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Abstract

Artificial neural networks overwrite previously learned tasks when trained sequentially, a
phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously,
and typically learns best when new training is interleaved with periods of sleep for memory
consolidation. Here we used spiking network to study mechanisms behind catastrophic for-
getting and the role of sleep in preventing it. The network could be trained to learn a complex
foraging task but exhibited catastrophic forgetting when trained sequentially on different
tasks. In synaptic weight space, new task training moved the synaptic weight configuration
away from the manifold representing old task leading to forgetting. Interleaving new task
training with periods of off-line reactivation, mimicking biological sleep, mitigated cata-
strophic forgetting by constraining the network synaptic weight state to the previously
learned manifold, while allowing the weight configuration to converge towards the intersec-
tion of the manifolds representing old and new tasks. The study reveals a possible strategy
of synaptic weights dynamics the brain applies during sleep to prevent forgetting and opti-
mize learning.

Author summary

Artificial neural networks can achieve superhuman performance in many domains.
Despite these advances, these networks fail in sequential learning; they achieve optimal
performance on newer tasks at the expense of performance on previously learned tasks.
Humans and animals on the other hand have a remarkable ability to learn continuously
and incorporate new data into their corpus of existing knowledge. Sleep has been hypoth-
esized to play an important role in memory and learning by enabling spontaneous reacti-
vation of previously learned memory patterns. Here we use a spiking neural network
model, simulating sensory processing and reinforcement learning in animal brain, to
demonstrate that interleaving new task training with sleep-like activity optimizes the
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network’s memory representation in synaptic weight space to prevent forgetting old
memories. Sleep makes this possible by replaying old memory traces without the explicit
usage of the old task data.

Introduction

Humans are capable of continuously learning to perform novel tasks throughout life without
interfering with their ability to perform previous tasks. Conversely, while modern artificial
neural networks (ANNs) are capable of learning to perform complicated tasks, ANNs have dif-
ficulty learning multiple tasks sequentially [1-3]. Sequential training commonly results in cata-
strophic forgetting, a phenomenon which occurs when training on the new task completely
overwrites the synaptic weights learned during the previous task, leaving the ANN incapable
of performing a previous task [1-4]. Attempts to solve catastrophic forgetting have drawn on
insights from the study of neurobiological learning, leading to the growth of neuroscience-
inspired artificial intelligence (AI) [5-8]. While proposed approaches are capable of mitigating
catastrophic forgetting in certain circumstances, a general solution which can achieve human
level performance for continual learning is still an open question [9].

Historically, an interleaved training paradigm, where multiple tasks are presented within a
common training dataset, has been employed to circumvent the issue of catastrophic for-
getting [4,10,11]. In fact, interleaved training was originally construed to be an approximation
to what the brain may be doing during sleep to consolidate memories; spontaneously reactivat-
ing memories from multiple interfering tasks in an interleaved manner [11]. Unfortunately,
explicit use of interleaved training, in contrast to memory consolidation during biological
sleep, imposes the stringent constraint that the original training data be perpetually stored for
later use and combined with new data to retrain the network [1,2,4,11]. Thus, the challenge is
to understand how the biological brain enables memory reactivation during sleep without
access to past training data.

Parallel to the growth of neuroscience-inspired ANNs, there has been increasing investiga-
tion of spiking neural networks (SNNs) which attempt to provide a more realistic model of
brain functioning by taking into account the underlying neural dynamics and by using biologi-
cally plausible local learning rules [12-15]. A potential advantage of the SNNs, that was
explored in our new study, is that local learning rules combined with spike-based communica-
tion allow previously learned memory traces to reactivate spontaneously and modify synaptic
weights without interference during off-line processing-sleep. Indeed, a common hypothesis,
supported by a vast range of neuroscience data, is that the consolidation of memories during
sleep occurs through synaptic changes enabled by reactivation of the neuron ensembles
engaged during learning [16-20]. It has been suggested that Rapid Eye Movement (REM)
sleep supports the consolidation of non-declarative or procedural memories, while non-REM
sleep supports the consolidation of declarative memories [16,21-23].

Here we used a multi-layer SNN with reinforcement learning to investigate whether inter-
leaving periods of new task training with periods of sleep-like autonomous activity, can cir-
cumvent catastrophic forgetting. The network can be trained to learn one of two
complementary complex foraging tasks involving pattern discrimination but exhibits cata-
strophic forgetting when trained on the tasks sequentially. Significantly, we show that cata-
strophic forgetting can be prevented by periodically interrupting reinforcement learning on a
new task with sleep-like phases. From the perspective of synaptic weight space, while new task
training alone moves the synaptic weight configuration away from the old task’s manifold-a
subspace of synaptic weight space that guarantees high performance on that task—and towards
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the new task manifold, interleaving new task training with sleep replay allows the synaptic
weights to stay near the old task manifold and still move towards its intersection with the man-
ifold representing the new task, i.e., converge to the intersection of these manifolds. Our study
predicts that sleep prevents catastrophic forgetting in the brain by forming joint synaptic
weight representations suitable for storing multiple memories.

Results

Human and animal brains are complex and although there are many differences between spe-
cies, critical common elements can still be identified from insects to humans. From an ana-
tomic perspective, this includes largely the sequential processing of sensory information, from
raw low level representations on the sensory periphery to high level representations deeper in
the brain followed by decision making networks controlling the motor circuits. From a func-
tional perspective, this includes local synaptic plasticity, combination of different plasticity
rules and sleep-wake cycle that was shown to be critical for memory and learning in variety of
species from insects [24-26] to vertebrates [16]. In this new study we model a basic brain neu-
ral circuit including many of these anatomical and functional elements. While our model is
extremely simplified, it captures critical processing steps found, e.g., in insect olfactory system
where odor information is sent from olfactory receptors to the mushroom bodies and then to
the motor circuits. In vertebrates, visual information is sent from the retina to early visual cor-
tex and then to decision making layers in associative cortices to drive motor output. Many of
these steps are plastic, in particular decision making circuits utilize spike timing dependent
plasticity (STDP) in insects [27] and vertebrates [28,29].

Fig 1A illustrates a feedforward spiking neural network (see also Methods: Network Struc-
ture for details) simulating the basic steps from sensory input to motor output. Excitatory syn-
apses between the input (I) and hidden (H) layers were subjected to unsupervised learning
(implemented as non-rewarded STDP) [28,29] while those between the H and output (O) lay-
ers were subjected to reinforcement learning (implemented using rewarded STDP) [30-33]
(see Methods: Synaptic plasticity for details). Unsupervised plasticity allowed neurons in layer
H to learn different particle patterns at various spatial locations of the input layer I, while
rewarded STDP allowed the neurons in layer O to learn motor decisions based on the type of
the particle patterns detected in the input layer [14]. While inspired by the processing steps of
a biological brain, this structure also mimics basic elements of the feedforward artificial neural
networks (ANNs), including convolutional layer (from I to H) and fully connected layer (from
H to O) [34].

Complementary complex foraging tasks can be robustly learned

We trained the network on one of two complementary complex foraging tasks. In either task,
the network learned to discriminate between rewarded and punished particle patterns in order
to acquire as much reward as possible. We consider pattern discriminability (ratio of rewarded
vs punished particles consumed) as a measure of performance, with chance performance
being 0.5. All reported results are based on at least 10 trials with different random network
initialization.

The paradigm for Task 1 is shown in Fig 1B. First, during an unsupervised learning period,
all 4 types of 2-particle patterns (horizontal, vertical, positive diagonal, and negative diagonal)
were present in the environment with equal densities. This was a period, equivalent to a devel-
opmental critical period in the brain (or training convolutional layers in ANN), when the net-
work learned the environmental statistics and formed, in layer H, high level representations of
all possible patterns found at the different visual field locations (see Fig 2 for details).
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Fig 1. Network architecture and foraging task structure. (A) The network had three layers of neurons with a feed-forward connectivity
scheme. Input from virtual environment was simulated as a set of excitatory inputs to the input layer neurons (“visual field”- 7x7 subspace of
50x50 environment) representing the position of food particles in an egocentric reference frame relative to the virtual agent. Each hidden
layer neuron received an excitatory synapse from 9 randomly selected input layer neurons. Each output layer neuron received one excitatory
and one inhibitory synapse from each hidden layer neuron. The most active neuron in the output layer (size 3x3) determined the direction of
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movement. (B) Mean performance (redline) and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), and Task 1 (green) and Task 2 (yellow) testing. The y-axis represents the agent’s performance, or the probability of acquiring rewarded
as opposed to punished particle patterns. The x-axis is time in aeons (1 acon = 100 movement cycles). (C) The same as shown in (B) except
now for: unsupervised training (white), Task 2 training (red), and Task 1 (green) and Task 2 (yellow) testing. (D) Examples of trajectories
through the environment at the beginning (left) and at the end (middle-left) of training on Task 1, with a zoom in on the trajectory at the end
of training (middle-right), and the values of the task-relevant food particles (right). (E). The same as shown in (D) except for Task 2.

https://doi.org/10.1371/journal.pchi.1010628.9001

Unsupervised training was followed by a reinforcement learning period, equivalent to task spe-
cific training in the brain (or training a specific set of classes in an ANN), during which the
synapses between layers I and H were frozen while synapses from H to O were updated using a
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Fig 2. Receptive fields of output and hidden layer neurons determine the agent behavior. (A) Left, Receptive field of the output layer neuron controlling
movement to the upper-left direction following training on Task 1. This neuron can be seen to selectively respond to horizontal orientations in the upper-left
quadrant of the visual field. Right, Schematic of connections between layers. (B) Examples of receptive fields of hidden layer neurons which synapse strongly
onto the output neuron from (A) after training on Task 1. (C) The same as shown in (A) except following training on Task 2. The upper-left decision neuron
can be seen to selectively respond to vertical orientations in the upper-left quadrant of the visual field. (D) The same as shown in (B) except following training
on Task 2.

https://doi.org/10.1371/journal.pchi.1010628.9002
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rewarded STDP rule. The reinforcement learning period was when the network learned to
make decisions about which direction to move based on the visual input. For Task 1, horizon-
tal patterns were rewarded and negative diagonal patterns were punished (Fig 1D). During
both the rewarded training and the testing periods only 2 types of patterns were present in the
environment (e.g. horizontal and negative diagonal for Task 1).

After training Task 1, mean performance across ten trials on Task 1 was 0.70 + 0.02 while
performance on the untrained Task 2 was 0.53 + 0.02 (chance level). The naive agent moved
randomly through the environment (Fig 1D, left), but after task training, moved to seek out
horizontal patterns and largely avoid negative diagonal ones (Fig 1D, right). The complemen-
tary paradigm for Task 2 (vertical patterns are rewarded, and positive diagonal are punished)
is shown in Fig 1C and 1E. These results demonstrate that the network is capable of learning
and performing either one of the two complementary complex foraging tasks. The similarity
between these tasks is evident in their definition (symmetrical particle orientations; Fig 1D
and 1E), through the similar performances attained by the network on each task (Fig 1B and
1C), and through the similar levels of activity induced in the network when training each task
(S1A and S1B Fig)

To understand how sensitive a trained network was to pruning, we employed a neuronal
dropout procedure which progressively removes neurons from the hidden layer at random (S2
Fig). We found the network was able to keep performance steady on either task following
training until around 70% of the hidden layer was pruned. Such high resiliency suggests the
network utilizes a highly distributed coding strategy to develop its policy.

Next, to understand synaptic changes during training, we computed receptive fields of each
neuron in layer O with respect to the inputs from layer I (see schematic in Fig 2A and 2C).
This was done by first computing the receptive fields of all of the neurons in layer H with
respect to I, then performing a weighted average where the weights were given by the synaptic
strength from each neuron in layer H to the particular neuron in layer O. Fig 2A shows a rep-
resentative example of the receptive field which developed after training on Task 1 for one spe-
cific neuron in layer O which controls movements to the upper-left direction. This neuron
responded most robustly to bars of horizontal orientation (rewarded) in the upper-left quad-
rant of the visual field and, importantly, did not respond to bars of negative diagonal orienta-
tion (punished).

Fig 2B shows examples of receptive fields of six neurons in layer H which synapse strongly
onto the upper-left neuron in layer O (the neuron shown in Fig 2A). These neurons formed
high level representations of the input patterns, similar to the neurons in the primary visual
system or later layers of a convolutional neural network [35-37]. The majority of these recep-
tive fields revealed strong selection for the horizontal (i.e. rewarded) food particles in the
upper-left quadrant of the visual field. As a particularly notable example, one of these layer H
neurons (Fig 2B; middle-right) preferentially responded to negative diagonal (i.e. punished)
food particles in the bottom-right quadrant of the visual field. Thus, spiking in this neuron
caused the agent to move away from these punished food particles. Similar findings after train-
ing on Task 2 are shown in Fig 2C and 2D.

To further quantify the network’s sensitivity to various particle types we developed a metric
termed the Particle Responsiveness Metric (PRM) to gauge how specific particles influence
activity of the output layer neurons (see the section Methods: Particle responsiveness metric
for further details). Using PRM on all food particle orientations across ten trials, we found that
following Task 1 training the network is drawn to horizontal particles (S3A Fig) while post
Task 2 training vertical particles drive output layer activity (S3B Fig), thus quantitatively sup-
porting the qualitative results displayed in Fig 2.
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Sleep prevents catastrophic forgetting of the old task during new task
training

We next tested whether the model exhibits catastrophic forgetting by training sequentially on
Task 1 (old task) followed by Task 2 (new task) (Fig 3A). Following Task 2 training, mean per-
formance across ten trials on Task 1 was down to no better than chance (0.52 + 0.02), while
performance on Task 2 improved to 0.69 + 0.03 (Fig 3A and 3B). Thus, sequential training on
a complementary task caused the network to undergo catastrophic forgetting of the task
trained earlier, remembering only the most recent task.

Interleaved training was proposed as a solution for catastrophic forgetting [4,10,11]. In the
next experiment, after training on Task 1, we simulated interleaved T1/T2 training (Interlea-
vedr; 12) when we alternated short presentations of Task 1 and Task 2 every 100 movement
cycles (Fig 3C). Sample network activity from this period can be seen to closely resemble single
task training (S1C Fig). Following interleaved training, the network achieved a mean perfor-
mance of 0.68 £0.03 on Task 1 and a performance of 0.65 + 0.04 on Task 2 across trials. There-
fore, interleaved training allowed the network to learn new Task 2 without forgetting
previously learned Task 1. However, while interleaved training made it possible to learn both
tasks, it imposes the stringent constraint that all the original training data (in our case explicit
access to the Task 1 environment) be stored for later use and combined with new data to
retrain the network [1,2,4,11].

Sleep is believed to be an off-line processing period when recent memories are replayed to
avoid damage from new learning. We previously showed that sleep replay improves memory
in a thalamocortical network [38-40] and when a network was trained to learn interfering
tasks sequentially, sleep prevented the old task memory from catastrophic forgetting [41]. Can
we implement a sleep like phase to our model to protect an old task and still accomplish new
task learning without explicit re-training of the old task? In vivo, activity of the neocortical
neurons during REM sleep is low-synchronized and similar to baseline awake activity [42].
Therefore, to simulate REM sleep-like activity in the model, the rewarded STDP rule was
replaced by unsupervised STDP, the input layer was silenced while hidden layer neurons
were artificially stimulated by Poisson distributed spike trains in order to maintain spiking
rates similar to that during task training (see Methods: Simulated Sleep for details).

Sample network activity recorded during this sleep phase is visualized in the raster plots
shown in S1D Fig.

Again, we first trained the network on Task 1. Next, we implemented a training phase
consisted of alternating periods of training on Task 2 (new task) lasting 100 movement
cycles and periods of “sleep” of the same duration (we will refer to this training phase as
Interleaveds ;) (Fig 3E). Importantly, no training on Task 1 was performed at any time
during Interleavedg r,. Following Interleaveds 1, the network achieved a mean perfor-
mance across ten trials of 0.68 + 0.05 on Task 2 and retained a performance of 0.70 + 0.03
on Task 1 (Fig 3E and 3F), comparable to single Task 1 (0.70 + 002) or Task 2 (0.69 + 0.03)
performances (Fig 1B and 1C) and exceeding those achieved through Interleavedr 1, train-
ing (Fig 3C and 3D).

We interpret these results as follows (see below for detailed synaptic connectivity analysis).
Each episode of new Task 2 training improves Task 2 performance but damages synaptic con-
nectivity responsible for old Task 1. If continuous Task 2 training is long enough, the damage
to Task 1 becomes irreversible. Having a sleep phase after a short period of Task 2 training
enables spontaneous forward replay between hidden and output layers (H->O) that preferen-
tially benefits the strongest synapses. Thus, if Task 1 synapses are still strong enough to main-
tain replay, they are replayed and weights are increased.
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Fig 3. Sleep prevents catastrophic forgetting during new task training. (A) Mean performance (red line) and standard deviation (blue
lines) over time: unsupervised training (white), Task 1 training (blue), Task 1/2 testing (green/yellow), Task 2 training (red), Task 1/2
testing (green/yellow). (B) Mean and standard deviation of performance during testing on Task 1 (blue) and Task 2 (red). Task 2 training
after Task 1 training led to Task 1 forgetting. (C) Task paradigm similar to that shown in (A) but with Interleavedr, 1 training (pink)
instead of Task 2 training. (D) Mean and standard deviation of performance during testing on Task 1 (blue) and Task 2 (red).
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Interleavedry r, training allowed new Task 2 learning without forgetting old Task 1. (E) Task paradigm similar to that shown in (A) but
with Interleaveds r, training (gray) instead of Task 2 training. (F) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Embedding sleep phases to the new Task 2 training protected old Task 1 memory.

https://doi.org/10.1371/journal.pcbi.1010628.9g003

Sleep can protect synaptic configuration from previous training but does
not provide training by itself

In simulations presented in Fig 3, during sleep phase, each hidden layer neuron was stimulated
by noise, a Poisson distributed spike train, and we ensured that its firing rate during sleep
would be close to the mean rate of that neuron firing across all the preceding training sessions.
Therefore, intensity of the noise input during Interleaveds 1, was influenced by preceding
Task 1 training and could also vary between H neurons. To eliminate the possibility that such
input may provide direct Task 1 training during sleep, three additional experiments were con-
ducted. First, we applied Interleaveds 1 phase to a completely naive network. Importantly,
even though this network was never trained on Task 2, we used information about hidden
layer neuron firing rates after Task 2 training from another experiment. In other words, we
artificially took into account Task 2 firing rate data to design random input during sleep to
check if this might be sufficient to improve the network performance on Task 2. We found
that the network learns Task 1 but Task 2 performance remained at baseline (S4A and S4B
Fig). In a second experiment, a similar period of Interleaveds 1 was applied following Task 1
training (S4C and S4D Fig) and we found that it maintained performance on Task 1 but again
without any performance gain for Task 2.

In a third experiment, we repeated the sequence shown in Fig 3E, however, during the sleep
phase, we provided each hidden layer neuron with a Poisson spike train input which was
drawn (independently) from the same distribution, i.e., we used the same input firing rate for
all hidden layer neurons determined by the mean firing of the entire hidden layer population
as opposed to the private spiking history of individual H neurons in the Fig 3E and 3F experi-
ments (termed Uniform-Noise Sleep (US)). The network’s performance under this implemen-
tation of noise, Interleavedys 11, (S4E and S4F Fig) was similar to that from our original sleep
implementation (see Fig 3E and 3F). Taken together, these results suggest that the properties
of the input that drives firing during sleep are not essential to enable replay, any similar to
awake random activity in layers H and O is sufficient to prevent forgetting.

Sleep replay protects critical synapses of the old tasks

To reveal synaptic weights dynamics during training and sleep, we next traced “task-relevant”
synapses, i.e. synapses identified in the top 10% of the distribution following training on that
specific task. We first trained Task 1, followed by Task 2 training (Fig 4A) and we identified
“task-relevant” synapses after each task training. Next, we continued by training Task 1 again
but we interleaved it with periods of sleep: T1->T2->Interleavedg 1;. Sequential training of
Task 2 after Task 1 led to forgetting of Task 1, but after Interleaveds 1, Task 1 was relearned
while Task 2 was preserved (Fig 4A and 4B), as in the experiments in the previous section (Fig
3C). Importantly, this protocol allowed us to compare synaptic weights after Interleaveds 14
training with those identified as task-relevant after individual Task 1 and Task 2 training (Fig
4C). The structure in the distribution of Task 1-relevant synapses formed following Task 1
training (Fig 4C; top-left) was destroyed following Task 2 training (top-middle) but partially
recovered following Interleaveds T, training (top-right). The distribution structure of Task
2-relevant synapses following Task 2 training (bottom-middle) was not present following Task
1 training (bottom-left) and was partially retained following Interleaveds T, training (bottom-
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https://doi.org/10.1371/journal.pchi.1010628.9004

right). It should be noted that this qualitative pattern can be distinctly observed in a single trial
(Fig 4C; Blue Bars), but also generalizes across trials (Fig 4C; Orange Line). Thus, sleep can
preserve important synapses while incorporating new ones.

To better understand the effect of Interleaveds 1 training on the synaptic weights, we
trained a support vector machine (SVM; see Method: Support Vector Machine Training for
details) to classify the synaptic weight configurations between layers H and O according to
whether they serve to perform Task 1 or Task 2 on every trial. Fig 4D shows that the SVMs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010628 November 18, 2022 10/31


https://doi.org/10.1371/journal.pcbi.1010628.g004
https://doi.org/10.1371/journal.pcbi.1010628

PLOS COMPUTATIONAL BIOLOGY Sleep prevents networks from catastrophic forgetting by optimizing the weight state

robustly and consistently classified the synaptic weight states after Task 1 and Task 2 training
while those after Interleaveds 1 fell significantly closer to the decision boundary. This indi-
cates that the synaptic weight matrices which result from Interleavedg r; training are a mixture
of Task 1 and Task 2 states. Using principal components analysis (PCA), we found that while
synaptic weight matrices associated with Task 1 and Task 2 training cluster in distinct regions
of PC space, Interleaveds 1; training pushes the synaptic weights to an intermediate location
between Task land Task 2 (Fig 4E). Importantly, the smoothness of this trajectory to its steady
state suggests that Task 2 information is never completely erased during this evolution. We
take this as evidence that Interleaveds ; training is capable of integrating synaptic information
relevant to Task 1 while protecting Task 2 information.

This analysis applied during interleaved training of Task 1 and Task 2 (Interleavedr 15),
revealed similar results (S5 Fig), suggesting that Interleaveds 1; can enable similar synaptic
weights dynamics as Interleavedr T, training, but without access to the old task data (old
training environment).

Receptive fields of decision-making neurons after sleep represent multiple
tasks

To confirm that the network had learned both tasks after Interleaveds 1 training, we visualized
the receptive fields of decision-making neurons in layer O (Fig 5; see Fig 2 for comparison).
Fig 5A shows the receptive field for the neuron in layer O which controls movement in the
upper-left direction. This neuron responded to both horizontal (rewarded for Task 1) and ver-
tical (rewarded for Task 2) orientations in the upper-left quadrant of the visual field. Although
it initially appears that this layer O neuron may also be responsive to diagonal patterns in this
region, analysis of the receptive fields of neurons in layer H (Fig 5B) revealed that these recep-
tive fields are selective to either horizontal food particles (left six panels; rewarded for Task 1)
or vertical food particles (right six panels; rewarded for Task 2) in the upper-left quadrant of
the visual field. Other receptive fields were responsible for avoidance of punished particles for
both tasks (see examples in Fig 5B, bottom-middle-right and bottom-middle-left). Thus, the
network utilizes one of two distinct sets of layer H neurons, selective for either Task 1 or Task
2, depending on which food particles are present in the environment. To validate these qualita-
tive results we inspected the PRM metrics for all food particle orientations across ten trials fol-
lowing Interleaveds ; training. The comparatively high mean values for horizontal and
vertical food particle orientations revealed the network’s movement was significantly driven
by these rewarded food particle orientations (horizontal and vertical), quantifying multitask
memory integration into the network’s synaptic weight matrix. (S3C Fig).

Periods of sleep allow for integration of a new task memory without
interference through renormalization of task-relevant synapses

To visualize synaptic weight dynamics during Interleavedg 1 training, traces of all synapses
projecting to a single representative layer O neuron were plotted (Fig 6A). As in Fig 4, we
wanted to monitor task specific synapses, so we used the training paradigm of T1->T2-
>Interleaveds 1, and Task 1 and Task 2 relevant synapses were identified after each individual
task training. At the onset of Interleaveds 1 training (i.e. 240,000 aeons), the network was only
able to perform on Task 2, meaning the strong synapses in the network were specific to this
task. These synapses were represented by a cluster ranging from ~0.08 to ~0.4; the rest of syn-
apses grouped near 0. As Interleaveds T, training progressed, Task 1 specific synapses moved
to the strong cluster and some, presumably less important, Task 2 synapses moved to the weak
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Left, Receptive field of the output layer neuron controlling movement to the upper-left direction following interleaved sleep and Task 1training.
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field. Right, Schematic of the connectivity between layers. (B) Examples of receptive fields of hidden layer neurons which synapse strongly onto
the output neuron from (A) after interleaved Sleep and Task 1 training. The majority of these neurons selectively respond to horizontal food

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010628 November 18, 2022 12/31


https://doi.org/10.1371/journal.pcbi.1010628

PLOS COMPUTATIONAL BIOLOGY Sleep prevents networks from catastrophic forgetting by optimizing the weight state

particles (left half) or vertical food particles (right half) in the upper-left quadrant of the visual field, promoting movement in that direction and
acquisition of the rewarded patters.

https://doi.org/10.1371/journal.pcbi.1010628.9005

cluster. After a period of time the rate of transfer decreased and the total number of synapses
in each group stabilized, showing that the network approached equilibrium (Fig 6B).

To visualize how sleep renormalizes task relevant synapses, we plotted two-dimensional
weight distributions for T1->T2 (Fig 6C) and T2->Interleaveds 1; (Fig 6D) experiments (see
Methods: 2-D Synaptic Weight Distributions for details). To establish a baseline, in Fig 6C (left)
the weight state at the end of Task 1 training (X-axis) (see overall timeline of this experiment
in Fig 4A) was compared to itself (Y-axis). This formed a perfectly diagonal plot. The next
comparison (Fig 6C, middle) was between the weight state after Task 1 training (X-axis) and a
time early on Task 2 training (Y-axis). At that time, synapses were only able to modify their
strength slightly, causing most points to lie close to the diagonal. As training on Task 2 contin-
ued, synapses moved far away from the diagonal (Fig 6C, right). Two trends were observed: (a)
set of synapses that had a strength near zero following Task 1 training increased strength fol-
lowing Task 2 training (Fig 6D, right, red dots along Y-axis); (b) many strongly trained by
Task 1 synapses were depressed down to zero (Fig 6C, right, red dots along X-axis). The latter
illustrates the effect of catastrophic forgetting—complete overwriting of the synaptic weight
matrix caused performance of Task 1 to return to baseline after training on Task 2.

Does sleep prevent overwriting of the synaptic weight matrix? Fig 6D plots used the weight
state at the end of training Task 2 as a reference which is then compared to different times dur-
ing Interleavedg 1y training. The first two plots (Fig 6D, left/middle) are similar to those in Fig
6C. However, after continuing Interleaveds T, training (Fig 6D, right) many synapses that were
strong following Task 2 training were not depressed to zero but rather were pushed to an inter-
mediate strength (note cluster of points parallel to X-axis). Thus, Interleaveds 1y training pre-
served strong synapses from a previously learned task while also introducing new strong
synapses to perform the new task.

Can we prevent old task forgetting simply by freezing a fraction of old task-relevant synap-
ses to prevent their damage by new training? We found that freezing 1% of Task 1-relevant
weights allowed Task 2 to be learned, but was not capable of preserving Task 1 (S6A Fig).
Freezing 5% of Task 1-relevant weights (S6B Fig) resulted in modest performance on both
tasks, but significantly below that seen after Interleavedg r, (see Fig 3F). Finally, freezing 10%
of Task 1-relevant weights (S6C Fig) was capable of fully preserving Task 1 performance, but
prevented Task 2 from being learned.

Thus, in all cases, some degree of retroactive or prospective interference was observed
highlighting the fact that the sleep-like phase performs a significantly more sophisticated mod-
ification to the weight matrix than simply freezing (or amplifying) task relevant synapses.
Sleep is capable of intelligently selecting which certain strong synapses to maintain in addition
to which weak synapses should be strengthened. Indeed, the sleep phase results in a large clus-
ter of weights being renormalized around an intermediate value of synaptic strength in the net-
work. This may also explain why we observed somewhat better overall performance
(combined performance on both tasks) after sleep compare with interleaved training (see Fig
3). Indeed, interleaved training requires repetitive activation of the entire memory pattern, so
if different memory patterns compete for synaptic resources then each phase of interleaved
training will enhance one memory trace but damage the others. This is in contrast to spontane-
ous replay during sleep when only task specific subsets of neurons and synapses may be
involved in each replay episode. It is worth mentioning that freezing a fraction of synaptic
weights that are most relevant to old tasks (however, implemented in more complex form) is
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one of the approaches in machine learning to avoid catastrophic forgetting—Elastic Weight
Consolidation [7].

Periods of interleaved sleep and new task training push the network weight
state towards the intersection of Task 1 and Task 2 synaptic weights
configuration manifolds

Can many distinct synaptic weight configurations support a given task, or is each task sup-
ported by a unique synaptic connectivity matrix? Our previous analysis suggests that each task
can be served by at least two different configurations—one unique for that task (Task 1 or Task
2) and another one that supports both Task 1 and Task 2. To further explore this question and
to identify possible task-specific solution manifolds (Mr; and Mr,) and their intersection
(Mr1n72) in synaptic weights space, we used multiple trials of Task 1 and Task 2 training to
sample the manifolds (Fig 7A). Here, red/blue dots indicate an exclusive high degree of perfor-
mance on Task 1/2 respectively, while cyan and greed dots indicate states where the network is
able to perform on both tasks simultaneously. Since this analysis was generated utilizing a wide
variety of simulation paradigms with many corresponding trials differing in randomness, we
believe it allows us to draw generalized conclusions. We therefore interpret these results as evi-
dence that synaptic weight space includes a manifold, Mr;, where different configurations of
weights (red, green, cyan dots) all allow for Task 1 to perform well. This manifold intersects with
another one, My, where different weights configurations (blue, green, cyan dots) are all suitable
for Task 2. Fig 7B and 7C show 2D dimensionality reductions to PCA space, and include trajec-
tories in addition to end states. One can see that PC 1 seems to capture the extent to which a syn-
aptic weight configuration is associated with Task 1 (positive values) or Task 2 (negative values),
while PC 2 and PC 3 capture the variance in synaptic weight configurations associated with Task
1 and Task 2, respectively. Note, the trajectories through this space (red/blue lines) during Inter-
leavedr 1, and Interleaveds 1,1, training would also belong to the respective task manifolds as
performance on the old tasks was never lost in these training scenarios.

We next calculated the distance from the current synaptic weight configurations to My,
(Fig 7D), My, (Fig 7E), and My~ 2 (Fig 7F; see Methods: Distance from Solution Manifolds for
details) during different training protocols. Fig 7D and 7E show that while Sequential (T1-
>T?2 or T2->T1) training causes synaptic weight configurations to diverge quickly from its
initial solution manifold (i.e. Mr; or Mr,) and to remain far (suggesting quick forgetting of the
original task), both Interleavedr, 1, and Interleaveds 1, training cause synaptic weight con-
figurations to stay relatively close to the initial solution manifold as a new task was learned.
(Note, that we certainly under sampled Mr; and Mr,, which may explains initial distance
increase.) Importantly, Fig 7F shows that both Interleavedr,; 1, and Interleavedg 1y, training
cause synaptic weight configurations to smoothly converge towards M7, while Sequential
training avoids this intersection entirely.

In Fig 7G we present a schematic depiction of these results. The task-specific manifolds,
M7 and Mr, are depicted in 3D as two volumes whose boundaries are defined by two orthog-
onal elliptic paraboloids with opposite orientation. The ellipsoidal intersection approximates
the volume comprising Mr1,. Fig 7H and 71 depict a cartoon of trajectories taken by the net-
work in this space following Task 2 and Task 1 training, respectively. Sequential training
causes the network to jump directly from one task-specific solution manifold to the other,
resulting in catastrophic forgetting. In contrast, interleaving new task training with sleep
(Interleaveds 11,1,) prevents catastrophic forgetting by keeping the network close to the old
task solution manifold as it converges towards M7, —a region capable of supporting both
tasks simultaneously.
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Discussion

We report that a multi-layer spiking neural network utilizing reinforcement learning exhibits
catastrophic forgetting upon sequential training of two complementary complex foraging
tasks, however the problem is mitigated if the network is allowed, during new task training, to
undergo intervening periods of spontaneous reactivation which are equivalent to the periods
of sleep in a biological brain. Old task was spontaneously replayed during sleep, therefore
interleaving new task training with sleep was effectively equivalent to explicit interleaved train-
ing of the old and new tasks without the need to store and train on previous task data or envi-
ronments. At the synaptic level, training a new task alone led to complete overwriting of
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synaptic weights responsible for the old task. In contrast, interleaving periods of reinforcement
learning on a new task with periods of unsupervised plasticity during sleep preserved critical
old task synapses to avoid forgetting and enhanced synapses relevant for a new task to allow
new task learning. Thus, in synaptic weight space, the network weight configuration was
pushed towards the intersection of the manifolds representing synaptic weight configurations
associated with individual tasks—an optimal compromise for performing both tasks.

The critical role that sleep plays in learning and memory is supported by a vast, interdisci-
plinary literature spanning both psychology and neuroscience [16,22,43-45]. Specifically, it
has been suggested that REM sleep supports the consolidation of non-declarative or proce-
dural memories while non-REM sleep supports the consolidation of declarative memories
[16,21,22]. In particular, REM sleep has been shown to be important for the consolidation of
memories of hippocampus-independent tasks involving perceptual pattern separation, such as the
texture discrimination task [16,46]. Despite the difference in the cellular and network dynamics
during these two stages of sleep [16,22], both are thought to contribute to memory consolidation
through repeated reactivation, or replay, of specific memory traces acquired during learning
[16,21,39,44,47-49]. These studies suggest that through replay, sleep can support the process of
off-line memory consolidation to circumvent the problem of catastrophic forgetting.

From mechanistic perspective, the sleep phase in our model protects old memories by
enabling spontaneous reactivation of neurons and changing synapses responsible for previ-
ously learned tasks. We previously reported that in the thalamocortical model a sleep phase
may enable replay of spike sequences learned in awake to improve post-sleep performance
[38-40] and to protect old memories from catastrophic forgetting [41]. Here we found, how-
ever, that a single episode of new task training using reinforcement learning could quickly
erase old memories to the point that they cannot be recovered by subsequent sleep. The solu-
tion was similar to how the brain slowly learns procedural (hippocampal-independent) memo-
ries [16,21,22,46,50]. Each episode of new task training improves new task performance only
slightly but also damages slightly synaptic connectivity responsible for the older task. Subse-
quent sleep phases enable replay that preferentially benefits the strongest synapses, such as
those from old memory traces, to allow them to recover.

We found that multiple distinct configurations of synaptic weights can support each task,
suggesting the existence of task specific solution manifolds in synaptic weight space. Sequential
training of new tasks makes the network to jump from one solution manifold to another,
enabling memory for the most recent task but erasing memories of the previous tasks. Inter-
leaving new task training with sleep phases enables the system to evolve towards intersection
of these manifolds where synaptic weight configurations can support multiple tasks (a similar
idea was recently proposed in the machine learning literature to minimize catastrophic inter-
ference by learning representations that accelerate future learning [51]). From this point of
view having multiple episodes of new task training interleaved with multiple sleep episodes
allows gradual convergence to the intersection of the manifolds representing old and new
tasks, while staying close to the old task manifold. In contrast, a single long episode of new task
learning would push the network far away from the old task manifold making it impossible to
recover by subsequent sleep.

Although classical interleaved training of the old and new tasks showed similar perfor-
mance results in our model as interleaving new task training with sleep, we believe the latter to
be superior on the following theoretical grounds. Classical interleaved training will necessarily
cause the system to oscillate about the optimal location in synaptic weight space which can
support both tasks because each training cycle uses a cost function specific to only a single
task. While this can be ameliorated with a learning rate decay schedule, the system is never
actually optimizing for the desired dual-task state. Sleep, on the other hand, can support not
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only replays of the old task, but also support replays which are a mixture of both tasks
[41,52,53]. Thus, through unsupervised plasticity during sleep replay, the system is able to per-
form approximate optimization for the desired dual-task (or multi-task) state.

Our results are in line with a large body of literature suggesting that interleaved training is
capable of mitigating catastrophic forgetting in ANNs [4,10,11] and SNNs [12,13], which led
to a number of replay-like algorithms involving storing a subset of previous veridical inputs
and mixing them with more recent inputs to update the networks (reviewed in [9]). The novel
contribution from our study is that the data intensive process of storing old data and using
them for retraining can be avoided in SNN by implementing periods of noise-induced sponta-
neous reactivation during new task training; similar to how brains undergo offline consolida-
tion periods during sleep resulting in reduced retroactive interference to previously learned
tasks [16,50]. Indeed, we recently successfully implemented a similar approach in feedforward
ANNs, where sleep-like phase prevented catastrophic forgetting and improved generalization
and adversarial robustness [54-56]. And our results are in line with previous work done in
humans showing that perceptual learning tasks are subject to retroactive interference by com-
peting memories without an intervening period of REM sleep [21,46]. Moreover, performance
on visual discrimination tasks in particular have been shown to steadily improve over succes-
sive nights of sleep [46], consistent with our findings that interleaving multiple periods of sleep
with novel task learning leads to optimal performance on each task.

In comparing our modeling results to those found in the literature on biological learning, it
is important to note an important difference in the “baseline” state of an animal undergoing
an experimental training condition versus a neural network model. In our model, and indeed
in all neural network models, the system begins as a “blank slate” without knowledge of any
previous learning or competing demands. In contrast, animals under experimental training
paradigms have a wealth of experiences which would serve as priors to bias the subsequent
learning during training, leading potentially to proactive interference. Moreover, training is
typically conducted across multiple days, with intervening periods during which the animal
will be subject to an array of various task-irrelevant stimuli and organismal demands possibly
leading to retroactive interference. Both of these ensure that the baseline state of the animal
entering a given training session is far from that of the “blank slate” a neural network model
enters with, as well as that recently learned memories may start degrading quickly in the brain
while the network weights remain unchanged post training (unless new task is explicitly
trained). Due to this stark differences, we focus our attention on the interference phenomena
which follow training on an initial task as opposed to initial learning. Viewed from this per-
spective, initial task training in our network can serve a similar role to the prior personal his-
tory of an animal subject.

While our model represents a dramatic simplification of a living system, we believe that it
captures some important elements of how animal and human brains interact with the external
world. The primary visual system is believed to employ a sequence of processing steps when
visual information is increasingly represented by neurons encoding higher level features [35-
37]. In insects, complex patterns of olfactory receptors activation by odors are encoded by
sparse patterns of the mushroom body Kenyon cells firing [57-59]. This processing step is also
similar to the function performed by convolutional layers of an ANN [34] and it was reduced
to very simple convolution from the input to hidden layer in our model. Subsequently, in the
vertebrate brain, associative areas and motor cortex are trained to make decisions based on
reward signals released by neuro modulatory centers [10,60-62]. In insects, Kenyon cells make
plastic (subject to rewarded STDP) projections to the lobes [27,63]. This was reduced in our
model to synaptic projections from the hidden to output (decision making) layer implement-
ing rewarded STDP to learn a task [30-32]. While NREM sleep in vertebrates is characterized
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by complex patterns of synchronized neuronal activity [16], REM sleep is characterized by
low-synchronized firing [42], similar to activity during sleep-like phase in our model and para-
doxical sleep with similar properties has been reported in honeybee and fruit fly [64-66].

Our study predicts synaptic level mechanisms of how sleep-based memory reactivation can
protect old memory traces during training of a new interfering memory task. It suggests that,
at least for procedural memories that are directly encoded to the cortical network connectivity
during new training, multiple episodes of training interleaved with periods of sleep provide
necessary mechanisms to prevent forgetting old memories. Interleaving new task training with
sleep enables the connectivity matrix to evolve towards the joint synaptic weight configuration,
representing the intersection of manifolds supporting individual tasks. Sleep makes this possi-
ble by replaying old memory traces without explicit usage of the old training data.

Methods
Environment

Foraging behavior took place in a virtual environment consisting of a 50x50 grid with ran-
domly distributed “food” particles. Each particle was two pixels in length and could be classi-
fied into one of four types depending on its orientation: vertical, horizontal, positively sloped
diagonal, or negatively sloped diagonal. During the initial unsupervised training period, the
particles are distributed at random with the constraints that each of the four types are equally
represented and no two particles can be directly adjacent. During training and testing periods
only the task-relevant particles were present. When a particle was acquired as a result of the
virtual agent moving, it was removed from its current location (simulating consumption) and
randomly assigned to a new location on the grid, again with the constraint that it not be
directly adjacent to another particle. This ensures a continuously changing environment with
a constant particle density. The density of particles in the environment was set to 10%. The vir-
tual agent can see a 7x7 grid of squares (the “visual field”) centered on its current location and
it could move to any adjacent square, including diagonally, for a total of eight directions.

Network structure

The network was composed of 842 spiking reduced (map-based) model neurons (see Methods:
Map-based neuron model below) [67,68], arranged into three feed-forward layers to mimic a
basic biological circuit: a 7x7 input layer (I), a 28x28 hidden layer (H), and a 3x3 output layer
(O) with a nonfunctional center neuron (Fig 1). Input to the network was simulated as a set of
suprathreshold inputs to the neurons in layer I, equivalent to the lower levels of the visual sys-
tem, which represent the position of particles in an egocentric reference frame relative to the
virtual agent (positioned in the center of the 7x7 visual field). The most active neuron in layer
O, playing the role of biological motor cortex, determined the direction of the subsequent
movement. Each neuron in layer H, which can be loosely defined as higher levels of the visual
system or associative cortex, received excitatory synapses from 9 randomly selected neurons
inlayer I. These connections initially had random strengths drawn from a normal distribution.
Each neuron in layer H connected to every neuron in layer O with both an excitatory (Wij)
and an inhibitory (WIij) synapse. This provided an all-to-all connectivity pattern between
these two layers and accomplished a balanced feed-forward inhibition [69] found in many bio-
logical structures [69-74]. Initially, all these connections had uniform strengths and the
responses in layer O were due to the random synaptic variability. Random variability was a
property of all synaptic interactions between neurons and was implemented as variability in
the magnitude of the individual synaptic events.
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Policy

Simulation time was divided up into epochs of 600 timesteps, each roughly equivalent to 300
ms. At the start of each epoch the virtual agent received input corresponding to locations of
nearby particles within the 7x7 “visual field”. Thus 48 of the 49 neurons in layer I received
input from a unique location relative to the virtual agent. At the end of the epoch the virtual
agent made a single move based on the activity in layer O. If the virtual agent moved to a grid
location with a “food” particle present, the particle was removed and assigned to a randomly
selected new location.

Each epoch was of sufficient duration for the network to receive inputs, propagate activity
forward, produce outputs, and return to a resting state. Neurons in layer I which represent
locations in the visual field containing particles received a brief pulse of excitatory stimulation
sufficient to trigger a spike; this stimulation was applied at the start of each movement cycle
(epoch). At the end of each epoch the virtual agent moved according to the activity which has
occurred in layer O. Each simulation consisted of millions of these movement cycles / epochs,
therefore a unit of time was introduced termed aeon (1 aeon = 100 epochs) for concise
reporting.

The activity in layer O controlled the direction of the virtual agent’s movement. Each of the
neurons in layer O mapped onto a specific direction (i.e. one of the eight adjacent locations or
the current location). The neuron in layer O which spiked the greatest number of times during
the first half of the epoch defined the direction of movement for that epoch. If there was a tie,
the direction was chosen at random from the set of tied directions. If no neurons in layer O
spiked, the virtual agent continued in the direction it had moved during the previous epoch.

There was a 1% chance on every move that the virtual agent would ignore the activity
inlayer O and instead move in a random direction. Moreover, for every movement cycle that
passed without the virtual agent acquiring a particle, this probability was increased by 1%. The
random variability promoted exploration vs exploitation dynamics and essentially prevented
the virtual agent from getting stuck in movement patterns corresponding to infinite loops.
While biological systems could utilize various different mechanisms to achieve the same goal,
the method we implemented was efficient and effective for the scope of our study.

Neuron models

For all neurons we used spiking model identical to the model used in in [14,15] that can be
described by the following set of difference equations [68,75,76]:

Vn+1 :fx(Vn?In + ﬁn)v

In+1 = In - lu(Vn + 1) + luo- + :uo-rn

where Vn is the membrane potential, In is a slow dynamical variable describing the effects of
slow conductances, and # is a discrete time-step (0.5 ms). Slow temporal evolution of In was
achieved by using small values of the parameter 4 << 1. Input variables 8, and o,, were used to
incorporate external current I (e.g. background synaptic input): 3, = I, 0, = o°I",..
Parameter values were set to ¢ = 0.06, f° = 0.133, ¢° = 1, and p = 0.0005. The nonlinearity fo
(V,,,1,,) was defined in the form of the piece-wise continuous function:

a(1-V) " '+1,V, <0
f;c(VmIn) = OC+In7 0< Vn < c(_|_17185‘/n—1 S 0
-1 o+I, <V, orV, >0,
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where a = 3.65. This model is very computationally efficient, and, despite its intrinsic low
dimensionality, produces a rich repertoire of dynamics capable of mimicking the dynamics of
Hodgkin-Huxley type neurons both at the single neuron level and in the context of network
dynamics [68,75,77].

To model the synaptic interactions, we used the following piece-wise difference equation:

gS}i: = '))gsy” + { (1 o R + 2XR)gsyn/ij7 Spike}m

0, otherwise,

syn n ost
L= =" (V™ = V).

Here gsyn is the strength of the synaptic coupling, modulated by the target rate Wj of receiving
neuron j. Indices pre and post stand for the pre- and post-synaptic variables, respectively. The
first condition, spikepre, is satisfied when the pre-synaptic spikes are generated. Parameter y
controls the relaxation rate of synaptic current after a presynaptic spike is received (0 <y < 1).
The parameter R is the coefficient of variability in synaptic release. The standard value of R is
0.12. X is a random variable sampled from a uniform distribution with range [0, 1]. Parameter
Vrp defines the reversal potential and, therefore, the type of synapse (i.e. excitatory or inhibi-
tory). The term (1-R+2XR) introduces a variability in synaptic release such that the effect of
any synaptic interaction has an amplitude that is pulled from a uniform distribution with
range [1-R,1+R] multiplied by the average value of the synapse.

Synaptic plasticity

Synaptic plasticity closely followed the rules introduced in [14,15]. A rewarded STDP rule
[30-33] was operated on synapses between layers H and O while a standard STDP rule oper-
ated on synapses between layers I and H. A spike in a post-synaptic neuron that directly fol-
lowed a spike in a pre-synaptic neuron created a pre before post event while the converse
created a post before pre event. Each new post-synaptic (pre-synaptic) spike was compared to
all pre-synaptic (post-synaptic) spikes with a time window of 120 iterations.

The value of an STDP event (trace) was calculated using the following equation [28,29]:
_|tr - tp|
T b

c

tr, = Ke’

where ¢, and t,, are the times at which the pre- and post-synaptic spike events occurred respec-
tively, Tc is the time constant and is set to 40 ms, and K is maximum value of the trace tr; and
is set to -0.04 for a post before pre event and 0.04 for a pre before post event.

A trace was immediately applied to synapse between neurons in layers I and H. However,
for synapses between neurons in layers H and O the traces were stored for 6 epochs after its
creation before being erased. During storage, a trace had an effect whenever there was a
rewarding or punishing event. In such a case, the synaptic weights are updated as follows:

traces

Wi()

W, — WUH(1+W_ *Ak),
k

i

A—S tr, Sum,,
TP\t —t +c) Avg,’
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traces

tr,
Sum,, = —k
—t—t,+c

Avgtr — (1 - 5)Avgtr + 5S”mrrv

where t is the current timestep, S,,, is a scaling factor for reward/punishment, trk is the magni-
tude of the trace, tk is the time of the trace event, ¢ is a constant (= 1 epoch) used for decreasing
sensitivity to very recent spikes, W; = X; Wj; is the total synaptic strength of all connections
from the neuron i in layer H to all neurons in layer O, W, is a constant that is set to the initial
value(target value) of Wi at the beginning of the simulation. The term W,y/W; helped to keep
the output weight sum close to the initial target value. The effect of these rules was that neu-
rons with lower total output strength could increase their output strength more easily.

The network was rewarded when the virtual agent moved to a location which contained a
particle from a “food” pattern (horizontal in Task 1, vertical in Task 2) and S,,, = 1, and
received a punishment of S,,, = -0.001 when it moved to a location with a particle from a neu-
tral pattern(negative/positive diagonal in Task 1/2). A small punishment of S,,, = -0.0001 was
applied if the agent moved to a location without a particle present to help the virtual agent
learn to acquire “food” as rapidly as possible. During periods of sleep the network received a
constant reward of S,,, = 0.5 on each movement cycle.

To ensure that neurons in layer O maintained a relatively constant long-term firing rate,
the model incorporated homeostatic synaptic scaling which was applied every epoch. Each
timestep, the total strength of synaptic inputs W, = X; W;; to a given neuron in layer O was set
equal to the target synaptic input W), —a slow variable which varied over many epochs depend-
ing on the activity of the given neuron in layer O-which was updated according to:

w. J

jo

{ W,(1+ D,,) spike rate < target rate

W (1 — D,,) spike rate > target rate

To ensure that the net synaptic input W; to any neuron was unaffected by plasticity events
at the individual synapses at distinct timesteps and equal to W)y, we implemented a scaling
process akin to heterosynaptic plasticity which occurs after each STDP event. When any excit-
atory synapse of neuron in layer O changed in strength, all other excitatory synapses received
by that neuron were updated according to:

Wi

W,

Additionally, all inhibitory synapses were modified via a similar heterosynaptic update rule fol-
lowing each STDP event where the strength of every outgoing inhibitory weight from a given

W. «— sz

y

neuron was set to the negative mean of all outgoing excitatory synapses of that same neuron.
More rigorously:

1
WI; —mZWa
j

Simulated sleep

To simulate the sleep phase, we inactive the sensory receptors (i.e. the input layer of network),
cut off all sensory signals (i.e. remove all particles from the environment), and decouple output
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layer activity from motor control (i.e. the output layer can spike but no longer causes the agent
to move). We also change the learning rule between the hidden and output layer from
rewarded to unsupervised STDP (see Methods: Synaptic Plasticity for details) as there is no way
to evaluate decision-making without sensory input or motor output.

To simulate the spontaneous activity observed during REM sleep, we provided noise to
each neuron in the hidden layer in a way which ensured that the spiking statistics of each neu-
ron was conserved across awake and sleep phases. To determine these spiking rates, we
recorded average spiking rates of neurons in the hidden layer H during preceding training of
both Task 1 and Task 2; these task specific spiking rates were then averaged to generate target
spiking rates for hidden layer neurons. Interleaveds 1, training consisted of alternating inter-
vals of this sleep phase and training on Task 1, with each interval lasting 100 movement cycles
(although no movement occurred).

Support vector machine training

A support vector machine with a radial basis function kernel was trained to classify synaptic
weight configurations as being related to Task 1 or Task2. Labeled training data were obtained
by taking the excitatory synaptic weight matrices between the hidden and output layers from
the last fifth of the Task 1 and Task 2 training phases (i.e. after performance had appeared to
asymptote). These synaptic weight matrices were then flattened into column vectors, and the
column vectors were concatenated to form a training data matrix of size number of features x
number of samples. The number of features was equal to the total number of excitatory synap-
ses between the hidden and output layer— 6272 dimensions. We then used this support vector
machine to classify held out synaptic weight configurations from Task 1 and Task 2 training,
as well as ones which resulted from Interleavedr 1, and Interleaveds T, training.

2-D synaptic weight distributions (Fig 6)

First for each synapse we found how its synaptic strength changes between two slices in time,
where the given synapse’s strength at time slice 1 is the point’s X-value and strength at time
slice 2 is its Y-value. Then we binned this space and counted synapses in each bin to make two
dimensional histograms where blue color corresponds to a single synapse found in a bin and
brown corresponds to the max of 50 synapses. These two-dimensional histograms assist in
visualizing the movement of all synapses between the two slices in time that are specified by
the timelines at the top of each plot. Conceptually, it is important to note that if a synapse does
not change in strength between time slice 1 and time slice 2, then point the synapse corre-
sponds to in this space will lie on the diagonal of the plot since the X-value will match the Y-
value. If a great change in the synapse’s strength has occurred between time slice 1 and time
slice 2, then the synapse’s corresponding point will lie far from the diagonal since the X-value
will be distant from the Y-value. The points on the X-(Y-) axis represent synapses that lost
(gained) all synaptic strength between time slice 1 and time slice 2.

Distance from solution manifolds (Fig 7)

Each of the two solution manifolds (i.e. Task 1 and Task 2 specific manifolds) were defined by
the point-sets in synaptic weight space which were capable of supporting robust performance
on that particular task, namely the sets My; and Mr,. This included the synaptic weight states
from the last fifth of training on a particular task(i.e. after performance on that task appeared
to asymptote) and all of the synaptic weight states from the last fifth of both Interleavedr; 1,
and Interleaveds 1,1, training. The intersection of the two solution manifolds (i.e. the point-
set Mr;72) was defined solely by the synaptic weight states from the last fifth of both
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Interleavedr; 1, and Interleaveds 1; training. As the network evolved along its trajectory in
synaptic weight space, the distance from the current point in synaptic weight space, pt, to the
two solution manifolds and their intersection were computed as follows:

dn(pHM‘r) = ?g}/g(dn(pmx))

Here, d " is the n-dimensional Euclidean-distance function, where # is the dimensionality of
synaptic weight space (i.e. n = 6272 here), M. is the point-set specific to the manifold or inter-
section in question (i.e. either Mr;, M5, or M;n72), and x is a particular element of the point-
set M.

Particle responsiveness metric (PRM)

The particle responsiveness metric (PRM) developed to quantify how responsive the network’s
weight matrix is to specific food particle orientations thereby allowing the quality of the recep-
tive field for a given task to be determined was defined as follows:

PRM (Particle Type) =
grand(DirectionMask(O) ® Z Wy * Z (W, ® P) % grand(W,, ® P)*)

YO&€Output VHeHidden VPcParticleMasks

Here Output is the set of all output layer neurons, O; Hidden is the set of all hidden layer neu-
rons, H; ParticleMasks is the set of masks, P, representing all possible locations of a single
instance of a ParticleType in the input field (e.g., horizontal bars would be a set of masks with a
single horizontal bar placed in all possible locations in the visual field; each particle mask P
consists of a 7 x 7 matrix of zeros with ones being placed in locations that correspond to cur-
rent food pixels). Wy is a 7x7 synaptic weights matrix of a given hidden layer neuron H; ©®
gives Hadamard (or element-wise) product of two matrixes, grand(A) is a grand sum of all the
elements of a matrix A (grand(A) = e Ae, where e is all-ones vector). DirectionMask(O) takes
in an output layer neuron, O, and returns a matrix that represents the direction of motion with
respect to the input field. For example, when the neuron that directs the critter to move up and
to the left is supplied as input, the function returns a 7 x 7 matrix of zeros with the top left 3 x 3
submatrix being ones. Wy, o simply returns the synapse strength from the source (H) to desti-
nation (O) neuron.

Although this is seemingly an intricate metric, it captures many desired features of the net-
work’s connectivity and responses to food particles present in the visual field. Conceptually,
this metric is similar to the method used for developing the receptive fields of output layer neu-
rons with respect to the input field (Figs 2 and 5). PRM builds upon this qualitative visualiza-
tion, allowing us to numerically assess how specific particles influence output layer neurons to
spike when present in the portion of the visual field that corresponds to the direction of
motion for that neuron. The intuitions of the metric are as follows: Wyz®P develops a notion
of how well the current hidden neuron’s (H) connections to the input layer overlaps with the
current food particle (P) placed at specific location. The resulting matrix is then multiplied by
grand(WxOP)?, which emphasizes contribution of the H neurons receiving input from adja-
cent pixels in correct orientation (i.e., sensitive to the food particles) vs those receiving input
from random pixels. Indeed, when a hidden layer neuron H overlaps strongly with a food par-
ticle P, the chances of spiking are significantly increased, thus this nonlinear term captures the
high impact overlapping receptive fields and food particles has on output layer activity. Wy _.o
captures how strongly the current output layer neuron O is listening to the current hidden
layer neuron H.
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These described pieces are multiplied together to form a weighted input receptive field of
the output layer neuron with respect to a specific hidden layer neuron and food particle type /
location. The sum of these terms for all hidden layer neurons and food particle locations is
taken for a single output layer neuron, achieving a global view of all hidden layer neurons and
food particle types / locations influencing the current output layer neuron. The grand(A) oper-
ation between the DirectionMask(O) and the previously described summed term is then taken
to see how much the summed weighted receptive fields overlap with the corresponding direc-
tion of movement for output neuron O. This process is repeated for all output layer neurons to
get a global quantification of how the current food particle influences activity in the direction
of motion for all output layer neurons. When this metric is calculated for a given network state
across food particle types we can observe what food particles impact output layer activity and
drive the critter to move, highlighting what particle orientations the network is attracted to.

Supporting information

S1 Fig. Spike rasters showing network activity across various training regimes. (A-D) Rep-
resentative spike rasters from various training regimes. The vertical axis specifies a unique
neuron in the network while time in epochs is shown horizontally. Here a single dot represents
a specific neuron spiking at a given time while the color of the dot dictates what layer that neu-
ron belongs to (green, blue, red corresponding to input, hidden, and output layers respec-
tively). Panels A, B, C, D correspond to sample activity from Task 1 training, Task 2 training,
Ity 17 training and Ig 1y training respectively. Note, in panel D activity is taken during a period
of sleep when the hidden layer is spontaneously activated. Thus, there are hidden (blue) and
output (red) layer spikes while the input (green) layer is completely silent.

(EPS)

S2 Fig. Model displays graceful degradation in performance as a result of hidden layer
dropout. (A) Mean performance (red line) and standard deviation (blue lines) over time:
unsupervised training (white), Task 1 training (blue), Task 1 testing (green). Hidden layer neu-
rons are randomly removed during testing period. Gradient bar above Task 1 testing (green)
displays the number of hidden layer neurons over time starting at 784 and decreasing down to
0. The testing performance remains high until ~25% of neurons are left, after which it starts to
drop. This highlights the formation of a distributed synaptic structure between hidden and
output layer neurons developed during training, ensuring output layer activity is not dictated
by a select few hidden layer neurons. (B) Same as in (A) but for Task 2.

(EPS)

S3 Fig. Particle responsiveness metric (PRM) shows correspondence between type of train-
ing and particles preferred by the network. (A-D) Mean and standard deviation (blue bars
and black lines respectively) of the PRM for various types of training and particle orientations
across ten trials. The title of each plot reflects the most recently trained stage, the vertical axis
corresponds to the value of the PRM while the horizontal axis identifies the particle type (bold
labels indicate ideal particles the network would be attracted to following the corresponding
training). It can be seen that the metric indicates the network is most responsive to the corre-
sponding ideal particle types following a specific training regime e.g. Post Task 1 the network
is most responsive to horizontal particles (A), Post Task 2 the network is most responsive to
vertical particles (B), Post Is 1 the network is most responsive to horizontal and vertical parti-
cles (C), Post I, 1, the network is most responsive to horizontal and vertical particles (D).
(EPS)
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S4 Fig. Effect of sleep to protect old memory does not depend on specific properties of
noise applied during sleep phase. (A) Mean performance (red line) and standard deviation
(blue lines) over time: unsupervised training (white), Interleavedg r; (grey), Task 1/2 testing
(green/yellow). (B) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Following Interleaveds 1, mean performance on Task 1 was

0.60 + 0.03 while Task 2 was 0.49 + 0.05. (In all experiments, 0.5 represents chance perfor-
mance.) Note that periods of Task 1 training interleaved with sleep do not lead to increase in
performance on untrained Task 2, even when Task 2 data from another experiment were used
to set up mean firing rates of the random input during sleep. (C) Same as in (A) but the
sequence of training was: unsupervised training (white), Task 1 training (blue), Task 1/2 test-
ing (green/yellow), Interleaveds 1, (grey), Task 1/2 testing (green/yellow). (D) Mean and stan-
dard deviation of performance during testing on Task 1 (blue) and Task 2 (red) after Task 1
training and after Interleaveds 1. Following Task 1 training, mean performance on Task 1 was
0.70 + 0.02 while Task 2 was 0.53 £ 0.02. Post Interleaveds 1; training, mean performance on
Task 1 was 0.71 + 0.02 and Task 2 was 0.51 + 0.02. Task 1 performance remained high after
Interleaveds 1; but no improvement on Task 2 was observed. (E) Mean performance (red line)
and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), Task 1/2 testing (green/yellow), Interleavedys 1, (burnt orange), Task 1/2 testing
(green/yellow). (F) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Following Task 1 training, mean performance on Task 1 was

0.70 £ 0.02 while Task 2 was 0.53 + 0.02. Post Interleavedys T, training, mean performance on
Task 1 was 0.67 £ 0.05 and Task 2 was 0.69 + 0.03.

(EPS)

S5 Fig. Interleaving old and new task training allows integrating synaptic information rele-
vant to new task while preserving old task information. (A) Mean performance (red line)
and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), Task 1/2 testing (green/yellow), Task 2 training (red), Task 1/2 testing (green/yellow),
Interleavedr T, training (purple), Task 1/2 testing (green/yellow). (B) Mean and standard
deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following Task
Itraining, mean performance on Task 1 was 0.69 + 0.02 while Task 2 was 0.53 + 0.02. Con-
versely, following Task 2 training, mean performance on Task 1 was 0.52 + 0.02 while Task2
was 0.69 + 0.04. Following Interleavedr 1, training, mean performance on Task 1 was 0.65
+0.03 while Task 2 was 0.67 + 0.04. (C) Distributions of task-relevant synaptic weights (blue
bars-single trial, orange line / shaded region-mean / std across 10 trails. The distributional
structure of Task 1-relevant synapses following Task 1 training (top-left) is destroyed following
Task 2 training (top-middle), but partially recovered following. Interleavedr, T, training (top-
right). Similarly, the distributional structure of Task 2-relevantsynapses following Task 2 train-
ing (bottom-middle), which was not present following Task 1training (bottom-left), was par-
tially preserved following Interleavedr 1, training (bottom-right).(D) Box plots with mean
(dashed green line) and median (dashed orange line) of the distance to the decision boundary
found by an SVM trained to classify Task 1 and Task 2 synaptic weight matrices for Task 1,
Task 2, and Interleavedr 1, training across trials. Task 1 and Task 2synaptic weight matrices
had mean classification values of -0.069 and 0.069 respectively, while that of Interleavedr; 1,
training was 0.016. (E) Trajectory of H to O layer synaptic weights through PC space. Synaptic
weights which evolved during Interleavedy, 1, training (green dots)clustered in a location of
PC space intermediary between the clusters of synaptic weights which evolved during training
on Task 1 (red dots) and Task 2 (blue dots).

(EPS)
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S6 Fig. Freezing a fraction of task specific strong synapses preserves differing degrees of
performance in a sequential learning paradigm. (A-C) Mean and standard deviation of per-
formance during testing on Task 1 (blue) and Task 2 (red). Left, Performance after Task 1
training. Right, Performance after Task 2 training when a fraction of the strongest (after Task
1 training) synapses remained frozen- 1% (A), 5% (B), 10% (C). In all cases, after Task 1 train-
ing, Task 1 performance was 0.70 + 0.02 and Task 2 performance was 0.53 + 0.02. (A) Freezing
the top 1% of Task 1 synapses resulted in a Task 1 performance of 0.54 + 0.02 and Task 2 per-
formance of 0.68 + 0.03. (B) Freezing the top 5% of Task 1 synapses resulted in a Task 1 perfor-
mance of 0.65 + 0.02 and Task 2 performance of 0.61 + 0.01. (C) Freezing the top 10% of Task
1 synapses resulted in a Task 1 performance of 0.70 + 0.03 and Task 2 performance of

0.53 + 0.03. Freezing the top 1% of Task 1 synapses was not sufficient to maintain Task 1 per-
formance, thus enabling Task 2 relevant synapses to dominate the network; however, freezing
the top 10% of Task 1 synapses fully retains Task 1 performance preventing Task 2 to be
learned.

(EPS)
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