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Abstract—We propose using surface and aerial shared
autonomous electric vehicles (SAEVs) to improve the resilience of
infrastructure and communities, or SAEV-R. In disruptive events,
SAEVs can be temporarily deployed to evacuate and rescue at-risk
populations, provide essential supplies and services to vulnerable
households, and transport repair crews and equipment. We
present a modeling framework for feasibility analysis and
strategic planning associated with deploying SAEVs for disaster
relief. The framework guides our examination of three scenarios:
a hurricane-induced power outage, a pandemic-affected
vulnerable population, and earthquake-damaged infrastructure.
The results demonstrate the flexibility of the proposed framework
and showcase the potential and versatility of SAEV-R systems to
improve resilience.
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L INTRODUCTION

Resilient infrastructure is crucial for communities to weather
and recover from disasters. Transportation and communication
networks, energy grids, and water pipelines are all critical
components of this infrastructure and play important roles in
enabling emergency response and recovery efforts.
Communities with robust and well-maintained infrastructure are
better equipped to handle the effects of emergencies and are
more likely to bounce back quickly [1].

Resilient infrastructure is necessary but not sufficient for
community resilience. For example, during pandemics,
vulnerable populations might suffer even though the
infrastructure itself functions well. Therefore, improving
resilience of infrastructure and community are both important
when it comes to improving the overall resilience of society.

In this paper, we propose to use surface and aerial shared
autonomous electric vehicles (SAEVs) to help accelerate
infrastructure recovery and mitigate disaster impacts on
communities. We refer to the use of SAEVs for improving
infrastructure and community resilience as SAEV-R
(pronounced “saver”).

SAEVs can relocate energy and material supplies, and
provide services (e.g., evacuation, search, and rescue) without
human drivers nor the approval of vehicle owners. This is the
essence of the SAEV-R system. Sharing-based business models,
such as car sharing, peer-to-peer sharing, and co-ownership, can
streamline and accelerate the process of recruiting SAEVs
during an emergency compared to private vehicle
ownership.
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Operating without human drivers means that SAEVs can be
recruited and deployed quickly and efficiently in emergency
situations, allowing communities to evacuate and rescue
residents without risking human drivers or deliver supplies to
those in need with less human interaction and. Because SAEVs
do not require human drivers, they can (i) operate without
downtime for longer periods of time; (ii) traverse more
dangerous paths and access more dangerous areas; and (iii)
transfer energy and serve as an emergency power source during
infrastructure repair, thanks to their high-performance, reusable
"power banks."

Researchers have proposed to use (shared) autonomous
vehicles (including unmanned aerial vehicles, UAVs) [2]-[4]
and electric vehicles [5], [6] for improving infrastructure and
community resilience. However, we suggest that the
combination of the technologies associated with shared
mobility, electrification, and automation in SAEVs results in a
synergistic effect, where the overall benefit is significantly
greater than the sum of the individual resilience benefits of each
technology. In other words, SAEVs can significantly improve
the resilience of infrastructure and communities in the face of
natural and society-induced hazards than, say, shared human-
driven electric vehicles, privately-owned autonomous electric
vehicles, or shared autonomous vehicles powered by internal
combustion engines and fossil fuels. Unlike privately-owned
human-driven electric vehicles, emergency response operators
can quickly recruit SAEVs without the delays from obtaining
owner approvals or waiting for human drivers to operate
vehicles. Unlike shared autonomous non-electric vehicles,
SAEVs have the advantage of carrying electric power source,
which can be utilized for various purposes during disaster
recovery.

The strategic deployment of SAEV-R can improve the
effectiveness and efficiency of emergency response by allowing
for targeted and timely delivery of essential resources and
services. Figure 1 illustrates how SAEVs can aid in providing
electric power during significant power blackouts by moving
electricity from functioning sub-grids to non-functioning sub-
grids in a driverless and centrally controlled manner. Figure 2
shows the potential for SAEVs to deliver essential services and
resources (such as energy, water, food, medicine) to affected
communities. SAEVs can also help in infrastructure recovery,
as shown in Figure 3. They can transport repair crews and spare
materials directly from their homes or warehouses to the
damaged location without delays (from, say private vehicle

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 19,2023 at 23:43:41 UTC from IEEE Xplore. Restrictions apply.



recruitment or waiting for human drivers to pick up vehicles),
and serve as power sources when they arrive.
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Fig. 1. SAEVs for transferring energy from functional sub-grid (microgrid) to
dysfunctional sub-grid (microgrid).
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Fig. 2. During a pandemic, agencies can recruit SAEVS to deliver essential
services and resources to vulnerable populations with minimum human
contacts.
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Fig. 3. When infrastructure and equipment are damaged, SAEVs can
autonomously pick up repair crew and tools directly from homes, offices, and
warehouses to the damaged locations with built-in power sources that can be
used during repairment.

To launch SAEV-R, it will be necessary to invest in
supporting facilities, such as charging and discharging stations,
communication systems, fleet depots, and, for aerial SAEVs,
launch/landing sites. Administrative structures (e.g., who has the
authority to recruit SAEVs) and operational protocols are also
critical. Whether these investments are likely to pay off in the
long run needs further study. Therefore, in this paper, we
propose a preliminary modeling framework for feasibility
analysis and strategic planning of various use cases of SAEV-R
under different disaster scenarios.

This study includes two major contributions. First, to the best
of our knowledge, this is the first study to suggest utilizing the
synergies of the shared economy, autonomous vehicle
technologies, and electric vehicle technologies to enhance
community resilience and accelerate infrastructure recovery
processes. The paper presents concrete use cases in various
disruption scenarios.

Second, we propose a modeling framework for efficiently
evaluating concepts of operations of various SAEV-R use cases.
The framework simplifies and standardizes the evaluation and
strategic planning under different scenarios and provides a
dynamic and quantitatively consistent approach for assessing the
potential benefits and challenges of SAEV-R. We believe that
this proposed framework will be a valuable tool for public
agencies and businesses looking to leverage the benefits of
SAEV-R in their strategic planning. After conducting a
feasibility analysis, these entities can exert more targeted
analysis efforts to determine the necessary infrastructure,
facilities, equipment, and administration for SAEV-R.

The remainder of the paper is structured as follows. Section
II reviews literature related to measuring and improving
infrastructure and community resilience. Section III presents a
modeling framework for preliminary analysis of various uses of
SAEV-R. In Section IV, we apply the framework to examine the
effectiveness of SAEVs when varying disaster type, fleet size,
and disruption severity in three preliminary examples. Section
V concludes with the limitations of the proposed SAEV-R and
potential future research directions.

II.  RELEVANT LITERATURE

Measures of infrastructure resilience often focus on the
physical components of a community, such as the condition and
capacity of buildings, transportation systems, and utility
networks [7]. These measures may include ex-ante and ex-post
indicators. An example ex-ante indicator includes the number of
infrastructure components that meet or surpass certain standards
or the capacity of a transportation system to withstand natural or
society-induced disasters. An example ex-post indicator
includes the average number of interrupted system users per
disruption event.

Measures of community resilience, on the other hand, focus
on the social and institutional aspects of a community. These
measures include indicators such as the availability of
emergency response plans, the presence of community
organizations, or the level of social cohesion [8].

Researchers and practitioners have proposed a range of
strategies to improve infrastructure and community resilience.
Examples of pre-event strategies include the increase of
infrastructure redundancy, drills, disaster response training
programs for community members and emergency response
operators, development of emergency response plans, and
public outreach [1], [9], [10]. During disasters and disaster
recoveries, decision-makers should make timely and non-
myopic decisions to ensure the provision of essential supplies to
vulnerable populations [11], [12] and effectively allocate
resources for infrastructure recovery [13]. Real-time
performance monitoring is also critical. For post-event
strategies, stakeholders can reflect and learn, but should avoid
anchoring preparation for future disasters on prior disasters, as
future disruptive events may well be different.

III. MODELING FRAMEWORK

Models that facilitate the conceptualization and strategic
planning of SAEV-R require multiple features. Since system
decisions are typically made under pressure in response to
disruptive events, a model should be dynamic to capture the
temporal details of the state of SAEVs, the state of target
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communities and infrastructures, and the state of services and
resources that are expected to be delivered. The model should
also be flexible to evaluate a wide range of types and scales of
disaster events. Finally, the model should explicitly and
economically model variables that are controllable and
uncontrollable by decision-makers.

Key decision variables of the emergency response operators
include the types of service and resources to provide, service
areas and time windows, and SAEV fleet size. Key scenario
variables include SAEV battery capacity (i.e., drive range),
charging/discharging speed, vehicle storage capacity,
infrastructure  availability = and  compatibility  (e.g.,
charging/discharging facilities and UAV take-off and landing
platforms), and distance to resource depots and warehouses.

We define Vt(L) € R* U {0} as the number of SAEVs in state
i at time t, where i€l and t € [0,T] . The set =
{1,2,...,i,1, ..., I}, contains mutually exclusive and collectively
exhaustive SAEV states. V; is the state vector whose element I

is Vt(i). When no confusion arises, we use V instead of V. We
S
define v, b a5 the rate of SAEVs transitioning from state i to i’

at time t, where i,i’ € [ and t € [0, T]. Similarly, vt(l”'l) is the
rate of SAEVs transitioning from state i"’ to i. t, is the initial
time step. ty is defined as the modeling horizon. We define T as
the simulation time step. For example, T = 1 minute means that
the simulation updates the system state every one (simulation
clock) minute. §(+) is a dummy variable. When SAEVSs can
directly transition from the state i to the state i’, §®) = 1;
otherwise, § @) = 0.
The dynamics of V®, therefore, can be formulated as

VAR W 5(1”'1)1%(1”'1) — Dviit i 6(1'11)%(” ) Vi i el (1)

Fig. 4. illustrates the concepts using a “tank” analogy, where
the boxes represent “water tanks” and the arrows represents
“pipelines”.
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Fig. 4. The number of SAEVs in the state i (V) transitioning from/to the state

a (1) ) .
i', with the rate of v, “ and v,” ", respectively.

Similarly, we can define XU) € R* U {0} as the entities
(e.g., community members that need help, damaged
infrastructure) that SAEVs aim to serve. Generally, the bigger
the disaster, the larger the XU). xUJ") are the corresponding
transition rates. For example, when a SAEV-R serves 17 people

per hour at t, xt(unserved'ser"ed) is 17 people/hour. For another

example, when a repair crew can fix two lane miles of collapsed
pavement per day at t, xt(w”apsed’repalred) is 2 lane miles/day.
We model the state transition rate using negative exponential

distributions as shown in Eqn. (2).
") =x/p],vj €] @

We define R as the services or resources that SAEVs try to
deliver. The unit of R depends on the specific resource that
needs to be transported in a specific context. For example, when

using SAEVs as a mobile power bank for delivering energy from
generators/substations to the communities that experience
power blackouts, the capacity is the battery capacity with units
of kWh. When using SAEVs for delivering drinking water, the
capacity has units of kg, Ib, or ton. When using SAEVs for
sending repair crew from their homes or their office depots to
the dysfunctional locations, the unit is persons.

Let R®) € R* U {0}, k € K, be the resources that SAEVs

14
deliver. K contains all the states of the resources. rt(k‘k) and

k' k . .
rt( ) are the corresponding state transition rates. We can use
Eqn. (3) to numerically approximate the continuous transitions,
where 7 is the simulation step size.

Rg«’?ﬂ = <Z 11 pee 8(k“v’()rt(k”'k) - Z 1! 6(k'kl)1‘t(k'k’)> T
Vk'' k"#k Vk'k'#k
Vi, k' k" € K 3)

IV. THREE CASE STUDIES

In this section, we examine three specific SAEV-R use cases,
guided by the framework proposed in Section III. The first case
study involves utilizing SAEVs to transfer energy during
hurricane-caused power outages. The second case examines the
use of SAEVs to provide essential supplies to communities
affected by a pandemic. Lastly, we examine the use of SAEVs
to accelerate infrastructure recovery, where the vehicles are
utilized to transport both personnel and repair equipment to the
damaged infrastructure sites.

A. Energy Transfer During Hurricane -Induced Blackout

Background. Hurricane Sandy was a powerful Atlantic
hurricane (Category 3 when it made landfall on the New Jersey
coast) that caused significant damage and loss of life in the
Caribbean and the eastern United States in October 2012
(NOAA). The storm induced widespread power outages and the
disruption of transportation and communication networks, and
some areas were without power or clean water for several weeks
(FEMA). Fig. 5. is a photo of lower Manhattan in New York
City. Many buildings were left without power for up to a week
or more, which caused significant disruptions to businesses and
residents in the affected areas, with many people forced to
evacuate their homes to relocate to temporary shelters.

Fig. 5. Due to the Hurricane Sandy, a portion of the lower Manhattan
experienced blackout for around four days. Photo Source.

SAEV-R Problem. We propose to employ the charging and
discharging functions of SAEVs to transfer energy from
functioning power sub-grids to dysfunctional power sub-grids,
as illustrated in Fig. 1. Based on the proposed framework, we
develop a concrete model to study the relationships between the
SAEV fleet size and the amount of unmet energy demand that
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can be served by the SAEVs. The objective is to minimize
SAEV recruitment to maximize unmet energy demands. To
simplify the analysis, we ignore the possibility that SAEVs may
also simultaneously deliver water and other essential resources
to the community.

Model. Suppose that SAEVs (V) transfer energy (R) from
areas where there is still energy supply to areas without power.
The unserved demand (X) is measured in kWh. Fig. 6. shows the
(circular) state transition of SAEVs during the delivery, which
contains four states: en-route to charge, being charged, en-route
to discharge, and serving communities without power.

En-route to charge

Serving communities
without power

En-route to
discharge

[ Being charged

Fig. 6. State transition diagram of SAEVs that serve communities experiencing
power outages.

As illustrated in Figure 7, we can model the state transitions
of unmet energy demand (in the unit of kWh) corresponding to
the aforementioned state transitions of SAEVs.

SE—
Unmet demand Scheduled \| Demand being
(kWh) v service (kWh) q served (kWh)
\ J \
New unmet demand (kW) Service%ite (kW)

Figure 7. State transition diagram for energy demand.

We assume vehicle battery is 50 kWh with 0.3546 kWh per
mile. The distance from a charging (discharging) location to a
discharging (charging) location is assumed to follow a negative
exponential distribution with a mean of 15 miles, and the
average speed is assumed 25 mph. At the initial time step, we
assign 10% to the “charging” state and 90% to the “en-route to
charge” state. That is, we assume that when the damage is
detected (at midnight), 10% of SAEVs are nearly fully charged
(and ready to drive to the service locations). We assume that the
average charging and discharging times are 5 and 6 hrs,
respectively. We use the household-level hour-by-hour energy
usage profile (2022 November) from the U.S. Hourly Electric
Grid Monitor data of U.S. Energy information Administration
(EIA) to approximate the unmet demand pattern.

Results. We tested the impact of different fleet sizes for 72
hours on the unmet energy demand, as shown in Fig. 8. The
figure shows that 2500 SAEVs achieve a reasonable trade-off
between minimizing the number of SAEVs to recruit and the
minimizing unmet energy demand. The minor fluctuations are
caused by the fluctuation of the newly unmet demand.

SAEV fleet size
4000001 —— s00

—— 1000

kwh

— 1500
300000 4/ —— 2000
— 2500
— 3000
200000 — 3500

100000 4

Unmet energy demand,

o 10 20 30 40 50 60 70
Hours since power outage

Fig. 8. Profile of cumulative unmet demand with different fleet size

Fig. 9 shows the stacked chart for SAEVs in different states.
As the SAEV states gradually reach equilibrium after around 10
hours, we only show the time profile of the first 15 hours. As
expected, in the initial hours, a large portion of SAEVs go to
charge in the areas with functioning grids.

Implementation. As the charging activities of the recruited
SAEVs might impose heavy load on the functioning power
subnetworks, future research is needed on the impact of the
capacity constraints of the power grids. Fortunately, SAEVs can
carry extra battery packs using passenger seat and trunk space,
and these ad hoc battery packs can be pre-charged as emergency
supplies. However, when SAEVs are on the way to pick up these
ad hoc battery packs and on the way to discharge, road networks
and communication networks might be disrupted due to the
hurricane. In this case, the emergency response operators might
have to choose aerial SAEVs, some of which need to be used to
set up a temporary communication network [14].

Being Charged
En-route to discharge

Discharging at communities
En-route to charge

Hours since power outage

Fig. 9. Stacked chart of SAEVs in different states (with total fleet size as 2500).

B. Supplying Vulnerable Populations during a Pandemic

Background. During the COVID-19 pandemic, vulnerable
populations in the County of Denver, Colorado included
individuals who are older, have underlying health conditions,
have lower income and lack access to healthcare, and are
members of racial and ethnic minority groups. These
populations may be at a higher risk of severe illness or death if
they contract COVID-19. It is important for public health
officials and community organizations to provide targeted
support and resources to these groups to help protect their health
during a pandemic.

SAEV-R Problem. We propose to use SAEVs to fulfill the
needs of delivering essential resources with minimum human
contact, as illustrated in Fig. 2. We substantiate the proposed
modeling framework into a concrete quantitative model to help
form a preliminary understanding of the SAEV fleet size
required to serve a specific number of vulnerable households.
The objective is to minimize SAEV recruitment to maximize the
portion of households that have essential supplies during a
service period.

Model. In this example, we dispatch SAEVs (V) to deliver
food, medicine, and essential services (R) to communities (X)
with low mobility, immunity, and accessibility during the
pandemic. The state transition diagram for vulnerable
households is illustrated in Fig. 10. We assume each SAEV can
carry supplies for five households on average. As a pandemic
can last months or years, we model the within-day dynamics
with the initial state in the steady condition. That is, given the
number of vulnerable households, average delivery distance,
and the number of SAEVs, the multi-day simulations will
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gradually reach a steady condition, where the initial state of each
day is the same. One extreme case of the initial state is that there
is no household that needs supplies at the beginning of each day,
while the other extreme is that all the households need supplies
at the beginning of each day. We assume the SAEVs only
operate during the daytime (12 hours a day) to avoid disrupting
vulnerable households at nights. We also assume a sufficient
supply of SAEVs, so we ignore SAEV charging needs to
simplify the analysis.

e e
. Households waiting
for service

Households
in need

Households being
served

—
Households with
sufficient supplies

—

Fig. 10. State transition diagram for vulnerable households

Results. We present sensitivity analysis with respect to
changes in the average time for a household to consume one
bundle of essential supplies (24, 48, and 96 hours), SAEV fleet
size (200, 500, 800, 1100), and average delivery distance (5, 25,
45 miles). Fig. 11 displays the system performance with the
uncertainty (sample standard deviation) of the percentage of
vulnerable households (uniformly) ranging from 2% to 8% of
the 313,926 households in the county. We can see that when the
consumption time is low the fleet size and delivery distance have
more influence on the percentage of shared households than
when the consumption time is high. We can also see that
delivery distance has more impact on the percentage of served
households when the fleet size and the average consumption
time are low, which has implications on the site selection of
distribution centers relative to the locations of the (potential)
vulnerable populations.

Avg. Consumption Time 24 hrs Avg. Consumption Time 48 hrs ~ Avg. Consumption Time 96 hrs

10

08

Distance
-5
- 25
-5

06

04

Portion of Served Households

02

00

200 500 800 1100 200 500 800 1100 200 500 800 1100
FleetSize FleetSize FleetSize

Fig. 11. Avg. percentage of shared served households by avg. consumption
time (hours), fleet size (vehicles), and avg. delivery distance (miles) (with
uncertainty of percentage of vulnerable households ranging from 2-8%,
uniform distribution)

Implementation. To identify vulnerable populations quickly,
it is important for the emergency response operators to have
comprehensive and updated data on community characteristics
at hand before disasters, as the definition of vulnerable
populations varies in different scenarios. For example, during
the HIV/AIDS epidemic, LGBTQ communities were more
vulnerable, while during the COVID pandemic, the vulnerable
groups included people over the age 65 and those with medical
pre-conditions. The “final step” during deliveries is also
important to consider. For example, the protocols for how
exactly to carry supplies from SAEVs to households needs
careful design.

C. Post-Earthquake Infrastructure Recover

Background. The San Diego region of California is located
on the Pacific Plate, near the boundary with the North American
Plate, making it susceptible to earthquakes (USGS). Suppose
San Diego, California experienced a major seismic event that
causes some key infrastructure to fail.

SAEV-R Problem. We propose to use SAEVs to transport
repair crew from their homes and repair tools and spare parts
from the inventory/offices, as illustrated in Fig. 3. This way,
most repair crews do not need to go back to their offices to pick
up equipment and they can “meet” with the tools and spare parts
directly at the damaged locations. We establish a quantitative
model using the proposed framework to investigate the
relationship between the number of SAEVs and the speed of
repairing the damaged infrastructure (measured in person hours)
at the strategic planning level. To simplify the analysis, we
assume that the SAEVs do not simultaneously transfer other
essential services (e.g., medical teams) and resources (e.g.,
energy, water). The objective is to minimize SAEV recruitment
to maximize the recovery speed.

Model. For demonstration, we split a fleet of SAEVs into
two groups (V1 and V2). In practice, the task assignment of
SAEVs is flexible and adjustable before and during a disaster
service. The first group transport repair crew R1 (from their
homes) directly to the locations of the damaged infrastructure
and equipment, and when the crew members reach maximum
working hours (we assume 9 hrs), the SAEVs transport them
back home to rest, as illustrated in Fig. 12.

( ™\
Repair crew at home N En-route to the . \
[ (persons) q damaged locations Working crew
\. J \
En-route to home
(for rest)
—

Fig. 12. State transition diagram for repair crew members.

The second group of SAEVs transport repair tools and spare
parts (R2) from depots to the damaged locations, as illustrated
in Fig. 13. When the study needs more details, we can further
split R2 into R2a and R2b to differentiate repair tools and spare
parts. We assume that there are some crew members (or robots)
in the offices to help move spare parts and tools from
warehouses to SAEVs.

Available tools Tools & Tools & W Wearing/usage
& parts (in parts in arts i ::>rate
inventory) transfer parts n use J

Fig. 13. State transition diagram for repair tools and spare parts.

The repair crew, repair tools, and spare parts “meet” at the
damaged locations. We assume the average delivery distance is
15 miles, average driving speed is 25 mph, and each SAEVs can
transport 1.1 crew members on average.

Fig. 14 illustrates the state transition of the damaged
infrastructure measured in terms of the remaining work/effort
(X, measured in person hours) required to complete the repair.
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Fig. 14.State transition diagram for damaged infrastructure.

Results. We conducted sensitivity analysis with respect to
changes in person hours needed, fleet size (for crew), and total
crew members, on the completed repair work. Some key
scenarios with 1500 total person hours are illustrated in Fig. 15.
As expected, the recovery speed depends mainly on the scarce
resources (fleet size or crew).

Implementation. As earthquakes might also lead to damage
of communication and transportation infrastructure, emergency
response operators might need additional SAEVs to provide
communications (SAEVs—esp. UAVs—can potentially serve
as temporal communication towers.) When road networks are
damaged, it might be necessary to use aerial SAEVs.

1000
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=== _10veh, 45crew
10veh, 65crew
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w——30veh, 85crew
50veh, 45crew
= 50veh, 65crew
50veh, 85crew

600

Finished repair (person hours)

0 20 40 60 80 100
Hours since detected damanged

Figure. 15. Time profile of finished repair work (1000 person hours in
total) from the moment that the damage was detected.

V. CONCLUDING REMARKS

This paper proposes the concept of SAEV-R that leverages
the synergies of the sharing economy, automated vehicle
technologies, and electrification technologies. Using concrete
examples, we show that SAEVs offer an innovative solution to
mitigate disaster impact and accelerate infrastructure recovery.
We propose an intuitive and standardized modeling framework
for evaluating various use cases of SAEV-R. We consider the
framework sufficiently general and flexible, as we demonstrated
it in three significantly different use cases. We believe that this
proposed framework will be a valuable tool for enabling
organizations to make informed, strategy-level decisions about
how to best utilize SAEVs to enhance their resilience in the
event of a disaster.

We identify four main research directions related to SAEV-
R. First, each specific SAEV-R use case needs tailored
optimization algorithms (e.g., vehicle routing), that consider
explicit infrastructure networks and community conditions.
Second, future research should explore the feasibility of utilizing
SAEVs for multiple purposes simultaneously in disruptive
events. The corresponding multi-objective optimization
problem with an expanded decision space is not trivial. Third,
although we briefly discuss the potential implementation
challenges for each use case, we anticipate future research that
examines the specific implementation obstacles in detail,
especially in terms of infrastructure (e.g., vehicle-to-grid
facilities, and for aerial SAEVs, takeoff/landing platforms) and
integration with the rest of the emergency response systems. It
is also crucial to establish pre-disaster contracts with mobility-
as-a-service companies as well as other organizations that have

SAEVs available, to ensure their participation in disaster
response. Lastly, it is worthwhile to take human decision-
makers into account [15] when studying the overall impact of
SAEV-R, as the emergency response operators usually make the
“final decisions” under risk and pressure [16] on how to allocate
SAEVs.
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