − neq)

) .

In figure 3 we show contours in the plane of Γ–〈σv〉 corresponding to equal depletion

by decay and annihilation for vw = 10−3, M in
χ /T = 10 and for four different combinations

of the initial pocket size R0 and the temperature T at which the phase transition takes

place. Generally as expected, larger widths correspond to decay domination, and larger

cross sections to annihilation cross section, with the boundary of fA = 1/2 determined by

the temperature, which controls the initial density of χ and thus the rate of annihilation.

However, there is a flattening at low 〈σv〉 which occurs when the decay and annihilation

processes are operating during different times. In this case, the decays start immediately

and the contour of fA = 1/2 corresponds to the point where half of the initial abundance

inside the pocket decays before the time where squeezing becomes sufficient that annihila-

tions turn on and deplete the rest of the abundance.

For a phase transition with different vw, the dominant difference is through the explicit

dependence in equation (3.2), which can be rescaled such that the quantities driving the

evolution of nχ are Γχ/vw and 〈σv〉/vw. For larger vw, in order to keep the χ confined

to the pockets, the phase transition must also have a larger value of M in
χ /T which further

implies that the χ reach sufficient Casimir energy to escape the pockets at a smaller pocket

radius, and thus there is a slightly longer period for decay and annihilation to operate.

For the relativistic wall velocity case we consider with vw = 0.9 and M in
χ /T = 102, this

second effect is numerically unimportant, and the contours of fixed fA are very close to

those shown in figure 3 with appropriate rescaling by vw.

Figure 4 displays for each of the parameter sets shown in figure 3 the total depletion

in the plane of Γ–〈σv〉. Depletion is very efficient in most of the plane, but in regions with

both very small decay widths and annihilation cross sections, there could be a population

of χ that survive the pocket collapse.
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this is a novel application, the interplay between annihilation and decay during such a

phase transition is interesting in its own right, and may prove useful in other applications

as well.

There are many interesting avenues for future exploration. For example, we approxi-

mate a constant temperature of the thermal bath throughout the phase transition, but this

need not be the case. Indeed, the duration of the phase transition is longer than the Hubble

scale for pockets whose sizes are initially ∼ RH , such that the temperature of the universe

may cool appreciably. Other types of phase transition may themselves generate significant

amounts of heating. We further assumed a constant bubble wall velocity, but depending on

the heating during the phase transition, and the pressure exerted on the bubble wall by χ

could lead to a non-trivial wall velocity profile. Studying this more complicated evolution

is left for future work.

It would also be interesting to move beyond generic characterizations and see how

these results could be applied to specific models of baryogenesis. For example, χ could

be a right handed neutrino in a seesaw model of neutrino masses, whose large mass could

be the result of the vacuum expectation value of a field spontaneously breaking lepton

number. Typically in leptogenesis models, decays dominate and annihilation is negligible;

but for the an appropriate type of phase transition this expectation could be upset, leading

to a different mapping between the phases of the neutrino masses and Yukawa couplings

and the resulting baryon asymmetry (from annihilating sterile neutrinos), and violating

the Davidson-Ibarra bound [31], or the need for tiny mass differences required by resonant

leptogenesis [32].

If the χ is stable, it could play the role of dark matter, and it might be possible to

generate the observed dark matter relic abundance and baryon asymmetry at the same

time [33, 34]. Even without addressing baryogenesis, the enhancement of the annihilation

could relax the relationship between the annihilation cross section and the mass implied

by freeze-out production of the dark matter, allowing small values of the cross section to

generate the correct amount of dark matter. We leave the investigation of these ideas for

future work.

Acknowledgments

This work was supported in part by the NSF via grant number PHY-1915005.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited. SCOAP3 supports

the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] T. Bhattacharya et al., QCD Phase Transition with Chiral Quarks and Physical Quark

Masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].

[2] T.K. Herbst, J.M. Pawlowski and B.-J. Schaefer, Phase structure and thermodynamics of

QCD, Phys. Rev. D 88 (2013) 014007 [arXiv:1302.1426] [INSPIRE].

– 12 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.113.082001
https://arxiv.org/abs/1402.5175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.5175
https://doi.org/10.1103/PhysRevD.88.014007
https://arxiv.org/abs/1302.1426
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.1426


J
H
E
P
0
8
(
2
0
2
2
)
0
7
8

[3] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon

Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

[4] M. Carena, M. Quirós and C.E.M. Wagner, Opening the window for electroweak

baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].

[5] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev.

Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].

[6] D. Croon, V. Sanz and G. White, Model Discrimination in Gravitational Wave spectra from

Dark Phase Transitions, JHEP 08 (2018) 203 [arXiv:1806.02332] [INSPIRE].

[7] A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the

universe, Sov. Phys. Usp. 34 (1991) 392 [Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32] [JETP

Lett. 5 (1967) 24] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

[8] P. Asadi, E.D. Kramer, E. Kuflik, G.W. Ridgway, T.R. Slatyer and J. Smirnov, Thermal

squeezeout of dark matter, Phys. Rev. D 104 (2021) 095013 [arXiv:2103.09827] [INSPIRE].

[9] I. Baldes, S. Blasi, A. Mariotti, A. Sevrin and K. Turbang, Baryogenesis via relativistic

bubble expansion, Phys. Rev. D 104 (2021) 115029 [arXiv:2106.15602] [INSPIRE].

[10] A. Azatov, M. Vanvlasselaer and W. Yin, Baryogenesis via relativistic bubble walls, JHEP

10 (2021) 043 [arXiv:2106.14913] [INSPIRE].

[11] F.P. Huang and C.S. Li, Probing the baryogenesis and dark matter relaxed in phase transition

by gravitational waves and colliders, Phys. Rev. D 96 (2017) 095028 [arXiv:1709.09691]

[INSPIRE].

[12] T. Hambye, A. Strumia and D. Teresi, Super-cool Dark Matter, JHEP 08 (2018) 188

[arXiv:1805.01473] [INSPIRE].

[13] M.J. Baker, J. Kopp and A.J. Long, Filtered Dark Matter at a First Order Phase Transition,

Phys. Rev. Lett. 125 (2020) 151102 [arXiv:1912.02830] [INSPIRE].

[14] D. Chway, T.H. Jung and C.S. Shin, Dark matter filtering-out effect during a first-order

phase transition, Phys. Rev. D 101 (2020) 095019 [arXiv:1912.04238] [INSPIRE].

[15] A. Azatov, M. Vanvlasselaer and W. Yin, Dark Matter production from relativistic bubble

walls, JHEP 03 (2021) 288 [arXiv:2101.05721] [INSPIRE].

[16] J.-P. Hong, S. Jung and K.-P. Xie, Fermi-ball dark matter from a first-order phase transition,

Phys. Rev. D 102 (2020) 075028 [arXiv:2008.04430] [INSPIRE].

[17] C. Gross, G. Landini, A. Strumia and D. Teresi, Dark Matter as dark dwarfs and other

macroscopic objects: multiverse relics?, JHEP 09 (2021) 033 [arXiv:2105.02840] [INSPIRE].

[18] M.J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, Primordial Black Holes from

First-Order Cosmological Phase Transitions, arXiv:2105.07481 [INSPIRE].

[19] D. Marfatia and P.-Y. Tseng, Correlated gravitational wave and microlensing signals of

macroscopic dark matter, JHEP 11 (2021) 068 [arXiv:2107.00859] [INSPIRE].

[20] K. Kawana and K.-P. Xie, Primordial black holes from a cosmic phase transition: The

collapse of Fermi-balls, Phys. Lett. B 824 (2022) 136791 [arXiv:2106.00111] [INSPIRE].

[21] P.B. Arnold, Phase transition temperatures at next-to-leading order, Phys. Rev. D 46 (1992)

2628 [hep-ph/9204228] [INSPIRE].

– 13 –

https://doi.org/10.1016/0370-2693(85)91028-7
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB155%2C36%22
https://doi.org/10.1016/0370-2693(96)00475-3
https://arxiv.org/abs/hep-ph/9603420
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9603420
https://doi.org/10.1146/annurev.ns.43.120193.000331
https://doi.org/10.1146/annurev.ns.43.120193.000331
https://arxiv.org/abs/hep-ph/9302210
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9302210
https://doi.org/10.1007/JHEP08(2018)203
https://arxiv.org/abs/1806.02332
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1808%2C203%22%20and%20year%3D2018
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://inspirehep.net/search?p=find+J%20%22Pisma%20Zh.Eksp.Teor.Fiz.%2C5%2C32%22
https://doi.org/10.1103/PhysRevD.104.095013
https://arxiv.org/abs/2103.09827
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.09827
https://doi.org/10.1103/PhysRevD.104.115029
https://arxiv.org/abs/2106.15602
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.15602
https://doi.org/10.1007/JHEP10(2021)043
https://doi.org/10.1007/JHEP10(2021)043
https://arxiv.org/abs/2106.14913
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.14913
https://doi.org/10.1103/PhysRevD.96.095028
https://arxiv.org/abs/1709.09691
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.09691
https://doi.org/10.1007/JHEP08(2018)188
https://arxiv.org/abs/1805.01473
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.01473
https://doi.org/10.1103/PhysRevLett.125.151102
https://arxiv.org/abs/1912.02830
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02830
https://doi.org/10.1103/PhysRevD.101.095019
https://arxiv.org/abs/1912.04238
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.04238
https://doi.org/10.1007/JHEP03(2021)288
https://arxiv.org/abs/2101.05721
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.05721
https://doi.org/10.1103/PhysRevD.102.075028
https://arxiv.org/abs/2008.04430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.04430
https://doi.org/10.1007/JHEP09(2021)033
https://arxiv.org/abs/2105.02840
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.02840
https://arxiv.org/abs/2105.07481
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.07481
https://doi.org/10.1007/JHEP11(2021)068
https://arxiv.org/abs/2107.00859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.00859
https://doi.org/10.1016/j.physletb.2021.136791
https://arxiv.org/abs/2106.00111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.00111
https://doi.org/10.1103/PhysRevD.46.2628
https://doi.org/10.1103/PhysRevD.46.2628
https://arxiv.org/abs/hep-ph/9204228
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9204228


J
H
E
P
0
8
(
2
0
2
2
)
0
7
8

[22] D. Marfatia and P.-Y. Tseng, Gravitational wave signals of dark matter freeze-out, JHEP 02

(2021) 022 [arXiv:2006.07313] [INSPIRE].

[23] A. Mégevand and S. Ramírez, Bubble nucleation and growth in slow cosmological phase

transitions, Nucl. Phys. B 928 (2018) 38 [arXiv:1710.06279] [INSPIRE].

[24] E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].

[25] S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105

[arXiv:0802.2962] [INSPIRE].

[26] T. Alanne, T. Hugle, M. Platscher and K. Schmitz, A fresh look at the gravitational-wave

signal from cosmological phase transitions, JHEP 03 (2020) 004 [arXiv:1909.11356]

[INSPIRE].

[27] P. Auclair et al., Probing the gravitational wave background from cosmic strings with LISA,

JCAP 04 (2020) 034 [arXiv:1909.00819] [INSPIRE].

[28] H. Kudoh, A. Taruya, T. Hiramatsu and Y. Himemoto, Detecting a gravitational-wave

background with next-generation space interferometers, Phys. Rev. D 73 (2006) 064006

[gr-qc/0511145] [INSPIRE].

[29] V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the big

bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE].

[30] S. Hild et al., Sensitivity Studies for Third-Generation Gravitational Wave Observatories,

Class. Quant. Grav. 28 (2011) 094013 [arXiv:1012.0908] [INSPIRE].

[31] S. Davidson and A. Ibarra, A Lower bound on the right-handed neutrino mass from

leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

[32] A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D

56 (1997) 5431 [hep-ph/9707235] [INSPIRE].

[33] Y. Cui, L. Randall and B. Shuve, Emergent Dark Matter, Baryon, and Lepton Numbers,

JHEP 08 (2011) 073 [arXiv:1106.4834] [INSPIRE].

[34] Y. Cui, L. Randall and B. Shuve, A WIMPy Baryogenesis Miracle, JHEP 04 (2012) 075

[arXiv:1112.2704] [INSPIRE].

– 14 –

https://doi.org/10.1007/JHEP02(2021)022
https://doi.org/10.1007/JHEP02(2021)022
https://arxiv.org/abs/2006.07313
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.07313
https://doi.org/10.1016/j.nuclphysb.2018.01.012
https://arxiv.org/abs/1710.06279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.06279
https://doi.org/10.1103/PhysRevD.30.272
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD30%2C272%22
https://doi.org/10.1016/j.physrep.2008.06.002
https://arxiv.org/abs/0802.2962
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.2962
https://doi.org/10.1007/JHEP03(2020)004
https://arxiv.org/abs/1909.11356
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.11356
https://doi.org/10.1088/1475-7516/2020/04/034
https://arxiv.org/abs/1909.00819
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.00819
https://doi.org/10.1103/PhysRevD.73.064006
https://arxiv.org/abs/gr-qc/0511145
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0511145
https://doi.org/10.1088/0264-9381/23/7/014
https://arxiv.org/abs/gr-qc/0512039
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0512039
https://doi.org/10.1088/0264-9381/28/9/094013
https://arxiv.org/abs/1012.0908
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.0908
https://doi.org/10.1016/S0370-2693(02)01735-5
https://arxiv.org/abs/hep-ph/0202239
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0202239
https://doi.org/10.1103/PhysRevD.56.5431
https://doi.org/10.1103/PhysRevD.56.5431
https://arxiv.org/abs/hep-ph/9707235
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9707235
https://doi.org/10.1007/JHEP08(2011)073
https://arxiv.org/abs/1106.4834
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.4834
https://doi.org/10.1007/JHEP04(2012)075
https://arxiv.org/abs/1112.2704
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.2704

	Introduction
	General scenario
	Phase transition

	Decays and squeezed annihilation
	Boltzmann equation

	Application to baryogenesis
	Gravitational waves
	Conclusions and outlook

