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ABSTRACT ARTICLE HISTORY
High-quality strategic planning of autonomous mobility-on-demand Received 27 February 2023
(AMOD) systems s critical for the success of the subsequent phasesof ~ Accepted 18 August 2023
AMOD system implementation. To assist in strategic AMOD planning,

we propose a dynamic and flexible flow-based model of an AMOD gﬁxj"evn?:rzjsmobility;
system. The proposed model is computationally fast while captur- strategic planning;

ing the state transitions of two coordinated flows (i.e. co-flows): the autonomous vehicles; state
AMOD service fleet vehicles and AMOD customers. Capturing impor- transition; co-flow; smart
tant quantity dynamics and conservations through a system of ordi- mobility; system dynamics

nary differential equations, the model can economically respond to
a large number and a wide range of scenario-testing requests. The
paper illustrates the model efficacy through a basic example and
a more realistic case study. The case study envisions replacing Man-
hattan’s existing taxi service with a hypothetical AMOD system. The
results show that even a simple co-flow model can robustly predict
the systemwide AMOD dynamics and support the strategic planning
of AMOD systems.

1. Introduction

Autonomous mobility-on-demand (AMOD) services are similar to existing ride-hailing/
mobility-on-demand (MOD) services like those operated by Uber, Lyft, and Didi, except
that AMOD vehicles are driverless. AMOD services present unique opportunities for cen-
tral control, which can greatly enhance operational efficiency. As human drivers may
not be completely compliant nor process instructions consistently, this paper assumes
full vehicle automation is a necessary condition for central control of an AMOD ser-
vice (i.e. MOD services with drivers are not interchangeable with AMOD services with
driverless vehicles). Additionally, given the speculative nature of large-scale AMOD ser-
vices (compared to large-scale MOD services that currently exist at scale), the mod-
elling needs and focus for AMOD and MOD services are different, with AMOD services
facing significant uncertainties that need to be systemically addressed during strategic
planning.
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To grapple with the challenges and opportunities of AMOD services, research in recent
years has focused on analyzing the operations, management, and regulations of AMOD
services. However, AMOD operators and public agencies lack strategic planning tools for
launching or making major adjustments to AMOD systems. Such tools might help an AMOD
operator choose the top 10 cities from 300 candidate cities for field testing, piloting, or
initially implementing an AMOD service. Simultaneously, the tool might provide reasonable
ranges for important service design variables for the 10 cities, including fleet size, service
area, and pricing. Such a tool can also help a public agency determine whether to approve
a business request from an AMOD operator or apply for state funding to procure AMOD
vehicles for their communities.

The goal of this paper is to develop a strategic planning tool for AMOD systems with the
following characteristics:

(i) Computationally fast, i.e. the model requires only a few seconds to run a full-day sce-
nario in a regular edge device, enabling the evaluation of a wide range of scenarios
and allowing (near-) real-time interactions with the modelling tool during meetings,
discussions, and collaborations among decision-makers and analysts.

(i) Parsimonious, i.e. the model quickly provides reasonable estimates for key perfor-
mance metrics such as wait time, revenues and costs, and empty vehicle miles trav-
elled.

(iii) Policy sensitive, i.e. the model captures the relationship between system performance
measures and changes in important service design parameters such as fleet size,
service area size, and pricing.

(iv) Dynamic, i.e. the model captures fundamental temporal dynamics.

(v) Theoretically sound, i.e. the model captures causal chains between key system vari-
ables and parameters, and the conservation of physical quantities (vehicles and cus-
tomers) in AMOD systems.

To achieve the goal of enhancing the understanding and planning of AMOD (Automated
Mobility on Demand) systems, this paper introduces a novel modelling framework. Unlike
previous flow-based MOD models (Nourinejad and Ramezani 2020; Xu et al. 2021), which
have primarily focused on operational decisions using high-resolution models, this paper’s
contribution lies in the development of a co-flow model specifically designed for strategic
planning purposes. The proposed framework also captures coordinated flows of vehi-
cles and customers, which contrasts with the approach proposed by Jin, Martinez, and
Menendez (2021) who use a ‘fluid’ to represent trips, rather than vehicles and customers
separately.

In short, what sets the modelling approach in this paper apart from the existing litera-
ture is its ability to preserve key logical and causal relationships in dynamic AMOD systems
by explicitly and jointly considering the state transitions of the service fleet vehicles and
the customers. This integrative approach allows for a comprehensive understanding of the
system, yielding valuable insights into critical causal relations, temporal dynamics, deci-
sion scopes, and model boundaries. By employing a state-space representation, our model
enables quantitative analysis, providing decision-makers with a robust tool for under-
standing and optimizing the complex dynamics of AMOD systems. Through an illustrative
example, we explore the mechanics of a simple model instantiated from the proposed



TRANSPORTMETRICA A: TRANSPORT SCIENCE (&) 3

framework. Through a concrete case study, the effectiveness and computational efficiency
of the co-flow model framework are empirically validated. The results demonstrate the
model’s ability to capture and represent the intricate dynamics of an AMOD system accu-
rately with low computational burden, making it a practical tool for decision-makers in
strategic AMOD planning.

The present paper does not attempt to maximize the application domain of the mod-
elling framework. That is, we propose a modelling framework specifically for AMOD ser-
vices, even though extensions or modifications to the framework could permit modelling
and analysis of a broader range of mobility services. With data on human drivers, the mod-
elling framework could capture driver behaviour and represent MOD services where the
operator does not have the complete control over the vehicles (i.e. non-centralized or semi-
centralized control). However, we will leave such scope-broadening and generalisations for
future research.

The remainder of the paper is structured as follows. Section 2 reviews literature related
to modelling AMOD operational, managerial, and regulatory problems, including relevant
literature on modelling MOD services with human drivers. Section 3 introduces the math-
ematical formulation of the modelling framework with the aid of a stock-flow diagram.
Section 4 and 5 describe how the co-flow model considers delays, decision variables, and
their impacts. Section 6 presents a simple illustrative example to help readers gain a gen-
eral understanding of how to use an instantiated co-flow model. Section 7 presents a case
study where we examine the benefits and costs of deploying AMOD services in Manhattan
(New York City) in different scenarios. We compare the outputs with an agent-based model
(ABM) that was developed using taxi request data for studying hypothetical AMOD services.
Section 8 concludes with the limitations and future research directions for the proposed
models.

2, Literature review
2.1. Existing strategic planning models for mobility-on-demand services

Several research studies propose and develop strategic level planning models for mobility
services. These studies aim to improve the planning capacity of transportation agencies
(Inturri et al. 2019; Masoud et al. 2017; Nam et al. 2018; Steiner and Irnich 2020) and
within-/cross-city operators (Rath et al. 2023) related to MOD services. The present paper
contributes to the existing literature by focusing on preserving the dynamics and quan-
tity conservation of AMOD system models with low computational burden to facilitate the
strategic planning of AMOD services.

The present paper shares a similar overarching goal with Rath et al. (2023), namely,
strategic planning and selecting cities for novel mobility services that have limited observa-
tions. However, the framework in Rath et al. (2023) involves estimating market equilibrium
conditions (if they exist), generating synthetic scenarios, and fitting forecast models, for
selecting MOD deployment strategies across cities. Conversely, the present paper focuses
on reducing computational burden as much as possible while still satisfying the needs of
AMOD strategic planning as described in Section 1. We believe the two approaches are
complementary and can help address strategic planning problems.
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2.2. Modelling methods related to strategic planning of mobility-on-demand
services

When developing a model for AMOD system evaluation, choosing a suitable modelling
method is critical. Some existing studies on modelling centrally controlled MOD systems
involving human drivers implicitly or explicitly assume that human drivers are completely
obedient, do not misunderstand instructions, and always respond with predictable delib-
eration time. In such cases, the corresponding models are also applicable to the present
paper’s scope on AMOD systems modelling. Popular MOD modelling methods include
high-resolution, high-fidelity' (typically dynamic) ABMs, network flow-based models (Chen
and Levin 2019; Ke et al. 2020), queuing models (Pinto et al. 2020; Sayarshad and Chow
2015), and lower resolution and lower fidelity (typically steady state) analytical, or statisti-
cal models. These models may or may not be intended for strategic planning in the MOD
system engineering process, but we believe they could be candidate modelling paradigms
or methods for the strategic planning of MOD systems. In the rest of the section, we review
studies that utilise these popular modelling methods. We then discuss fluid — or flow-based
models (Jin, Martinez, and Menendez 2021; Nourinejad and Ramezani 2020; Xu et al. 2021)
and their differences from our proposed co-flow approach.

ABMs of MOD systems tend to suffer from considerable development workload and
heavy computational burden to run even a single scenario (Azevedo et al. 2016; Djava-
dian and Chow 2017; Fagnant and Kockelman 2014; Hyland and Mahmassani 2018; Inturri
et al. 2019; Javanshour et al. 2021; Javanshour, Dia, and Duncan 2019; Masoud et al. 2017;
Narayan et al. 2021; Oh et al. 2020; Syed, Dandl, and Bogenberger 2021). When using
ABMs, planners and analysts have to spend much effort on collecting data and specify-
ing the detailed variables and logic rather than on the actual strategic planning activities.
The ABM method also faces significant calibration challenges due to the data require-
ments. Hence, ABMs often fail to produce straightforward insights into the relationship
between system decision variables and system performance. As a final point, in time — and
resource-constrained strategic planning, it is often better to run a large number of scenar-
ios using a lower resolution, lower fidelity modelling method than just a few scenarios with
an ABM.

Network flow models (Chen and Levin 2019; Ke et al. 2020) and network queuing models
(Pinto et al. 2020; Sayarshad and Chow 2015) typically evaluate MOD services with explicit
topologies of highways, requiring a significant amount of additional microscopic detail that
increases model development, calibration, validation, and run time. Additionally, many of
these models postulate the existence of equilibrium condition(s) and/or other simplified
assumptions on which analysts evaluate system performance.

In contrast, aggregate, analytical, equilibrium-oriented, and statistical approaches
(Acheampong et al. 2020; Bilali et al. 2020; Rahimi, Amirgholy, and Gonzales 2018; Yang
and Wong 1998; Zha, Yin, and Xu 2018) tend to be neither data-intensive nor computation-
ally expensive. These models have the potential to be used by AMOD businesses and public
agencies in their strategic planning. But these models do not provide information on the
dynamics of the AMOD system. For example, it is challenging for these models to provide
insights into the impact of an irregular demand surge or a major disruptive event at 2 pm
on the service performance at 5 pm. Moreover, as decision-makers cannot visualise how
the ‘trajectory’ of the system performance ‘evolves’ from 2 pm to 5 pm with these models,
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decision-makers might find them unsatisfactory for certain decisions or too risky to trust
the model outputs.

Several studies in the literature propose modelling MOD vehicles and customers as
flows (Jin, Martinez, and Menendez 2021; Nourinejad and Ramezani 2020; Xu et al. 2021).
Jin, Martinez, and Menendez (2021) develop an intuitive and mathematically tractable
quad-compartment model that builds on the concept of state transitions. Nourinejad and
Ramezani (2020) develop a dynamic and non-equilibrium-based model that calculates the
customer-vehicle match rate directly rather than modelling the wait time first. The authors
denote that the average wait time is approximately the ratio between the waiting riders and
the matching rate. They model matching rate using a Cobb-Douglas function for which the
two elasticity variables for the number of idle vehicles and unassigned passengers (y;, and
y2) need to be calibrated. However, if either of these parameters is calibrated to a value
other than unity, then the units of the matching rate and boarding rate do not have a phys-
ical interpretation. Xu et al. (2021) model the spatial-temporal characteristics of a region,
including vehicles and customers moving among regions. Moreover, their model explic-
itly considers customer pick-up time (after being matched) in their model. Interestingly,
Xu et al. (2021) model state transitions using a discrete event approach - the number of
vehicles (customers) at a given state att + w is determined by the number of vehicles (cus-
tomers) in the precedent state at t, where w is the state-transition delay (e.g. 20 min travel
time).

Our proposed co-flow model in this paper offers several advantages over the existing
flow-based models in the literature. Our co-flow model considers customers and vehicles
as separate but coordinated flows, whereas Jin, Martinez, and Menendez (2021) consider
only MOD trips in their model. The differentiation in our model between passenger flows
and vehicle flows captures the reusable nature of vehicles — after a vehicle drops off a
traveller, the vehicle can transition to a repositioning state or idle state. The proposed co-
flow model in this paper allows greater flexibility in modelling operational policies at the
macroscopic level (e.g. repositioning strategies) and analyzing various public policies (e.g.
maximum price and fleet size regulations). We also propose a delay-oriented approach for
modelling state transitions in the co-flow model that overcomes the unit-varying concern
of the Cobb-Douglas function adopted by Nourinejad and Ramezani (2020). Addition-
ally, unlike Xu et al. (2021), our co-flow model incorporates a continuous, rather than
discrete, delay modelling method permitting a state-space representation that is fully con-
tinuous and differentiable. In addition to the explicit consideration of vehicle flows and
customer flows, unit tractability, and the preservation of the Markov property, the co-flow
model has the novel capability of adapting to a range of resolutions, fidelities, and bound-
aries based on decision needs and data availabilities, which is absent from the existing
literature.

The idea of explicitly modelling the coordinated nature of service resources and enti-
ties to be serviced as flows is not new. For example, Forrester (1969) considers households
and housing units in a coordinated manner so that the change of housing occupancy
reflects the underlying ratio between households and housing units. Some researchers
have considered the coupled nature of commodities with vehicles in static assignment. For
example, Guélat, Florian, and Crainic (1990) consider constrained vehicle (e.g. trucks and
trains) inventory when assigning heterogenous products to transportation networks. Addi-
tionally, Chow, Ritchie, and Jeong (2014) relax the coupling of the commodity flows and
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commodity vehicle flows in the approach by Guélat, Florian, and Crainic (1990) to capture
traffic flows more realistically in a network.

3. Modelling framework for strategic planning of AMOD systems
3.1. Definitions and nomenclature

- Stockvariable (or simply stock): a variable that changes its value through accumulating
and releasing (or leaking) quantities that represent a certain feature (e.g. total vehicles
in a certain state) of the system under study. Stock variables change values through
their associated inflows and outflows.

- Flow variable (or simply flow): a variable representing the flow (as rate) between
stocks within a system boundary or across the model boundary and thereby into
or out of the system; changes in stocks over time. Flows represent activities (e.g.
matching vehicles with customers), in contrast to stocks, which represent states of
the system. An inflow variable (into a certain stock variable) represents flows into a
stock, while an outflow variable represents flows out of a stock. The change rate of
a stock variable at time t is the summation of all the inflows and outflows at that
moment.

— Auxiliary variable: a model variable that can change its value instantaneously at t + dt
based solely on the values of other model variables at t. This type of variable has no
‘memory’ of its historical value (values in previous simulation steps during a simula-
tion) and is usually an intermediate variable to facilitate the expression of a functional
dependency of a flow variable to a corresponding stock variable.

- Exogenous variable: a variable that is influenced by factors outside the system bound-
ary. Exogenous variables may be explicit or implicit. For example, this paper explicitly
assumes that the average time to drop off customers is exogenous as the paper con-
siders the fleet size and service activities do not have a significantimpact on the overall
traffic congestion. On the other hand, the weather is an implicit exogenous variable as
the paper does not have any variable that represents weather. An exogenous variable
can be converted to an endogenous one by making it a function of other variables
within the system boundary.

- Endogenous variable: a variable that is internal to the system boundary. It is assumed
to be (causally) influenced by variable(s) within the system boundary. An endogenous
variable can be converted to an exogenous variable by making it a constant or only
dependent on time. This is appropriate when such a conversion does not influence
model behaviour significantly for a given study need. For example, when the AMOD
vehicles are only a small portion of the overall fleet in the traffic network, we can simply
use a constant or a lookup table that only depends on time-of-day to capture traffic
speed.

— X!: number of AMOD service vehicles in state i at time t, where i e Tand t € [0, T].

X: is the state vector whose element i is Xt(’). I=A{1,2....0i,....1}. Xy = X(t). )?r

represents the corresponding observed or target state vector.

xﬁ”',): rate of AMOD service vehicles changing from state j to i’ at time t. where i,i/’ € I

andt € [0, T].
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— Y9: number of customers in state j at time t, where j € J and [t € [0, T]. Y is the state
vector whose element j is Yt(’). J=0,2,....070,.... .Y =Y. Y: represents the
corresponding observed or target state vector.

- yij’j,): rate of customers changing from state j toj attime t. wherej,j/ € Jandt € [0, T]

- M;: A state vector formed by concatenating X; and Y; in the same dimension. It con-
tains / 4+ J elements. It is used when describing the dynamics of the whole AMOD
system. mﬁl) is the /" element, [ € {0,1,...,1+ J}.M; represents the corresponding
observed or target state vector.

- a:Decision variable vector (English letter a, not Greek letter «).

- fB:Parameter vector.

- f:R' x R x RIM@ _, R/ maps the system state and action variables to the transi-
tion rates of vehicle states.

- g:R x R/ x RIM@ _ R maps the system state and action variables to the transi-
tion rates of customer states.

- h:R* x RIM@ _ R/ maps the system state and action variables to the transition
rates of vehicle states.

- h:[0,T] = R/ is the solution of M = h(M, a; B) such as M; = h(t).

— o : RIMM) o Rdim@ _, (0, 1]. Matching efficiency

= Kmin: the minimum of the number of idling vehicles and the number of unmatched
waiting customers.

- g:RT U{0} - RTisacontinuous, decreasing, and inverse s-shape function with g(0)
is the maximal allowable value (greater than 1), q(1) = 1, and X_Iirroo gx) =0.

- &:RT — RT captures the elasticity of matching efficiency to repositioning time
(effort)

- to:initial time. When it is a subscript and no confusion arises, it is simply denoted as 0.

— T:modelling horizon. For example, T = 24th hour (i.e. 1440th minute) from the start-
ing time.

- t:time step (for simulation). For example, t = 1 minute. When no confusion arises, the
subscript t may be dropped to simplify the notation.

3.2. Co-flow model idea

This subsection conceptualises the co-flow model with the aid of a stock-flow diagram in
Figure 1 that shows the model structure of the proposed co-flow model. In addition to the
text description of each variable in the diagram, we also include mathematical notations. A
stock variable (represented by a rectangular box) in the diagram can be intuitively under-
stood as a tank or reservoir that stores fluids. In each time step, the stock level changes
based on the difference between the inflow and outflow rates/variables. In a sense, the
stock variables contain the memory of their previous time step. A chain of stocks can be
understood as a sequence of tanks with fluids flowing among them or from/to external
sources.

The lower stock chain in Figure 1 captures customer fluids that correspond to the process
customers experience when using an AMOD service, while the upper stock chain captures
vehicle fluids that correspond to the process in which AMOD service vehicles are operated.
In other words, we use one stock chain to capture the state transitions of aggregate riders
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Service Vehicles
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repositioning, x )

Rate of vehicle
Vehicles being drop—offs x(3,4)

repositioned, X®

N

7y
Rate of cancellation
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entering service Rate of vehicles stoppi
x©D Vehicle ( 7\ Rate of vehicle e quei N is(;otippmg
Idle vehicles matching rate x ) Vehicles pickups, x+?) A Vehicles serviee,
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~—
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Rate of new —_— Customer Rate of customer (*Ratc of customer
Ocus:wmm " | Unmatched matching rate, Y Matched butnot | - pickups y(©? In-vehicle =>Olcavmg’ -
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k ‘d 1
customers, Y cus!:‘ojn;rsu!})’(z) 4 customers, y®
i -/

Rate of cancellation
after matched but
before picked up, y @0

Rate of cancellation
before matched, y (%)

Figure 1. Example co-flow model of the AMOD system, where the top stock chain represents service
vehicles, and the bottom stock chain represents the customers.

and use another stock chain to capture the state transitions of aggregate service vehicles.
These two stock chains are paired chains that jointly and consistently capture the dynamics
of the AMOD system operation through the customer stocks and flows as well as service
vehicle stocks and flows.

The vehicle stocks include idle vehicles, Y7, vehicles en-route to pick up, Y?, vehicles
en-route to drop-off, Y, and repositioning vehicles, Y. The customer stocks include
unmatched customers, X", matched customers that are waiting for pickup, X®, and
in-vehicle customers, X3,

In the chain of customer stocks, the rate of change of unmatched customers, YV, is the
difference between the rate of newly entering customers, y©1, and the customer matching
rate, y("?), assuming no customers leave the system before being matched. Similarly, the
rate of change of matched but not yet picked up customers, Y@, is the difference between
the customer matching rate, y\'?), and the rate of customer pickups, y>3 . Finally, the rate
of change for the in-vehicle customers who are en-route to their destinations, Y3, is the
difference between the rate of customer pickups, y>®, and the rate of customer arrivals
(i.e. drop-offs), y 39 Similar ideas apply to vehicle flows, x"), Vi, i’ € I,i # i, and vehicle
stocks, X, Vi e I.

The flow variables describe the change of stock variables. For example, the change in
fleet size for vehicles en-route to pick up at a given moment depends on the number of
vehicles just matched with customers (inflow) minus the number of vehicles that just picked
up customers (outflow). The flow from the stock of idle vehicles to the stock of vehicles en-
route to pick up must equal the flow from the stock of unmatched customers to the stock
of customers that have been matched but have not been picked up.

Some might wonder why there is no ‘pipeline’ connecting from the repositioning vehi-
cles stock variable X® to the vehicles en-route to pick up stock variable X in Figure 1.
This is because this subsection only provides one possible instantiation of the proposed
co-flow modelling framework. The following sub-section generalises this simple example
and provides a mathematical formulation of the co-flow model.
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3.3. State-space representation of the co-flow model

The co-flow model can be represented mathematically using a state-space representa-
tion, which facilitates rigorous analysis of system properties and proper simulations. Let
X: = X(t) denote the state of the AMOD service vehicle stock variables at time t. When no
confusion arises, we use X instead of X, to simplify the notation. X € R/. A similar principle
applies to other symbols. Equation (1) displays the rate of change of the stock variables as
a function of several endogenous variables and exogenous factors:

. dX

X:E_f(X,Y,a,ﬂ) (1)
where f(-) captures how the system X; changes to X 4 a is a vector of decision variables
(we will discuss how to model the impact of @ on a co-flow model in details in Section 5),
and B represents the parameter vector.

The state vector, Y € R/, contains the J stock variables for the customers. Equation (2)

describes the dynamics of the customer stock variables:

. dY;
Y=—=9gX,)Y,a 2
praiall B) (2)
where g(-) captures how the system Y; changes to Y; 4.
In Equations (1) and (2), we assume that all states, such as total number of customers
waiting to be matched, are fully observable for the operator. We can further simplify the
_ dm

notation using Equation (3), where M = (X, Y), M = < and h(-) captures how the overall

AMOD system changes from M; to M., 4. mgl) is the /" element, / € {0,1,...,1+ J}.
M = h(M,a; B) (3)

Equations (1) and (2) clearly illustrate the coordinated nature of the customer and AMOD
service vehicle stock chains within the model. So, we further describe the modelling frame-
work by specifying Equations (1) and (2). Equation (4) describes the dynamics of all J stock
variables that Y captures, where /) = 1 if there is a connection from the stock k to j; other-
wise, 89 = 0.In the chain of customer stocks illustrated in Figure 1, for example, the rate of
change for customers matched but not picked up is the cumulative difference between the
inflow rate (i.e. the customer matching rate) and the outflow rate (i.e. the rate of customer
pickups).

. (i i k,' j .I H
W= 3 s%y = 37 sUmy el (4)
VkeJ k#f vmel,m#j

Related to Equation (4), Equation (5) describes the cumulative system dynamics of Yg)
starting from the initial condition for the stock variables,Yt((’)), to the current time T (T > tp).

VO —y0 4 f Z sk ki) _ 3 56m9m | i vj e ] (5)
o\ vkel ki vmeJ,m#j

Equation (6) parallels Equation (4) except it captures AMOD vehicle system dynamics of all
I possible vehicle states. A parameter ") = 1 if there is a connection from the stock / to i;
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otherwise, n") = 0.

PN SN S IR RIS | ©)
viell#i vvel,vs£i

Similar to Equation (5), Equation (7) describes the cumulative process of the stock variables

for vehicles, X, from their initial state, Xr(é), to the current time T, T > t.

.
. . T i o
W= [ S 3 e daer o
o \vjxti Vv,

When there is no ridesharing, the matching rate for waiting customers, x"?), and that for
idling vehicles, y('"?), should be the same, x(1?) = y(1:2)

Equation (8) shows that if the AMOD operator can only match idle vehicles to unmatched
customers, then the matching rate is constrained by the minimum of the number of idle
vehicles and the number of unmatched customers. That is, we assume that the AMOD will
not allocate non-idle or non-existent vehicles to waiting customers. We define the mini-
mum of XV and YV as an auxiliary variable, kmi». Matching efficiency (i.e. the percentage
of customers that are successfully matched to vehicles) is rarely 100% in practical operation.
Hence, we introduce a function ¥ (M, a) € (0, 1), which measures matching efficiency as a
percentage per unit time. The corresponding flow rates can be formulated as.

X(1'2) = y(1'2) = kmin ° W(M’ a) (8)

MOD operators can control the function (M, a), and they typically decrease the value
when idle vehicles are located far from customers. Furthermore, v (M, @) would be higher
as the ratio of vehicles to customers increases, and even as the total number of vehicles
(independent of the number of customers) increases due to network effects. However, if
the AMOD operator needs to serve a large volume of requests, this may slow down the
operator’'s computing servers, causing ¥ (M, a) to decrease. In this case, however, it is still
possible for the absolute transition rates to increase while (M, a) decreases.

In simulations, we can specify a finite time step, 7, to approximate Equation (4), using
the Euler integration method as shown in Equation (9).

v | 30 S s | evier

Vk k£ vm,m#j

The same method can be applied to Equation (6). Selecting the appropriate step is beyond
the scope of the paper, but we find that a step size between one to five seconds is practically
reasonable in the context of simulating regional AMOD system dynamics.

We have established the relationships among stocks and flows in the co-flow model,
but we have not yet provided the formulations for the flows, except for x(""? and y!"?. In
Section 4, we introduce a unified approach that uses negative exponential distributions for
capturing a variety of delays in state transitions with flexible resolutions and fidelities. The
delays serve as the key auxiliary variables for capturing the flows in the system (except for
input flows).
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3.4. Existence and uniqueness

Section 3.3 shows that we can describe the dynamics of an AMOD system in the form of
Equation (3) and potentially find a solution. By a solution of Equation (3) at some interval
t € [0, T], we mean the case where we can find 7 : [0, T1 — R/* such as M; = K(t). That is,
we can describe the dynamics as (only) a function of t. The associated initial value problem
consists of Equation (3) and / + J initial conditions. Although the overall model structure
shown in Equation (4) and Equation (5) is a linear formulation, the transition rate x"’ and

yﬁj’j) may or may not be linear. However, we still have the following proposition.

Proposition: Let hy, hy, ..., h.sin Equation (3) be continuous functions having continuous
partial derivatives 8?:(1” , 8%'(22) ey a%’(’,fj) in the definition domain containing the initial con-

dition pointt = 0 and (mg), méz), e mgH) ). Then there exists a solution h : [0, T1 — R/t on

t € [0, T]satisfying My = h(t). Furthermore, the solution is unique.

Proof: According to the existence and uniqueness theorem proven by Codington and
Levinson (1984) for systems of ordinary differential equations, we know the existence and
uniqueness of the solution fort € (—T,T), where T > 0. As [0, T) is a subset of (—T, T), we

know the theorem appliestot € [0, T). Define § = Iirp T — t.We can apply Equation (3) to
t—>T—

M7 _s to obtain My. Hence, the proof is complete. [ |

In Section 4, we propose one flexible approach for modelling the transition rates in a
way that ensures the continuous partial derivatives. However, the formulation of kmin in
Equation (8) might be a strict one, as defining kmin = min(X", Y(M) will cause the viola-
tion of the existence of continuous partial derivatives in the proposition above. Therefore,
we use kmin = XM - (1 — exp(=YD /XMY)) when XD > 0 and kmin = 1 when X" = 0 to
ensure that the continuous partial derivatives exist. As illustrated in Figure 2, this specifica-
tion of kmin ‘softens’ the original min function to ensure the existence of continuous partial
derivatives over both X(" and YV, For example, when X’ = 1 and Y") = 500, kmin =~
0.99; when X = 500and YV = 1, kmin & 0.99;when XV = Y = 1, kpin &~ 0.632; when
XD = y() =500, kyin = 316.

3.5. Model estimation methods

Numerous methods exist to estimate and calibrate dynamic models. The most common
approaches aim to optimise or minimise descriptive statistics, often called goodness-of-fit
measures, which evaluate the point-by-point agreement between the model outputs and
target data series. The target data series can come from empirical sources or other models
(e.g. high-resolution, high-fidelity agent-based models, decision-makers’ mental models).
In the proposed framework’s context, these metrics quantify the error between the model
outputs and the target data at specific time points where data are available. These statistics
then average the relevant time horizon, with or without the inclusion of discount factors.
Commonly used statistics include likelihood (or log-likelihood) functions, R-square, mean
absolute error (MAE), mean absolute percentage error (MAPE), root mean square error
(RMSE), and Theil’s inequality statistics. For instance, we can employ MAE as a goodness-
of-fit criterion to estimate the parameter vector 8, which we can solve using nonlinear
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Figure 2. lllustration (not to scale) of 1 — e~ ™ when varying the ratio of YV to XV (x(, y() > 0.

optimisation algorithms such as Bayesian Optimization, Bayesian Inference, Expectation-
Maximization (EM), Simultaneous Perturbation Stochastic Approximation (SPSA), Simu-
lated Annealing, Genetic Algorithms, and Inverse Optimization (Burton and Toint 1992;
Chow, Ritchie, and Jeong 2014). When dealing with highly complex state-space models
involving numerous time-dependent parameters or when continuous online estimation is
necessary, methods such as Particle Filtering and Kalman Filtering (and Smoothing) are rel-
evant. When an instantiated model is relatively simple, we can use grid search methods to
explore the impact of different combinations of model parameters on the predetermined
goodness-of-fit measures and choose the best combination of parameters.

4. Modelling delays

There are multiple types of delays in the AMOD system, such as the delay that occurs when
(i) the AMOD operator matches customers with vehicles; (ii) customers deliberate whether
they should take the offer from the AMOD operator; (iii) the AMOD operator or individual
vehicles decide whether to accept a customer request; (iv) service vehicles are currently
on their way to pick up customers; and (v) service vehicles are on their way to drop off
customers.

To capture these delays, we propose a unified delay modelling approach that uses
the negative exponential distribution as an elementary mechanism for modelling state
transitions. This approach can capture a wide range of delay distributions and maintain
differentiable state transitions.

Delay variables may be endogenous, meaning that they can be a function of other vari-
ables in the model. For instance, a larger volume of unmatched customers may contribute
to reduced average pick-up delays for upcoming matched customers when given a certain
fleet size of idling vehicles. Additionally, jointly considering non-idle AMOD service vehicles
with non-AMOD vehicles may be useful for obtaining overall network density and speeds,
which could impact vehicle matching, pick-up, and drop-off rates (Beojone and Geroliminis
2021).
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4.1. Negative exponential distributions of delays

When we assume that the content in a stock loses its sequence (i.e. perfect mix with lost
memory in terms of the sequence of customer ‘“arrivals’ into the stock) and a given average
delay, we can simply divide the total stock by the average delay to obtain the flow at each
time moment. The distribution of such a delay is reverse-J shaped and is often called the
negative exponential distribution.

Travel time (TT) can be directly given as an exogenous variable or obtained through
dividing the distance by the network speed (spd; > 0), as shown in Equation (10). As
indicated by the subscript t, spd; is time dependent.

w

dist}
t =

spd;

(10)

where w € P, and P =pickup (p), dropoff (d), and reposition (r), as shown in Figure 1. To
simplify the case, we assume that the average driving speed is the same for all trip purposes.
In addition to the speed being time-dependent, the speed may also be a function of other
system variables. For example, when the AMOD fleet size is not negligible relative to the
total inventory of the active vehicles in the network, the number of en-route AMOD vehicles
might influence the network speed. In such cases, the impact of AMOD system dynamics
influences the network speed, which in turn affects the AMOD system dynamics.

We can use TT}" and Equation (11) as the average delay to calculate flows (exit rates from
the corresponding stock variables) for customers at t.

i) vy
yt | = ®,) (1 1 )
T
We abuse the notation a bit by using (w(P, ) to represent the activity (specified in IP) that
corresponds to Y. A similar method applies to the vehicle flows (existing rates from the
corresponding stock variables) for service vehicles:

(12)

We have specified the formulation for the matching rate, where v (M, @) may be interpreted
as the percent of knin being matched from t to t + dt, but they together can also be inter-

preted from the delay perspective: if X" < Y1, the average delay is w(;w & for XM and
M . . M
m for Y(”, IfX(U > Y(U, the average delay IS W fOfX(]) and W(I:/l,a) for Y(1)

Equations (11) and (12) together imply a so-called negative exponential delay of fluid in a
corresponding stock. The flow of existing customers being picked up is the total customers
waiting to be matched (at time t) divided by the average pick up time. This implies that
the corresponding stock variable does not have any memory about when each customer
(or vehicle) enters the stock. In simulations, if a customer (vehicle) enters at t = 5 min and
TTP = 10 min and the time step is 1T min, then we know that 1/10 of this customer (vehicle)
exits from the stock in a minute, and then 1/10 of what was left exits in the next minute.

Note that delays may be exogenous or influenced by a combination of controllable and
non-controllable factors. For example, when the AMOD operator’s policy has little influence
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on the customers’ destination choices and fleet size is small compared to the overall en-
route vehicles, we can assume TT¢ and TT? are exogenous. For another example, the rate of
vehicles becomingidle after repositioning status may be mainly determined by the policy of
the AMOD operator, especially when all the service vehicles are autonomous and in central
control. In this paper, the pick-up time is captured as a function of a base value for pickup
time, 777, the number of idle vehicles, and the number of waiting and customers, through
a multiplicative form. That is,

17 =117 - X% Bip) - a7 Bup) (13)

where g : R U {0} — R is a continuous, decreasing, and inverse s-shape function with
q(0) is the maximal allowable value (greater than 1), g(1) = 1, and limy_, 4 50q(x) = 0. Bip
and By are both expected to be positive to capture the elasticity of pick-up time with
respect to the scaled idling fleet size and scaled waiting customers, respectively.

4.2. Chained or higher-order negative exponential distributions of delays

Some delay distributions are clearly not negative exponential. Repositioning might have
a delay distribution that has one or multiple mounded modes. In these cases, we can
use a sequence of delays with each component delay following an exponential distribu-
tion to capture more complex delay distributions. Chaining stocks to better capture delay
distributions is known as high-order delay modelling in system dynamics (Sterman 2018).

One way to increase a delay’s order is to decompose a single stock into multiple general
stocks so that the expected shape of the delay distribution can be matched statistically. In
a scenario where delays are clearly not negatively exponentially distributed, one can split
the corresponding pair of stocks. For example, when in-vehicle travel time is distributed
differently than the negative exponential distribution, one can split X® (and Y®) into more
chained stocks to capture delays with higher orders. The outflow rate of each stock can be
calculated using the stock level divided by the overall delay as well as by the order of the
delay. Figure 3 shows a series of examples of such a split, the order of which does not require
each stock to have a tangible meaning but rely on empirical observations.

Figure 4 shows the corresponding outflow rate profiles (of the last stock in each stock
chain) for the same delay time (10 s) with different delay orders, where the average delay
for each stockis D/m and mis the total order of delay. When the order is one, it is equivalent
to negative exponential distribution, which has a mode at the left-most side of the support
and gradually reduces to zero. When the order is second or higher, the distribution starts
from zero with zero probability and gradually increases to a peak before turning back to
zero. With fixed total average delay, the higher the order, the more the delay distribution
resembles a conveyor in the First-in-First-Out (FIFO) or the First-Come-First-Serve (FCFS)
process.

Multi-modal delay can be approximated using multiple stock chains with different aver-
age delays and orders. When each sub-process follows an exponential distribution with the
same total mean delay, it is equivalent to the Erlang distribution (Ravindran 2007). Note that
when an operator changes their operational strategy such that the delay of one process is
changed, the delay of other processes might be influenced as well. For example, when an
operational strategy increases the average vehicle repositioning time, the average distance
to pick up might decrease, as intended.
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Figure 4. The delay generated by a n-stock chain for an initial unit pulse is equivalent to a n-order Erlang
distribution.

The order of delays (number of stocks in a stock chain) may be estimated based on
observed data, but it may also have explicit meaning. Using the high-fidelity AMOD ser-
vice ordering process in (Yu and Hyland 2020) as an example, the ordering process that
users experience can be considered explicitly through the stock-flow diagram by disag-
gregating the stock ‘Waiting to be matched’ as a chain of stocks shown in Figure 5. Note
that customers may reject the service during the process and can be modelled as outflows
from stocks (not shown in the figure). Individual vehicles may also leave the service fleet
(permanently or temporarily) and can be modelled in a similar manner.
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Figure 5. Disaggregation of ‘Customers waiting to be matched’ into component subprocesses and their
associated delays

5. Decision variables

Section 3 introduced the vector of decision variables a. This section specifies three major
decision variables: fleet sizing, repositioning effort, and pricing. Each of these variables
affects other model variables in different ways. While a is typically exogenous for a given co-
flow model, it can become endogenous in effect when strategic planning decision-makers
adjust a based on evaluation results for another round of simulation. Additionally, a can be
specified as a function of co-flow model variables to allow it to adapt to changing system
states during simulations. However, this level of detail is outside the scope of the present

paper.

5.1. Fleetsizing

We specify fleet sizing through setting the initial values oth(i) (i.e. X(()i)). The total fleet size
is therefore ) ;¢ X((,i). We define a decision variable, the fleet sizing multiplier, a™® so that
the fleet size is some multiplier of the baseline fleet size )N((i), as shown in Equation (14). That
is, the total fleet size is a™® . Y, _; x¥.

Xy = a™ . XD viel (14)

5.2. Pricing

The impact of pricing multiplier, a°™, on demand (customer entering rate) is modelled as.

Xt(0,1) _ )~(£O,1) . (apm)ﬁpr:d (15)

where )~(t(0,1) is the baseline demand (customer entering rate), a®™ > 0 is the pricing mul-

tiplier, and P < 0 is the elasticity of demand with respect to the pricing multiplier. As
BP9 is negative, the increase in pricing leads to a decrease in demand with a diminishing
effect, as intended. Note that we do not assume customers instantly respond to the pricing
multiplier. Rather, we model the impact of a pricing multiplier on the general adaptation of
customers to the pricing change over a period.
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5.3. Repositioning effort

We measure repositioning effort using an average repositioning time multiplier, a™, with
respect to the current average repositioning time made by human taxi drivers. The impact
of @™ on v is modelled as vy = *@™#™) where ¥ is the baseline ¥ value. We define
e : Rt — R™ to capture the elasticity of matching efficiency to repositioning time (effort).
We specify e(a™; V) as (a’m)ﬁw, such that:

_ g

V= (16)

As B"V is negative, ¢ is a decreasing function of a™. As Yy € (0, 1], the decreased ¢ leads
to increase of ¥, which is a desired property since the additional relocation efforts should
lead to increase of . The diminishing return of the repositioning effort is also captured by

2
Equation (16) as a(i"f)z is negative. The cases where vehicles are matched with customers
during relocations are also captured through the diminishing return of repositioning time.

We capture the impact of @™ on TTP through a multiplicative form TTP = TTg (a@™)Prp,

Combining with Equation (13) in a multiplicative form, we have.

TTP =TT - (@™ - qX{%; Bip) - GV Bup) (17)

As By, is negative, the increase of a™ leads to decrease of TTP with diminishing return.
When the AMOD fleet size is relatively small compared to the overall fleet size in a traf-
fic network, we can assume that travel times are only determined by travel distance and,
therefore, exogenous when destination choice is exogenous. However, when needed, one
can capture the endogenous congestion effect using a similar multiplicative form.

6. lllustrative example

In this section, we use a simple, fictitious example to explore the mechanics of a model
instantiated from the proposed framework. Suppose an AMOD fleet serving a hypothetical
urban area with two possible vehicle states, namely, idling (i = 1) and serving customers
(i = 2). Customers have two possible states, namely, waiting to be matched (j = 1) and
being serviced (j = 2). In this simple example, we do not explicitly differentiate between
customers that are matched with vehicles (but not yet picked up) and customers that have
been picked up and are en-route to their destinations. We can then formulate the dynamics
of the AMOD system as follows.

@ _ 2 _ 20 (19)
Y(]) — y(0,1) _y(1,2) — ﬁnC _y(1,2) (20)

Y(Z) — y(1,2) _ y(2,0) (21
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We formulate the transition rates in Equation (18)-(21) as follows.

x@D = x@ /tt, (22)
x(2) = konin/t (23)
y? = g (24)
y1? = kmin/th (25)
y*0 =y i, (26)
kmin = X1 - (1 — exp(=y @ /xM) (27)

We can write Equation (18)-(27) in a standard state-space representation as follows (all the
states are observable).

_ X X /tty — XD (1 — exp(=YD /XDy /tty + aO@D
am | x@ XD (1 —exp(=YD /XDy /tty — X /tt,
o T v | T nc M M 7x(M (28)
dt 14 B —xM . (1 —exp(=YD/xMy)/tt
y®@ XD (1 —exp(=YD /XDy /tt; — Y /tt,
The system is in equilibrium when ddi;' = 0. As we have four unknown variables

XM, X2,y y@) we can specify their initial conditions (and specified parameters and
decision variables) to obtain an analytical solution. We can linearise the system around
the equilibrium point to further study the sensitivities of the system performance to initial
conditions, parameters, and decision variables. However, as a common problem with lin-
earisation, under what conditions such linearity assumption is sufficient tends to be unclear.
Therefore, we adopt a simulation approach with 7 = 0.1(i.e. 0.1 s per simulation step) for
further investigation.

In the remainder of this section, we provide numerical solutions of Equation (28) with
four different sets of initial conditions, parameters, and decision variables (X(()”, Yé”, B¢,
ttq, tty, and a§°’1)) to provide insights into the model system. Specifically, we aim to illustrate
the impact of different inputs on the performance of this hypothetical AMOD system.

In the first scenario, we specify the total (initial) fleet size (Xé”) as 800 vehicles, 8™ =10
customers/min, tt; = 15 min, tt; = 35 min, a®" = 0 vehs/min. Figure 6 shows the simula-
tion results through stack plots of vehicles and customers. As we can see, after around 1000
simulation steps (100 min), the system reaches an equilibrium. However, we also notice that
when the number of waiting customers is large, there is still a noticeable portion of vehicles
being in the idling state. This is mainly due to modelling pick up time (tt1) as an exogenous
variable independent from the fleet size and the number of unmatched customers, instead
of modelling it according to Equation (17).

In the second scenario, as Figure 6 shows a significant idling fleet throughout the sim-
ulation, we halve the fleet size; the results are displayed in Figure 7. Figure 7 shows that
although there is an improvement in vehicle utilisation rate (reduced portion of X)), the
fleet cannot satisfy the customer inflow rate. Therefore, the total number of customers in
the AMOD system grows larger and larger without converging to an equilibrium condition.

In the third scenario, we pivot from the second scenario via adding one vehicle per
minute (10 simulation steps) from Step 2000 to Step 6000 — Figure 8 displays the results.
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Figure 6. Scenario where Xé” = 1000, Xéz) =0, Y(g” =0, Yéz) =0, B =10, tty =15t =
35,a®1 = 0, 7 = 0.1. Left: stack plot of the number of idling and in-service vehicles. Right: stack plot
of the number of waiting and in-service (matchd or in-vehicle) customers.
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Figure 7. Scenario where Xé” = 400, Xéz) =0, Yé” =0, Yéz) =0, B =10, tt; =15t =
35,0V =0, 7 = 0.1. Left: stack plot of the number of idling and in-service vehicles. Right: stack plot
of the nubmer of waiting and in-service (matchd or in-vehicle) customers.

Note that the number of customers in the system (Y(" and Y(?) starts to decline after the
fleet size increases to a level where the total service rate surpasses the incoming customer
rate. Although the ‘injection’ of additional vehicles starts at Step 2000, the total number of
waiting customers and the total number of customers being served keep increasing until
around Step 2800 and Step 3100, respectively. This latency from the effort of increasing
vehicle size to the improvement (reduction of waiting customers) is also illustrated through
the vertical dotted lines in Figure 8.

In the final scenario, we pivot from the third scenario via modifying parameters such
that 8¢ is 20 customers/min, tty is 5 min, and tt; is 25 min. The results are shown in Figure 9.
Compared to Figure 8, Figure 9 shows that X(") (the number of idling vehicles) has a steeper
decline initially and lower increasing rate after the ‘injection’ of new service vehicles, as
expected. There is a higher portion of YD (the number of waiting/unmatched customers),
which suggests that the impact of the increased new customer entry rate is larger than the
joint impacts of the reduced matching time (tt;) and the reduced service time (tty). The
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latency from the effort of increasing vehicle size to the improvement (reduction of wait-
ing customers) is greater than that in Figure 8 when comparing the vertical dotted lines in
Figures 8 and 9.

7. Case study

This section presents a case study in which we combine the formulations in the previ-
ous three sections and instantiate a co-flow model for strategic planning of a hypothetical
AMOD system in the City of New York’s Manhattan borough (around 22.82 mi?).

7.1. Background and scope

Suppose the City of New York is interested in collaborating with an AMOD service provider
to deploy centrally controlled AMOD vehicles to serve the travel demand that is currently
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served by human-driven taxis in the Manhattan borough. At the current time, the city wants
to evaluate thefeasibility and viability of introducing an AMOD service. In this case study, we
use the three key decision variables specified in Section 5: AMOD fleet size, pricing policy,
and average repositioning time.

In addition to the three selected strategic decision variables, several key parameters
that are uncontrollable and exogenous to the AMOD service need to be considered. These
parameters include the elasticity of demand with respect to pricing, the sensitivity of match-
ing efficiency to repositioning effort, the contribution of repositioning effort to pick-up
time, the base customer request rate, and the impact of the densities of idling vehicles and
unmatched waiting customers on pick-up time.

7.2. Model baseline and scenario specification

To evaluate the performance of the AMOD service, we modelled the entire Manhattan
borough as a single area with homogenous customers and service vehicles. As will be
demonstrated in Section 7.4, this approach effectively captures the overall dynamics of the
AMOD operation. We also experimented with considering multiple traffic analysis zones
instead of treating Manhattan as a single area, but we did not find a significant improve-
ment in modelling accuracy or policy implications for strategic planning. However, for
scenarios that require higher model resolution and fidelity, it is possible to increase the
level of detail and consider multi-region cases.

We obtain baseline waiting time and drop-off time parameters based on the empirical
taxi demand data and the Census Transportation Planning Product (CTPP) 2012-2016 data,
a special tabulation of the American Community Survey data for transportation planning.
In this data by PUMAS5 geographies in Manhattan, the mean travel time by taxi cabs for
workers (who did not work at home) residing in Manhattan is 20.8 min. For the pick-up
travel time, we consider the overall size of Manhattan and assume a perfect grid network,
so we multiply the distance (and average travel time) by 1.414. As human taxi drivers have
experience in terms of request patterns, the taxis were not completely evenly distributed;
rather, they follow the demand pattern to a certain degree. So, we multiply the distance
by a factor of 0.8. We assign the initial states of all the service vehicles as idling at mid-
night. We do not consider vehicles that are leaving and joining the service vehicle fleet
in this case study, though the idling state implicitly considers the vehicles that are not in
service or accepting any service. For the function g in Equations (13) and (17), we use a
lookup table with g(0) = 2.5,3(0.3) = 2.4,(0.6) = 2.1,q(0.8) = 1.7,9(1.0) = 1.0,q(10) =
0.25, q(1000r larger) = 0.1. The co-flow model obtains other values using linear interpola-
tion. Table 1 specifies the base model structure and parameters.

Figure 10 shows the empirical taxi request data (ride request rates by time of day) from
Apr. 4 (Monday) and Apr. 5 (Tuesday) of 2016. We call them Day 1 and Day 2, respectively.
We use Day 1 as the base demand. To further facilitate the model development and analysis
in Section 6.3, we smooth out the noise of the base demand using a moving average such
that each time point is an average of the 15 min before and 15 min after that time point
from the empirical data of Day 1. In Section 6.4, we will return to the original empirical data
(without smoothing) from both days.

One challenge of strategic planning of the hypothetical AMOD service is parameter
uncertainty. This is mainly because we are proposing a service that has little to zero
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Table 1. Variables in the co-flow model.

Initial/Base
Variable Description Type* Unit Need to specify Value
Xx© Potential service vehicles Stock Vehicles No -
X Idle Vehicles Stock Vehicles Yes 4000
X@ Vehicles en-route to pick up Stock Vehicles No 0
X® Vehicles en-route to drop off Stock Vehicles No 0
X® Vehicles repositioning Stock Vehicles No 0
X1 Newly joined vehicles (negative if Ex Flow Vehicles/Second No 0
leaving)
x1:2) Vehicles matched with customers En Flow Vehicles/Second No 0
x@3) Vehicles that picked up customers En Flow Vehicles/Second No 0
xGA Vehicles finished dropping off En Flow Vehicles/Second No 0
customers
x4 Vehicles relocating En Flow Vehicles/ Second No 0
y© Potential customers Stock Customers Yes -
Yy Customers waiting to be matched Stock Customers No 0
y2 Matched customers waiting to be Stock Customers No 0
picked up
y® In-vehicle customers Stock Customers No 0
y@n Newly joined customers Ex Flow Customers/Second No 0
y(:2) Customers matched with vehicles En Flow Customers/Second No 0
y23) Customers picked up by vehicles En Flow Customers/Second No 0
yGO) Customers served En Flow Customers/Second No 0
k Minimum of XM and Y(» En Auxiliary ~ Customers (Vehicles) No -
) Percent of minimum of idle service Ex Auxiliary Percent/Second Yes 65
vehicles and unmatched customers
to be paired in a time step.
TTP Average travel time to pick up Ex Auxiliary Second Yes 130
customers
TTd Average travel time to drop off Ex Auxiliary Second Yes 600
customers
TT" Average reposition time Ex Auxiliary Second Yes 60
T Time step (for simulation) - Unitless Yes 1.0

*Ex: Exogenous; En: Endogenous.

observed data. So, we derive or infer these parameters using empirical data of existing
taxi services specified in the previous subsection and professional judgment. To better
understand what information we should collect, and which variables or parameters have
minor impacts on strategic planning, we conducted sensitivity analyses, and the results are
presented in the next subsection. Table 2 outlines the ranges for the three decision vari-
ables and the six behavioural/environmental parameters, along with their corresponding
baseline values.

The model is coded in Python 3.8.5, aided by a PySD package (version 3.9.0). Using a
computer with Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz 1.50 GHzand RAM 16.0 GB (15.7
GB usable), one simulation of a whole day takes around 20 s (including the input request
data loading time).

7.3. Results and analysis

This subsection analyzes the impact of the three decision variables and six behavioural/env
ironmental parameters on four selected performance metrics: the customer wait time to be
matched, the customer wait time to be picked up (after matched), the percentage (or por-
tion) of empty vehicle distance, and vehicle utilisation (in terms of whether the vehicles are
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Figure 10. Manhattan taxi request rates: Apr. 4 (Monday — Day 1) and Apr. 5 (Tuesday - Day 2)

Table 2. Summary of variables that need to be initialised, calibrated, or externally provided.

Variable type Notation Description Base value Test range
Decision variables a™ Total fleet size multiplier 1.0 [0.5,2.5]
aP™ Pricing multiplier 1.0 [0.2,3.5]
am Repositioning time multiplier 1.0 [0.1,2.5]
Behavioural/Environmental prrd Elasticity of demand with respect to -0.2 [—1.5,0]
parameters pricing multiplier
g Sensitivity of matching efficiency to 1.0 [0.1,1.5]
repositioning time
B Elasticity of pick-up time with respect —0.2 [—1.0,-0.1]
to repositioning time multiplier
pm Demand multiplier 1.0 [0.7,2.5]
BP Elasticity of pickup time with respect to 0.025 [0,0.05]
idling fleet size
BYP Elasticity of pickup time with respect to 0.025 [0,0.05]
number of customers waiting to be
matched

en-route to pick-up and drop-off customers). In Section 6.3.1, we examine the impact of the
decision variables on the system performance under random parameters. We then show
the change in the AMOD system dynamics in response to different scenarios in Section 6.3.2
and provide decision implications in Section 6.3.3.

7.3.1. Performance by decision variables under uncertainty

We simulate 1250 scenarios, where the values of the six parameters are randomly gener-
ated from the triangular distributions. To be more specific, as we are uncertain about the
exact values of the behavioural and environmental parameters specified in Table 2 and an
AMOD operator does not have direct control over them, we assume that these parameters
follow independent, symmetrical triangular distributions whose lower and upper bounds
are specified in Table 2. We use Monte Carlo simulations to obtain the distributions of the
four selected metrics for each combination of the three decision variables. Based on the
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central limit theorem, when we increase simulation samples, the distribution of a met-
ric @ should asymptotically approach a normal distribution with the standard deviation of

(sample) mean 6 and (sample) variance Zg:h(fe’]_e)z.

We select 27 combinations of decision variables (including their scenario IDs) and show
their performance metrics in Table 3. The main evaluation results include the (sample)
means and the (sample) standard deviations (std.).

We plot the four metrics of the 27 selected scenarios in Figures 11-14, respectively. In
Figure 11, we observe the general pattern where higher fleet sizes and higher pricing mul-
tiplier leads to lower waiting time for matching with customers. However, within each fleet
size, we see that the impact of the repositioning effort is nonlinear. When the fleet size is
3500 and aP™ = 0.8, the highest wait time occurs when '™ = 0.6, but when the fleet size
is 4000 and aP™ = 1.0, the highest wait time occurs when o' = 1.4. This rank reversal (i.e.
the ordinal ranking of different alternatives of o™ changes when aP™ and a™™ change) indi-
cates that the impact of repositioning effort depends on the relationship between customer
demand and vehicle supply. Although the rank reversal seems robust given the relatively
large simulation samples, it is indeed possible that the ranking reversal is caused by sam-
pling errors, and we leave it for future research. Besides, we observe that the standard
deviations (due to random parameters) tend to decrease with increases in fleet size. This
is consistent with our intuition that more vehicle supply tends to increase the robustness
(reliability) in terms of responding to a surge of demand.

In Figure 12, we observe the general pattern where lower repositioning effort tends to
lead to higher wait time for picking up (matched) customers, while the impact of higher fleet
size and higher pricing multiplier are mixed/insignificant. One possible explanation for this
mixed/insignificant pattern could be the already low average wait time to be picked up, as
compared to the average wait time to be matched. The impact of repositioning effort might
become more significant when the vehicle fleet small relative to demand or when we study
a much wider range of customer request intensities.

In Figure 13, we can observe that higher fleet size and greater repositioning effort tend to
lead to higher portion of empty distance, though their effects are moderate. Indeed, opti-
mising fleet size and repositing effort can be seen as making a tradeoff between higher
operating cost for shorter average customer wait time when jointly examined with Figures
7 and 8. Besides, we observe that the standard deviations of the estimated portion of empty
distance (due to random parameters) tend to slightly increase with the increase of fleet size.
The impact of pricing multiplier appears insignificant.

In Figure 14, as expected, we observe that higher fleet size, higher pricing multiplier,
and higher repositioning effort tend to decrease fleet utilisation. In study, a vehicle is being
utilised when it is either in the state of picking up customers or in the state of dropping off
customers. Figure 10 shows that the standard deviations of the estimated portion of fleet
utilisation (due to random parameters) tend to increase with the increase of fleet size.

Overall, Table 5(a) and Figures 11-14 show clear tradeoffs among customer wait time
and operational cost. Higher fleet size leads to lower wait time to be matched but not neces-
sary wait time to be picked up. Higher fleet size also tends to increase empty travel distance
and decrease fleet utilisation, as expected. Higher pricing leads to shorter waiting time but
fewer customers entering the system. Repositioning effort tends to have smaller impact
than the other two decision variables in general, especially when vehicles are insufficient
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Figure 11. Simulated mean customer wait time to match (sample standard deviation displayed with
bars).
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Figure 12. Simulated mean customer wait time to be picked up, after matched (sample standard
deviation displayed with bars).
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Figure 13. Simulated mean of the portion of empty travel distance (sample standard deviation dis-
played with bars).
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Figure 14. Simulated mean of fleet utilisation (sample standard deviation displayed with bars).

relative to the customer requests. Additionally, repositioning efforts seem to also show non-
linear relationships with various system performance metrics. The optimal combination of
the three decision variables depends on the specific weights that the strategic planning
decision-makers determine for the various performance metrics.

7.3.2. Regression analysis of performance by decision variables and parameters

So far, we have examined the impact of decision variables under uncertain parameters.
We are also interested in the joint impact of decision variables and parameters. As we
find that the impact of decision variables is in general monotonic, we use linear regres-
sion to model the relationship between decision variables and uncertain parameters on
performance metrics, based on the results of all 1250 simulations.

We estimate four linear regressions (one for each performance metric). The regression
results are summarised in Table 4. As the decision variables and parameters have different
units, we scale them in terms of their standard deviation.

The adjusted R? value and the correlation coefficient (‘Multiple R’) show that linear
regressions produce high goodness-of-fits for the four performance metrics. The signs of
the coefficients show reasonable directions. For example, the positive coefficient of as for
the average wait time to pick up suggests that increasing repositioning effort tends to
reduce the wait time for matched customers, which is consistent with the intuition. For
another example, that 8P and " are negative for the average percentage of empty dis-
tance is consistent with our intuition as the increase of idling fleet size and unmatched
customers tend to reduce the pick-up and drop-off distance, and hence shorter empty
distance.

Larger scaled regression coefficients indicate greater importance in two senses: (1) the
associated parameter or decision variables impacts the corresponding performance metrics
more, and therefore (2) modellers or decision-makers should put more effort into reducing
the uncertainty associated with a parameter’s impact on performance. Consistent with the
finding from the previous section, repositioning does not influence the performance met-
rics as significantly as the other two decision variables, especially when the fleet is a scare
resource.
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Table 4. Regression results.

Avg. wait time to match

Avg. time to pick up

Avg. % empty distance

Avg. % fleet utilisation

Coef®  SD™ Scaled®  Coef SD  Scaled  Coef SD  Scaled  Coef SD  Scaled
Intercept 101.81 7.26 14.02 217 017  13.03 0.25 0.01 4381 0.78 0.01 58.71
aj —0.06 0.00 —80.26 0.00 0.00 54.07 0.00 0.00 40.95 0.00 0.00 —39.04
ap —4490 193 —2331 076 0.04 17.27 0.02 0.00 14.61 —0.05 0.00 —14.09
as 330 192 1.72 —0.87 0.04 —19.80 0.00 0.00 3.10 —0.06 0.00 —17.51
pprd —15.11  9.00 —1.68 0.15 0.21 0.72 0.00 0.01 0.37 0.01 0.02 0.50
ﬂ’“" 143 134 1.06 —0.04 0.03 -1.18 0.00 0.00 —1.28 0.00 0.00 -—0.88
BP —4.17 1313 —-0.32 —0.25 030 —0.84 —0.01 0.01 —-1.15 —0.02 0.02 -—-0.81
ﬂd’" 20943 448  46.77 —3.86 0.10 —37.64 —0.11 0.00 —32.96 0.25 0.01 30.82
ﬂkp —269.26 13.47 —1998 —14.56 031 —47.12 —0.79 0.01 —75.20 —0.59 0.02 —24.15
BYP 2.06 1298 0.16 —0.26 030 —-0.89 —0.01 0.01 -—-0.82 —0.02 0.02 -—-0.89
Adjusted R? 0.88 0.85 0.87 0.74
Corr Coef® 0.94 0.92 0.93 0.86
Total SD 19.18 0.44 0.01 0.03
Observations 1250 1250 1250 1250
: Coefficients.
~: Standard error.
*:Scaled coefficient by standard error.
&: Correlation Coefficient.
Table 5(a). Vehicle-centric data summary.
Avg Avg
Avg Idle En-Route Drop-Off Avg Avg Avg
Vehicles Vehicles Vehicles ~ Unmatched  Matched In-Vehicle
Day Total vehicles Repo (std) (std) (std) Users (std)  Users (std)  Users (std)
4 April 2016 4,000 No 1,521 430 2,051 397 429 2,049
(1,352) (304) (1,116) (883) (304) (1,117)
4 April 2016 4,000 Yes 1,482 396 2,049 460 396 2,049
(1,279) (237) (1,098) (1,038) (237) (1,098)
5 April 2016 4,000 No 1,397 399 2,140 465 399 2,140
(1,295) (226) (1,130) (1,035) (226) (1,130)
5 April 2016 4,000 Yes 1,443 417 2,140 465 417 2,140
(1,358) (306) (1,145) (1,012) (306) (1,145)

Table 5(b). Customer-centric data summary.

Avg RequestRate  Avg Match Timein  AvgPick-Up Time  Avg IVTT in Sec

Day Total Demand  Repo Per Sec (std) Sec (std) in Sec (std) (std)

4 April 2016 263,152 No 3.66(2.13) 102 (198) 226 (262) 560 (373)
4 April 2016 263,152 Yes 3.66(2.13) 119 (233) 234 (274) 560 (373)
5 April 2016 269,859 No 3.75(2.17) 117 (232) 245 (296) 571(378)
5 April 2016 269,859 Yes 3.75(2.17) 117 (239) 230 (284) 571(378)

7.3.3. Dynamics of system behaviors
The ability to examine the impact of strategic planning decisions on the within-day dynam-
ics of AMOD operations is a key differentiator of our model compared with existing models
in the literature. In this subsection, we first compare the dynamics under different deci-
sion variables given baseline parameter values, and then we study the impact of random
parameters given a selected set of decision variables.

Figure 15(a) shows the impact of (only) changing total fleet size on the dynamics of idling
vehicles with baseline values for all other decision variables and parameters. The pattern is
consistent with our intuition that when the total fleet size is small, the idling vehicles tend
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Figure 15. Impact of decision variables on within-day AMOD system dynamics. (a) Total fleet size on
idling fleet size. (b) Pricing multiplier on cumulative customer served. (c) Repositioning multiplier on
customers waiting to be matched. (d) Joint impact of three decision variables on customers en-route to
destination.

to be low. When the total fleet size is over 4000, the system starts to have idling vehicles in
the afternoon peak period.

Figure 15(b) shows the impact of (only) changing the pricing multiplier on the dynamics
of the cumulation of served customers. The observed pattern aligns with our intuition that
as the pricing multiplier increases (indicating higher prices for customers), the cumulative
number of customers tends to decrease.

Figure 15(c) illustrates the impact of (only) varying the repositioning multiplier on the
dynamics of the customers waiting to be matched. The pattern in the graph indicates that
the effort has diminishing effectiveness in reducing customers waiting to be matched.

In Figure 15(d), we observe the impact of simultaneously perturbing the total fleet size,
pricing multiplier, and repositioning multiplier on the number of customers en-route to
their destination. The results indicate that when the fleet size is low (3000 and 3500), vehi-
cles are consistently scarce resources that do not vary with the fluctuation of customers,
regardless of the values of the other two decision variables. Conversely, when the fleet
size is high (4000, 4500, 5000), the vehicles begin to experience periods of slackness. The
observed pattern is consistent across different values of the pricing and repositioning
multipliers.

Next, we fix the base decision setting and explore the impact of behavioural and environ-
mental variables on the dynamics of the AMOD service. Combining the time profiles in the
present subsection and the performance metrics in the previous subsections, we find that
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Figure 16. Impact of behaviour and environmental parameters on the within-day AMOD system
dynamics (30 simulation instances). (a) Customers waiting to be picked. (b) Vehicles being repositioned.

the decision setting of 4000, 1.2, and 1.0 for fleet size, pricing multiplier, and repositioning
efforts, respectively, achieves a reasonable balance among the four selected performance
metrics. To understand the impacts of uncertain parameters on the dynamics of selected
stock variables, we can visualise the simulated time profiles of a set of decision variables
with random parameters. As a demonstration, we show 30 simulation instances through
the two plots in Figure 16: the left is the number of customers waiting to be picked up
(after matched), and the right is for the number of vehicles in the state of repositioning. The
figure shows that the overall shapes of the simulated time profiles in each graph remain
stable despite the variation of parameters.

7.3.4. Discussion

Overall, the evaluation results demonstrate a trade-off between reducing customer wait
time and operational costs. However, the relationship between each decision variable and
its impact on system performance is not necessarily linear due to the complex interactions
with other decision variables and parameters over time during a simulation period. This
nonlinearity highlights the value of using a dynamic system model for evaluation.

The results also demonstrate that the model can capture a wide range of scenarios,
which allows decision-makers to explore different scenarios and identify areas where fur-
ther data collection could reduce uncertainty about selected performance metrics. How-
ever, it is worth noticing that the model primarily provides strategy-level evaluation and
insights into how changes in decision variables and parameters affect the time profile
shapes of the system states.

7.4. Comparison with agent-based modeling approach

To gain an understanding of how well a co-flow approach can capture the system-level
AMOD service performance, we compare the model results with those from a high-
resolution, high-fidelity ABM developed in an earlier study by Dandl et al. (2019) for oper-
ational analysis. Although we know that the outputs from the ABM assume 4000 as the
fleet size (without within-day fleet size adjustment), and the model covers the same area
and timeframe to those in this case study, the two models do not have perfect one-on-one



TRANSPORTMETRICA A: TRANSPORT SCIENCE . 31

correspondence as to most variables. Additionally, the high-resolution, high-fidelity ABM
does not explicitly consider the impact of pricing. Therefore, we first explore the outputs
from the ABM. Then we examine which of the scenarios (if any) in Section 6.4 will produce
outputs similar to those from the ABM.

Tables 5(a) and 5(b) summarise the outputs of four ABM model runs. The first two sce-
narios use the customer demand data from 4 April 2016, with and without repositioning
(‘Repo’), while the third and fourth scenarios use the customer demand data for 5 Apr 2016,
with and without repositioning. The ABM produces vehicle and passenger (location-time)
trajectories in units of seconds. The trajectory data also includes the status of each vehicle
and customer at each time step of the simulation. Hence, it is easy to obtain the number of
idle vehicles, en-route pickup vehicles, en-route drop-off vehicles, and repositioning vehi-
cles at every time step from the ABM, which are the key information as to comparing the
co-flow mode outputs with those from the ABM.

We use two main types of goodness-of-fit measure. The first type, 4, is developed based
on the mean absolute percent error (MAPE),
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where t; represents the sampled time steps from set Ts. Here we sample system states every
30 min (1800 s). N = 200 is the total number of samples — 40 sampled time steps and each
step measures five state variables. Since we do not consider share rides, X? and X® are
always equal to Y@ and Y®, respectively. Therefore, we only considered X1, X2, x®,
X@®, Y in calculating MAPE to avoid double counting.

The second type, e, is root mean square error (RMSE) based, which penalises large errors
more than small ones. To obtain ¢, we first calculate a Chi-square based cost function as:

~ (i n_2
Al
vD 41

N n._2
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. (14)
XD +1

7= (T

t;eTs \ i€l

2

jel

where I is the complete set for all the vehicle-related stock variables, and J is the set
for all the customer-related stock variables. X and X are the modelled and observed
vehicle-related variable values, respectively. Similar meanings apply to Y® and Y, but for
customer-related variable values. To avoid dividing by zero, we add one unit to each stock
variable. This does not influence the monotonicity of x? as a measure of goodness of fit.
The relative weight for each term can be further added when, say, a researcher cares for
the goodness-of-fit of certain time intervals more than others. Additionally, autoregressive
correction can also be applied to further improve the goodness-of-fit metric.

We further process the evaluated Chi-square-based cost function to obtain the root
mean-square error (RMSE) measure. We can obtain the adjusted root mean square error
(RMSE) of a parametric approximation through the following equation:

2 _
o5 — \/max(x df,0) (15)

df(N—1)



32 (&) J.YUANDM.F.HYLAND

Table 6. Goodness-of-Fit measures for training and validation data sets.

Day 1 demand Day 2 demand
No reposition With reposition No reposition With reposition
Model &4 (MAPE based) 0.378 0.280 0.430 0.323
£g(RMSE based) 0.586 0.547 1.183 1.256
8, (RMSE based) 0.581 0.543 1.174 1.246
Constant &4 (MAPE based) 37.70 36.84 36.02 38.98
&g, (RMSE based) 16.13 14.36 16.46 16.34

where df = N — k,and kis the number of parameters. As a reference, the unadjusted RMSE,
which does not consider the number of parameters, is displayed in Equation (16).

_ y/max(x2 — N+1,0)

N (16)

€8,
As discussed in Section 3.5, numerous methods (e.g. Bayesian optimisation) are available
to estimate the model parameters. As the model in the case study is relatively simple (i.e.
it includes only a few parameters), we adopt a grid search approach to minimise MAPE
wherein we constrain each parameter to be within the range defined in Table 2. We selected
the parameters that minimised the error defined in the form of MAPE in Equation (13)
though we also reported RMSE defined in Equation (14). We find that the following co-flow
model scenario produces similar outputs, including the system dynamics: decision variables
a™, aP™ and a™ are 1.0 (i.e. 4000 vehicles), 1.0, and 0.8, respectively and the six parame-
ters (BP"d, grv, gre, pam gip, pWP) are - 0.3, 1.0, - 0.2, 1.0, 0.0025, 0.025, respectively. Note
that, as the three decision variables are known from the ABM, the grid search in these three
dimensions are confined by the three fixed values. In the present example, we use vari-
ables such as total number of en-route vehicles and total number of customers waiting to
be matched for the estimation, which we believe are readily available by any MOD opera-
tors, so we believe that one can easily apply the same estimation approach using empirical
data.

To gain more confidence about the ability of the co-flow model in obtaining reasonably
accurate system dynamics produced by the ABM, we evaluate the co-flow model’s system
dynamics against the ABM's system dynamics on April 5th (Day 2), where we use the same
co-flow model decision variables and parameters calibrated based on Day 1. What varies in
the co-flow model from Day 1 to Day 2 is the input data for y @,

Table 6 displays the goodness-of-fit measures for both Day 1 (training day) and Day 2
(testing day). The results show that the co-flow model performs significantly better than
the constant daily average prediction.

Figures 17 and 18 visualise the stacked time series data for the customer-related stock
variables — total unmatched customers, total (matched) customers to be picked up, and
total customers in service vehicles. At each time step, the sum of these three stock vari-
ables provides the number of customers in the AMOD service system. The figures show
that the co-flow model captures the dynamics generated by the ABM with high accuracy
but with significantly fewer model parameters. Although some variabilities from the ABM
are smoothed out, the key patterns, such as the three peaks in the morning (around 8
am), afternoon (around 3 pm), and evening (around 8 pm) for all three customer states,
are preserved.
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Figure 17. Stacked time profile of the customer stock variables in the case without vehicle repositioning
for the training dataset, for the ABM (left) and co-flow model (right).
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Figure 18. Stacked time profile of the customer stock variables with vehicle repositioning for the training
dataset, for the ABM (left) and co-flow model (right).
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Figure 19. Stacked time profiles of the service vehicle stock variables without vehicle repositioning, for
the training data set, for the ABM (left) and co-flow model (right).

Figures 19 and 20 visualise the stacked time series data for the AMOD vehicle-related
stock variables - idle vehicles, en-route pickup vehicles, en-route drop-off vehicles, and
repositioning vehicles. Like Figures 17 and 18, the minor variations are smoothed out in
the co-flow model, but the key patterns are preserved. Note that the vehicles in reposition-
ing state in Figure 20 (zero vehicles in the repositioning state in Figure 19) are generally
higher than those in the ABM. The differences may be further reduced by increasing the
resolution and fidelity of the co-flow model to capture more operational details.

Figures 21-24 are the counterparts of Figures 16-20, respectively, except Figures 21-24
are for the validation datasets (Day 2). Similar to the results in Table 6, we do not observe
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Figure 20. Stacked time profiles of the service vehicle stock variables with vehicle repositioning, for the
training data set, for the ABM (left) and co-flow model (right).
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Figure 21. Stacked time profiles of the customer stock variables without vehicle repositioning for the
validation dataset, for the ABM (left) and co-flow model (right).
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Figure 22, Stacked time profiles of the customer stock variables with vehicle repositioning for the
validation dataset, for the ABM (left) and co-flow model (right).

model underfitting or overfitting issues. The results also show that even using a simple
co-flow structure and the negative exponential distributions of delays for each state tran-
sition, we can robustly explain the systemwide dynamics for both customers and vehicles
produced by the ABM simulator.

The comparison in this subsection shows that the co-flow model can provide sufficiently
accurate outputs for strategic planning despite not explicitly modelling the operational
details of the AMOD services. The co-flow model fails to capture the minor variations of
the AMOD system dynamics, but we consider it sufficient for high-level strategic planning.
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Figure 23, Stacked time profiles of the vehicle stock variables without vehicle repositioning for the
validation dataset, for the ABM (left) and co-flow model (right).
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Figure 24. Stacked time profiles of the vehicle stock variables with right repositioning for the validation
dataset, for the ABM (left) and co-flow model (bottom).

In practice, we suggest regularly comparing the co-flow model outputs with both higher-
resolution, higher-fidelity models, and the empirical data (after the AMOD system is imple-
mented) to improve understanding of the conditions where the co-flow model provides
sufficiently accurate information about key system dynamics. In this sense, high-resolution,
high-fidelity operational models and the proposed approach for strategic planning are
complementary. On the one hand, a co-flow model can guide the development of an ABM.
On the other hand, after the AMOD system is implemented, the ABM and the empirical
data can provide useful feedback to the co-flow model about its ex-ante forecasts for fur-
ther improvement. This way, the decision-makers can use the improved co-flow model for
the next round of strategic planning.

8. Concluding remarks

High-quality strategic planning of AMOD systems is critical for the success of the sub-
sequent phases such as service area permitting, fleet procurement, and depot capacity
acquisition. This paper presents a novel and flexible modelling approach for strategic plan-
ning of AMOD systems using a system of ordinary differential equations that has a fluid/flow
analogy. A key contribution of the proposed co-flow modelling framework, aside from
the separate but coordinated vehicle and customer stocks and flows, is that the proposed
approach for modelling state transition delays effectively captures the systemwide AMOD
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dynamics. Additionally, the co-flow model preserves properties of the state space repre-
sentation and Markov Decision Process model requirements. Informed by a comparison
with a high-resolution, high-fidelity ABM, the proposed co-flow model explains, with high
accuracy, the macroscopic system dynamics of an AMOD fleet serving taxi requests in Man-
hattan. Hence, the proposed co-flow model represents a valuable and reliable tool for
strategic planning of AMOD services.

The proposed co-flow approach contributes to existing AMOD system modelling meth-
ods as it is (i) dynamic, rather than static or steady-state based; (ii) computationally inex-
pensive wherein the problem complexity is independent of fleet size and the number of
customer requests, unlike ABMs; and (iii) and capable of capturing important conserva-
tions of different states of vehicles and customers, unlike most empirical/statistical models.
The proposed modelling approach provides credible systems level results that allow for
immediate insights into strategic planning decisions. These strategic planning level insights
should allow AMOD companies and analysts to narrow their tactical and operational level
decision spaces for further, detailed, analysis.

This study does have its limitations. The co-flow model application in this study assumes
that the whole service region is a single pair of stock chains. Clearly, multiple pairs of inter-
connected stock chains will be necessary to model more heterogenous service areas than
Manhattan, New York City. While having separate stock flows for different subregions will
increase computational burden, the impact is relatively minor given the aggregate nature
of the co-flow model framework. In the case study, we also recognise that, although the
request patterns from the two days have clear differences, they do have some similarities
because they are back-to-back weekdays. We leave testing of a wider range of demand pat-
terns for future research. Other future research includes the concrete demonstration that
the proposed co-flow modelling framework can provide flexibility as to model boundaries
(e.g. expanding the boundary by converting exogenous variables into endogenous ones),
model resolutions (e.g. increasing the fidelity by splitting a chain of state variables into mul-
tiple chains to explicitly consider different zones or subnetworks), and model resolutions
(e.g. increasing the fidelity by using more detailed state variables in a stock chain), as it is
common for decision-makers to adjust the study boundary and resolution during strategic
planning. It would also be worthwhile for future research to examine the transferability of
a co-flow model to other geographies and service areas.

Note

1. Inthisresearch, ‘resolution’ refers to the level of spatial or temporal detail associated with a model
attribute or model attributes in general. Conversely, ‘fidelity’ refers to the inclusion or exclusion
of model attributes, physical processes and/or behavioural process in a model.
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