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Abstract— Machine Learning (ML) software has been widely
adopted in modern society, with reported fairness implications for
minority groups based on race, sex, age, etc. Many recent works
have proposed methods to measure and mitigate algorithmic bias
in ML models. The existing approaches focus on single classifier-
based ML models. However, real-world ML models are often
composed of multiple independent or dependent learners in an
ensemble (e.g., Random Forest), where the fairness composes in a
non-trivial way. How does fairness compose in ensembles? What
are the fairness impacts of the learners on the ultimate fairness
of the ensemble? Can fair learners result in an unfair ensemble?
Furthermore, studies have shown that hyperparameters influence
the fairness of ML models. Ensemble hyperparameters are more
complex since they affect how learners are combined in different
categories of ensembles. Understanding the impact of ensemble
hyperparameters on fairness will help programmers design fair
ensembles. Today, we do not understand these fully for different
ensemble algorithms. In this paper, we comprehensively study
popular real-world ensembles: Bagging, Boosting, Stacking, and
Voting. We have developed a benchmark of 168 ensemble models
collected from Kaggle on four popular fairness datasets. We
use existing fairness metrics to understand the composition of
fairness. Our results show that ensembles can be designed to be
fairer without using mitigation techniques. We also identify the
interplay between fairness composition and data characteristics
to guide fair ensemble design. Finally, our benchmark can be
leveraged for further research on fair ensembles. To the best of
our knowledge, this is one of the first and largest studies on
fairness composition in ensembles yet presented in the literature.

Index Terms—fairness, ensemble, machine learning, models

I. INTRODUCTION

Machine learning (ML) is ubiquitous in modern software
today. Due to the black-box [1] nature of ML algorithms and
its applications in critical decision-making [2, 3], fairness in
ML software has become a huge concern. Measuring ML
fairness [4-7] and mitigating the discrimination [5, 8, 9] has
been studied extensively. Recent work in software engineering
has shown the need to produce fair software and detect bias
in complex ML software environments [10-13].

Prior research has mostly focused on fairness in stan-
dalone classifiers (e.g., Logistic Regression, SVM) [1, 14, 15].
However, a class of ML models called ensemble models are
becoming increasingly important in practice today due to their
superior performance across a multitude of ML & real-life
challenges [16-20], and better generalization on unseen data,
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especially in smaller datasets [18, 21, 22]. Ensemble models
combine the predictions of multiple base learners to make the
final prediction, e.g., Random Forest uses a large number of
decision trees, with the majority class being the final output.
Ensemble models are the most mentioned ML algorithms on
Kaggle [23], and in previous SE works on fairness, ensemble
models comprise more than 80% of the total models [12, 13].
Like traditional ML models, ensemble models can also suffer
from unfairness problem that discriminates against population
subgroups based on race, gender, etc. Although many fairness
mitigation techniques [24, 25] exist, they do not always
generalize well [26-28]. Therefore, if we better understand
the fairness composition in ensembles, we can design fair
ensemble models without applying mitigation techniques. In
this paper, we have conducted an empirical study to understand
the composition of fairness in ensembles and the interplay of
their properties with fairness.

Recently, multiple works have shown that ensembles can
be leveraged to enhance fairness and mitigate bias in ML
models [28-30]. Grgic-Hlaca et al. first explored fairness
properties of random selection ensemble, only theoretically
[31]. Bower et al. explored how fairness propagates through a
multi-stage decision process like hiring [15]. Similarly, Dwork
et al. introduced a framework to understand the composition
of fairness in ensembles that only utilize AND, OR operators
to make a decision, e.g., two credit bureaus’ (AND) report a
score to determine loan eligibility [4]. Feffer et al. studied how
ensembles and bias mitigators can be combined using modu-
larity to improve stability in bias mitigation [28]. Therefore,
it is evident that fairness in ensembles and their composition
is non-trivial. Moreover, prior works in SE have shown the
impact of training processes such as hyperparameter optimiza-
tion, data transformation, etc., on the fairness of ML software
[12, 25, 32]. We postulate that ensemble hyperparameters also
impact unfairness in ensembles, and failure to study them can
amplify bias. However, ensemble hyperparameters are differ-
ent than typical ML model hyperparameters as they dictate
the design of the ensemble, e.g., number of learners, learning
method, etc. However, no empirical study has been conducted
to understand fairness composition in ensembles and the effect
of their hyperparameter space on fairness. To this end, we have
created a benchmark of 168 real-world ensemble models from
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Kaggle and designed experiments to measure their fairness.
We analyze fairness composition in ensemble criteria such
as parallel and sequential ensembles, homogeneity of models,
and different ensemble methods such as bagging, boosting,
voting, stacking, etc., and all the ensemble classifiers available
in the popular Scikit-learn [33]. Specifically, we answer the
following overarching research questions:

o« RQ1: What are the fairness measures of various ensem-
ble techniques?

o RQ2: How does fairness compose in ensemble models?

o RQ3: Can ensemble-related hyperparameters be chosen
to design fair ensemble models?

To the best of our knowledge, this is the first work to
experimentally evaluate the fairness composition in popular
ensembles and elicit fair ensemble design considerations. Our
results show that fairness in ensembles composes in the base
learners, and fair ensemble models can be built by carefully
considering the composition. The analyses also identify learn-
ers that cause fairness problems which software developers
can leverage to develop frameworks to measure fairness in
base learners and encourage transparency. We also identify
and explore ensemble-related hyperparameters to design fair
ML models for each ensemble type. Lastly, we provide a
comprehensive review of fairness composition in ensembles
that will help direct future research in the area. Overall, the
following are the key contributions of this paper:

« Explored fairness composition and its interplay with data
characteristics and individual learners to mitigate bias.

o Empirically evaluate fairness patterns of popular ML
ensemble models.

« We identified ensemble design considerations and hyper-
parameters that would guide developers in fair ensemble
design and mitigate inherent unfairness effectively.

e« A comprehensive fairness benchmark of popular en-
sembles that can be leveraged for further research on
building fairness-aware ensembles. The benchmark, code,
and experimental results are available: https://github.com/
UsmanGohar/FairEnsemble

The rest of the paper is organized as follows: §II describes
the motivation of our work and the background on ensembles.
In §III, we discuss the methodology for our study, includ-
ing benchmark collection, datasets and fairness and accuracy
measures used, and finally, the experiment setup & design. In
§IV, we discuss the state of fairness in ensembles (RQ1) and
how it composes (RQ2), §V discusses the design criteria to
improve fairness in ensembles (RQ3). Finally, we discuss the
implications of our work in §VI, threats to validity in §VII,
related works in §VIII and then present the conclusion in §IX.

II. MOTIVATION AND BACKGROUND

In this section, we use a motivating example to illustrate
the complexity of fairness composition in ensembles and the
need to study bias induced by certain ensemble parameters.

A. Motivating example

Ensemble models are widely deployed to win competitions
in online communities like Kaggle due to their superior
performances [16-20, 23]. In prior SE works on fairness
[12, 13], more than 80% of the models were ensemble based.
However, those works did not consider fairness composition of
individual learners, its effect on the fairness of ensembles, and
the inherent bias in ensemble methods, which is non-trivial.
Hence, not studying fairness composition in ensembles fails
to capture the complete fairness of an ML pipeline. Consider
the code snippet below of a top-performing model (Voting
ensemble) from Kaggle, which is used to predict the income
of an individual (German Credit dataset).

I models = []

> models.append (( 'LGR', LogisticRegression()))

3 models.append (( 'LDA', LinearDiscriminantAnalysis()))
+ models.append (( 'KNN', KNeighborsClassifier()))

5 models.append (( 'CART', DecisionTreeClassifier()))

6 models.append (( 'NB', GaussianNB()))

7 models.append (( 'RF', RandomForestClassifier()))

s models.append (( 'SVM', SVC(gamma="'auto "))

9 models.append (( 'XGBM', XGBClassifier()))
10 models.append (( 'LGBM', LGBMClassifier()))
11 model = VotingClassifier(estimators=models, voting='soft")
12 model. fit (X_train, y_train)
13 y_pred = model. predict(X_test)

A voting ensemble is a type of heterogeneous ensemble that
combines the predictions of dissimilar learners. It comprises
multiple learners (lines 2-10) and uses a voting mechanism
(line 11) to make the prediction. In soft voting, the class label
(1 or 0) with the higher average probability from the learners
is chosen as the final prediction. We found that this ensemble
is biased towards female applicants (Protected attribute: Sex)
in terms of statistical parity difference (SPD:-0.203). In this
example, before training the ensemble, a developer must
decide the number of learners, select which learners to use,
and the voting type (soft/hard). However, we found that ML
libraries do not provide any fairness recommendations for
building ensembles. Do these learners introduce unfairness in
the predictions? How does the number of learners impact the
fairness of the ensemble? More importantly, we observed that
individual learners have their own fairness measures when
analyzed in isolation but might result in an unfair model
when used in an ensemble. For instance, our analysis shows
that dropping XGBClassifier and LGBMClassifier (lines 9-
10) can improve fairness by 27% (SPD:-0.148). Interestingly,
we discuss later how these two learners are inherently fair
themselves and not responsible for the unfairness.

Furthermore, prior research has shown the impact of hyper-
parameters on fairness [12, 25, 32]. Ensemble hyperparameters
dictate how ensembles combine learners for final prediction.
In this example, if a developer used “hard” voting (line 11),
the fairness of the ensemble would improve (SPD: -0.195).
Similarly, some of these hyperparameters also affect the design
properties of the learners, which impacts fairness. XGBoost
(line 9) is another example of an ensemble (boosting). Boost-
ing builds an ensemble of trees (learners) using various meth-
ods. What properties of these trees (e.g., tree depth, number
of features, etc.) and the learning method impact the overall
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TABLE I: Types of ensemble models used in our experiments

Categories | Ensemble Types Algorithms Composition Classifiers
. . Construct n homogeneous estimators sequentially that improve predictions Homogeneous XGBoost
Sequential Boosting . R , . L Homogeneous AdaBoost
based on the previous estimator’s incorrect predictions . .
Homogeneous | Gradient Boosting
. Construct n parallel homogeneous models that are aggregated using Homogeneous Random Forest
Bagging averagin Homogeneous ExtraTrees
Parallel ging Homogeneous | Bagging Classifier
Construct a Iist of n heterogeneous user-specified weighted classifiers
Voting that are aggregated using majority voting or argmax Heterogeneous Voting Classifier
Construct a Iist of n heterogeneous classifiers as base Iearners and a
Stacking meta-classifier to decide weights for each learner Heterogeneous | Stacking Classifier

fairness of a boosting ensemble? Exploring these parameters
will help developers understand how to design fair ensembles.
Therefore, in addition to understanding fairness composition
in the learners, it is equally important to understand how the
design of ensembles using these parameters impacts fairness.

B. Ensemble learning in ML software

Ensemble models are a class of ML classifiers where the
predictions from different learners (models) are pooled using
a combination method (voting, average, random, etc.) to make
the final predictions. In the motivational example above, we
only discussed a single type of ensemble. Categories of
ensembles are based on homogeneity, learning technique, and
ensemble types. All the ensemble types covered in our study
and the corresponding classifiers are given in Table I. There are
mainly two categories of ensembles: Sequential and Parallel.

Sequential Ensembles. These ensembles sequentially gen-
erate base learners. Each learner in this ensemble depends on
the previous learners in the sequence because the next learner
attempts to correct the wrong predictions from the previous
learner and so on [34]. AdaBoost is an example of a sequential
model where it reweighs (higher) misclassified examples.

Parallel Ensembles. Parallel ensembles train individual base
learners in parallel and independently of each other. These
learners are combined using techniques such as bagging (a
random sample of data with replacement) or voting, which
encourages improved variance [34] e.g., Random Forest.

Homogeneity of ensembles. Ensemble methods that use
single-type base learners are called homogeneous models [35].
These individual learners are combined to generate the final
result, e.g., XGBoost and AdaBoost use decision trees. By
contrast, heterogeneous ensembles combine the predictions of
dissimilar individual learners [35]. A popular heterogeneous
ensemble method is Voting. Finally, ensemble method types
are divided into Boosting, Bagging, Voting, & Stacking [33].

III. METHODOLOGY

In this section, we discuss the benchmark collection process,
the datasets, and fairness and accuracy measures. Finally, we
describe the experimental design and setup.

A. Benchmark Collection

For our experiments, we collected ensemble models from
Kaggle [36] for datasets that have been used in prior fairness
literature [12, 28, 37]. Unlike these works, we only collect
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TABLE II: Summary of the datasets and the number of models
collected for each in the benchmark

Datasets PA Size | #XGB | #ADB |#GBC |#RF |#ET [#STK|#VT | Total
Adult Census | sex| 32561 6 6 6 6] 6 1 2| 33
Titanic ML | sex 891 6 6 6| 6| 6 6 6| 42
Bank Marketing| age| 41118 6 6 6 6 2 1 2 29
German Credit | sex | 1000 6 1 1 6 1 1 1 17

XGB: XGBoost, ADB: AdaBoost, GBC: Gradient Boosting , RF: Random Forest,
ET: Extra Trees, STK: Stacking, VT: Voting

ensemble-based models for evaluation. Specifically, we collect
all ensemble classifiers available via the popular scikit-learn
library [33]. We follow a similar benchmark collection process
as in [13]. Table II summarizes the datasets and the classifiers
in the benchmark.

For each dataset, we collected Kaggle kernels for each en-
semble type in Table I and classifiers available in scikit-learn.
We filter these kernels based on four-step filtering criteria: 1)
it should contain the predictive model (some kernels focus on
data exploration only), 2) protected attribute is included in the
training data, 3) at least five up-votes, and 4) ranked by up-
votes. We used Kaggle API to collect these models and pass
them through the filtering criteria. Finally, we select the top 6
models for each ensemble classifier from each dataset. In total,
we created a benchmark of 168 ensembles across four datasets.
We could not find certain classifiers on Kaggle for datasets like
German Credit. To handle those, we use default models from
scikit-learn to ensure we can evaluate across different datasets.
The number of models mined is shown in Table II. Next, we
present an overview of the datasets used in our benchmark.

Adult Census. The dataset contains income and personal in-
formation about individuals [38]. We used sex as the protected
attribute and male as the privileged class. The classification
task predicts if a person makes over $50,000 in annual income.

Titanic. The dataset contains passenger data, such as gender,
cabin class, etc., and is pre-split into train & test sets; however,
the test set does not contain any instance of a male passenger
surviving [39]. Hence, we only use the training set, with
gender as the protected attribute and Female as the privileged
class. The prediction task is whether a passenger survives.

Bank Marketing. The dataset contains bank customers’
personal information such as age, job type, etc. [40]. The
protected attribute is age, where age > 25 is considered
privileged class and age < 25 as unprivileged [13]. The
prediction task determines whether a client will subscribe to



a term deposit.

German Credit. This dataset contains personal and financial
information about individuals who apply for loans at a bank
[41]. We used the processed dataset [42] since most models in
our benchmark used it. This version has nine attributes, such
as sex, credit amount, etc. We choose sex as the protected
attribute and male as the privileged class. The prediction task
is whether an individual is a credit risk.

B. Measures

Multiple quantitative fairness and accuracy measures are
available to evaluate a model. We use measures that have been
previously used in literature [11, 13]. Let D = (T,5,Y) be a
dataset where T is the training set, S is the protected attribute
(S =1, if privileged group (p), else S =0 (up)) and Y is the
classification label (Y = 1 if favorable label, else Y = 0). Let
Y denote the prediction of an ML model. Next, we define our
measures in terms of these notations.

1) Accuracy Metrics: We evaluate the performance of the
models using accuracy and F1 metrics as defined below:

Accuracy = (true positive + true negative) /total

F1 = 2« (precision * recall) / (precision + recall)

where recall: TP/(TP+ FN), precision: TP/(TP+ FP)

2) Fairness Measures: Broadly, fairness metrics are
divided into three categories [43]. We have selected a
subset of these metrics representing the three categories
without being exhaustive. Furthermore, we have followed the
recommendations of Friedler et al. [13] in terms of metrics
selection.

Group fairness metrics: Group fairness means similar predic-
tive outcomes for protected attributes, e.g., race (Asian/White)
on a group level.

Equal Opportunity Difference (EOD): This is defined as the
difference of true-positive rates (TPR) between privileged and
unprivileged groups [44].

EOD =TPR,, - TPR,
where TPR: TP/(TP + FN), FPR: FP/(FP+TN)
Average Odds Difference (AOD): This is defined as the mean

of false-positive rate (FPR) difference and true-positive rate
difference between unprivileged and privileged groups [27].

AOD = [(FPR,, — FPR,) + (TPR,, — TPR,)]/2

Disparate Impact (DI): This is defined as the ratio of the
probability of unprivileged group vs. privileged group getting
a favorable prediction [7]

DI =P[S=1|Y =0]/P[S =1|Y =1]

We convert Disparate Impact (DI) to log scale to improve
readability compared with other metrics.
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Statistical Parity Difference (SPD): This is defined similar to
DI but uses the difference between the probabilities. [45].

SPD=P[S=1]Y =0] - P[S=1]Y = 1]

Individual fairness metrics:
Theil Index (TI): It measures both the group and individual
fairness [6]. It is defined using the following equation:

T = Z?:l %ln%, where b; = 3; — 5; + 1.

C. Experiment Design & Setup

Each ensemble model has specific requirements for training
(e.g., XGBoost can handle Null values, but Random Forest
cannot erc.) that we need to handle before we can evaluate
them. We used the same preprocessing steps across all the
kernels and datasets to ensure consistent comparison. Next,
we evaluated the accuracy and fairness of base learners and
the final ensemble level and analyzed the results.

For our data preprocessing, we start by converting all non-
numerical features to categorical data, i.e., Binary or Ordinal
(e.g., male: 1,female: 0 or non-binary levels, like Marital-
Status to Divorced: 0, Married: 1, Single: 2 etc.). Next, we
remove missing values from our datasets and convert contin-
uous sensitive attributes to categorical (e.g., age > 25: 1, age
< 25 :0 corresponding to old and young, respectively). These
preprocessing steps are necessary for most ensembles and the
AIF360 toolkit. We denote the privileged and unprivileged
groups and the favorable label for each dataset separately. For
example, in Titanic dataset, male is the unprivileged group,
and the favorable label is Survivied: 1 i.e., the individual
survived the titanic crash. The groups and the labels have
been chosen as seen before in literature [13, 46]. Finally,
the dataset is shuffled and split into train and test sets using
a 70% — 30% split. For each dataset, we have selected the
top 6 kernels by upvotes. We run the preprocessing steps
discussed before training the model to evaluate based on
accuracy and fairness metrics. We use five fairness metrics
and two accuracy measures to generate results for each model.
These experiments are repeated ten times, and the mean is
reported [11]. We used the IBM AIF 360 Fairness Toolkit to
calculate the fairness metrics. Finally, a non-zero value for
fairness metrics suggests a bias in the model. A positive value
of a fairness metric suggests the model is biased against the
privileged group and vice-versa.

IV. FAIRNESS IN ENSEMBLES AND ITS COMPOSITION

In this section, we explore the state of fairness in ensembles
and its composition in all popular ensemble methods.

A. State of fairness in ensemble models

Before understanding the composition of fairness in ensem-
bles, we first investigate how different ensemble techniques
impact fairness (RQ1). Are certain ensemble classifiers more
unfair? Does the architecture of an ensemble method (stacking,
boosting, etc.) contribute to fairness? Does any particular
ensemble classifier exhibit a better fairness-accuracy trade-
off? To answer these questions, we experiment to evaluate the



TABLE II: Fairness and accuracy comparison of all ensemble ML classifiers across the datasets in our benchmark. The ranks

were calculated using the Scott-Knott test [47]. Each cell depicts the median score;

, lighter , light, lightest and

white colored cell denotes the first, the second, the third, fourth, and lowest rank, respectively. The rank ranges from 1 to 5.

Daaset | bioected ] Busembe En;;‘;‘eble Accuracy (+)| F1 (4) | SPD (- | EOD (- | AOD (| DI (| T | Mot Aequacy | M Farmness
TM-XGB 0.82| 0.75 0.14 2 1.4
TM-ADB | Boosting 081 0.75| -0.81 -0.77 0.70| -2.56| 0.15 3.5 4.4
TM-GBC 082 0.74| -0.71 -0.57 0.54| -2.09| 0.14 3.5 22
Titanic Sex TM-RF Bagging 0.81| 0.73| -0.68 -0.58 0.52| -2.30 5 3
TM-ET 082 0.75| -0.80 -0.75 0.68| -2.76 | 0.15 2 4
TM-VT | Voting -0.74 -0.51 0.54| -2.10| 0.12 1 2.8
TM-STK | Stacking 082 0.76| -0.76 -0.63 0.58 | -2.40 3 2.6
AC-XGB -0.18 -1.14 1 1.6
AC-ADB | Boosting 086 0.66| -0.20 -0.15 0.14| -1.32 | 0.12 2.5 4.4
AC-GBC 086| 068 -0.19 -0.14 0.11| -1.25| 0.12 2 3
Adult Sex AC-RF Bagging 085| 0.67| -0.18 -0.13 0.11| -1.26| 0.12 5 3.4
AC-ET 084 065| -0.19 -0.10 0.10 0.13 4 2.8
AC-VT Voting 0.85| 0.66 -0.13 0.09| -1.29| 0.12 4.5 34
AC-STK | Stacking 086 0.68| -0.18 -0.11 0.09| -1.28 | 0.11 2.5 3.6
BM-XGB 0.93| 0.70 0.15 0.08 0.08 | 0.77 1.5 22
BM-ADB | Boosting 0.88| 0.49 0.15 0.18 0.12| 1.04| 0.11 4.5 4.4
BM-GBC 0.89| 0.48 0.14 0.12 0.09| 1.09| 0.10 4.5 3.8
Bank Marketing | Age BM-RF Bagging 0.89| 0.55 0.18 0.09 0.09| 0.80| 0.07 2.5 3
BM-ET 091| 0.54 0.14 0.06 0.06| 0.82| 0.07 2.5 2.2
BM-VT Voting 0.06 1 1.2
BM-STK | Stacking 1.5 1.2
GC-XGB 15 1.8
GC-ADB | Boosting 3 4.4
GC-GBC 3 2.6
German Credit Sex GC-RF Bagging 2 2
GC-ET 3 34
GC-VT Voting 2 2.6
GC-STK | Stacking 2 2.8

fairness of ensemble models using a diverse set of metrics.
Table III shows the mean fairness for all ensembles. Figure 1
illustrates the cumulative fairness for all 168 models.

Our findings showed dataset-specific fairness patterns for
ensemble models; however, some exhibited more unfairness
than others. We used the Scott-Knott ranking test [47] to
compare the fairness and accuracy of the ensemble types and
determine if the differences are significant. The test assigns
a rank to the classifiers based on their performance, with a
higher rank indicating better results. In our experiments, the
classifiers were ranked from 1st to Sth (some with the same
rank) for each metric.

Finding 1: Among all the ensemble models, XGBoost
exhibits the best accuracy-fairness trade-off.

Table III shows varying fairness performance among the
ensemble classifiers across different datasets. Interestingly, we
observe that fairness can be highly inconsistent even within the
same ensemble type. For instance, XGBoost has the highest
rank in 8 out of 10 fairness metrics for the highly biased
Titanic and Adult datasets, with a mean fairness rank of 1.4 and
1.6, respectively. On the other hand, AdaBoost has the lowest
rank in 13 out of 16 fairness metrics across all the datasets.
Additionally, we observe that XGBoost stands out with high
accuracy and fairness across all ensemble models, contrary to
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typical inverse behavior seen in ML models. For example,
in the Titanic dataset, the average performance change for
the XGBoost classifier in accuracy and fl score is less than
0.01. However, their cumulative mean fairness is 14% more
than the next most fair model (GBC) in Titanic. For the
other datasets, we observe a similar pattern; however, the
difference is lesser due to low unfairness in the dataset. Upon
further investigation, we found that boosting method and base
learner design is responsible for the fairer performance of
XGBoost. Homogeneous ensembles use decision trees as the
base learner, and the construction of these trees differs among
them. For example, the depth of the decision tree in AdaBoost,
GradientBoosting, XGBoost is one, three, and six, respectively.
Lower tree depth means fewer features are selected, which has
been shown to often increase unfairness [13, 48]. Importantly,
we found that the fairness of an ensemble is determined by
the composition of fairness within these base learners and
the learning method (boosting, bagging, etc.). In the next
section, we delve deeper into the properties of base learners
to understand how to create fair ensembles.

Finding 2: Fairness measures show more instability
compared to accuracy metrics.

Prior works have shown that ensembles improve the stability
of accuracy metrics by aggregating multiple learners trained



* Model 1 Model 2

>

Titanic Adult

Model 3

Model4 < Model5 + Model 6

Fig. 1: Cumulative bias and performance of all ensembles. The bars represent mean values, and the dots the models

on subsets of data (bootstrap sampling) [44, 49]. Intuitively,
we explore the variance exhibited by fairness metrics in
ensembles. Interestingly, despite aggregating multiple learners,
the stability of fairness measures in ensembles still suffers,
especially in smaller datasets. This is attributed to the change
in data distribution after random train/test splits in smaller
datasets [11, 13]. For larger datasets (Adult, Bank Marketing),
the standard deviation for all fairness measures is less than
0.02. For smaller datasets, the average standard deviation of
the metrics is shown in Figure 2. Firstly, we observe that the
stability of fairness metrics remains consistent between all the
ensembles for a specific dataset. Furthermore, we observed
that group fairness measures exhibit higher variability than
individual fairness measures (TI). Surprisingly, heterogeneous
models also exhibit instability despite using dissimilar learners
to reduce variance. From Figure 3, we also see that the
volatility in fairness metrics is greater than in accuracy metrics
for homogeneous models. Given a random train/test split, it
might cause the model to seem fairer than it is. Hence, even
with improved stability in fairness compared to non-ensemble
methods, developers should evaluate the training set and repeat
training over multiple runs in ensembles.

Finding 3: Libraries do not provide API support to
measure fairness of base learners in ensembles

Biswas and Rajan [13] discussed that hyperparameter opti-
mization goals induce unfairness. In the case of heterogeneous
ensemble models, the developer must carefully choose the
number and type of individual base learners. Libraries do
not provide any recommendations to developers, who try to
select a diverse set of learners to improve accuracy. However,
this might not always result in a fair ensemble. For instance,
removing a GaussianNB learner from the BM-STK3 model
improved its Statistical Parity Difference (SPD) from 0.13 to
0.11 while also increasing accuracy. Heterogeneous ensemble
models, such as Voting models that use weighted voting and
Stacking models that use a meta-learner to determine the best
weighing configuration of learners, can be challenging to train
fairly since libraries do not provide API support to measure the
fairness of base learners, especially in combinations with other
learners at the ensemble level. Hence, developers have little
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Fig. 2: Standard deviation of fairness metrics over multiple
experiments. Other datasets have very low standard deviation.

information on how to weigh and select individual learners,
which can lead to unfair ensembles. Similarly, understanding
fairness composition in base learners of homogeneous models
can help the developer identify fairness issues such as bias in
specific features (e.g., decision tree learners in random forest
randomly select features). Therefore, API support to measure
fairness in base learners can help developers better understand
& detect unfairness in ensembles.

B. How does fairness compose in ensembles?

In this section, we investigate the composition of fairness
in ensembles. We posit that the underlying unfairness of
ensembles is a product of the composition of fairness in base
learners and the learning method. All homogeneous models
use a decision tree as the base learner, whereas heterogeneous
models can be constructed with any ML classifier. We investi-
gate how fairness composes in these base learners and how it is
propagated by the learning techniques (RQ2). In general, our
findings show that the complexity of base learners significantly
impacts the fairness of ensembles and that more research is
needed to develop fair learning techniques in ensembles.

Finding 4: The unfairness of homogeneous ensembles is
caused by the complexity of the base learner and dataset
characteristics.

In Figure 3, we plotted the most biased and the least biased
homogeneous ensembles in our benchmark. We see how the
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Fig. 3: Composition of fairness in homogeneous ensembles with respect to base learners. Default no. of trees: T100

fairness of the base learners directly contributes to the fairness
of ensembles during training. However, we observe different
fairness composition patterns in terms of the datasets. For
example, in Titanic, the fairness of the boosting ensembles
improves, while the opposite is observed for some fairness
metrics in German Credit. The variation in fairness patterns
is also seen in specific classifiers. From Figure 1, we observe
that all TM-XGB models show similar bias except TM-XGB4.
We investigate the difference in unfairness by comparing all
the parameters of the base learner decision tree with the other
XGB models and found that TM-XGB4 uses a shallow decision
tree with max_depth : 2, which is causing the unfairness to
amplify. The model construct is shown below:

1 model = XGBClassifier(n_estimators= 500, max_depth=2,
subsample=0.5, learning_rate=0.1)

MaxDepth sets the maximum depth of the decision tree. The
depth of the tree is defined as the number of splits (nodes),
where the feature to be split is chosen based on the highest
information gain among the features. Deeper trees are more
complex and reduce errors [50]. For XGBoost models, the
default depth is 6. Our analysis showed that the protected
attribute (Sex) has the highest information gain among all
the features in the Titanic dataset. Therefore, the protected
attribute is the most important feature to split on at the
tree’s root, resulting in a high degree of unfairness in TM-
XGB4. Base learners in all boosting models use the best
feature to split, which improves accuracy. However, it has
been shown that unfairness is encoded in specific features
[51]. If these features are also among the best features of
a dataset, a shallower ensemble will be more unfair due
to a reduced number of features. This corroborates similar
observations in the literature [12, 48]. We observe the same
pattern for all boosting models. For example, AdaBoost and
GradientBoosting exhibit more bias than XGBoost because of
shallower base learners (1 and 3, respectively). In Figure 1,
TM-GBC1 is fairer because the learner is deeper (depth:5).

Finally, further analysis of the properties of a decision tree
suggests that regularization parameters like min samples leaf
and max-leaf nodes also impact tree depth, hence affecting the
fairness of the ensemble. Therefore, it is important to carefully
balance the complexity of the tree-based base learners for
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homogeneous models with the fairness outcomes, especially
with the underlying properties of the data.

Finding 5: Gradient-based composition propagates more
unfairness compared to Adaptive boosting models.

We have established that base learners and the underlying data
properties influence the unfairness of homogeneous models.
However, boosting models also use a learning technique to
improve the model’s predictions sequentially. XGBoost and
GradientBoosting models use gradient-based optimization and
AdaBoost uses an adaptive weighting technique. We compare
these techniques by training the boosting models on the same
base learner decision tree (depth:6). We only use XGBoost and
choose this depth in our experiment since our analysis (Table
IIT) showed that it is the most fair boosting model. The results
are shown in Figure 4. For all the models except GC1, we
see that adaptive learning is fairer than gradient optimization.
We use the Scott-Knott rank test to test statistical significance.
Accordingly, we observed that adaptive learning outperformed
gradient optimization in all datasets except German Credit,
where the difference was not statistically significant. Con-
sequently, we can see that adaptive learning propagates less
bias in highly biased datasets. Our analysis should help guide
further research into designing fair learning techniques for
boosting ensembles.
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TABLE IV: Ensemble-related hyperparameters (HP) that can affect the design of fair ensembles

HP Values Default ADB | GBC | XGB | RF | ET | Voting | Stacking
n_estimators Total number of trees/boosting rounds 100 v v v v |V
booster Booster type: gbtree, gblinear, dart gbtree v
bootstrap Data sampling with replacement RF: True, Others: False v v v |V
voting Voting Type: soft, hard hard v
estimators Base learners for the ensemble ADB: DecisionTree, Others: none | v v
final_estimator | Meta-learner to combine learner predictions Logistic Regression v
V. FAIR ENSEMBLES DESIGN § Bias f
o ::
In §IV, we found that base learners of ensembles prop- 5 F ==
agate bias. Many bias mitigation techniques applied during & Ac :a
model training (inprocess) have been successful [24, 25, 32]. %" Bias ———l
Techniques applied during the model training phase can assist 3 n g”
developers in improving the fairness of ML software. These _Eé Ace ]
works have also established the role of hyperparameters in a —
mitigating and amplifying fairness bugs (unfairness) in ML . Bias
software. If we understand and identify what ensemble param- ;(3 F1 f
eters and design choices affect the fairness, we can mitigate Acc ‘E
inherent bias in ensembles. Moreover, it will help developers, Bins —
and libraries better explain fairness bugs in the ensemble hy- g — -
perparameter space. This section explores the hyperparameter £ F ;5
design space for ensembles to boost fairness performance. Acc f'
We have found that some hyperparameters directly affect the 1s 125 1 075 05 025 0 0.25

fairness of ensembles. Specifically, we evaluate how ensembles
can be designed to be fair using ensemble hyperparameters
summarized in Table IV. We use the Scott-Knott test to
determine the significance of our results. Our findings provide
a comprehensive review of all ensemble hyperparameters.

Finding 6: Developers should carefully choose dropout
regularization to balance fairness and overfitting.

Our analysis shows that dropout impacts fairness in relation
to the underlying data properties. Vinayak and Gilad-Bachrach
[52] proposed DART, a dropout technique derived from deep
neural networks, for boosted trees. An ensemble of boosted
regression trees suffers from over-specification, i.e., the trees
added at the end have little contribution to the final result
[52]. DART alleviates this by constructing the next tree from
the residuals of a random sample of the previous trees. In XG-
Boost, the rate-drop ([0-1]) parameter controls this sampling
rate. No trees are dropped on the lower end of this rate, while
on the higher extreme, all trees are dropped. We investigate the
efficacy of DART with ratedrop = 0.5, in reducing unfairness
in boosting models by comparing it with the default XGBoost
booster gbtree. We analyze the change in performance and
fairness of dropout in Figure 5.

From Figure 5, we can see that dropout can impact the
fairness of boosting models. For example, in Adult dataset,
initial trees exhibit less unfairness than the latter. Using
dropout, the subsequent trees only learn on a random sample
of initial trees, which in this case are fairer. This improves
the fairness of the models. The opposite is observed in Titanic
dataset. In both scenarios, the change in accuracy is less than

D Model 6 [EModel 5 Model 4 Model 3 Model 2 EModel 1

Fig. 5: Change in accuracy and total bias when using DART.
A negative value denotes lower fairness & accuracy

0.1, but a significant impact is seen on fairness. Therefore,
developers should be cautious about the effect of regulariza-
tion on fairness. More research is needed to understand the
fairness-overfitting trade-off and develop fair regularization.

Finding 7: Randomness in feature splitting does not
improve fairness in bagging models.

Random Forest improves the variance of the model by
introducing randomness to the process of model building by
randomly selecting features. Extra Trees introduces additional
randomness by randomly finding the splits for each feature and
then selecting the best split from them, i.e., independent of the
target variable. In contrast, Random Forest finds the best split
for each feature which has been shown to improve accuracy
[53]. However, no work has studied its effect on fairness. Here,
we ask whether randomness at the feature splitting level causes
bagging models to be unfair.

To investigate this, we compare Random Forest and Extra
Tree models in our benchmark. We keep the rest of the
parameters and data split the same. Each model is run ten
times, and the mean is reported in Table V. For all datasets
except German Credit, the test showed that Extra Tree models
with random splits were more biased compared to optimal
splits (RF). This is a key finding because this suggests that
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TABLE V: Mean total fairness in Random Forest (RF) and
ExtraTrees (ET) models. * denotes the top rank based on the

TABLE VI: Soft vs Hard Voting in AC-VT5

Soft Hard

Scott-Knott significance rank test for each dataset. Voting] LR| RF| KNN| DT||Voting] LR| RF|KNN| DT

Acc 0.83] 0.78] 0.81] 0.81] 0.83|[ 0.81] 0.78] 0.81| 0.81] 0.81

Titanic Adult Bank Marketing German Credit F1 || 056 041] 044] 0.43]0.56|] 0.44] 041| 0.41] 0.45| 0.44

RF* ET RF* ET RF* ET RF ET SPD || -0.14| -0.06/ -0.08 -0.07|-0.14|| -0.07|-0.06|-0.06|-0.08|-0.07

Modell -204 -196 -133 -132 L6 135 003 0.02 EOD|| -0.14 0 0 0[-0.14]) -0.03]  0/|-0.03]-0.04/-0.03

Model2 -443 -537 -129 -130 137 141 043 0.29 AOD 0.1 0.01] 002 002 01| 0.02]0.01] 0.02] 0.03] 0.02

Model3 -338 413 -132 -145 096 107 0.02 -0.04 DI || -1.43] -0.64| -1.13| -1.02[-1.43|| -1.08[-0.64|-1.11]-1.02[-1.08

Model4 -242 -246 -121 -129 136 1.35 -0.16 -0.09 TI 0.17 021 0.2 02]0.17 0.2] 0.22] 0.21 02 02
Model5 -2.98 -338 -148 -151 161 151 0.00 -0.04
Model6  -2.61 261 -147 -141 098 126 -0.04 028

a split chosen independently of the target is still more unfair
than an optimal split. However, in the fairer dataset (German
Credit), we observe no difference in fairness. Regarding bias
mitigation methods, our results suggest randomness in feature
split-point might not be an effective way to tackle bias in
decision tree-based models.

A Voting classifier is an ensemble method where the predic-
tion is based on the probabilities of each base learner within
the ensemble. Voting classifiers are of two types, Soft and
Hard Voting. In hard Voting, the label with the majority of
votes from the base learners is the final prediction, whereas,
in soft voting, it is based on the average of the probabilities
of each output class. If the average probability of a class
is less than 0.5, class O is predicted, and vice-versa. We
investigate the effect of the voting type on fairness and found
that the uncertainty in the model prediction can have a large
impact on fairness. For instance, AC-VT5 uses soft voting
with Logistic Regression (LR), Random Forest (RF), KNN,
and Decision Tree (DT) as base classifiers. As shown in Table
VI, DT introduces significant unfairness when used in soft
voting compared to hard. We found that DT has an output
class probability of either 1 or O while other classifiers are in
the range [0,1].

Finding 8: The uncertainty in classifiers can have a large
impact on fairness in voting classifiers.

Class 0 Class 1

14000
3000

12000 -
2500

10000 -
2000

8000
6000 4 1500
4000 10001
2000 500
0- 0

05 06 07 08 09 05 06 07 08 09

Fig. 6: Frequency of output class probabilities for base learners
in AC-VTS5

Figure 6 shows the output probabilities for AC-VT5. We
observe that DT has higher extreme probabilities compared
to others. In this case, the average is skewed by the extreme
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probabilities of DT. This changes the prediction for 558 out
of 9049 test samples. And since DT is less fair than other
classifiers, the overall unfairness also increases. For hard
voting, equal weight is given to each classifier. In that case,
the other three classifiers, which are fairer, won the majority
vote. For some models, soft voting was fairer than hard, e.g.,
AC-VT3, which shows that base learners’ uncertainties can
impact fairness in both voting types. This suggests the need to
develop frameworks to measure model uncertainties and their
fairness at a component level to aid developers in designing
fair voting ensembles. Our analysis should also encourage
further research in fairness-aware weighting techniques to
handle fairness issues arising from model uncertainties.

All of the Titanic ML stacking models shown in Figure
1 exhibit similar bias except TM-STKS5, which is the least
biased model for all fairness metrics except Thiel Index (TI).
On closer inspection, we found out that TM-STK5 uses a
two-layered stacking approach where a second layer of base
learners act as the meta-learner, which causes the model to be
fairer. The model construct is shown below:

Finding 9: Two-layer stacking can significantly reduce
unfairness.

I layer_one_estimators [('rf_1", RandomForestClassifier (
n_estimators=40, random_state=42)) ,( 'knn_1",
KNeighborsClassifier (n_neighbors=6))]

> layer_two_estimators [('rf_2', RandomForestClassifier (
n_estimators=40, random_state=42)) ,( 'xg_2"',
XGBClassifier (objective = 'binary:logistic'
colsample_bytree 0.8, learning_rate 0.3,
max_depth 7, min_child_weight 3, n_estimators
100, subsample 0.6))]

3 layer_two StackingClassifier (estimators=

layer_two_estimators , final_estimator=XGBClassifier (

n_estimators 100))

= StackingClassifier(estimators=

layer_one_estimators , final _estimator=layer_two)}

4 model

We validate our finding by training all stacking models
in our benchmark using this two-layered nested stacking ap-
proach. To ensure consistency, we did not change the kernel’s
feature set or any preprocessing method. The results are shown
in Figure 7. For all stacking models in our benchmark, every
model significantly improved in all fairness measures except
Thiel Index, which is typical as previous works [8, 54] have
shown that achieving fairness in terms of all fairness metrics is
often difficult. Moreover, accuracy measures did not degrade
significantly. For example, TM-STK6 improved SPD scores by
28% while accuracy dropped only 4.68%. Overall across all
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Fig. 7: Performance & fairness changes after using two-layered
stacking (Top) and XGB as meta-learner (Bottom). A positive
change indicates performance/fairness increase and vice-versa

datasets, the accuracy score dropped by 6.50% while the SPD
improved by 31.8%.

In Stacking, the first layer uses a list of base learners to
generate a set of predictions and a meta-learner to learn from
them. However, instead of using a single classifier as the meta-
learner, the predictions are fed into another set of base learners
in a two-layered approach. This ensures that the outcome is
not based on a single meta-learner. Therefore, the second layer
of learners creates a new set of predictions, which are then
fed into the second layer’s final meta-classifier. We compare
this approach to simply using an ensemble model (XGB) as
the meta-learner in default Stacking models and found similar
patterns in fairness measures (Figure 7 bottom). Our results
did not significantly vary between using other ensembles as
the meta-learner. This supports observations that ensembles are
fairer than standalone classifiers. Therefore, developers should
use an ensemble as a meta-learner or the two-layer approach
to improve the fairness of Stacking models.

VI. DISCUSSION

In this study, we undertook the important task of understand-
ing the composition of fairness in ensemble machine learning.
Fairness of ML algorithms has been extensively studied, start-
ing from empirical evaluation and identification [12, 13, 48]
to mitigation [25, 37, 55, 56] and testing [1, 14, 57, 58].
However, no work has explored the composition of fairness
in ensemble models, although ensembles cover the majority
of prior SE works and open-source [12, 13, 23]. We showed
that considering ensemble models as monolithic classifiers
leaves the opportunity to identify the root cause of unfairness.
Consequently, our work has shown that fair ensembles can
be designed without using bias mitigation techniques. Our
research also identifies root causes of unfairness in different
ensembles and their interplay with the input space in the
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pipeline [59], which would guide fairness bug localization and
repair in ensemble learning. For example, we report fairness
patterns in individual learners that can induce bias in ensem-
bles such as tree depth, minimum leaf node samples, etc. These
can also be leveraged for fairness-improving interventions such
as feature selection, data preprocessing, etc. Overall, our result
would draw attention to the fairness of ensembles which are
popular learning algorithms but mostly overlooked by the
community.

Moreover, research in SE showed the impact of hyperparam-
eters on fairness and their role in helping developers mitigate
bias during model training [12, 25, 32]. We extend that to
explore the hyperparameter space for ensembles to guide
developers to design fair ensembles using currently available
compositions and configurations. Our findings also made direct
design suggestions for enhancing specific ensemble library
APIs for feature splitting, dropout regularization, and fairness-
accuracy trade-offs. This should encourage the development
of fairness-aware regularization techniques and investigate the
trade-off between fairness mitigation and overfitting. We found
that many ensemble models do not have library support to
monitor the fairness of individual learners. Finally, our work
would encourage the development of tools and API support to
improve the transparency of ML software to address fairness
concerns.

VII. THREATS TO VALIDITY

Benchmark: We ensure the quality of the benchmark by
collecting only high-quality kernels from Kaggle (at least five
upvotes). Additionally, we only consider runnable models,
include the protected attribute in training, and have an accuracy
greater than 65%, similar to [13]. Finally, we select the top 6
(upvotes) models for each ensemble type.

Sampling Bias: To the best of our knowledge, this is the
most extensive review of popular ensembles. Moreover, con-
clusions are supported by statistical tests across four datasets.
However, they may change slightly if other datasets are used.

Generalizability: To avoid the threat of non-generalized
findings, we conduct experiments on four different datasets
for each ensemble type and compare across multiple ensemble
algorithms for both boosting and bagging. Moreover, we use
multiple fairness metrics and verify our results by running the
experiment multiple (ten) times and using the mean of the
values.

VIII. RELATED WORK

a) Fairness in ML classification: The ML community
has proposed multiple methods to measure [2, 4, 5, 8, 27, 60]
and mitigate unfairness in ML models [5, 8, 9, 24, 61].
However, most of these works have focused on the theo-
retical evaluation of fairness. Recently, the SE community
has increasingly shown interest in fairness in ML software
[10]. Empirical studies have investigated the characteristics
of biased models and unfairness in ML pipelines, compared
mitigation strategies and developer concerns about fairness
[11-13, 62]. Some research in SE has focused on fairness



testing and verification and uncovering fairness violations
[1, 14, 57, 58, 63]. Finally, a body of work has identified
unfairness in data and proposed appropriate mitigation tech-
niques [25, 37, 55, 64].

b) Ensemble Fairness: Grgic-Hlaca et al. [31] investi-
gated the impact of fairness in the random-selection-based
ensemble. They showed theoretically that its fairness at the
ensemble level is always fairer than its components. Wang
et al. [65] studied the composition of fairness in multi-
component recommender systems and presented conditions
under which individual components compose fairness. AdaFair
[30] proposed a fairness-aware AdaBoost model where un-
fairly classified instances were up-weighted. A recent work
[29] analyzed and compared seven ML models to show that
ensembles were fairer than individual classifiers. Feffer et al.
[28] conducted an empirical study to analyze modular ensem-
bles. They developed a library to find the best configuration
using any combination of ensembles and mitigators. In Fair
Pipelines [15], the authors explored the propagation of fairness
in multi-stage pipelines where a set of decisions impacts the
final result, e.g., the hiring process. MAAT [56] proposes an
ensemble approach to improve fairness performance by sepa-
rately combining models optimized for fairness and accuracy.
Finally, Tizpaz-Niari et al. studied the parameter space of ML
algorithms and its impact on fairness [32]. This work is the
closest to our study; however, it proposed a testing approach to
tune the parameters for achieving fairness and did not consider
ensembles (except random forest). Our work has focused on
comprehensively evaluating fairness composition in all popular
ensemble models and how the different algorithmic design
configurations (parameters) impact fairness.

IX. CONCLUSION

Ensembles are widely used for predictive tasks due to
superior performance. However, most approaches to measuring
fairness and mitigation focus on single classifiers. In this paper,
we conduct an empirical study to evaluate the composition of
fairness in popular ensemble techniques. The results showed
that base learners induce bias in ensembles and that we
can mitigate inherent bias in ensembles by using certain
base learner configurations and appropriate parameters. Lastly,
works have shown the need to support developers during
model training in mitigating bias. Our analysis of the hyper-
parameter space should help developers build fairness-aware
ensembles and automated tools to detect bias in ensembles.
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