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Abstract— Vehicles with adaptive cruise control, i.e., SAE
Levels 1 and 2 automated vehicles (AVs), have been operating on
roads with a significant and rapidly growing penetration rate.
Identifying these AVs is critical to understanding near-future
mixed traffic characteristics and managing highway mobility and
safety. This study identifies adaptive cruise control-equipped
vehicles from human-driven vehicles (HVs) by constructing a set
of learning-based models using car-following trajectories in a
short time window. It is extendible to Level 3 and + AV
identification when data is available. To compare model
performance and draw physical insights, two physics-based
models are proposed based on the premise that, in general, the car-
following behavior of an AV is less volatile than an HV. Four car-
following datasets, including AV makes from different
manufacturers, are mixed to build a comprehensive identification
model. Results show that physics-based approaches identify more
than 80% AVs and 70% HYVs. The identification accuracy of
learning-based models is even higher. For example, the cluster-
aware long short-term memory network identifies 98.79% of AVs
and 95.45% of HVs. Learning-based identification models
developed by this study can be integrated with the existing
infrastructure (e.g., surveillance cameras), which have been used
to extract car-following trajectories, to detect AVs in mixed traffic
streams. This opens unparalleled data-driven opportunities to
analyze and control mixed traffic to enhance safety (e.g., notifying
surrounding traffic of the presence of AVs) and mobility (e.g.,
opening AV dedicated lanes when the percentage is great enough).

Index Terms— Automated vehicle identification, adaptive
cruise control, machine learning model, physics-based model, car
following.

I. INTRODUCTION

Automated vehicle (AV) technology is expected to enhance
traffic safety, elevate roadway capacity, reduce fuel
consumption, and mitigate congestion [1]-[5]. Around 10% of
total vehicles sold in the second quarter of 2019 were
commercial AVs, e.g., those with adaptive cruise control (ACC)
functions [6]. 40% of vehicles on the road are visioned to be
automated by the 2040s [7], [8]. Despite the wide presence and
burgeoning growth of AV technology, astonishingly, quite rare
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efforts have been made to identify AVs in mixed traffic.

Note that existing commercial AVs (e.g., ACC-equipped
vehicles) cannot be easily identified by their appearances.
Further, commercial AVs may not have a mechanism to notify
the AV type to the surrounding vehicles or infrastructure units,
given that connected vehicle technology may take time to be
widely deployed. Without proper technologies to detect AVs on
public roads, it will be hard to evaluate the performance of AVs
and their impacts on surrounding traffic at a large and realistic
scale. Most existing studies on AV behaviors and their impacts
are simulations [9], [10], or small-scale tests involving a few
AVs in experimental but not naturalistic settings [11], [12].
There are doubts about whether the findings from these studies
perfectly match real-world traffic. Further, the corresponding
safety risks and capacity concerns will remain unaddressed
without AV identification technologies. Although AV
technology is promising in decreasing the number of traffic
accidents by reducing human errors, their share of rear-end
crashes increases [13], [14]. The reason is that when human-
driven vehicles (HVs) are unaware that the preceding vehicles
are AVs, they behave the same way as they are following HVs
[15]. In this case, the mismatch between AVs’ actual driving
behavior and HVs’ expectations is likely to contribute to traffic
accidents [16]. Theoretical studies claim that AVs could reduce
headways via platooning and thus improve roadway capacity
[17]. However, it has been observed that current commercial
AVs drive conservatively and even decrease roadway capacity
[18]. From the above, it can be concluded that identifying AVs
in mixed traffic is demanded.

Accurately identifying AVs allows for a better understanding
and prediction of their behavior on the road. This information
can be used to improve safety by enabling other drivers and
infrastructure systems to anticipate and react to the actions of
AVs more effectively to reduce the potential for accidents. AV
identification can complement traditional vehicle classification
that classifies HVs into various types (e.g., the FHWA vehicle
classes) based on their shapes and appearances [19]. AV
identification technology considers a wvehicle’s dynamic
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performance. Roadway users could act appropriately once AVs
are identified. When following AVs, HVs can drive cautiously
to reduce crash risk, while AVs can shorten the car-following
distance to save space and increase roadway capacity. By
knowing the presence and behavior patterns of AVs within the
traffic stream, transportation authorities can make informed
decisions. This facilitates the development of infrastructure that
supports AV operations, such as dedicated lanes or specialized
intersections, enabling more seamless integration of AVs into
the existing transportation network. It also allows policymakers
to address the unique challenges and opportunities presented by
AVs, such as defining specific operational requirements,
liability frameworks, and safety standards. Furthermore,
naturalistic AV trajectory data is available for assessing the
effects of AV technologies on safety, mobility, and energy
performance. This data can be used to refine existing AV
algorithms, enhance sensor technologies, and further advance
the capabilities and safety of AV systems.

Despite these potentials, there has been no published research
on AV identification to our knowledge, with the exception of a
patent granted to Ford Global Technologies LLC [20]. This
patent enabled a vehicle to determine whether its surrounding
vehicles were automated. Data of vehicles to be identified were
collected, such as speed, acceleration, and steering. However,
vehicle car-following dynamics that obviously reflect AV
characteristics were not investigated. Besides, this patent was
from a single vehicle’s perspective rather than a roadside unit.
Thus, the identification information only reflects a small view
of particular individual vehicles rather than the overall traffic
states. And AV data, in this case, was collected by a floating
vehicle, which was not as comprehensive as a traffic
surveillance system concerning data quality and quantity. More
importantly, no technical information about the identification
was provided.

This study examines the feasibility of identifying ACC-
equipped vehicles (Level 1 and Level 2 AVs) using vehicle
trajectories in the mixed traffic stream. It is extendible to Level
3 and + AV identification when data is available. Several
learning-based models are constructed to identify AVs using
car-following data. Further, a novel cluster-aware learning-
based model is developed to identify the disparity among
different clusters and train the learning-based model
simultaneously, aiming to enhance the identification
performance. Two physics-based models are also proposed to
compare model performance and draw physical insights. This
study is an extension of a conference paper published by the
authors, which only tested the identification performance of a
few well-established machine learning models with neither
comparison with physics-based models nor methodological
innovations [21].

The major contribution of this paper is proposing the idea of
identifying AVs to enhance mixed traffic management rather
than developing a brand-new model or building a
comprehensive mixed traffic library. Results show that the
cluster-aware-based model already achieved excellent

! https://github.com/CATS-Lab-USF/HISTORIC-data

identification accuracy. A more comprehensive AV
identification model can be developed as more datasets
involving more AV makes are collected. Once the model is
trained, it can be embedded in the existing surveillance system
(e.g., video cameras) to identify AVs in real-time.

II. DATA

This section first introduces four datasets used in this study,
then presents the data preprocessing.

A. Dataset Introduction

The reasons for choosing the following four datasets are two-
fold. First, they are representative enough in a way that all
possible traffic situations were tested. Second, they are publicly
available. They include data collected in both controlled
environments and on public roads with surrounding traffic.
Thus, the identification model developed upon application to
real-world mixed traffic.

1) HISTORIC data

HISTORIC data includes only HV car-following data [22].
The dataset is publicly available online!. Data was collected on
a controlled highway segment of National Highway G202 in
Harbin, Heilongjiang, China, on October 24th, 2015, which was
a sunny day. Testing vehicles are 12 identical Kia K5 with 12
GPS-RTK devices installed to collect trajectories without
surrounding traffic. The location accuracy of the GPS device
was about 1 m, and the speed accuracy was about 0.28 m/s.
Further, the data frequency was 20 Hz.

Two traffic scenarios were tested: stationary and oscillated.
The leading vehicle was controlled for the stationary scenario
to keep a relatively constant speed. For the oscillated scenarios,
the leading vehicle was controlled to generate traffic oscillation
by decelerating and accelerating periodically. Ideally, the
leading vehicle would accelerate to the maximum speed with a
predetermined acceleration rate within each oscillation period,
cruise at maximum speed, and then decrease to the minimum
speed. The deceleration rate should be equal to the negation of
the acceleration rate. The leading driver was required to match
the intended speed profile as closely as possible. The 11
following vehicles just followed the preceding vehicles as usual
without overtaking. The stationary scenario was conducted 7
times with different constant speed settings. The oscillated
scenario was conducted 12 times with different oscillation
parameters. For more data information, please refer to [22].

2) Vanderbilt ACC data

Vanderbilt ACC data includes only AV car-following data
[12]. The data is publicly available online?. 8 AVs from
different manufacturers were tested. Each participating vehicle
was equipped with an uBlox EVK-MS8T GPS device to collect
trajectories on the controlled public road (about 16 km) without
surrounding traffic. The tests were conducted during the
daytime, yet the weather information was unavailable. The
location accuracy of the GPS device was about 0.24 m, and the
speed accuracy was about 0.002 m/s. Further, the data
frequency was 10 Hz.

2 https://vanderbilt.box.com/v/accData



Two sets of experiments were conducted. In two-vehicle
tests, 7 ACC-engaged AVs followed the same cruise control
(CC) engaged AV. Different leading vehicle speed profiles
reflecting different traffic situations were tested, including
oscillatory, low-speed steps, high-speed steps, and speed dips.
In the eight-vehicle platoon test, the cognitive and autonomous
test vehicle (the CAT vehicle) was used as the leading vehicle.
It was controlled to follow a predefined precise speed profile.
The other 7 AVs followed preceding vehicles in a single lane to
form a platoon. 4 of the 7 following AVs were from the same
manufacturer, and the rest 3 were from another manufacturer.
For more data information, please refer to [12].

3) CATS Lab ACC data

The connected and autonomous transportation systems
laboratory (CATS Lab) collected mixed traffic data, including
AVs and HVs [23]. The data is publicly available online®. 5
vehicles were tested, including 2 AVs and 3 HVs. The two AV
models were Lincoln MKZ 2016 and 2017. To incorporate all
the possible preceding-following vehicle pairs in a mixed traffic
context, vehicle arrangement from downstream to upstream
was HV, AV, AV, HV, and HV.

Each testing vehicle was installed with a uBox C066-FOP
GPS device to collect trajectories. The location accuracy of the
GPS devices was about 0.26 m, and the speed accuracy was
about 0.089 m/s. The data frequency was 10 Hz.

Data were collected at two locations on open public roads
with surrounding traffic. Disturbances caused by surrounding
traffic existed during data collection. The team screened the
collected raw data to make sure the published datasets are
suitable for academic research. Both tests were conducted on
clear nights in the presence of street lighting and vehicle
headlights. The first set of data with low speed was collected at
Lizard Trail Road, Tampa, Florida, USA, on November 18th,
2020. The experiment segment was about 2.4 km. The
maximum speed was about 15 m/s. The second set of data with
high speed was collected at State Road 56, Tampa, Florida,
USA, on November 24th, 2020. The experiment segment was
about 8 km. The maximum speed reached roughly 29 m/s. The
first vehicle was instructed to generate varied oscillation
patterns across several runs by accelerating and decelerating
regularly during the experiment. AVs followed preceding
vehicles with ACC turned on. HVs followed preceding vehicles
as usual. Overtaking was prohibited.

4) Open ACC data

Open ACC data was collected by the European Commission
in a previous study [24]. It is publicly available online*. It
contains pure AV, pure HV, and mixed traffic data. 4
experiment campaigns were conducted. The data from
campaign 3 was used. Data was collected in the second quarter
0f 2019 for two days on the rural road of the AstaZero test track
in Sweden. Disturbances caused by surrounding traffic existed
during data collection. The team screened the collected raw data
to make sure the published datasets are suitable for academic
research.

The weather information was not available. The study

3 https://github.com/CATS-Lab-USF/CATS-Lab-ACC-data

segment was about 5.7 km. Five vehicles participated. The
leading vehicle was Audi A8. The following vehicles were
Tesla Model 3, BMW X5, Mercedes A-Class, and Audi A6.
Data was collected using an inertial navigation system with
differential GNSS accuracy. The speed accuracy was about
0.02 m/s, and the location accuracy was about 0.02 m. The data

collection frequency was 10Hz.
TABLE 1
DATA DESCRIPTIVE STATISTICS

Data Maximum  Minimum Mean géi?;?;i
HISTORIC data
d (m) 121.23 3.23 24.73 15.14
vP (m/s) 24.89 1.06 9.51 4.38
vf (m/s) 24.37 1.03 9.51 4.39
af (m/s2) 4.83 -4.89 0.00 0.16
@ (1: AV; 0: HV) 0 0 0 0
Vanderbilt ACC data
d (m) 100.76 17.06 45.45 15.41
vP (m/s) 33.54 12.92 23.46 4.23
vf (m/s) 34.96 12.94 23.45 432
af (m/s2) 4.08 -4.64 0.00 0.36
¢ (1: AV; 0: HV) 1 1 1 0
CATS Lab ACC data
d (m) 92.42 3.59 37.53 13.10
vP (m/s) 28.58 5.52 20.93 4.65
vf (m/s) 29.58 5.44 20.95 4.73
af (m/s2) 32 -5.29 0.00 0.56
@ (1: AV; 0: HV) 1 0 0.52 0.50
Open ACC data
d (m) 133.81 5.10 30.43 15.36
vP (m/s) 33.79 5.12 18.72 4.07
vf (m/s) 34.54 5.01 18.73 4.21
af (m/s2) 3.23 -3.99 0.00 0.48
@ (1: AV; 0: HV) 1 0 0.78 0.41

Two sets of experiments were conducted. The leading
vehicle always operated with ACC activated. The 4 following
vehicles were driven by humans in the first set of experiments
but operated with ACC activated in another set of experiments.
Two car-following patterns were applied during the
experiments: platoon with constant speed and platoon with
perturbation of the target speed. For more information, please
refer to the European Commission webpage.

B. Data Preprocessing

The following procedures are used for data preprocessing.

1. The longitude and latitude of the vehicle are utilized to
determine its location

2. To fill in the missing data caused by the GPS device, linear
interpolation is deployed on the vehicle location.

3. Car-following distance is calculated by subtracting vehicle
length from vehicle location difference.

4. Given the less than satisfactory GPS accuracy, i.e., 0.28
m/s, moving average smoothing is applied to the collected
speed in the HISTORIC dataset. The data is resampled to
10 Hz.

4 https://data.jrc.ec.europa.cu/dataset/9702c950-c80f-4d2£-982f-44d06ea0009f



5. Vehicle acceleration is calculated from vehicle speed by

taking the first-order derivative.

6. Only stable car-following periods are considered. Data at

the beginning or end of the test runs are excluded.

After preprocessing, there are 886,853 data points in
HISTORIC data, 348,425 in Vanderbilt ACC data, 76,069 in
CATS Lab ACC data, and 525,655 in Open ACC data. Vehicle
type is coded as a binary variable with 1 denoting AV and 0
denoting HV. Data descriptive statistics are provided in TABLE
1. d denotes the car-following distance, vP denotes the
preceding vehicle speed, v’ denotes the following vehicle
speed, al denotes the following vehicle acceleration, and ¢
denotes vehicle type.

Vanderbilt ACC data is the one with the greatest average
speed and average car-following distance, followed by CATS
Lab ACC data, Open ACC data, and HISTORIC data. The
speed and car-following distance oscillation magnitudes across
different datasets are similar, indicated by the relatively similar
car-following distance and speed standard deviations. As for the
following vehicle acceleration, CATS Lab ACC data has the
greatest oscillation, followed by Open ACC data, Vanderbilt
data, and HISTORIC data.

III. METHODOLOGY

This section introduces different models used for AV
identification, including 2 physics-based models, 7 learning-
based models, and one cluster-aware learning-based model.

Each dataset is segmented by the identification time window
At. Segments from four datasets are mixed to construct a
comprehensive identification model. Each trajectory segment
denotes an observation. All observations are shuffled and then
divided into two subsets. The dividing ratio is 9:1. 10-fold
cross-validation is adopted. 90% of observations are used for
training and validation. The rest observations are used for
testing. The average value across ten folds is used to indicate
the final model performance.

A. Physics-based Models

This subsection presents physics-based models to identify
AVs. Two popular car-following models are adopted, including
the intelligent driver model (IDM), and the optimal velocity
model (OVM) [22], [25].

The following vehicle’s acceleration calculated based on the
IDM is formulated as [25]:

s £ 2
a(®) = a®[1 - (2" - (L2)] (1)

where s;(t) = s° + max (0, v;(H)T° + W) is
the desired gap, s; (t) = x;_1(t) — x;(t) — l;_1 is the car-
following distance between vehicles, a® is the maximum
acceleration, v; is the following vehicle speed, v;_; is the
preceding vehicle speed, v° is the desired speed, s° is the
minimum distance, T is the time gap, b° is the comfortable
deceleration, x; is the following vehicle location, x;_; is the
preceding vehicle location, and [;_; is the preceding vehicle
length.

The acceleration calculated based on the OVM is given as

follows.
max(O,min(vo,si(?—O_so))—vi(t)

a;(t) = - : @)
where 7 is the adaptation time and other notation has been
introduced above.

The first half of the data in the time window At is used for
model calibration. The calibration objective is to minimize the
following formula.

v (R, 3

Vi
where N = [Aot—/lz

observed acceleration, and ¥; is the calibrated acceleration.
The interior-point method is used to find the optimal model
parameters. The other half of the data is used for model
validation. The root mean square error (RMSE) between the
observed and validated car-following distance is calculated as:

z?il(si—fi)z’ @)

M
A . . .
where M = O—Z—N is the number of data points, s; is the

is the number of data points, v; is the

RMSE, =

observed car-following distance, and $; is the validated car-
following distance.

The above calibration and validation are conducted for all
observations. An RMSE threshold RMSE; producing the
highest identification accuracy without underfitting and
overfitting is found for each fold during the 10-fold cross-
validation, see Fig. 1. Given the stochastic nature of human
driving, if the RMSE; of observation is less than RMSE;, it is
identified as an AV; Otherwise, it is identified as an HV. Then,
the optimal threshold RMSE; is used to identify AVs from the

testing set.
08

| * tandatset |
075 GG O validation dataset |

Accuracy Rate
o
@

o
o
@

RMSE*=0.14

o
o

o
=
o

=
a

04 0.6 08 1 12 14 16
RMSE

Fig. 1 Threshold selection for physics-based models.
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B. Learning-based models

This subsection presents learning-based models. Various
machine learning classification models have been proposed in
the past, and each of them merits in different aspects [26]—[28].
To accomplish the most accurate AV identification, seven
popular models are tested. Model inputs include the preceding
vehicle speed, the following vehicle speed, the following
vehicle acceleration, and the car-following distance. These
inputs are standardized between -1 to 1. The vehicle type, either
an AV or an HV, is the model output.

1) Long short-term memory network (LSTM)
As a type of recurrent neural network, the LSTM can learn



order dependence in time series data [28]. The LSTM model
structure is illustrated in Fig. 2 (a). The dropout rates of each
dropout layer are denoted by ae{a;, as, ..., ax}. The numbers
of hidden layers N, dropout layers D, neurons Npeyron» batches
Npatcn, and epochs Nepocn and the dropout rate @ are adjusted
during model training.

The neuron structure is illustrated in Fig. 2 (b). X; is the
current input vector. h; is the current neuron output. C;_; is the
memory from the last neuron. h;_; is the output of the last
neuron. C; is the memory from the current neuron. The
subscript t indexes the time step (0.1s is used here). X is
element-wise multiplication. + is the element-wise
summation/concatenation. ¢ is the sigmoid layer. tanh is the
hyperbolic tangent layer. {b;, b,, b3, b,} are biases.

Input Layer

LSTM Hidden
‘ Layer 1 H Dropout Layer 1
[

vy
LSTM Hidden
Dropout Layer 2 H Layer 2
12

i

LSTM Hidden
‘ Layer N H Dropout Layer D ‘

Output Layer @

(a) Model structure. (b) Neuron structure
Fig. 2. LSTM structure.

2) Support vector machine (SVM)

The SVM model finds the best decision boundary, i.e.,
decision hyperplane, to separate different classes. The distance
from the best hyperplane to the nearest data point of each class
is the greatest [26]. Different kernels are tested to produce the
best results.

3) k-nearest neighbors (KNN)

For the KNN model, we first calculate the Euclidean distance
from the query observation to the classified observations. The
classified observations are ordered by increasing distance. The
class of the query observation is the majority voting of the top
k observation classes [26]. The number of nearest neighbors k
is adjusted for the best model results.

4) Fixed-radius near neighbors (FRNN)

The FRNN is a variant of the KNN. Instead of using only the
k-neighbors, the FRNN locates all observations in the training
set that are within a given radius r of the query observation. The
selected radius neighbors are used to predict the query
observation [29]. The radius value is adjusted to yield the best
model results.

5) Random forest (RF)

The RF model has T decision trees. The maximum depth of
each decision tree is Np. Each decision tree produces each
result. The final result is derived as the majority voting of all
trees’ results [26]. The number of decision trees 7 and the
maximum depth Ty are tuned for the best model performance.

C. Cluster-aware learning-based model (CALM)

The above learning-based models assume that observations
are homogeneous. However, it is natural that different
observations belong to different clusters [30]. Ignoring such

heterogeneity within datasets may miss the opportunity to
further improve the model performance. Therefore, we adopt
the cluster-aware learning-based (CALM) technique to identify
the disparity among different clusters and train the learning-
based model simultaneously. The general cluster-aware
learning framework was constructed in [31]. We adapt and
materialize the framework with a classification application to
identify AVs. However, the CALM is challenged with a
considerably long training time. Motivated by this superiority,
we further combine the CALM with transfer learning
techniques, which have been proven to hold great potential in
enhancing model training efficiency [32], [33]. Specifically, the
well-tuned learning model weights are fed into the CALM as
initial weights.

Suppose that all samples belong to K clusters. Within each
cluster k € [K] := {1, ..., K}, the responses can be described by
the data points with heterogeneity. The CALM is formulated as
follows;

(%i.rr'llRp(& 0,m) = z Sitr Vi, X1, O)

i€[N] k€[K]
+p z Ok Sk (x;, M)
iE[N] k€[K]

®)

s.t.,

Ykelx) O = LY € [N],

Yieiv) O = 1, Vk € [K],

8 € {0,1},Vk € [K], Vi € [N],

where x; and y; are the inputs and outputs, respectively. p is a
non-negative tuning parameter controlling overlapping areas
among different clusters. §;, denotes the cluster assignment
decision, i.e., §;;, = 1 implies that the data point x; belongs to
cluster k. €, (y;, x;,0;) = —%Zi(yi InLSTM (x;,0;) + (1 —

D) ln(l — LSTM (x;, Bk))) denotes the loss function with an
estimator 6,,. LSTM (x;, 8;) denotes the function of the LSTM
network. Sj (x;, m;,) denotes the dissimilarity function (i.e., the
squared Euclidean distance-based function S, (x;,my) =
[lx; — m|I?), where my, is the centroid of cluster k.

Then, regularized alternating minimization (RAM) algorithm
is used to solve the CALM. The RAM algorithm first separates
the decision variables of the CALM into two parts, i.e., (8, m)
and 8. Next, it solves the CALM with respect to (8, m) by
fixing & and vice versa. At each iteration, an L, ; the norm
penalty term is added to the objective function of the CALM to
ensure that the current clustering solution and the previous
solution are not too different. Finally, it terminates whenever
the clustering solutions from two consecutive iterations are
close. The detailed RAM algorithm can be found in [31]. The
number of clusters K and the parameter controlling the
overlapping areas among cluster p are tunned for the best
CALM identification accuracy.

IV. RESULTS

This section reports the tuning results of learning-based
models and compares the identification performance of
different models.



A. Learning-based Model Tuning

In terms of the overall identification accuracy a, model
tunning is done for multiple input data time frames At, ranging
from 0.2s to Ss.

Nﬁ%rrect_'_Nﬁ({,rrect

o =-—-""——"""-x%x100%, (6)
Nan

where NSy is the number of successfully identified AVs,
N§Y et is the number of successfully identified HVs, and Ny
is the total number of observations.
1) LSTM

Different configurations are tested regarding the numbers of
hidden layers N, dropout layers D, neurons Nyeuron, Datches
Npatcn, and epochs Nepocn and the dropout rate oy The best
model is found for different time windows At. The tuning
results when At = 1s are reported in TABLE 2. The best result

is observed when N = D = 3, Npeuron = 500, Nparen = 1000,
Nepoch = 200, and o = 0.5. It is noted that when N is greater
or oy is smaller, overfitting is produced. When D or oy is
greater, underfitting is yielded.
2) Other traditional learning-based models

Various parameters are tested for other traditional learning-
based models. The best model is found for different time
windows At. The best SVM result is observed (accuracy is
86.65%) when rbf kernel is used. The best KNN result is
observed (accuracy is 91.76%) when k = 15. Overfitting exists
when & = 5 and & = 10. The best FRNN result is observed
(accuracy is 92.30%) when r = 3. The best RF result is
observed (accuracy is 91.65%) when 7= 15, Nt = 8. When Nt
= 15, overfitting is produced.

TABLE 2
LSTM MODEL TUNING RESULTS.
At (s) N D ay Npeuron Npatch Nepoch Training a Validation a Testing a
1 2 3 0.5 500 2000 200 94.87% 94.66% 94.54%
1 3 3 0.5 500 2000 200 96.34% 96.18% 96.07%
1 4 3 0.5 500 2000 200 98.47% 95.47% 96.88%
1 3 5 0.5 500 2000 200 93.77% 96.54% 95.98%
1 3 3 0.7 500 2000 200 94.76% 96.72% 96.53%
1 3 3 0.2 500 2000 200 97.64% 95.16% 96.39%
1 3 3 0.5 200 2000 200 93.05% 92.87% 92.85%
1 3 3 0.5 500 1000 200 96.47% 96.24% 96.18%
1 3 3 0.5 500 2000 300 96.39% 96.37% 95.97%
3) CALM based models are not investigated when At < 1s due to

Based on the above tunning results, LSTM produces the
highest accuracy among all learning-based models. Motivative
by this superiority, the CALM is developed based on the
LSTM, i.e., the loss function €, (y;, x;, 8;) of the CALM is set
as the LSTM. K and p are tuned for the best CALM
identification accuracy, while the LSTM model parameters
remain the same as the ones that produce the best results in
TABLE 2, i.e., N = D = 3, Nyeuron = 500, Nparen = 1000,
Nepoch = 200, and oy = 0.5 . The best CALM model
parameters are found for different time windows At. The tuning
results when At = 1s are presented in TABLE 3. The best
CALM result is yielded when K =2 and p =0.1. The
accuracy is higher than the LSTM alone, indicating the

effectiveness of clustering observations.
TABLE 3
CALM MODEL TUNING RESULTS.

At (s) K p Training a Validation a Testing a
1 2 0.01 97.79% 96.37% 96.55%
1 2 0.1 97.96% 96.61% 96.82%
1 2 1 98.17% 96.77% 96.46%
1 3 0.01 96.78% 96.41% 95.94%
1 3 0.1 98.38% 96.77% 96.36%
1 3 1 97.31% 96.28% 96.42%
1 4 0.01 96.46% 95.90% 95.67%
1 4 0.1 98.36% 96.49% 96.42%
1 4 1 97.86% 95.95% 96.13%

B. Model comparison

After the above model tuning, the identification performance
of different models is compared in this subsection. Different
identification time window lengths are tested, ranging from 0.2s
to 5s. AV and HV sample ratios vary from 0.66 to 0.69. Physics-

insufficient calibration and validation data. To study the model
performance of identifying AVs and HVs respectively, the
identification accuracy of AVs a,y (i.e., the true positive rate,
recall, or sensitivity X 100% ) and HVs ayy (i.e., the true
negative rate or specificity X 100%) are calculated as follows.

Ay = SAY % 100%, (7)
Nav .
ayy = % X 100%, (8)

where NS is the number of successfully identified AVs,
N§Yet is the number of successfully identified HVs, Ny is
the total number of AVs, and Nyy is the total number of HVs.

Further, the identification precision and Fl-score are
computed.

Nﬁorrect

. . \

Precision = [Ncorrect { (- _ ycorrecty’
AV (Nuv )

F1 score

2NX8FI‘€Ct
ZNXg‘rrect + (NHV _ N]::[(\)/rrect) + (NAV _ NAcgrrect)'

Results are shown in TABLE 4 and TABLE 5. We see that
the identification accuracy of physics-based models (i.e., IDM
and OVM) increases and decreases with the time window
length. The same trend is observed for the precision and the F1
score. Possible reasons follow. When At is shorter, fewer data
points result in less accurate model calibration and validation.
The results are less representative in terms of car-following
behavior. Thus, the identification accuracy is lower. When At
is longer, the car-following behavior during the time window is
more heterogeneous, and the explanatory power of physics-
based models with only one set of parameters degrades. In this




case, RMSE; values are greater, and the identification accuracy
is lower. On average, physics-based models correctly identify
over 80% AVs and over 70% HVs, indicating that AV car-
following behavior likely has a smaller residual error than HVs.
It also noted that the IDM's identification accuracy, precision,

and F1 score are slightly higher than the OVM across all
instances. This is expected because more parameters are
calibrated in the IDM, and the resulting model better represents
the realistic driving behavior.

TABLE 4
MODEL COMPARISON PART 1.
At(s)  aav/anv Model
IDM OVM LSTM SVM KNN FRNN RF CALM
02 Qapy / / 98.14% 93.89% 93.97% 93.71% 96.12% 98.86%
) ayy / / 94.32% 80.13% 86.54% 85.39% 83.73% 94.47%
05 Apy / / 97.97% 93.45% 94.20% 94.50% 95.90% 99.59%
) ayy / / 94.31% 79.99% 87.71% 86.48% 83.48% 95.98%
1 Apy 82.03% 78.23% 98.18% 93.51% 93.79% 94.32% 96.03% 98.65%
apy 68.91% 70.93% 93.77% 79.84% 86.99% 85.35% 84.09% 95.43%
2 Apy 84.14% 85.05% 98.04% 93.74% 93.89% 93.49% 96.28% 98.37%
apy 71.55% 72.85% 94.08% 80.51% 85.24% 87.67% 84.23% 95.76%
3 Apy 86.37% 86.27% 98.12% 93.85% 93.67% 94.14% 96.12% 99.18%
agy 74.90% 73.87% 94.25% 79.81% 86.27% 85.98% 83.18% 95.65%
4 apy 83.85% 78.90% 98.27% 93.37% 94.20% 94.07% 96.30% 98.47%
ayy 74.94% 72.71% 94.24% 80.57% 84.81% 87.55% 83.24% 95.35%
5 Qapy 83.19% 78.70% 98.24% 93.25% 92.96% 93.77% 96.21% 98.42%
apy 74.13% 72.96% 94.35% 80.66% 85.06% 86.28% 84.11% 95.50%
Average apy 83.92% 81.43% 98.14% 93.58% 93.81% 94.00% 96.14% 98.79%
Average ayy 72.89% 72.66% 94.19% 80.22% 86.09% 86.39% 83.72% 95.45%
TABLE 5
MODEL COMPARISON PART 2.
At (s) Precision/ Model
F1 score IDM OVM LSTM SVM KNN FRNN RF CALM
02 Precision / / 0.929 0.783 0.842 0.830 0.818 0.932
) F1 score / / 0.955 0.854 0.888 0.880 0.884 0.959
05 Precision / / 0.929 0.779 0.853 0.841 0.814 0.949
) F1 score / / 0.953 0.850 0.895 0.890 0.881 0.972
1 Precision 0.639 0.644 0.924 0.780 0.847 0.831 0.822 0.943
F1 score 0.719 0.706 0.952 0.851 0.890 0.884 0.886 0.964
5 Precision 0.665 0.676 0.925 0.781 0.825 0.849 0.819 0.945
F1 score 0.743 0.754 0.952 0.852 0.878 0.890 0.885 0.964
3 Precision 0.697 0.692 0.928 0.778 0.837 0.835 0.811 0.945
F1 score 0.772 0.768 0.954 0.850 0.884 0.885 0.880 0.968
4 Precision 0.692 0.653 0.929 0.786 0.826 0.853 0.815 0.942
F1 score 0.758 0.715 0.955 0.854 0.880 0.895 0.883 0.963
5 Precision 0.683 0.664 0.930 0.787 0.827 0.840 0.823 0.944
F1 score 0.750 0.720 0.956 0.854 0.875 0.886 0.887 0.964
Average Precision 0.675 0.666 0.928 0.782 0.837 0.840 0.818 0.943
F1 score 0.748 0.733 0.954 0.852 0.884 0.887 0.884 0.965
All learning-based models' identification accuracy, cluster-aware technique further improves the identification

precision, and F1 score remain relatively steady across input
data time window lengths. This demonstrates the model's
robustness. Different results are observed across learning-based
models, given their different learning capabilities. In TABLE 4,
as expected, the LSTM produces the highest AV identification
accuracy with an average of 98.14%, followed by the RF with
an average of 96.14%, FRNN with an average of 94.00%, KNN
with an average of 93.81%, and SVM with an average of
93.58%. The LSTM also produces the highest HV identification
accuracy with an average of 94.19%, followed by the FRNN
with an average of 86.39%, KNN with an average of 86.09%,
RF with an average of 83.72%, and SVM with an average of
80.22%. In TABLE 5, the highest precision and F1 score are
also produced by the LSTM. The best performance achieved by
the LSTM demonstrates its superiority in learning order
dependence in time series data. Enhancing LSTM with the

performance. In TABLE 4, the AV identification accuracy is
increased from 98.14% to 98.79%, and the HV identification
accuracy is increased from 94.19% to 95.45%. In TABLE 5, the
precision increases from 0.928 to 0.943, and the F1 score
increases from 0.954 to 0.965. Although the improvement is
insignificant (the LSTM alone is already rather good in
differentiating AVs and HVs), it is still valuable to real-world
applications. These findings demonstrate the feasibility of
identifying AVs from HVs using car-following trajectory data.

The identification accuracy of AVs is always greater than
that of HVs across all models. This suggests that some HVs
drive in a way quite similar to AVs, i.e., less volatile, and thus
they are likely to be misidentified as AVs. Further
investigations are needed to address this issue. Gaussian
processes may be combined with physics-based models to
reveal more insights.
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C. Mechanism of identification

From the above analysis, we know it is possible to identify
AVs and HVs with physics and learning-based models. To
better understand the mechanism of learning-based models, we
take the LSTM model as an example and plot Fig. 3 and Fig. 4.

Fig. 3 shows the rescaled input values, including the
following vehicle acceleration, preceding vehicle speed,
following vehicle speed, and car-following distance after
standardization with the 1s time window length. It is evident
that HVs yield a greater range of outliers than AVs in all input
values. This is because that AVs’ driving behavior is more
stable than HVs’. The median rescaled value of AV speed is
positive, but the median rescaled value of HV speed is negative.
This means AVs run at a greater speed than HVs. Also, we find
that the AV’s median rescaled car-following distance is greater
than HV’s. This is consistent with [23] that current commercial
low-level AVs prefer to set a greater headway for safety.
Further, the same findings could be observed in Fig. 4 with the
0.2s time window length.

V. CONCLUSION

Identifying AVs from mixed traffic streams is expected to
improve traffic safety, increase roadway capacity, and promote
AV management and development. Failure to recognize the
presence of AVs could result in adverse consequences, e.g.,
crashes.

This research examines the feasibility of detecting ACC-
equipped vehicles (SAE Levels 1 and 2) utilizing vehicle
trajectories collected from existing infrastructure. The results
reveal that learning-based models can correctly distinguish AVs
from HVs with high accuracy. Integrating the cluster-aware
technique into the learning-based model further improves
identification accuracy. These exciting results open
unparalleled data-driven potential for studying and managing
mixed traffic.

Regarding future research, the first direction would be
addressing the prior probability shift issue [34]. For this study,
the issue happens when the AV market penetration rate
changes. In this case, the identification accuracy may degrade.
Second, rather than focusing solely on longitudinal vehicle
behavior, it would be interesting to investigate lateral vehicle
movements in the AV identification process. Third, the current
dataset size is limited. It would be necessary to keep enriching
the current mixed traffic data pool (e.g., more AV makes and
high-level AVs) and updating the identification model. Instead
of'academic research, this would be an engineering practice that
should be carried out when it comes to real-world
implementation. Fourth, building an online learning model for
real-time prediction would be more valuable. The proposed
model can be implemented as a pre-trained model allowing a
proper initial prediction performance. Furthermore, because
AVs from different manufacturers or onboard equipment
providers have distinct AV control logic and automation levels,
it is critical to distinguish them. This allows for manufacturer-
specific AV evaluation and the extraction of more vendor-
specific insights for rapid AV technology development.
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