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Abstract— Vehicles with adaptive cruise control, i.e., SAE 

Levels 1 and 2 automated vehicles (AVs), have been operating on 
roads with a significant and rapidly growing penetration rate. 
Identifying these AVs is critical to understanding near-future 
mixed traffic characteristics and managing highway mobility and 
safety. This study identifies adaptive cruise control-equipped 
vehicles from human-driven vehicles (HVs) by constructing a set 
of learning-based models using car-following trajectories in a 
short time window. It is extendible to Level 3 and + AV 
identification when data is available. To compare model 
performance and draw physical insights, two physics-based 
models are proposed based on the premise that, in general, the car-
following behavior of an AV is less volatile than an HV. Four car-
following datasets, including AV makes from different 
manufacturers, are mixed to build a comprehensive identification 
model. Results show that physics-based approaches identify more 
than 80% AVs and 70% HVs. The identification accuracy of 
learning-based models is even higher. For example, the cluster-
aware long short-term memory network identifies 98.79% of AVs 
and 95.45% of HVs. Learning-based identification models 
developed by this study can be integrated with the existing 
infrastructure (e.g., surveillance cameras), which have been used 
to extract car-following trajectories, to detect AVs in mixed traffic 
streams. This opens unparalleled data-driven opportunities to 
analyze and control mixed traffic to enhance safety (e.g., notifying 
surrounding traffic of the presence of AVs) and mobility (e.g., 
opening AV dedicated lanes when the percentage is great enough). 
 

Index Terms— Automated vehicle identification, adaptive 
cruise control, machine learning model, physics-based model, car 
following. 

I. INTRODUCTION 
utomated vehicle (AV) technology is expected to enhance 
traffic safety, elevate roadway capacity, reduce fuel 

consumption, and mitigate congestion [1]–[5]. Around 10% of 
total vehicles sold in the second quarter of 2019 were 
commercial AVs, e.g., those with adaptive cruise control （ACC） 
functions [6]. 40% of vehicles on the road are visioned to be 
automated by the 2040s [7], [8]. Despite the wide presence and 
burgeoning growth of AV technology, astonishingly, quite rare 
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efforts have been made to identify AVs in mixed traffic.  
Note that existing commercial AVs (e.g., ACC-equipped 

vehicles) cannot be easily identified by their appearances. 
Further, commercial AVs may not have a mechanism to notify 
the AV type to the surrounding vehicles or infrastructure units, 
given that connected vehicle technology may take time to be 
widely deployed. Without proper technologies to detect AVs on 
public roads, it will be hard to evaluate the performance of AVs 
and their impacts on surrounding traffic at a large and realistic 
scale. Most existing studies on AV behaviors and their impacts 
are simulations [9], [10], or small-scale tests involving a few 
AVs in experimental but not naturalistic settings [11], [12]. 
There are doubts about whether the findings from these studies 
perfectly match real-world traffic. Further, the corresponding 
safety risks and capacity concerns will remain unaddressed 
without AV identification technologies. Although AV 
technology is promising in decreasing the number of traffic 
accidents by reducing human errors, their share of rear-end 
crashes increases [13], [14]. The reason is that when human-
driven vehicles (HVs) are unaware that the preceding vehicles 
are AVs, they behave the same way as they are following HVs 
[15]. In this case, the mismatch between AVs’ actual driving 
behavior and HVs’ expectations is likely to contribute to traffic 
accidents [16]. Theoretical studies claim that AVs could reduce 
headways via platooning and thus improve roadway capacity 
[17]. However, it has been observed that current commercial 
AVs drive conservatively and even decrease roadway capacity 
[18]. From the above, it can be concluded that identifying AVs 
in mixed traffic is demanded. 

Accurately identifying AVs allows for a better understanding 
and prediction of their behavior on the road. This information 
can be used to improve safety by enabling other drivers and 
infrastructure systems to anticipate and react to the actions of 
AVs more effectively to reduce the potential for accidents. AV 
identification can complement traditional vehicle classification 
that classifies HVs into various types (e.g., the FHWA vehicle 
classes) based on their shapes and appearances [19]. AV 
identification technology considers a vehicle’s dynamic 
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performance. Roadway users could act appropriately once AVs 
are identified. When following AVs, HVs can drive cautiously 
to reduce crash risk, while AVs can shorten the car-following 
distance to save space and increase roadway capacity. By 
knowing the presence and behavior patterns of AVs within the 
traffic stream, transportation authorities can make informed 
decisions. This facilitates the development of infrastructure that 
supports AV operations, such as dedicated lanes or specialized 
intersections, enabling more seamless integration of AVs into 
the existing transportation network. It also allows policymakers 
to address the unique challenges and opportunities presented by 
AVs, such as defining specific operational requirements, 
liability frameworks, and safety standards. Furthermore, 
naturalistic AV trajectory data is available for assessing the 
effects of AV technologies on safety, mobility, and energy 
performance. This data can be used to refine existing AV 
algorithms, enhance sensor technologies, and further advance 
the capabilities and safety of AV systems.  

Despite these potentials, there has been no published research 
on AV identification to our knowledge, with the exception of a 
patent granted to Ford Global Technologies LLC [20]. This 
patent enabled a vehicle to determine whether its surrounding 
vehicles were automated. Data of vehicles to be identified were 
collected, such as speed, acceleration, and steering. However, 
vehicle car-following dynamics that obviously reflect AV 
characteristics were not investigated. Besides, this patent was 
from a single vehicle’s perspective rather than a roadside unit. 
Thus, the identification information only reflects a small view 
of particular individual vehicles rather than the overall traffic 
states. And AV data, in this case, was collected by a floating 
vehicle, which was not as comprehensive as a traffic 
surveillance system concerning data quality and quantity. More 
importantly, no technical information about the identification 
was provided. 

This study examines the feasibility of identifying ACC-
equipped vehicles (Level 1 and Level 2 AVs) using vehicle 
trajectories in the mixed traffic stream. It is extendible to Level 
3 and + AV identification when data is available. Several 
learning-based models are constructed to identify AVs using 
car-following data. Further, a novel cluster-aware learning-
based model is developed to identify the disparity among 
different clusters and train the learning-based model 
simultaneously, aiming to enhance the identification 
performance. Two physics-based models are also proposed to 
compare model performance and draw physical insights. This 
study is an extension of a conference paper published by the 
authors, which only tested the identification performance of a 
few well-established machine learning models with neither 
comparison with physics-based models nor methodological 
innovations [21]. 

The major contribution of this paper is proposing the idea of 
identifying AVs to enhance mixed traffic management rather 
than developing a brand-new model or building a 
comprehensive mixed traffic library. Results show that the 
cluster-aware-based model already achieved excellent 

 
1 https://github.com/CATS-Lab-USF/HISTORIC-data 

identification accuracy. A more comprehensive AV 
identification model can be developed as more datasets 
involving more AV makes are collected. Once the model is 
trained, it can be embedded in the existing surveillance system 
(e.g., video cameras) to identify AVs in real-time.  

II. DATA 
This section first introduces four datasets used in this study, 

then presents the data preprocessing. 

A. Dataset Introduction 
The reasons for choosing the following four datasets are two-

fold. First, they are representative enough in a way that all 
possible traffic situations were tested. Second, they are publicly 
available. They include data collected in both controlled 
environments and on public roads with surrounding traffic. 
Thus, the identification model developed upon application to 
real-world mixed traffic.  
1) HISTORIC data 

HISTORIC data includes only HV car-following data [22]. 
The dataset is publicly available online1. Data was collected on 
a controlled highway segment of National Highway G202 in 
Harbin, Heilongjiang, China, on October 24th, 2015, which was 
a sunny day. Testing vehicles are 12 identical Kia K5 with 12 
GPS-RTK devices installed to collect trajectories without 
surrounding traffic. The location accuracy of the GPS device 
was about 1 m, and the speed accuracy was about 0.28 m/s. 
Further, the data frequency was 20 Hz. 

Two traffic scenarios were tested: stationary and oscillated. 
The leading vehicle was controlled for the stationary scenario 
to keep a relatively constant speed. For the oscillated scenarios, 
the leading vehicle was controlled to generate traffic oscillation 
by decelerating and accelerating periodically. Ideally, the 
leading vehicle would accelerate to the maximum speed with a 
predetermined acceleration rate within each oscillation period, 
cruise at maximum speed, and then decrease to the minimum 
speed. The deceleration rate should be equal to the negation of 
the acceleration rate. The leading driver was required to match 
the intended speed profile as closely as possible. The 11 
following vehicles just followed the preceding vehicles as usual 
without overtaking. The stationary scenario was conducted 7 
times with different constant speed settings. The oscillated 
scenario was conducted 12 times with different oscillation 
parameters. For more data information, please refer to [22].  
2) Vanderbilt ACC data 

Vanderbilt ACC data includes only AV car-following data 
[12]. The data is publicly available online 2 . 8 AVs from 
different manufacturers were tested. Each participating vehicle 
was equipped with an uBlox EVK-M8T GPS device to collect 
trajectories on the controlled public road (about 16 km) without 
surrounding traffic. The tests were conducted during the 
daytime, yet the weather information was unavailable. The 
location accuracy of the GPS device was about 0.24 m, and the 
speed accuracy was about 0.002 m/s. Further, the data 
frequency was 10 Hz. 

2 https://vanderbilt.box.com/v/accData 
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Two sets of experiments were conducted. In two-vehicle 
tests, 7 ACC-engaged AVs followed the same cruise control 
(CC) engaged AV. Different leading vehicle speed profiles 
reflecting different traffic situations were tested, including 
oscillatory, low-speed steps, high-speed steps, and speed dips. 
In the eight-vehicle platoon test, the cognitive and autonomous 
test vehicle (the CAT vehicle) was used as the leading vehicle. 
It was controlled to follow a predefined precise speed profile. 
The other 7 AVs followed preceding vehicles in a single lane to 
form a platoon. 4 of the 7 following AVs were from the same 
manufacturer, and the rest 3 were from another manufacturer. 
For more data information, please refer to [12]. 
3) CATS Lab ACC data 

The connected and autonomous transportation systems 
laboratory (CATS Lab) collected mixed traffic data, including 
AVs and HVs [23]. The data is publicly available online3. 5 
vehicles were tested, including 2 AVs and 3 HVs. The two AV 
models were Lincoln MKZ 2016 and 2017. To incorporate all 
the possible preceding-following vehicle pairs in a mixed traffic 
context, vehicle arrangement from downstream to upstream 
was HV, AV, AV, HV, and HV. 

Each testing vehicle was installed with a uBox C066-F9P 
GPS device to collect trajectories. The location accuracy of the 
GPS devices was about 0.26 m, and the speed accuracy was 
about 0.089 m/s. The data frequency was 10 Hz.  

Data were collected at two locations on open public roads 
with surrounding traffic. Disturbances caused by surrounding 
traffic existed during data collection. The team screened the 
collected raw data to make sure the published datasets are 
suitable for academic research. Both tests were conducted on 
clear nights in the presence of street lighting and vehicle 
headlights. The first set of data with low speed was collected at 
Lizard Trail Road, Tampa, Florida, USA, on November 18th, 
2020. The experiment segment was about 2.4 km. The 
maximum speed was about 15 m/s. The second set of data with 
high speed was collected at State Road 56, Tampa, Florida, 
USA, on November 24th, 2020. The experiment segment was 
about 8 km. The maximum speed reached roughly 29 m/s. The 
first vehicle was instructed to generate varied oscillation 
patterns across several runs by accelerating and decelerating 
regularly during the experiment. AVs followed preceding 
vehicles with ACC turned on. HVs followed preceding vehicles 
as usual. Overtaking was prohibited. 
4) Open ACC data 

Open ACC data was collected by the European Commission 
in a previous study [24]. It is publicly available online4. It 
contains pure AV, pure HV, and mixed traffic data. 4 
experiment campaigns were conducted. The data from 
campaign 3 was used. Data was collected in the second quarter 
of 2019 for two days on the rural road of the AstaZero test track 
in Sweden. Disturbances caused by surrounding traffic existed 
during data collection. The team screened the collected raw data 
to make sure the published datasets are suitable for academic 
research. 

The weather information was not available. The study 

 
3 https://github.com/CATS-Lab-USF/CATS-Lab-ACC-data 

segment was about 5.7 km. Five vehicles participated. The 
leading vehicle was Audi A8. The following vehicles were 
Tesla Model 3, BMW X5, Mercedes A-Class, and Audi A6. 
Data was collected using an inertial navigation system with 
differential GNSS accuracy. The speed accuracy was about 
0.02 m/s, and the location accuracy was about 0.02 m. The data 
collection frequency was 10Hz.  

TABLE 1 
DATA DESCRIPTIVE STATISTICS 

Data Maximum Minimum Mean Standard 
deviation 

HISTORIC data 
𝑑 (m) 121.23 3.23 24.73 15.14 

𝑣p (m/s) 24.89 1.06 9.51 4.38 
𝑣f (m/s) 24.37 1.03 9.51 4.39 

𝑎f (m/s2) 4.83 -4.89 0.00 0.16 
𝜑 (1: AV; 0: HV) 0 0 0 0 

Vanderbilt ACC data 
𝑑 (m) 100.76 17.06 45.45 15.41 

𝑣p (m/s) 33.54 12.92 23.46 4.23 
𝑣f (m/s) 34.96 12.94 23.45 4.32 

𝑎f (m/s2) 4.08 -4.64 0.00 0.36 
𝜑 (1: AV; 0: HV) 1 1 1 0 

CATS Lab ACC data 
𝑑 (m) 92.42 3.59 37.53 13.10 

𝑣p (m/s) 28.58 5.52 20.93 4.65 
𝑣f (m/s) 29.58 5.44 20.95 4.73 

𝑎f (m/s2) 3.2 -5.29 0.00 0.56 
𝜑 (1: AV; 0: HV) 1 0 0.52 0.50 

Open ACC data 
𝑑 (m) 133.81 5.10 30.43 15.36 

𝑣p (m/s) 33.79 5.12 18.72 4.07 
𝑣f (m/s) 34.54 5.01 18.73 4.21 

𝑎f (m/s2) 3.23 -3.99 0.00 0.48 
𝜑 (1: AV; 0: HV) 1 0 0.78 0.41 
Two sets of experiments were conducted. The leading 

vehicle always operated with ACC activated. The 4 following 
vehicles were driven by humans in the first set of experiments 
but operated with ACC activated in another set of experiments. 
Two car-following patterns were applied during the 
experiments: platoon with constant speed and platoon with 
perturbation of the target speed. For more information, please 
refer to the European Commission webpage. 

B. Data Preprocessing 
The following procedures are used for data preprocessing. 
1. The longitude and latitude of the vehicle are utilized to 

determine its location 
2. To fill in the missing data caused by the GPS device, linear 

interpolation is deployed on the vehicle location. 
3. Car-following distance is calculated by subtracting vehicle 

length from vehicle location difference. 
4. Given the less than satisfactory GPS accuracy, i.e., 0.28 

m/s, moving average smoothing is applied to the collected 
speed in the HISTORIC dataset. The data is resampled to 
10 Hz.  

4 https://data.jrc.ec.europa.eu/dataset/9702c950-c80f-4d2f-982f-44d06ea0009f 
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5. Vehicle acceleration is calculated from vehicle speed by 
taking the first-order derivative. 

6. Only stable car-following periods are considered. Data at 
the beginning or end of the test runs are excluded.  

After preprocessing, there are 886,853 data points in 
HISTORIC data, 348,425 in Vanderbilt ACC data, 76,069 in 
CATS Lab ACC data, and 525,655 in Open ACC data. Vehicle 
type is coded as a binary variable with 1 denoting AV and 0 
denoting HV. Data descriptive statistics are provided in TABLE 
1. 𝑑  denotes the car-following distance, 𝑣p  denotes the 
preceding vehicle speed, 𝑣f  denotes the following vehicle 
speed, 𝑎f  denotes the following vehicle acceleration, and 𝜑 
denotes vehicle type.  

Vanderbilt ACC data is the one with the greatest average 
speed and average car-following distance, followed by CATS 
Lab ACC data, Open ACC data, and HISTORIC data. The 
speed and car-following distance oscillation magnitudes across 
different datasets are similar, indicated by the relatively similar 
car-following distance and speed standard deviations. As for the 
following vehicle acceleration, CATS Lab ACC data has the 
greatest oscillation, followed by Open ACC data, Vanderbilt 
data, and HISTORIC data.  

III. METHODOLOGY 
This section introduces different models used for AV 

identification, including 2 physics-based models, 7 learning-
based models, and one cluster-aware learning-based model. 

Each dataset is segmented by the identification time window 
∆𝑡 . Segments from four datasets are mixed to construct a 
comprehensive identification model. Each trajectory segment 
denotes an observation. All observations are shuffled and then 
divided into two subsets. The dividing ratio is 9:1. 10-fold 
cross-validation is adopted. 90% of observations are used for 
training and validation. The rest observations are used for 
testing. The average value across ten folds is used to indicate 
the final model performance. 

A. Physics-based Models 
This subsection presents physics-based models to identify 

AVs. Two popular car-following models are adopted, including 
the intelligent driver model (IDM), and the optimal velocity 
model (OVM) [22], [25].  

The following vehicle’s acceleration calculated based on the 
IDM is formulated as [25]: 

𝑎𝑖(𝑡) = 𝑎0 [1 − (𝑣𝑖(𝑡)
𝑣0 )

𝛿
− (𝑠𝑖

∗(𝑡)
𝑠𝑖(𝑡)

)
2

], (1) 

where 𝑠𝑖
∗(𝑡) = 𝑠0 + max (0, 𝑣𝑖(𝑡)𝑇0 + 𝑣𝑖(𝑡)×[𝑣𝑖(𝑡)−𝑣𝑖−1(𝑡)]

2√𝑎0𝑏0
)  is 

the desired gap, 𝑠𝑖 (𝑡) = 𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡) − 𝑙𝑖−1  is the car-
following distance between vehicles, 𝑎0  is the maximum 
acceleration, 𝑣𝑖  is the following vehicle speed, 𝑣𝑖−1  is the 
preceding vehicle speed, 𝑣0  is the desired speed, 𝑠0  is the 
minimum distance, 𝑇0  is the time gap, 𝑏0  is the comfortable 
deceleration, 𝑥𝑖  is the following vehicle location, 𝑥𝑖−1  is the 
preceding vehicle location, and 𝑙𝑖−1  is the preceding vehicle 
length.  

The acceleration calculated based on the OVM is given as 
follows. 

𝑎𝑖(𝑡) =
max(0,min(𝑣0,

𝑠𝑖(𝑡)−𝑠0

𝑇0 ))−𝑣𝑖(𝑡)

𝜏
,  (2) 

where 𝜏  is the adaptation time and other notation has been 
introduced above.  

The first half of the data in the time window ∆𝑡 is used for 
model calibration. The calibration objective is to minimize the 
following formula. 

∑ (𝑣̇𝑖−𝑣̂̇𝑖
𝑣̇𝑖

)
2

𝑁
𝑖=1 , (3) 

where 𝑁 = ⌈Δ𝑡/2
0.1

⌉  is the number of data points, 𝑣̇𝑖  is the 
observed acceleration, and 𝑣̂̇𝑖 is the calibrated acceleration. 

The interior-point method is used to find the optimal model 
parameters. The other half of the data is used for model 
validation. The root mean square error (RMSE) between the 
observed and validated car-following distance is calculated as: 

RMSEs = √∑ (𝑠𝑖−𝑠̂𝑖)2𝑀
𝑖=1

𝑀
, (4) 

where 𝑀 = ∆𝑡
0.1

− 𝑁  is the number of data points, 𝑠𝑖  is the 
observed car-following distance, and 𝑠̂𝑖  is the validated car-
following distance. 

The above calibration and validation are conducted for all 
observations. An RMSE threshold RMSEs

∗  producing the 
highest identification accuracy without underfitting and 
overfitting is found for each fold during the 10-fold cross-
validation, see Fig. 1. Given the stochastic nature of human 
driving, if the RMSEs of observation is less than RMSEs

∗, it is 
identified as an AV; Otherwise, it is identified as an HV. Then, 
the optimal threshold RMSEs

∗ is used to identify AVs from the 
testing set.  

 
Fig. 1  Threshold selection for physics-based models. 

B. Learning-based models 
This subsection presents learning-based models. Various 

machine learning classification models have been proposed in 
the past, and each of them merits in different aspects [26]–[28]. 
To accomplish the most accurate AV identification, seven 
popular models are tested. Model inputs include the preceding 
vehicle speed, the following vehicle speed, the following 
vehicle acceleration, and the car-following distance. These 
inputs are standardized between -1 to 1. The vehicle type, either 
an AV or an HV, is the model output. 
1) Long short-term memory network (LSTM) 

As a type of recurrent neural network, the LSTM can learn 
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order dependence in time series data [28]. The LSTM model 
structure is illustrated in Fig. 2 (a). The dropout rates of each 
dropout layer are denoted by 𝛼𝑘𝜖{𝛼1, 𝛼2, … , 𝛼𝐾}. The numbers 
of hidden layers N, dropout layers D, neurons 𝑁neuron, batches 
𝑁batch, and epochs 𝑁epoch and the dropout rate 𝛼𝑘 are adjusted 
during model training.  

The neuron structure is illustrated in Fig. 2 (b). 𝑋𝑡  is the 
current input vector. ℎ𝑡 is the current neuron output. 𝐶𝑡−1 is the 
memory from the last neuron. ℎ𝑡−1  is the output of the last 
neuron. 𝐶𝑡  is the memory from the current neuron. The 
subscript 𝑡  indexes the time step (0.1s is used here). ×  is 
element-wise multiplication. +  is the element-wise 
summation/concatenation. 𝜎  is the sigmoid layer. tanh is the 
hyperbolic tangent layer. {𝑏1, 𝑏2, 𝑏3, 𝑏4} are biases. 

   
(a) Model structure. (b) Neuron structure 

Fig. 2.  LSTM structure. 
2) Support vector machine (SVM) 

The SVM model finds the best decision boundary, i.e., 
decision hyperplane, to separate different classes. The distance 
from the best hyperplane to the nearest data point of each class 
is the greatest [26]. Different kernels are tested to produce the 
best results.  
3) k-nearest neighbors (KNN) 

For the KNN model, we first calculate the Euclidean distance 
from the query observation to the classified observations. The 
classified observations are ordered by increasing distance. The 
class of the query observation is the majority voting of the top 
k observation classes [26]. The number of nearest neighbors k 
is adjusted for the best model results.  
4) Fixed-radius near neighbors (FRNN) 

The FRNN is a variant of the KNN. Instead of using only the 
k-neighbors, the FRNN locates all observations in the training 
set that are within a given radius 𝑟 of the query observation. The 
selected radius neighbors are used to predict the query 
observation [29]. The radius value is adjusted to yield the best 
model results. 
5) Random forest (RF) 

The RF model has T decision trees. The maximum depth of 
each decision tree is 𝑁T . Each decision tree produces each 
result. The final result is derived as the majority voting of all 
trees’ results [26]. The number of decision trees T and the 
maximum depth 𝑇N are tuned for the best model performance.  

C. Cluster-aware learning-based model (CALM) 
The above learning-based models assume that observations 

are homogeneous. However, it is natural that different 
observations belong to different clusters [30]. Ignoring such 

heterogeneity within datasets may miss the opportunity to 
further improve the model performance. Therefore, we adopt 
the cluster-aware learning-based (CALM) technique to identify 
the disparity among different clusters and train the learning-
based model simultaneously. The general cluster-aware 
learning framework was constructed in [31]. We adapt and 
materialize the framework with a classification application to 
identify AVs. However, the CALM is challenged with a 
considerably long training time. Motivated by this superiority, 
we further combine the CALM with transfer learning 
techniques, which have been proven to hold great potential in 
enhancing model training efficiency [32], [33]. Specifically, the 
well-tuned learning model weights are fed into the CALM as 
initial weights.  

Suppose that all samples belong to 𝐾 clusters. Within each 
cluster 𝑘 ∈ [𝐾] ≔ {1, … , 𝐾}, the responses can be described by 
the data points with heterogeneity. The CALM is formulated as 
follows; 

min
𝜽,𝜹,𝒎

𝑅𝜌(𝜹, 𝜽, 𝒎) ≔  ∑ ∑ 𝛿𝑖𝑘ℓ𝑘(𝑦𝑖, 𝒙𝒊, 𝜽𝒌)
𝑘∈[𝐾]𝑖∈[𝑁]

+ 𝜌 ∑ ∑ 𝛿𝑖𝑘𝑆𝑘(𝒙𝒊, 𝒎𝒌)
𝑘∈[𝐾]𝑖∈[𝑁]

 

 (5) 
s.t., 

∑ 𝛿𝑖𝑘𝑘∈[𝐾] = 1, ∀𝑖 ∈ [𝑁], 
∑ 𝛿𝑖𝑘𝑖∈[𝑁] ≥ 1, ∀𝑘 ∈ [𝐾], 

𝛿𝑖𝑘 ∈ {0,1}, ∀𝑘 ∈ [𝐾], ∀𝑖 ∈ [𝑁], 
where 𝒙𝒊 and 𝑦𝑖 are the inputs and outputs, respectively. 𝜌 is a 
non-negative tuning parameter controlling overlapping areas 
among different clusters. 𝛿𝑖𝑘  denotes the cluster assignment 
decision, i.e., 𝛿𝑖𝑘 = 1 implies that the data point 𝒙𝒊 belongs to 
cluster 𝑘 . ℓ𝑘(𝑦𝑖, 𝒙𝒊, 𝜽𝒌) = − 1

𝐼
∑ (𝑦𝑖 ln 𝐿𝑆𝑇𝑀(𝒙𝒊, 𝜽𝒌) + (1 −𝑖

𝑦𝑖) ln(1 − 𝐿𝑆𝑇𝑀(𝒙𝒊, 𝜽𝒌)))  denotes the loss function with an 
estimator 𝜃𝑘. 𝐿𝑆𝑇𝑀(𝒙𝒊, 𝜽𝒌) denotes the function of the LSTM 
network. 𝑆𝑘(𝒙𝒊, 𝒎𝒌) denotes the dissimilarity function (i.e., the 
squared Euclidean distance-based function 𝑆𝑘(𝒙𝒊, 𝒎𝒌)  =
‖𝑥𝑖 − 𝑚𝑘‖2), where 𝒎𝒌 is the centroid of cluster 𝑘. 

Then, regularized alternating minimization (RAM) algorithm 
is used to solve the CALM. The RAM algorithm first separates 
the decision variables of the CALM into two parts, i.e., (𝜽, 𝒎) 
and 𝜹. Next, it solves the CALM with respect to (𝜽, 𝒎) by 
fixing 𝜹  and vice versa. At each iteration, an 𝐿1,1  the norm 
penalty term is added to the objective function of the CALM to 
ensure that the current clustering solution and the previous 
solution are not too different. Finally, it terminates whenever 
the clustering solutions from two consecutive iterations are 
close. The detailed RAM algorithm can be found in [31]. The 
number of clusters 𝐾  and the parameter controlling the 
overlapping areas among cluster 𝜌  are tunned for the best 
CALM identification accuracy. 

IV. RESULTS 
This section reports the tuning results of learning-based 

models and compares the identification performance of 
different models. 

LSTM Hidden 
Layer 1 Dropout Layer 1 

LSTM Hidden 
Layer 2Dropout Layer 2 

LSTM Hidden 
Layer N Dropout Layer D

…

Input Layer 

Output Layer 

+ + + +

+

tanh

tanh
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A. Learning-based Model Tuning 
In terms of the overall identification accuracy 𝛼 , model 

tunning is done for multiple input data time frames ∆𝑡, ranging 
from 0.2s to 5s. 

α = 𝑁AV
correct+𝑁HV

correct

𝑁all
× 100%, (6) 

where 𝑁AV
correct is the number of successfully identified AVs, 

𝑁HV
correct is the number of successfully identified HVs, and 𝑁all 

is the total number of observations. 
1) LSTM 

Different configurations are tested regarding the numbers of 
hidden layers 𝑁, dropout layers 𝐷, neurons 𝑁neuron , batches 
𝑁batch, and epochs 𝑁epoch and the dropout rate αk. The best 
model is found for different time windows ∆𝑡 . The tuning 
results when ∆𝑡 = 1s are reported in TABLE 2. The best result 

is observed when N = D = 3, 𝑁neuron = 500, 𝑁batch = 1000, 
𝑁epoch = 200, and αk = 0.5. It is noted that when N is greater 
or αk  is smaller, overfitting is produced. When D or αk  is 
greater, underfitting is yielded.  
2) Other traditional learning-based models 

Various parameters are tested for other traditional learning-
based models. The best model is found for different time 
windows ∆𝑡 . The best SVM result is observed (accuracy is 
86.65%) when rbf kernel is used. The best KNN result is 
observed (accuracy is 91.76%) when k = 15. Overfitting exists 
when k = 5 and k = 10. The best FRNN result is observed 
(accuracy is 92.30%) when 𝑟 = 3 . The best RF result is 
observed (accuracy is 91.65%) when T = 15, 𝑁T = 8. When 𝑁T 
= 15, overfitting is produced. 

TABLE 2  
LSTM MODEL TUNING RESULTS. 

∆𝑡 (s) N D 𝛼𝑘 𝑁neuron 𝑁batch 𝑁epoch Training 𝛼 Validation 𝛼 Testing 𝛼 
1 2 3 0.5 500 2000 200 94.87% 94.66% 94.54% 
1 3 3 0.5 500 2000 200 96.34% 96.18% 96.07% 
1 4 3 0.5 500 2000 200 98.47% 95.47% 96.88% 
1 3 5 0.5 500 2000 200 93.77% 96.54% 95.98% 
1 3 3 0.7 500 2000 200 94.76% 96.72% 96.53% 
1 3 3 0.2 500 2000 200 97.64% 95.16% 96.39% 
1 3 3 0.5 200 2000 200 93.05% 92.87% 92.85% 
1 3 3 0.5 500 1000 200 96.47% 96.24% 96.18% 
1 3 3 0.5 500 2000 300 96.39% 96.37% 95.97% 

3) CALM 
Based on the above tunning results, LSTM produces the 

highest accuracy among all learning-based models. Motivative 
by this superiority, the CALM is developed based on the 
LSTM, i.e., the loss function ℓ𝑘(𝑦𝑖, 𝒙𝒊, 𝜽𝒌)  of the CALM is set 
as the LSTM. 𝐾  and 𝜌  are tuned for the best CALM 
identification accuracy, while the LSTM model parameters 
remain the same as the ones that produce the best results in 
TABLE 2, i.e., N = D = 3, 𝑁neuron = 500, 𝑁batch = 1000, 
𝑁epoch = 200 , and αk = 0.5 . The best CALM model 
parameters are found for different time windows ∆𝑡. The tuning 
results when ∆𝑡 = 1s  are presented in TABLE 3. The best 
CALM result is yielded when 𝐾 = 2  and 𝜌 = 0.1 . The 
accuracy is higher than the LSTM alone, indicating the 
effectiveness of clustering observations. 

TABLE 3 
CALM MODEL TUNING RESULTS. 

∆𝑡 (s) 𝐾 𝜌 Training 𝛼 Validation 𝛼 Testing 𝛼 
1 2 0.01 97.79% 96.37% 96.55% 
1 2 0.1 97.96% 96.61% 96.82% 
1 2 1 98.17% 96.77% 96.46% 
1 3 0.01 96.78% 96.41% 95.94% 
1 3 0.1 98.38% 96.77% 96.36% 
1 3 1 97.31% 96.28% 96.42% 
1 4 0.01 96.46% 95.90% 95.67% 
1 4 0.1 98.36% 96.49% 96.42% 
1 4 1 97.86% 95.95% 96.13% 

 

B. Model comparison 
After the above model tuning, the identification performance 

of different models is compared in this subsection. Different 
identification time window lengths are tested, ranging from 0.2s 
to 5s. AV and HV sample ratios vary from 0.66 to 0.69. Physics-

based models are not investigated when ∆𝑡 < 1s  due to 
insufficient calibration and validation data. To study the model 
performance of identifying AVs and HVs respectively, the 
identification accuracy of AVs 𝛼AV (i.e., the true positive rate, 
recall, or sensitivity × 100% ) and HVs 𝛼HV  (i.e., the true 
negative rate or specificity × 100%) are calculated as follows. 

𝛼AV = 𝑁AV
correct

𝑁AV
× 100%, (7) 

𝛼HV = 𝑁HV
correct

𝑁HV
× 100%, (8) 

where 𝑁AV
correct is the number of successfully identified AVs, 

𝑁HV
correct is the number of successfully identified HVs, 𝑁AV is 

the total number of AVs, and 𝑁HV is the total number of HVs. 
Further, the identification precision and F1-score are 

computed. 

Precision =
𝑁AV

correct

𝑁AV
correct + (𝑁HV − 𝑁HV

correct)
. 

F1 score

=
2𝑁AV

correct

2𝑁AV
correct + (𝑁HV − 𝑁HV

correct) + (𝑁AV − 𝑁AV
correct)

. 

Results are shown in TABLE 4 and TABLE 5. We see that 
the identification accuracy of physics-based models (i.e., IDM 
and OVM) increases and decreases with the time window 
length. The same trend is observed for the precision and the F1 
score. Possible reasons follow. When ∆𝑡 is shorter, fewer data 
points result in less accurate model calibration and validation. 
The results are less representative in terms of car-following 
behavior. Thus, the identification accuracy is lower. When ∆𝑡 
is longer, the car-following behavior during the time window is 
more heterogeneous, and the explanatory power of physics-
based models with only one set of parameters degrades. In this 
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case, RMSEs values are greater, and the identification accuracy 
is lower. On average, physics-based models correctly identify 
over 80% AVs and over 70% HVs, indicating that AV car-
following behavior likely has a smaller residual error than HVs. 
It also noted that the IDM's identification accuracy, precision, 

and F1 score are slightly higher than the OVM across all 
instances. This is expected because more parameters are 
calibrated in the IDM, and the resulting model better represents 
the realistic driving behavior.  

TABLE 4 
MODEL COMPARISON PART 1. 

∆𝑡 (s) 𝛼AV/𝛼HV Model 
IDM OVM  LSTM  SVM KNN FRNN RF CALM 

0.2 𝛼AV / /  98.14%  93.89% 93.97% 93.71% 96.12% 98.86% 
𝛼HV / /  94.32%  80.13% 86.54% 85.39% 83.73% 94.47% 

0.5 𝛼AV / /  97.97%  93.45% 94.20% 94.50% 95.90% 99.59% 
𝛼HV / /  94.31%  79.99% 87.71% 86.48% 83.48% 95.98% 

1 𝛼AV 82.03% 78.23%  98.18%  93.51% 93.79% 94.32% 96.03% 98.65% 
𝛼HV 68.91% 70.93%  93.77%  79.84% 86.99% 85.35% 84.09% 95.43% 

2 𝛼AV 84.14% 85.05%  98.04%  93.74% 93.89% 93.49% 96.28% 98.37% 
𝛼HV 71.55% 72.85%  94.08%  80.51% 85.24% 87.67% 84.23% 95.76% 

3 𝛼AV 86.37% 86.27%  98.12%  93.85% 93.67% 94.14% 96.12% 99.18% 
𝛼HV 74.90% 73.87%  94.25%  79.81% 86.27% 85.98% 83.18% 95.65% 

4 𝛼AV 83.85% 78.90%  98.27%  93.37% 94.20% 94.07% 96.30% 98.47% 
𝛼HV 74.94% 72.71%  94.24%  80.57% 84.81% 87.55% 83.24% 95.35% 

5 𝛼AV 83.19% 78.70%  98.24%  93.25% 92.96% 93.77% 96.21% 98.42% 
𝛼HV 74.13% 72.96%  94.35%  80.66% 85.06% 86.28% 84.11% 95.50% 

Average 𝛼AV 83.92% 81.43%  98.14%  93.58% 93.81% 94.00% 96.14% 98.79% 
Average 𝛼HV 72.89% 72.66%  94.19%  80.22% 86.09% 86.39% 83.72% 95.45% 

TABLE 5 
MODEL COMPARISON PART 2. 

∆𝑡 (s) Precision/ 
F1 score 

Model  
IDM OVM  LSTM SVM KNN FRNN RF  CALM 

0.2 Precision / /  0.929 0.783 0.842 0.830 0.818  0.932 
F1 score / /  0.955 0.854 0.888 0.880 0.884  0.959 

0.5 Precision / /  0.929 0.779 0.853 0.841 0.814  0.949 
F1 score / /  0.953 0.850 0.895 0.890 0.881  0.972 

1 Precision 0.639 0.644  0.924 0.780 0.847 0.831 0.822  0.943 
F1 score 0.719 0.706  0.952 0.851 0.890 0.884 0.886  0.964 

2 Precision 0.665 0.676  0.925 0.781 0.825 0.849 0.819  0.945 
F1 score 0.743 0.754  0.952 0.852 0.878 0.890 0.885  0.964 

3 Precision 0.697 0.692  0.928 0.778 0.837 0.835 0.811  0.945 
F1 score 0.772 0.768  0.954 0.850 0.884 0.885 0.880  0.968 

4 Precision 0.692 0.653  0.929 0.786 0.826 0.853 0.815  0.942 
F1 score 0.758 0.715  0.955 0.854 0.880 0.895 0.883  0.963 

5 Precision 0.683 0.664  0.930 0.787 0.827 0.840 0.823  0.944 
F1 score 0.750 0.720  0.956 0.854 0.875 0.886 0.887  0.964 

Average Precision 0.675 0.666  0.928 0.782 0.837 0.840 0.818  0.943 
F1 score 0.748 0.733  0.954 0.852 0.884 0.887 0.884  0.965 

 
All learning-based models' identification accuracy, 

precision, and F1 score remain relatively steady across input 
data time window lengths. This demonstrates the model's 
robustness. Different results are observed across learning-based 
models, given their different learning capabilities. In TABLE 4, 
as expected, the LSTM produces the highest AV identification 
accuracy with an average of 98.14%, followed by the RF with 
an average of 96.14%, FRNN with an average of 94.00%, KNN 
with an average of 93.81%, and SVM with an average of 
93.58%. The LSTM also produces the highest HV identification 
accuracy with an average of 94.19%, followed by the FRNN 
with an average of 86.39%, KNN with an average of 86.09%, 
RF with an average of 83.72%, and SVM with an average of 
80.22%. In TABLE 5, the highest precision and F1 score are 
also produced by the LSTM. The best performance achieved by 
the LSTM demonstrates its superiority in learning order 
dependence in time series data. Enhancing LSTM with the 

cluster-aware technique further improves the identification 
performance. In TABLE 4, the AV identification accuracy is 
increased from 98.14% to 98.79%, and the HV identification 
accuracy is increased from 94.19% to 95.45%. In TABLE 5, the 
precision increases from 0.928 to 0.943, and the F1 score 
increases from 0.954 to 0.965. Although the improvement is 
insignificant (the LSTM alone is already rather good in 
differentiating AVs and HVs), it is still valuable to real-world 
applications. These findings demonstrate the feasibility of 
identifying AVs from HVs using car-following trajectory data.  

The identification accuracy of AVs is always greater than 
that of HVs across all models. This suggests that some HVs 
drive in a way quite similar to AVs, i.e., less volatile, and thus 
they are likely to be misidentified as AVs. Further 
investigations are needed to address this issue. Gaussian 
processes may be combined with physics-based models to 
reveal more insights. 
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(a) The following vehicle acceleration. (b) The preceding vehicle speed. 

 
(c) The following vehicle speed. (d) The car-following distance 

Fig. 3  Rescaled input values with the 1s time window length. 

 
(a) The following vehicle acceleration. (b) The preceding vehicle speed. 

 
(c) The following vehicle speed. (d) The car-following distance 

Fig. 4  Rescaled input values with the 0.2s time window length. 
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C. Mechanism of identification 
From the above analysis, we know it is possible to identify 

AVs and HVs with physics and learning-based models. To 
better understand the mechanism of learning-based models, we 
take the LSTM model as an example and plot Fig. 3 and Fig. 4. 

Fig. 3 shows the rescaled input values, including the 
following vehicle acceleration, preceding vehicle speed, 
following vehicle speed, and car-following distance after 
standardization with the 1s time window length. It is evident 
that HVs yield a greater range of outliers than AVs in all input 
values. This is because that AVs’ driving behavior is more 
stable than HVs’. The median rescaled value of AV speed is 
positive, but the median rescaled value of HV speed is negative. 
This means AVs run at a greater speed than HVs. Also, we find 
that the AV’s median rescaled car-following distance is greater 
than HV’s. This is consistent with [23] that current commercial 
low-level AVs prefer to set a greater headway for safety. 
Further, the same findings could be observed in Fig. 4 with the 
0.2s time window length. 

V. CONCLUSION 
Identifying AVs from mixed traffic streams is expected to 

improve traffic safety, increase roadway capacity, and promote 
AV management and development. Failure to recognize the 
presence of AVs could result in adverse consequences, e.g., 
crashes.  

This research examines the feasibility of detecting ACC-
equipped vehicles (SAE Levels 1 and 2) utilizing vehicle 
trajectories collected from existing infrastructure. The results 
reveal that learning-based models can correctly distinguish AVs 
from HVs with high accuracy. Integrating the cluster-aware 
technique into the learning-based model further improves 
identification accuracy. These exciting results open 
unparalleled data-driven potential for studying and managing 
mixed traffic.  

Regarding future research, the first direction would be 
addressing the prior probability shift issue [34]. For this study, 
the issue happens when the AV market penetration rate 
changes. In this case, the identification accuracy may degrade. 
Second, rather than focusing solely on longitudinal vehicle 
behavior, it would be interesting to investigate lateral vehicle 
movements in the AV identification process. Third, the current 
dataset size is limited. It would be necessary to keep enriching 
the current mixed traffic data pool (e.g., more AV makes and 
high-level AVs) and updating the identification model. Instead 
of academic research, this would be an engineering practice that 
should be carried out when it comes to real-world 
implementation. Fourth, building an online learning model for 
real-time prediction would be more valuable. The proposed 
model can be implemented as a pre-trained model allowing a 
proper initial prediction performance. Furthermore, because 
AVs from different manufacturers or onboard equipment 
providers have distinct AV control logic and automation levels, 
it is critical to distinguish them. This allows for manufacturer-
specific AV evaluation and the extraction of more vendor-
specific insights for rapid AV technology development.  
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