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Abstract— Scalp electroencephalography (EEG) is a neural
source signal that is extensively used in neuroengineering due
to its non-invasive nature and ease of collection. However, a
drawback to the use of EEG is the prevalence of physiological
artifacts generated by eye movements and eye blinks that
contaminate the brain signals. Previously, we have proposed
and validated an H

1-based Adaptive Noise Cancellation (ANC)
technique for the real-time identification, learning and removal
of eye blinks, eye motions, amplitude drifts and recording biases
from EEG simultaneously. However, the standard electroocu-
lography (EOG) electrode configuration requires four elec-
trodes for EOG measurement, which limits its applicability for
reduced-channel mobile applications, such as brain-computer
interfaces (BCI). Here, we assess multiple configurations with
varying number of EOG electrodes and compare the ANC
effectiveness of these configurations to the ideal four-electrode
configuration. From an analysis of the root mean squared error
(RMSE) and differences in signal to noise ratios (SNR) between
the ideal four-electrode case and the alternative configurations,
it is reported that several three-electrode alternative configu-
rations were effective in essentially replicating the ability to
remove EOG artifacts in an experimental cohort of ten healthy
subjects. For nine subjects, it was shown that only two to three
EOG electrodes were needed to achieve similar performance as
compared to the four-electrode case. This study demonstrates
that the typical four-electrode configuration for EOG recordings
for adaptive noise cancellation of ocular artifacts may not be
necessary; by using the proposed new EOG configurations it
is possible to improve electrode allocation efficiency for EOG
measurements in mobile EEG applications.

I. INTRODUCTION

Scalp electroencephalography (EEG), a non-invasive mea-
surement of electrical signals produced by the brain and col-
lected at the scalp, is the most heavily researched source sig-
nal for BCI and other neuroengineering applications due to
its ease of collection, accessibility and lower cost [1]. How-
ever, EEG analysis requires significant pre-processing due
to the high incidence of physiological and non-physiological
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artifacts, which contaminate the EEG measurements. One
of the most common and challenging artifacts are the ocu-
lar artifacts [2], which is the contamination of EEG with
electrical signals produced when blinking or during eye
movement. Ocular artifacts are especially difficult because
the contamination is not restricted to certain electrodes with
a predictable effect, but, instead, contaminates all electrodes
with a varying effect due to volume conduction [3]. Many
methods have been suggested to remove ocular artifacts from
EEG, including Independent Component Analysis (ICA),
Principle Component Analysis (PCA), and neural network
-based methods [4], but these methods are typically not real-
time applicable. This makes their deployment into real-time
BCI systems infeasible. Artifact Subspace Reconstruction
(ASR) has been proposed as alternative that can be imple-
mented for online eye artifacts removal [5]. However, ASR
can suppress high amplitude EEG and in particular low-
frequency components [6], therefore distorting delta band ac-
tivity. H-infinity-based Adaptive Noise Cancellation (ANC)
has been proposed as a robust real-time applicable control
framework to remove eye blinks, eye motions, amplitude
drifts and recording biases from EEG without any a priori

knowledge of the noise statistical characteristics [7], [6].
ANC frameworks use a reference source to estimate the true
noise over all input channels with the goal of removing
that estimate from the contaminated signal, in order to
calculate an output that closely estimates the true underlying
uncontaminated signal. For the removal of artifacts from
EEG, this framework requires a representation of the noise
signal, which is typically accomplished with the addition of
four electrooculographic (EOG) electrodes around the eyes.
[8]

A drawback of current mobile EEG approaches, including
BCI systems, is that they typically require four additional
electrodes in order to collect the EOG noise references.
This necessarily means that electrodes that could have been
used for additional EEG locations must be reserved for
EOG collection. While this is not a problem for high-count
EEG electrode applications, applications that are limited
in the number of total electrodes may not be able to use
the ANC framework. Furthermore, from a computer science
standpoint, a higher channel count is associated to a higher
computational complexity [9], which directly impacts in
longer processing times and more energy consumption. [10].
Consequently, this aspect assumes particular significance
in the context of embedded applications, which has been
addressed by various approaches in the existing literature



[11], [12].
The rest of the paper is as follows: Section II presents

a brief background of adaptive noise cancellation and the
methods for this research; Section III will detail the results
of this analysis; and Section IV will discuss the conclusions
and future work for this type of algorithm on EEG/BCI
applications.

II. METHODS

A. Data Acquisition

The dataset was collected at the University of Houston
under a protocol approved by the Institutional Review Board
(IRB G0501521). Ten able-bodied adult subjects (5 males
and 5 females) gave their written informed consent prior to
performing a single session of an eye movement task. During
the task, the participants were seated comfortably in a room
with the lights on and performed a series of randomized eye
movements, as instructed by a display placed directly in front
of them at eye level. The eye movements included blinks,
and slow and fast eye movements in four directions. EEG
data was measured with a 32-channel (1000 Hz sampling
frequency) active-electrode EEG system (actiCap system,
Brain Products GmbH). Twenty-six channels were reserved
for EEG collection while six were relocated to positions
around the eyes.

Fig. 1. EEG and EOG sensor placement

B. Alternative EOG Configurations

Thirty-four alternative EOG configurations were created
from the six EOG electrode placements. These are presented
in Figure 2. Three-electrode configurations (configurations
A through L) include sensor combinations with at least one
horizontal and at least one vertical electrode. A concern that
one may have when selecting appropriate EOG electrodes
is how to specifically create the noise references. For each
set of three electrodes, two different methods for creating
the horizontal noise reference are created for comparison.
For example, configurations A and B employ the same
electrodes, but differ in how the horizontal noise reference is
created. Generally, these selections did not include electrodes
from approximately the same area, such as a configuration

that included both of the sensors underneath the right eye,
since the EOG signal collected from these areas would be
very similar.

Fig. 2. EOG sensor combinations for the creation of alternative noise
representations. First row: four electrodes. Second and third rows: three
electrodes. Fourth and fifth rows: two electrodes. Sixth row: one electrode.

Two-electrode configurations (configurations M through
AB) were designed to consider combinations of electrodes
that were not close to each other and also investigate how to
create the noise references. Here, we compare the differences
between two electrodes taken independently as two noise ref-
erences versus creating a single noise reference. For example,
configurations M and N use the same electrodes but differ
in that configuration M uses the electrodes independently
whereas configuration N creates a single reference between
the two electrodes.

Single electrode configurations are composed of the indi-
vidual references input as the sole noise reference into the
denoising framework.

C. Pre-Processing Methods

The collected EEG signals are first high pass filtered
(fourth order Butterworth filter) above 0.1 Hz. While this
is not entirely necessary as past research provides support
that H-infinity adaptive noise cancellation can approximate
a high pass filter [13], it would be more difficult to compare
Root-Mean-Square Error (RMSE) and Signal to Noise Ratio
(SNR) values if this preprocessing step is not identical across
different configurations. Following the high pass filter, the
signals were cleaned with the ANC framework and the
resulting clean signals were compared.



a) Adaptive Noise Cancellation: Figure 3 presents an
overview for the adaptive noise cancellation framework.
Here, a single- or multi-channel contaminated signal s acts
as the primary input to the system. This signal is made up of
the uncontaminated signal and uncorrelated noise. A second
input to the system is a representation of the noise that
is correlated, in some way, to the true noise signal. This
secondary signal is sent through a filter, the output of which
is a transformed representation of the noise based on how
it contaminates the single- or multi-channel primary signal.
If the reason for how the noise affected the signal directly
was known, a fixed filter could be used to remove the noise.
However, the assumption with this framework is that the
statistical characteristics of the noise are unknown, which
is why an adaptive filter is necessary. Once the filter learns
how the noise signal propagates through the signal source,
the transformed noise representation is subtracted from the
contaminated signal. The objective here is to produce a signal
output that is the best least mean squares (LMS) estimate of
the signal.

Fig. 3. General adaptive noise cancellation system diagram

One assumption for this LMS ANC framework was that
the primary signal and noise signal were statistically sta-
tionary and that the system model was known. However,
in the application of this method to EEG analysis, ocular
artifacts are stochastic and time-varying and the underlying
neural model is unknown, meaning that the prior assumption
induces a susceptibility to estimation errors. H1 estimation
is an attempt to address this problem in that the basic idea is
to minimize the maximum energy gain from disturbances
due to estimation errors, regardless of the nature of the
disturbances.

H
1 control methods are a branch of optimal control

theory that attempts to synthesize controllers with reliable
performance. The term H

1 comes from the mathematical
space over which this optimization takes place: the Hardy
space, or spaces of holomorphic functions that are locally
differential and bounded in the right half of the complex
plane. The norm of this space, the H

1 norm, can be
considered the maximum energy gain, which we attempt to
minimize.

There are a wide variety of H
1 algorithms that could

potentially be used for this application. Here, the specific
H-infinity control method used for this ANC framework
assumes that the filter weights are time-varying, which best
matches the time-varying assumption of the EOG noise input

[6].
b) H

1
Parameter Selection: There are three param-

eters that must be selected prior to employing H-infinity
ANC frameworks: � (the optimality parameter), p0 (the
initialization value for the noise covariance matrix), and q0

(the parameter that affects how quickly the framework learns
the noise representations). In [14], the authors performed
extensive parameter optimization for the 4-electrode ideal
case. The analysis was based on energy comparisons between
sections with and without eye movement artifacts while
accounting for different sampling frequencies. For the 100
Hz sampling frequency case, the authors found the following
parameter ranges:

TABLE I
PARAMETER RANGES FOR THE 100 HZ 4-ELECTRODE IDEAL CASE [14]

Parameter Value
� 1.15 - 1.2
p0 5
q0 10e�10 - 20e�10

The mean value for each parameter range was selected as
the intent of this research was on assessing the effectiveness
of different EOG configurations rather than parameter opti-
mization. The resulting cleaned signal from the 4-electrode
case is then compared against the cleaned signals from all
other configurations by calculating the average Root Mean
Square Error (RMSE) and Signal to Noise Ratio (SNR)
values.

III. RESULTS

The performance differences in terms of RMSE and SNR
between the ideal 4-electrode case and the alternative config-
urations are represented in figures 4, 5, and 6. For the most
restrictive of cases, where only 1 electrode can be allocated to
EOG collection, the best selection in terms of the difference
in RMSE and SNR values compared to the ideal 4-electrode
case was the electrode on the participant’s right temple (i.e.,
configuration AH in Figure 4).

Figure 5 presents the cases where two electrodes can
be allocated for EOG collection. For two-electrode config-
urations, configurations are split between using the EOG
sensors independently or combining the electrodes as a single
noise reference. For RMSE comparisons, the majority of
subjects did not see much difference when comparing how
the electrodes are used in the noise reference calculations.
For a single subject, Subject 2, who had more noisy sig-
nals generally, the difference in noise reference calculation
methods was significant, with the combined noise references
leading to drastically smaller RMSE differences. In terms of
SNR values, the most consistent setups for all subjects were
when employing the electrode at the left temple and either
the electrode above the right eye or at the nasion.

The authors recommend that, for two-electrode EOG con-
figurations, researchers select the electrode positions at the
left temple and directly above the right eye (e.g., configura-
tion P in Figure 5), and that these electrodes be combined to



Fig. 4. Average RMSE and SNR differences between the one-electrode
alternative configurations and the ideal four-electrode case.

form a single reference. While it is always recommended to
emphasize good collection practices, this selection will help
to prevent poor performance of the de-noising framework for
particularly noisy data or when collecting with non-research
grade equipment.

For 3-electrode configurations, there was not significant
difference in de-noising performance when comparing con-
figurations with the same electrodes but different noise rep-
resentation creation methods, except for one case of interest.
The best performing configuration over all configurations
was configuration F. Configuration F was composed of the
electrodes at the left temple, directly above the right eye,
and the right temple, with the temple electrodes forming
the horizontal noise reference and the left temple/ right eye
electrodes forming the vertical reference. The comparison
between configuration E and F, both of which were com-
posed of the same electrodes, showed the most significant

Fig. 5. Average RMSE and SNR differences between the two-electrode
alternative configurations and the ideal four-electrode case.

difference between performance and the method for noise
representation creation. Overall, 3-electrode configurations
generally performed significantly better than the 1- or 2-
electrode configurations, particularly when comparing SNR
to the ideal case. This is confirmed when comparing the
cleaning performance between the selected configurations
with Figure 7. In Figure 7, the ability of the selected
configurations to clean an eye blink from participant 3 are
presented next to each other. While the selected one- and
two-electrode configurations are able to reduce the amplitude
of the eye blink, the three-electrode configuration performs
significantly better, with that configuration barely deviating
from the ideal four-electrode case.

IV. DISCUSSION AND CONCLUSIONS

The contamination of EEG with physiological artifacts is
a recognized challenge to address in EEG/BCI applications.
This challenge arises from the stochastic and time-varying



Fig. 6. Average RMSE and SNR differences between the three-electrode
alternative configurations and the ideal four-electrode case. Three-electrode
EOG configuration depicted in case F showed the best de-noising perfor-
mance for ocular artifacts.

nature of these artifacts, the influence of volume conduction
on their diverse propagation patterns across different elec-
trode locations, and the inherent uncertainty in both the EEG
signal model and the noise model.
In this article, H

1 weight optimization ANC-variation
scheme was employed for the removal of ocular artifacts
using reference provided by EOG electrodes. The choice of
this technique was motivated by its ability to handle model
uncertainties and adapt to the time-varying characteristics of
ocular artifacts.
While the industry standard for this framework required
the use of four EOG electrodes to extract noise references

Fig. 7. Differences in cleaning of an eye blink for subject 3 at channel
FCz when comparing the selected configurations for the one, two, and three
channel restrictive cases against the ideal four-electrode case and the raw
data.

for artifact removal, in this research was presented support
that effective removal of ocular artifacts from EEG can
be achieved using only two or three EOG electrodes. This
finding expands the applicability of the framework to sce-
narios with limited available channels or in applications that
require lower computational complexity, thereby enhancing
its usefulness in practical applications.
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