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Abstract—Fairness of machine learning (ML) software has
become a major concern in the recent past. Although recent
research on testing and improving fairness have demonstrated
impact on real-world software, providing fairness guarantee in
practice is still lacking. Certification of ML models is challenging
because of the complex decision-making process of the models.
In this paper, we proposed Fairify, an SMT-based approach to
verify individual fairness property in neural network (NN) models.
Individual fairness ensures that any two similar individuals get
similar treatment irrespective of their protected attributes e.g.,
race, sex, age. Verifying this fairness property is hard because of
the global checking and non-linear computation nodes in NN. We
proposed sound approach to make individual fairness verification
tractable for the developers. The key idea is that many neurons
in the NN always remain inactive when a smaller part of the
input domain is considered. So, Fairify leverages white-box access
to the models in production and then apply formal analysis based
pruning. Our approach adopts input partitioning and then prunes
the NN for each partition to provide fairness certification or
counterexample. We leveraged interval arithmetic and activation
heuristic of the neurons to perform the pruning as necessary.
We evaluated Fairify on 25 real-world neural networks collected
from four different sources, and demonstrated the effectiveness,
scalability and performance over baseline and closely related work.
Fairify is also configurable based on the domain and size of the
NN. Our novel formulation of the problem can answer targeted
verification queries with relaxations and counterexamples, which
have practical implications.

Index Terms—fairness, verification, machine learning

I. INTRODUCTION

Artificial intelligence (AI) based software are increasingly

being used in critical decision making such as criminal

sentencing, hiring employees, approving loans, etc. Algorithmic

fairness of these software raised significant concern in the recent

past [1–8]. Several studies have been conducted to measure

and mitigate algorithmic fairness in software [9–18]. However,

providing formal guarantee of fairness properties in practice

is still lacking. Fairness verification in ML models is difficult

given the complex decision making process of the algorithms

and the specification of the fairness properties [19–22]. Our

goal in this paper is to enable the verification in real-world

development and guarantee fairness in critical domains.

Albarghouthi et al. and Bastani et al. proposed probabilistic

techniques to verify group fairness [20, 22]. Group fairness

property ensures that the protected groups (e.g., male-vs-female,

young-vs-old, etc.) get similar treatment in the prediction. On

the other hand, individual fairness states that any two similar

individuals who differ only in their protected attribute get

similar treatment [21, 23]. Galhotra et al. argued that group

fairness property might not detect bias in scenarios when same

amount of discrimination is made for any two groups [23],

which led to the usage of individual fairness property in many

recent works [1, 8, 23–25]. John et al. proposed individual

fairness verification for two ML classifiers, i.e., linear classifier

and 2) kernelized classifier e.g., support vector machine [21],

which is not applicable to neural networks.

We propose Fairify, the technique to verify individual

fairness of NN models in production, i.e., already trained

models. Both abstract interpretation [26–30] and satisfiability

modulo theories (SMT) based techniques [31–33] have shown

success in verifying different properties of NN such as

robustness. However, fairness verification of NN on real-world

models has received little attention. We adopted SMT based

verification since it enables practical benefits, e.g., solving

arbitrary verification query and providing counterexamples.

Urban et al. proposed Libra, an abstract interpretation based

dependency fairness certification for NN [27]. The approach

can not check relaxation of fairness queries and does not

provide counterexamples in case of a violation. Fairify on the

other hand provides configurable options to the developers

enabling fairness verification of NN in practice.

Verifying a property in NN is challenging mainly because

of the presence of non-linear computation nodes i.e., activation

functions [27, 32]. With the size of the NN, the verification

task becomes harder and often untractable [34, 35]. Many

studies have been conducted to verify NN for different local

robustness properties [29, 31, 36]. However, the individual

fairness property requires global checking which makes the

verification task even harder and existing local property verifiers

can not be used [37, 38]. To that end, we propose a novel

technique that can verify fairness, i.e., provide satisfiability

(SAT) with counterexample, or show UNSAT in a tractable time

and available computational resource. Fairify takes a trained

NN and the verification query as input. If the verifier can

verify within the given timeout period, the output should be

SAT (violation) or UNSAT (certification). When the verifier

is unable to show any proof within the timeout, the result is

UNK (unknown). Our evaluation shows that using state-of-

the-art SMT solver, we cannot verify the fairness property

of the NN models in days; however, Fairify can verify most

of the verification queries within an hour. Fairify makes the
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verification task tractable and scalable by combining input

partitioning and pruning approach.
Our key insight is that the activation patterns of the NN used

in practice are sparse when we consider only a smaller part of

the input region. Therefore, we perform input partitioning to a

certain point and divide the problem into multiple sub-problems

which result into split-queries. To show the problem as UNSAT,

all the split-queries have to be UNSAT. On the other hand, if

any of the split-queries gives SAT, the whole problem becomes

SAT. Because of this construction of the problem, Fairify is able

to provide certification or counterexample for each partition

which has further value in fairness defect localization.
The input partitioning allowed us to perform static analysis

on the network for the given partition and identify inactive

neurons. We applied interval arithmetic to compute bounds of

the neurons. In addition, we run individual verification query

on each neuron to identify the ones that are always inactive.

Since the inactive neurons do not impact the decision, removing

those neurons gives a pruned version of the network that can

be verified for the given partition. This sound pruning is

lightweight, sound, and achieves high pruning ratio, which

makes the verification task tractable.
We further improve the efficiency of the approach by ana-

lyzing activation heuristics. We conduct lightweight simulation

to profile the network and find candidate neurons that remain

almost always inactive but could not be removed through sound

pruning. Thereby, we propose layer-wise heuristics that suggest

inactive nodes; if necessary given the time budget. Although

this pruning is based on heuristics, our evaluation shows that

a conservative approach provides much improvement in the

verification with negligible loss of accuracy. Another novelty in

this idea is that the developer can choose to deploy the pruned

(and verified) version of the NN. Thus, the pruned NN would

provide sound fairness guarantee with little loss of accuracy.
After partitioning and reducing the complexity of the

problem, we leverage a constraint solver to verify the split-

queries on the pruned networks. Then we accumulate the results

for each partition to provide verification for the original query.

We evaluated Fairify on 25 different NN models collected from

four different sources. We collected appropriate real-world NNs

from Kaggle [39] which are built for three popular fairness-

critical tasks and took the NNs used in three prior works in the

area [8, 24, 27]. Our results show significant improvement over

the baseline with respect to utility, scalability, and performance.

The main contributions of our work are as follows.

1) Fairify is the first to solve the individual fairness verifi-

cation problem for already trained NN using SMT based

technique.

2) Our formulation of the problem enables verification of

different relaxation of the fairness property. Then we

proposed two novel NN pruning methods designed to

solve those queries effectively.

3) The approach can be integrated in the development

pipeline and provides practical benefits for the developers,

i.e., certification or counterexample for each input partition

and targeted fairness certification.

4) We implemented Fairify using Python and openly available

constraint solver Z3. We also created a benchmark of

NN models for fairness verification. The code, models,

benchmark datasets, and results are available in the self-

contained GitHub repository [40] 1 that can be leveraged

by future research.

The rest of the paper is organized as follows: §II describes the

background and §III introduces fairness verification problem

in NN. §IV provides detailed description of the approach.

§V describes the results and answers the research questions.

Finally, §VII describes the related work, §VI discusses threats

to validity, and §VIII concludes.

II. PRELIMINARIES

Neural Networks (NN). We consider NN as a directed

acyclic graph (DAG), where the nodes hold numeric values

that are computed using some functions, and edges are the data-

flow relations. The nodes are grouped into layers: one input

layer, one or more hidden layers, and one output layer. More

formally, a NN model M : Rn → R
m is a DAG with k layers:

L1, L2, . . . , Lk where L1 is the input layer and Lk is the output

layer. The size of each layer Li is denoted by si and layer Li

has the nodes v1i , v
2
i , . . . , v

si
i . Therefore, s1 = n (number of

inputs) and sk = m (number of output classes). In this paper, we

consider the fully connected networks because of its success in

real-world tasks [8, 41, 42], where the value of a node is given

by vji = NL(Σtwi−1,t ·vti−1+bji ), where a node vji is computed

by the weighted sum WS = Σtwi−1,t · vti−1 + bji , and then

applying a non-linear activation function NL. WS is computed

from the neurons of preceding layer, associated weights of

incoming edges wi−1,t, and bias bji . The weights and biases are

constant real values in a trained NN, which are learned in the

training phase. In practice, the ReLU activation is widely used

as the NL function because of better convergence, efficient

computation, and performance. Therefore, following the prior

works in the area [27, 32, 41, 42], we also considered ReLU

based NN. ReLU is given by Eq. (1) which is a piecewise-linear

(PL) function.

ReLU(x) =


0 if x ≤ 0 ; inactive neuron

x if x > 0 ; active neuron
(1)

The neurons in the input layer accept data input values,

which are passed to the following layers through the edges.

Each neuron in the hidden and output layer computes its value

by applying the weighted sum (WS) function and then the PL
function. The output neurons may have different PL functions

(e.g., Sigmoid, Softmax) that computes the predictive classes

in classification problem.

III. FAIRNESS VERIFICATION

In this section, we define the individual fairness verification

problem and compare with closely related NN verifications.

NN Verification. A property φ(M) of the NN model M
defines a set of input constraints as precondition φx, and output

1https://github.com/sumonbis/Fairify
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constraints as postcondition φy. Several safety properties of

NN have been investigated in the literature [43, 44]. One of the

most studied property is adversarial robustness [31, 45]. Given

a model M and input x0, adversarial robustness ensures that a

minimum perturbation to x0 does not change the label predicted

by the model, i.e., ∀x. ||x0 − x|| ≤ δ ⇒ M(x0) = M(x).
The property ensures local safety as it searches for a violation

only in the neighborhood of x0 with a distance δ. Different

approaches have been proposed to guarantee safe region around

the given input [44, 46] or generate targeted attacks that violate

the property [43, 44, 47]. Unlike the robustness property,

individual fairness requires global safety guarantee.

A. Individual Fairness

The group fairness property considers average-case fairness,

where some notion of parity is maintained between protected

groups. Hence, this property fails to detect bias if same amount

of discrimination is made between two groups [23]. Individual

fairness considers worst-case fairness, i.e., all similar input

pairs get similar outcome [21, 23]. Our goal is to provide

fairness guarantee which makes individual fairness property

ideal for checking.

Suppose, D is a dataset containing n data instances, where

each instance x = (x1, . . . , xt) is a tuple with t attribute values.

The set of attributes is denoted by A = {A1, . . . , At} with

its domain I , where Ai = {a | a ∈ Ii}. The set of protected

attributes is denoted by P where P ⊂ A. So, individual fairness

is defined as follows, which is widely used in the literature

[1, 8, 24, 25].

Definition 1: (Individual Fairness) The model M is

individually fair if there is no such pair of data instances

(x, x) in the input domain such that: 1 xi = xi , ∀i ∈ A \P ,

2 xj = xj , ∃j ∈ P , and 3 M(x) = M(x).
Intuitively, individual fairness ensures that any two indi-

viduals who have same attribute values except the protected

attributes, get the same prediction. If there exists such pair, the

property is violated and (x, x) is considered as an individual

bias instance. For example, suppose while predicting income of

individuals (> $50K or not), race is considered as the protected

attribute. Definition 1 suggests that if two individuals (x, x)
with different race but exact same non-protected attributes, e.g.,

occupation, age, marital-status, are predicted to the different

class, then the model is unfair.

The above definition is similar to the global robustness

property introduced by [32, 38]. In global property checking,

both the inputs x and x can obtain any value within the

domain and thereby is significantly harder to check. Whereas

in local robustness an input is fixed and checking in the

neighborhood is sufficient [37, 38]. To check such global

property, two copies of the same NN are encoded in the

postcondition to check M(x) = M(x). Hence, the approaches

to verify local robustness properties (e.g., Reluplex) can not

verify individual fairness [37, 38]. Gopinath et al. proposed

a data-driven approach to assess global robustness [37]. The

approach requires labeled training data to cluster inputs and

then casts the problem as local robustness checking. However,

our goal is to verify individual fairness statically, i.e., we do

not require training data or an oracle of correct labels.

In practice, definition 1 can be a weaker constraint, and it

can be relaxed to ensure further fairness of the model. The

attributes of x and x are said to be relaxed when they are not

equal. The constraint 1 above is relaxed on the non-protected

attributes so that instead of equality, a small perturbation is

allowed [21]. For example, we can still consider(x, x) as bias

instance even if a non-protected attribute (e.g.,age) differs in

a small amount (e.g., 5 years). Note that if a model is fair with

respect to Definition 2, it is also fair with respect to Definition 1

but the opposite is not true. Therefore, from the verification

perspective, the relaxed query requires stronger certification

and subsumes the basic fairness requirement.

Definition 2: (-Fairness) The model Mis individually fair

if no two data instances (x, x) in the input domain satisfy:

1 |xi − xi| ≤ i , ∀i ∈ A \ P , 2 xj = xj, ∃j ∈ P , and 3

M(x) = M(x), where  is a small perturbation that limits the

similarity.

For further practical benefit, we introduce the notion of tar-

geted fairness, which imposes an arbitrary additional constraint

on the inputs. For example, the developer might be interested in

verifying whether the NN is fair in giving loans to individuals

who have at least high-school education, works more than50
hours-per-week, and occupation is sales.

Definition 3: (Targeted Fairness) A targetT is a set

of arbitrary linear constraints on the inputs of NN, i.e.,

{(li, ui) | ∀i ∈ A, li ≤ xi ≤ ui}. Targeted fairness ensures that

all valid inputs in the given target satisfy individual fairness.

Holstein et al. identified a common difficulty in fair software

development which is to diagnose and audit problems [48].

The following developer’s response [48] conveys the utility

of targeted verification and counterexamples, which was not

addressed in prior works.

“If an oracle was able to tell me, ‘look, this is a severe
problem and I can give you a hundred examples [of this
problem],’ [...] then it’s much easier internally to get
enough people to accept this and to solve it. So having
a process which gives you more data points where you
mess up [in this way] would be really helpful.”

IV. APPROACH

In this section, we formulate the fairness verification problem

and describe our approach to verify the property.

A. Problem Formulation

The verification problem that we are interested in is, given the

precondition on the input x and the NN functionM , the output

y = M(x) satisfies some postcondition. The preconditions and

postconditions are designed to verify the fairness defined in §III

on a trained model, where we have white-box access to the NN.

In the definitions, 1 and 2 are the fairness preconditions, and

3 is the fairness postcondition. Suppose, each input feature

xi is bound by some lower bound lbi and upper boundubi
that is obtained from the domain knowledge. In this case, we

obtain it from training data, e.g., while predicting income on
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Fig. 1: The overview of our approach for the fairness verification of neural networks

Adult Census data, the work-hours of individuals is [1, 100].
Let, M be a classification network with one neuron in the

output layer and suppose, Sigmoid function is applied on

the output node y to predict the classes. Sigmoid function

is given by the equation: Sig(y) = 1/(1 + e−y). Therefore,

for any two inputs x, x, the postcondition that needs to be

satisfied for fairness is: M(x) = M(x). Here, we encode

the negation of the postcondition in the verification query so

that the solver provides counterexample with SAT when there

is a violation. Next, we compute the weakest precondition

(WP) of the postcondition. A WP function in this case gives

the minimum requirements need to be satisfied to assert the

postcondition [49]. The WP computation is shown below, which

transfers the fairness postcondition to the neurons of the output

layer before applying the activation function, Sigmoid.

WP (M(x) = M(x)) ≡ Sig(y) = Sig(y)

WP (Sig(y) = Sig(y)) ≡ (y < 0 ∧ y > 0) ∨ (y > 0 ∧ y < 0)

Similarly, for other non-linear activation functions, we can

compute the WP. Another WP transfer used in our evaluation

is Softmax function: f(xi) = exi/Σje
xj . The WP of Softmax

for binary classification tasks is: (y0 > y1 ⇒ y0 < y1)∧ (y0 <
y1 ⇒ y0 > y1). Overall, this step makes the verification query

simpler as well as the postcondition is reasoned on the network

output layer. Thus, after reducing the postconditions, we have

to verify the following constraint according to Definition 1.

 domain constraint, φd
x  

∀i∈A
lbi ≤ xi, x


i ≤ ubi


∧

fairness precondition, φf
x   

∀j∈A\P
xj = xj


∧
 
∀k∈P

xk = xk

∧

y = M(x), y = M(x)  
outputs

=⇒ 
y < 0 ∧ y > 0

 ∨ 
y > 0 ∧ y < 0


  

fairness postcondition, φy

The above verification formula is defined using two copies

of the same NN, its input constraints (x), and output constraints

(y). The above constraint also support the Definition 2 and

Definition 3. For Definition 2, we update the equality in φf
x

with |xj − xj | ≤ j . For Definition 3, we use the bounds from

target T in φd
x instead of the original domains constraints.

Unlike local robustness [37, 38], the above fairness constraint

requires twice as many input variables (xi and xi) and two

copies of networks to obtain outputs (y and y). Other than

that, the complexity of the constraint depends on the number

of neurons and the structure of M . In each neuron of the

hidden layers, the solver divides the query into two branches:

if the weighted sum is non-negative or else, as shown in Eq. 1.

Thus, for n neurons the query divides into 2n branches, which

can not be parallelized [50]. In our approach, we identify the

neurons that always remain inactive and remove them to reduce

the complexity. Furthermore, we formulate the verification as

an SMT based problem so that we can provide counterexample

along the certification and verify -fairness and targeted fairness.

Existing abstract interpretation based techniques [27] can not

be used towards that goal [49, 51].

B. Solution Overview

Fairify takes two inputs: trained neural network and fairness

verification query. Then it performs three main steps: 1) input

partitioning, 2) sound pruning, and 3) heuristic based pruning.

An overview of the solution is depicted in Figure 1. Before

going to step 1, Fairify preprocesses the verification query. It

computes the WP of the postcondition to reduce the complexity

of the verification formula.

After the preprocessing step, we have precondition defined

on the neurons of input layer and postcondition defined on the

neurons of the output layer. Then Fairify performs the input

partitioning method. The main objective is two-fold: 1) the

verification query becomes simpler, i.e., now the solver has

to check less input region to prove the constraint; 2) given a

smaller partition, the NN exhibits certain activation pattern so

that we can prune the network.

After the input partitioning, Fairify first attempts the sound

pruning approach where we use the tightened input bounds

for the partitions to compute bound for each neuron. Here, we

use the white-box access to the network weights and biases.

Then we perform another step of verification on each neuron

to prove its activation. This process is applied layer-wise, only

one layer at a time. Hence, the checking takes very little time

and identifies additional neurons that are inactive. Then inactive

neurons are removed from the NN to reduce its size. Removing
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neurons from the NN largely reduces the complexity of the

verification. Finally, Fairify leverages an SMT solver to solve

the query on the pruned version of the network. Fairify takes

a soft-timeout as input parameter. When the soft-timeout is

reached without any result, Fairify takes the heuristic based

pruning approach and attempts to solve the verification query.

In this pruning approach, Fairify uses the network heuristics,

e.g., weight magnitudes and their distribution among the

neurons. We conduct a simulation on the NN to profile the

neurons. If a neuron is never activated, it is a candidate for

removal. Then we compare the candidates’ distribution of

magnitude with that of non-candidates. Thus, we identify

additional neurons that are inactive in the given partition.

Since this step may prune neurons which are rarely activated,

the pruned version can lose small accuracy. Fairify takes a

conservative approach which result in very little to no loss of

accuracy. The approach design also allows partial verification
for a subset of the partitions. The goal of verification is to

provide SAT/UNSAT for as many partitions as possible within

given time budget. Next, we describe three main components

of Fairify in detail.

C. Input Partitioning

Fairify takes the parameter MS, which is the maximum

size of an attribute Ai. Based on MS, Fairify automatically

partitions the input domain into m regions following the Al-

gorithm 1. We first divide each attribute into (ub− lb)/MS
partitions, and then taking each partition from each attribute,

we get the regions. For each region, we assign a copy of the NN

so that different pruning can be applied for each region as well

as the query processing can be parallelized. The verification

results for the partitions are accumulated as follows.

• If one partition is SAT, the whole problem becomes SAT.

The counterexample shows a violation for the fairness

query.

• If one partition provides UNSAT, the whole problem is not

necessarily UNSAT. However, the verification provides

guarantee that there are no two inputs possible in the

given partition that violates the property. This provides

partial certification which has benefits in provable repair.

• To prove that the whole problem is UNSAT, all the

partitions required to be UNSAT.

Finally, after the partitioning, we shuffle the partitions to

check different parts of the regions in the given timeout.

D. Sound Pruning

This step receives a number of verification problems from

input partitioning. Each problem is associated with a copy of

NN and the query φ. The query is updated from the original

query by tightening the bound of each attribute, given the

smaller region. Now, we attempt to prune the network by

removing the neurons that do not impact the prediction of the

current copy of NN.

Static analysis and Pruning of NN. Before deployment, a

trained NN can be assessed for certain properties. We obtain

the weights and biases of the network to analyze its behavior.

Algorithm 1 Input partitioning based on domain constraints

Input: Attributes A, Input domain I, Max-size MS, Query Q
Output: Region set R

1: procedure INPUT PARTITIONER(A, I, MS, N )
2: for each attribute Ai ∈ A do
3: PTAi = []
4: if |Ai| > MS then
5: low = LB(Ii)  lower bound of attribute
6: high = UP (Ii)  upper bound of attribute
7: if Q contains |x− x| ≤ i|x, x ∈ Ai then
8:  Ai is relaxed
9: part = [low, high]  no partitioning

10: else
11: while low ≤ high do
12: high = low +MS
13: part = [low, high]
14: Add part to PTAi

15: end while
16: end if
17: end if
18: end for
19: R = {(part) | part ∈ PTAi , ∀Ai ∈ A}
20: return R
21: end procedure

Especially, each neuron does not contribute to the decision.

The value of certain neurons depends on the incoming values,

associated weights and bias. Because of the ReLU activation

function, many nodes become inactive, i.e., gets a zero valuation

whenever the WS is negative. In our approach, we analyze

activation pattern to remove those neurons which are always

inactive. We perform such analysis using specific bounds on

the input values. For example, if we can assert v33 = 0 for

certain bounds on inputs lb1 < v11 < ub1, lb2 < v21 < ub2,

then removing v33 and the associated edges does not impact the

value of v14 and v24 . After obtaining the weights and bias, we

translate the NN into imperative program representation [51] so

that it could be executed symbolically and constraint checker

can assert first-order formulas. We leverage Numpy arrays and

matrix operations to enable tracking the NN structure (e.g.,

layers, neurons) and perform network pruning. We take two

steps to find such neurons: 1) interval analysis and 2) individual

verification. The complete sound pruning algorithm is presented

in Algorithm 2.

1) Interval analysis: We perform bound computation for

the neurons in each hidden layer by using the bounds from

its preceding layer, as shown in line-18 in Algorithm 2. Here,

we used interval arithmetic to compute the bounds. First, we

separate the positive and negative incoming weights for a

neuron vji . Then we compute its maximum value by multiplying

the upper bounds of the incoming neurons with positive weights

and lower bounds with negative weights. We do the opposite to

get the minimum value of vji . The bounds are calculated without

considering the activation functions but only the weighted sum.

If the weighted sum is always ≤ 0, we can remove the neuron

from the NN with the edges connecting to it. Since the interval

arithmetic on multiplication does not lose any accuracy, the

bounds always hold for the neurons. When we find that the
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Algorithm 2 Sound pruning

Input: Network N , Weights W , Biases B, Region R
Output: Pruned network N 

1: procedure SOUND PRUNING(N ,W,B)
2: candidates = []  The candidate neurons for removal
3: for hidden neuron vji in Layer Li do
4: lb, ub = NEURON BOUND(vji ,W,B)
5: if ub < 0 then
6: candidates.add(vji )
7: else if lb > 0 then
8: N  = Update(N )  Remove ReLU function from vji
9: else

10: if INDIVIDUAL VERIFICATION(vji , Li−1) then
11: candidates.add(vji )
12: end if
13: end if
14: end for
15: N  = Update(N )  Remove neurons in candidates
16: return N 
17: end procedure
18: procedure NEURON BOUND(vji ,W,B)
19: pw: non-negative incoming weights
20: nw: negative incoming weights
21: pw = {wi−1,j |wi−1,j ≥ 0, ∀j ∈ {1, ..., |Li−1|}
22: nw = {wi−1,j |wi−1,j ≤ 0, ∀j ∈ {1, ..., |Li−1|}
23: UB(vji ) = Σw∈pww∗UB(vji−1)+Σw∈nww∗LB(vji−1)+bji
24: LB(vji ) = Σw∈pww∗LB(vji−1)+Σw∈nww∗UB(vji−1)+bji
25: return (UB(vji ), LB(vji ))
26: end procedure
27: procedure INDIVIDUAL VERIFICATION(vji , Li−1)

28: precondition pre = {LB ≤ vji−1 ≤ UB, ∀j ∈
{1, ..., |Li−1|}}

29: postcondition post = vji < 0
30: singular verification = SMT-Solver(pre, post)
31: if singular verification = UNSAT then
32: return true
33: end if
34: return false
35: end procedure

upper bound of vji is ≤ 0 we mark vji for removal. The key

intuition for this step is that since we have tightened bounds for

the input layer (after partitioning), the bounds of hidden neurons

are also tighter. Therefore, we can remove more neurons by

applying this step on the partitioned regions. However, the

bounds of many neurons, especially in deep layers, may not

be tight enough to prove it is inactive. So, we apply the next

step of individual verification on each neuron.

2) Individual verification: We formulate verification query

for each hidden neuron to further prove whether it is inactive.

The precondition for the verification query for neuron vji
consists of the bounds vji−1, and the postcondition is vji < 0.

Then we leverage the SMT solver to prove that the neuron is

inactive. We run these individual verification queries on neurons

in the increasing order of the layers. So, all the neurons of

one layer are verified before going to the next layer. Similar

to the bound analysis, the verification query does not include

any non-linear activation functions i.e., ReLU. In addition, the

query is designed with the precondition that contains values

of only the immediate preceding layer. Furthermore, we apply

individual verification query only on the neurons that are not

already pruned by interval analysis. Therefore, the individual

verification queries are faster and can find more inactive neurons

that were not found in the previous step.

E. Heuristic Based Pruning

We investigated the real-world models used in the fairness

problems on structured data, and we found that the datasets

are far sparse from problem that involve high dimensional data

such as image classification or natural language processing.

For example, each instance in the MNIST dataset is (28, 28)

Numpy array, whereas a popular Adult Census dataset contains

data instances each with the shape (1, 13). It causes the trained

NN to have many neurons that are never activated or only

activated for a specific region. Applying the methods in the

previous stage, we could detect some provably guaranteed

inactive neurons in the NN. But there can be further such

neurons which are not activated for the given region in practice.

How can we detect those neurons?

A variety of network heuristics has been studied for different

purposes such as quantization, efficiency, accuracy, etc. [52–54],

which can be performed in different stages of the development

e.g., before or during training. Here, we proposed a novel

conservative approach of NN pruning for fairness verification

based on heuristics. Our goal is to reduce the network size

without losing accuracy to the extent possible.

The algorithm for heuristic based pruning is shown in

Algorithm 3. For learning the heuristics of the network, we run

the neuron profiler. The objective is to get the distribution of

magnitudes of each neuron. First, we create a simulated dataset

D of size S by uniformly generating valid inputs from attribute

domain. Then the network M is run S times to record the

values for each neuron. In practice, we used S = 1000, which

allows to separate most of the candidates and non-candidates.

Initially, all the neurons are selected as candidates for removal.

If a neuron gets non-zero value for at least one execution of the

simulation, we remove that from the candidate list. Thus, after

recording the values of both the candidates and non-candidates,

we confirm that whether the distribution of positive magnitude

differs significantly. The intuition is that even if the neuron in

the candidate is inactive for all the executions, it might get

activated for some valid input data. However, the magnitude

distribution of the neurons suggests whether it is active or not.

Our evaluation shows that there is a significant difference in

their distribution. For example, we observed that in the first

hidden layer of the NNs, the mean and median of the positive

magnitude of non-candidates is at least 10 times larger.

The above heuristic allows to compare the magnitude of

each candidate neuron and conservatively select it for removal.

Fairify takes a tolerance level as input for this comparison.

In our evaluation, we used 5% as the tolerance level. Fairify

selects the candidates which has a magnitude less than the 5-

percentile of the non-candidate neurons. The weight magnitude

difference is more prominent in deep layers than the shallow

ones. So, we do layer-wise comparison and candidate selection

based on the heuristics.
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Algorithm 3 Heuristics based pruning

Input: Network N , Domain I, Simulation size S, Tolerance T
Output: Pruned network N 

1: procedure HEURISTIC-PRUNE(N , I, S)
2: candidates,Mag+,Mag− = NEURON-PROFILER(N , S)
3: Distcandidate  Distribution of the candidates
4: Distnoncandidate  Distribution of the non-candidates
5: for vji in hidden layer Li do
6: check candidates and non-candidates distribution differs
7: if Mag+(vji ) < T -level of Distnoncandidate then
8: Remove vji from M
9: end if

10: end for
11: end procedure
12: procedure NEURON-PROFILER(I, S)
13: D = {X|Xi ∈ I and |X| = S}
14: candidates = {vji | vji ∈ L}  L is a hidden layer in M
15: for Xi ∈ D do
16: Run N (XI) to record heuristic
17: for hidden neurons vji in N do
18: if vji is active then
19: candidates.remove(vji )
20: end if
21: if vji ≥ 0 then  Positive magnitude

22: Mag+ = |vji |
23: else  Negative magnitude
24: Mag− = |vji |
25: end if
26: end for
27: end for
28: return candidates,Mag+,Mag−

29: end procedure

One might argue that since this pruning does not provably

guarantee the same outcome as the original NN, the verification

result can be inaccurate. However, the idea here is to use the

pruned version of the NN in production as opposed to the

original NN. If we certify the pruned NN and observe little

or no accuracy decrease, then the pruned and verified model

itself can be used in the production. Thus, we can preserve

the sanity of the verification results. Our evaluation shows that

it is possible to carefully select the heuristic so that NN is

pruned conservatively, which affects accuracy negligibly but

enables faster verification.

V. EVALUATION

In this section, first, we discuss the experimental details

and then answer three research questions regarding the utility,

scalability, and performance of our approach.

A. Experiment

1) Benchmarks: The verification benchmark is a crucial part

of the evaluation. We undertook several design considerations to

enable fairness verification in development pipeline. Therefore,

unlike prior works we created comprehensive real-world

benchmark of NN models from theory and practice.

We evaluated Fairify on three popular fairness datasets

i.e., Bank Marketing (BM), Adult Census (AC), and German

Credit (GC) [1, 3, 8, 23]. The benchmark models (Table I)

are collected from four different sources. First, we followed

TABLE I: The NN benchmark for fairness verification

Dataset Model Source #Layers #Neurons Acc %

B
an

k
M

ar
k
et

in
g

BM1 Kaggle 4 97 89.20
BM2 Kaggle 4 65 88.76
BM3 Kaggle, [1, 24] 3 117 88.22
BM4 Kaggle 5 318 89.55
BM5 Kaggle 4 49 88.90
BM6 Kaggle 4 35 88.94
BM7 Kaggle 4 145 88.70
BM8 [8] 7 141 89.20

G
er

m
an

C
re

d
it

GC1 Kaggle 3 64 72.67
GC2 [1, 24] 3 114 74.67
GC3 Kaggle 3 23 75.33
GC4 Kaggle 4 24 70.67
GC5 [8] 7 138 69.33

A
d
u
lt

C
en

su
s

AC1 Kaggle 4 45 85.24
AC2 Kaggle, [1, 24] 3 121 84.70
AC3 Kaggle 3 71 84.52
AC4 Kaggle 4 221 84.86
AC5 Kaggle 4 149 85.19
AC6 Kaggle 4 45 84.77
AC7 [8] 7 145 84.85
AC8 [27, 28] 4 10 82.15
AC9 [27, 28] 6 12 81.22
AC10 [27, 28] 6 20 78.56
AC11 [27, 28] 6 40 79.25
AC12 [27, 28] 11 45 81.46

the methodology of Biswas and Rajan to collect real-world

NNs from Kaggle [2]. We searched all the notebooks under the

three datasets in Kaggle and found 16 different NNs. Second,

Zhang et al. used 3 NNs trained on the aforementioned datasets

[8]. Third, Udeshi et al. [24] evaluated fairness testing on one

NN architecture, which is further used by Aggarwal et al.

[1] on the three datasets. We found that two of these three

models are also implemented in Kaggle notebooks. Finally,

NN models AC8-12 were created by [27, 28] for dependency

fairness certification. Thus, we created a fairness benchmark

of 25 NNs. The networks used for these fairness problems are

fully connected with ReLU activation functions, which is also

observed by many prior works [8, 20, 27, 28]. The models and

datasets are placed into our replication package to make the

tool self-contained. The details of the datasets are as follows:

Bank Marketing dataset contains marketing data of a

Portuguese bank which is used to classify whether a client

will subscribe to the term deposit [55]. It has 45,000 data

instances with 16 attributes, and age is considered the protected

attribute. German Credit dataset contains 1000 data instances

of individuals with 20 attributes who take credit from a bank

[56]. The task is to classify the credit risk of a person (good

vs bad). Adult Census dataset contains United States census

data of 32,561 individuals with 13 attributes [57]. The task is

to predict whether the person earns over $50,000 in a year.

2) Experiment setup: Fairify is implemented in Python and

the models are trained using Keras APIs [27]. Following the

prior works in the area [20], we used Z3 [58] as the off-the-shelf

SMT solver for manipulating the first-order formulas. However,

other SMT solvers can also be used, since our technique of

input partitioning and network pruning can work independent

of any SMT solver. We used SMT solver because they can

solve arbitrary first-order constraints and enable solving both
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-fairness and targeted fairness queries. The experiments are

executed on a 4.2 GHz Quad-Core Intel Core i7 processor with

32 GB memory.

Input. Fairify takes the trained NN model, input domain,

the verification query, maximum partition size, and timeout

as inputs. The trained models are saved as h5 files, from

which Fairify extracts the necessary information e.g., weight,

bias, structure. The query includes the name of the protected

attributes and relaxation information of the other attributes.

Output. Fairify provides verification result for each partition.

The results include verification (SAT/UNSAT/UNKNOWN),

counterexample (if SAT), and pruned NN for the partitions.

B. Results

We answered three broad research questions for evaluation:

• RQ1: What is the utility of our approach?

• RQ2: Is Fairify scalable to relaxed fairness queries?

• RQ3: What is the performance with respect to time and

accuracy of the approach?

1) Utility: First, we evaluated the baseline fairness verifi-

cation results and then compared with our approach, which

is shown in Table II. Since GC and AC contained multiple

protected attributes (PA), we setup multiple verification for each

of those NNs. However, the verification results are consistent

over different PAs. Hence, we showed result for one PA for

each dataset in Table II. The whole result is also available in

our supplementary material [59]. In this RQ, we evaluated the

fairness defined in Eq. (1). We discussed the verification of

relaxed fairness constraints Eq. (2) and (3) in RQ2.

For the baseline verification, we encoded fairness property

into satisfiability constraints, and then passed the original NN
and constraints to the SMT solver. In addition, we attempted to

verify the original NN with input partitioning to understand the

contribution of partitioning alone. On the other hand, Fairify

used the method of input partitioning and NN pruning together

to demonstrate the improvement over the baseline. For the

baseline, we set a timeout of 30 hours for the solver and run

the verification for the models in our benchmark. Only one

model (AC6) could be verified within the timeout. For the

other models, the solver reported UNK i.e., the model could

not be verified within the time limit. Furthermore, we try the

baseline verification with input partitioning and run the queries

on the NNs but we get the same verification result as the

baseline. The main takeaway is that the difficulty in verifying

fairness lies in the complex structure of the NNs. Only input

partitioning reduces the input space to be verified, but that does

not reduce the complexity of NN. Fairify combines partitioning

and pruning to enable network complexity reduction, which

made the verification feasible.

How effective is our approach to verify fairness of
NN? We presented the verification results of 25 NNs in

Table II. We found that Fairify produces verification results

very quickly compared to the baseline. For each model, we

run the verification task for 30 minutes (hard-timeout). Since

we have divided the single verification into multiple partitions,

we set 100 seconds as the soft-timeout for the SMT solver,

which means that the solver gets at most 100 seconds to verify.

When the result of the sound verification is UNK, then Fairify

attempts the heuristic based pruning and runs the SMT solver

for another 100 seconds. The goal of using a short soft-timeout

is to show the effectiveness of our approach over baseline.

The results show that 19 out of 25 models were verified

within the 30 minutes timeout. The models that could not be

verified in that time period were considered again with scaled

experiment setup in RQ2. Fairify takes the maximum size of

an attribute (MS) as an input to automatically partition the

input region. The user can select MS based on the range of the

attributes in the dataset. The timeout and MS can be configured

based on the budget of the user. For BM and GC models, we

used 100 as MS, and for AC models we used 10 as MS. To

that end, Fairify divided input region into 510, 201, and 16000

partitions using Algorithm 1. Here is an example verification

task from our evaluation:

Example: While verifying AC3 (race as PA), Fairify takes

the following partition as a sub-problem. First, it attempts

sound pruning and achieves 86.27% compression. Then it runs

verification query for 100 seconds and reports SAT with the

counterexamples C1 and C2 in 21.47 seconds. Note that, these

are two inputs for which the NN is not fair. Here, the two

individuals had the same attributes except for race but were

classified as bad and good credit-class, respectively.

workclass: [0, 6], marital-status: [0, 6], relationship: [0, 5], race: [0,
4], sex: [0, 1], age: [80, 89], education: [0, 9], education-num: [11,
16], occupation: [0, 9], capital-gain: [10, 19], capital-loss: [0, 9],
hours-per-week: [51, 60], native-country: [30, 39]

C1: [89, 6, 9, 14, 1, 0, 0, 0, 1, 14, 8, 59, 39]
C2: [89, 6, 9, 14, 1, 0, 0, 0, 0, 14, 8, 59, 39]

Depending on the complexity of each NN, Fairify could

complete verification for a certain number of partitions in the

given timeout period. Whenever we get SAT for at least one

partition, the whole verification is SAT. Fairify also reports

the counterexample when it reports SAT. We included the

detailed results for each partition including all generated

counterexamples in our replication package [40].

Is the NN pruning effective for verifying fairness? The

baseline models cannot be verified in a tractable amount of time.

Also, the partitioning alone on the baseline can not improve the

verification. After being able to prune the models significantly,

we could verify them in a short period. We computed the

amount of pruning applied to the models. For the original

M and pruned version M , compression ratio is calculated

using the following formula: 1− |M |/|M |, where |M | is the

number of neurons in M . The average compression percentage

in Table II shows that Fairify could reduce the size of NN

highly in all the models. Heuristic based pruning is only applied

when Fairify cannot get verification result within the soft-

timeout. Furthermore, the individual contribution (compression)

of sound and heuristic based pruning is showed in Table II.

Heuristic based pruning is applied on the already pruned version

of the NN. Therefore, the compression ratio for heuristics based

pruning is lower. We found that 13.98% times Fairify attempted
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TABLE II: Fairness verification results for neural network models

PA M Ver #P Coverage% #sat #unsat #unk HP-A HP-S C(S) C(H) SV time HV time Total time
A

g
e

BM1 SAT 75 13.14 9 58 8 9 1 .90 .01 14.04 11.00 25.40
BM2 SAT 141 26.08 30 103 8 9 1 .85 .01 7.76 5.83 13.84
BM3 SAT 139 26.47 27 108 4 6 2 .96 .00 9.78 3.42 13.49
BM4 SAT 37 6.08 1 30 6 6 0 .91 .03 17.10 16.29 49.98
BM5 SAT 510 99.61 114 394 2 7 5 .83 .00 2.29 0.54 2.96
BM6 SAT 510 100.00 156 354 0 3 3 .76 .00 1.17 0.08 1.36
BM7 SAT 124 23.33 62 57 5 9 4 .92 .01 8.31 5.10 14.89
BM8 UNK 23 3.14 0 16 7 10 3 .79 .04 46.23 31.64 79.08

S
ex

GC1 SAT 31 13.43 27 0 4 6 2 .76 .01 41.78 15.98 58.18
GC2 SAT 11 1.99 4 0 7 9 2 .78 .04 97.18 75.67 174.18
GC3 SAT 201 100.00 195 6 0 1 1 .69 .00 1.29 0.24 1.63
GC4 SAT 201 100.00 2 199 0 1 1 .63 .00 0.73 0.14 0.97
GC5 UNK 12 1.49 0 3 9 9 0 .59 .03 75.27 75.43 151.53

R
ac

e

AC1 SAT 29 0.14 8 15 6 8 2 .64 .04 40.73 23.50 64.43
AC2 SAT 15 0.04 4 3 8 10 2 .82 .04 72.62 54.86 128.45
AC3 SAT 23 0.11 16 1 6 10 4 .75 .02 52.75 32.33 85.40
AC4 UNK 8 0.00 0 0 8 8 0 .67 .20 100.57 100.08 241.70
AC5 SAT 10 0.02 3 0 7 9 2 .71 .13 98.14 74.06 180.41
AC6 SAT 19 0.07 6 5 8 9 1 .49 .05 55.70 44.43 100.37
AC7 UNK 14 0.04 0 7 7 10 3 .59 .11 78.22 51.09 132.28
AC8 SAT 101 0.63 82 19 0 1 1 .22 .00 17.59 0.13 17.84
AC9 SAT 741 4.63 399 342 0 4 4 .19 .00 2.29 0.02 2.44

AC10 SAT 20 0.09 6 8 6 10 4 .27 .05 62.07 32.82 95.07
AC11 UNK 9 0.00 0 0 9 9 0 .11 .02 100.13 100.12 200.66
AC12 UNK 16 0.04 0 7 9 9 0 .29 .01 57.56 56.35 114.19

Experiment setup: soft-timeout 100s, hard-timeout 30m, max-partition size: 100 (BM, GC), 10 (AC).
M: models, Ver: Verification, #P: number of partitions, HP-A: # times Heuristic Pruning Attempted, HP-S: # times Heuristic Pruning Succeeded,

C: average Compression ratio-(S): sound pruning, (H): heuristic pruning, (Average) times are in seconds – SV: sound verification, HV: heuristic verification.

heuristic pruning, 19.38% of those times Fairify provided SAT

or UNSAT result, meaning that the additional pruning of Fairify

helped to complete the verification. In the example showed

above, Fairify did not attempt a heuristic based pruning, since

it got the result in sound pruning step.

Can Fairify be used to localize fairness defects? For ML

models, it is difficult to reason or find defects since the model

learns from data. In fairness problems, oftentimes the model

learns from biased data or augments the bias during training. If

we can filter the input domain where the model is unfair, then

it would guide fairness repair. For example, in model BM3,

Fairify provides SAT for 27 partitions and UNSAT for 108

partitions. The developer can leverage the verification result

to further improve the training data and retrain the network.

Another novelty is that since Fairify verifies multiple copies of

pruned NN, the developer may choose to deploy those pruned

versions into production. When an input comes to the system,

the software can choose to use the verified copies of NN.

Qualitatively, Fairify provides the following two main utilities:

a) Tractability and speedup: The results showed that the

verification for the NN becomes tractable when our approach

is applied. Furthermore, the partition size and timeout can be

tuned based on the complexity of the NN. In our evaluation, we

used a short timeout of 30 minutes [41]. The verification has

been possible for most of the models in this time because of

successful NN pruning. In addition, as soon as the first SAT is

found, the developer may choose to stop running verification.

b) Partial verification: Even after getting SAT for one par-

tition, our evaluation continued verification for other partitions,

which essentially provides partial verification. For example,

partitions with UNSAT imply that the NN is fair for that

specific input region. Similarly, SAT with the counterexamples

for a partition can be used towards repairing the NN, which is

a potential future work.

TABLE III: Verification with scaled experiment setup

M Ver #P #sat #unsat #unk HPA HPS C(S) C(H) SV � HV � Total �
BM8 SAT 48 4 37 7 10 3 .85 .02 47.64 33.46 81.68
GC5 UNK 12 0 3 9 9 0 .60 .03 150.25 150.55 301.83
AC4 SAT 24 15 4 5 9 4 .92 .02 96.65 56.17 160.26
AC7 UNK 21 0 15 6 9 3 .77 .02 111.11 65.64 178.12

AC11 UNK 9 0 0 9 9 0 .21 .02 200.23 200.37 401.18
AC12 SAT 35 3 26 6 9 3 .41 .01 63.47 43.93 107.71

Soft-timeout 200s, hard-timeout 60m, max-partition: 10 (for BM, GC), and 6 (for AC)

2) Scalability: In RQ1, we have set a small timeout and

could verify 19 out of 25 models. In this RQ, we set a scaled

experiment setup to further verify the remaining 6 models. We

noticed that these 6 NNs are complex because of more number

of layers and neurons. This time we used a hard-timeout of 1

hour and soft-timeout of 200 seconds, essentially doubling the

timeouts. We also reduced the maximum size of the partition

(MS). The results are shown in Table III. We have verified the 3

out of the 6 models within that 1 hour. The results demonstrate

the scalability of our approach for more complex NNs. We

found that for some partitions, the compression ratio is more,

and hence the SMT solver could verify quickly. So, it would

be an interesting future work to prioritize the partitions to

verify for efficiency. Next, we showed whether our approach

can verify complex verification queries for all the models.

Can Fairify verify relaxed and targeted verification queries?
To answer this question, we created relaxed and targeted

fairness queries according to Definition 2 and Definition 3

respectively. The verification results for the relaxed queries are

presented in Table IV. First, for the relaxation of individual

fairness, we define small perturbation () on the non-protected

attributes so that two individuals are considered similar even

if they are not equal in any non-protected attributes. Those

two individuals still have to be classified to the same class

to ensure fairness. Therefore, the relaxation on the queries

impose stricter fairness requirement. We created six different
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TABLE IV: Verification of neural networks for relaxed and targeted fairness queries

Result φ BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8 φ GC1 GC2 GC3 GC4 GC5 φ AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12

R
el

ax
ed

Ver

φr11

SAT SAT SAT SAT SAT SAT SAT SAT

φr12

SAT SAT SAT SAT UNK

φr13

SAT SAT SAT SAT SAT SAT UNK SAT SAT SAT UNK UNK
#P 333 566 1600 132 4915 8671 590 112 111 32 2697 9695 9 216 75 129 41 37 177 66 639 3991 216 31 123
#sat 40 65 233 10 731 1484 168 11 107 24 2026 185 0 9 8 34 5 3 28 0 218 483 19 0 0
#unsat 279 493 1358 111 4180 7187 411 87 0 2 671 9510 0 193 55 86 22 18 133 53 418 3508 192 13 107
#unk 14 8 9 11 4 0 11 14 4 6 0 0 9 14 12 9 14 16 16 13 3 0 5 18 16
Ver

φr21

SAT SAT SAT SAT SAT SAT SAT SAT

φr22

SAT SAT SAT SAT UNK

φr23

SAT SAT SAT SAT SAT SAT UNK SAT SAT SAT UNK SAT
#P 968 1514 2768 157 7601 13779 1340 188 116 30 3175 8361 20 210 74 124 30 27 117 44 402 4811 164 18 53
#sat 65 110 208 10 583 1200 187 6 106 16 2343 79 0 47 20 84 13 11 47 0 182 1294 34 0 1
#unsat 890 1396 2550 143 7014 12579 1151 167 1 2 832 8282 2 157 45 35 5 3 56 31 220 3517 128 0 36
#unk 13 8 10 4 4 0 2 15 9 12 0 0 18 6 9 5 12 13 14 13 0 0 2 18 16

T
ar

g
et

ed

Ver

φt11

SAT SAT SAT SAT SAT SAT SAT SAT

φt12

SAT SAT SAT SAT UNK

φt13

SAT SAT SAT SAT SAT SAT UNK SAT SAT SAT UNK UNK
#P 261 546 1541 92 5937 12233 544 90 162 32 3810 11067 18 223 67 115 25 23 111 38 448 6800 108 18 68
#sat 34 61 208 9 881 1939 157 8 153 17 2786 96 0 55 16 75 7 8 52 0 179 1624 23 0 0
#unsat 216 479 1322 72 5050 10294 374 67 0 2 1023 10971 0 160 37 32 3 1 47 26 266 5176 81 0 50
#unk 11 6 11 11 6 0 13 15 9 13 1 0 18 8 14 8 15 14 12 12 3 0 4 18 18
Ver

φt21

SAT SAT SAT SAT SAT SAT SAT SAT

φt22

SAT SAT SAT SAT UNK

φt23

SAT SAT SAT SAT SAT SAT UNK SAT SAT SAT UNK SAT
#P 432 683 1987 108 6474 13855 986 89 187 46 5957 13426 18 281 85 119 35 33 119 43 677 6781 164 18 59
#sat 57 76 270 10 904 2224 285 11 175 28 3534 63 0 61 18 79 14 16 51 0 309 1765 36 0 1
#unsat 361 602 1705 87 5569 11631 693 64 4 7 2422 13363 0 214 58 33 8 4 57 26 368 5016 125 0 41
#unk 14 5 12 11 1 0 8 14 8 11 1 0 18 6 9 7 13 13 11 17 0 0 3 18 17

Relaxed queries: φr11: duration < 5, φr12: job <∞, φr21: credit-amount < 100, φr22: foreign-worker <∞, φr31: marital-status <∞, φr32: age < 5,
Targeted queries: φt11: personal-loan & profession:entrepreneur, φt12: previous-marketing: yes, φt21: # credits=2, φt22: foreign-worker & credit-purpose: education,

φt31: 30≤age≤35, φt32: education: bachelor or doctorate

such queries run Fairify on all the models. In each query,

we selected an additional non-protected attribute, which was

relaxed. For example, a verification query for AC is (φr31):

Is the NN fair with respect to race, where any two people
are similar irrespective of their marital status? We found that

21/25 for φr1 and 22/25 for φr2 were verified within one hour.

Compared to Table II, the number of SAT found is more since

-fairness is a stricter requirement and creates possibility of

more counterexamples. Second, for the targeted verification,

we created six other fairness queries that targets a specific

population. For example, φt32 verifies that whether the NN
is fair for people who have bachelor or doctorate education.

The results show that Fairify can verify most of the models

in a quick time. Similar to the scaled experiment setup in

Table III, we used a smaller partition size in this experiment.

Although the queries are more complex, Fairify could provide

counterexample or certification for many partitions.

3) Performance: How quickly the verification is done and
what is the overhead? Depending on the verification query and

the model, the verification time varies. Table II presents the

average time taken for the partitions of each model. We showed

the time taken by the SMT solver to output a result in the sound

verification phase, and in heuristic verification phase. We also

calculated the total time taken to complete verification, which

includes the partitioning and pruning discussed in §IV. The

results show that the additional time taken for the three steps

in our approach is negligible with respect to the time taken by

the SMT solver. The partitioning of inputs is a one time step.

For each partition, we apply pruning once or twice. However,

pruning is static operation without any complex constraint

solving. The only part of our pruning steps that take more time

compared to other steps is the individual verification of each

neuron which uses the SMT solver. But in that verification,

only one layer is considered at a time, activation functions are

excluded, and the number of constraints is at most the number

of hidden neurons in a layer. Therefore, excluding the time

taken by the SMT solvers to solve the final constraints, Fairify

did not take more than 10 seconds for any model in that step.

What is the performance of Fairify compared to the related
work? As described in §III, individual fairness verification of

NN can not be done with existing robustness checkers [37, 38].

Shriver et al. proposed a framework called DNNV [60] that

incorporates the state-of-the-art NN verifiers, e.g., ReluPlex,

Marabou, etc. We tried verifying the fairness queries using

those DNNV verifiers, however, they can verify queries with a

single network input variable only [60, 61]. Other than that,

we verified the models (AC8-12) from Libra [27, 28] shown in

Table II and Table IV. Fairify could verify the models for all the

queries except AC11-12 for two out of four queries. The overall

coverage is less than that reported by [28] because Fairify

verifies a different property, the configuration is lower, and

experiment setup is different. Libra computes abstract domain

and projects into the input space to find biased region. So, the

precision of Libra depends on the chosen abstract domain. On

the other hand, Fairify can be configured for arbitrary queries,

partial verification, and additionally we provide counterexample

and pruned NN as output. Therefore, Fairify can be more

appropriate for defect localization or repair. One limitation of

Fairify is that when the NN is deep and wide at the same time,

the pruning ratio is less, and the SMT solver may return UNK

in the given timeout. However, developers can configure less

conservative approach in heuristic pruning to circumvent the

problem. Thus, dynamical tuning of configuration could be a

potential future work for Fairify.

What is the accuracy loss of heuristic-based pruning? We

calculated the accuracy of the pruned NNs for each partition.

When no heuristic based pruning is done, there is no accuracy

loss. However, when Fairify applies heuristic based pruning

there might be accuracy loss compared to the original NN. We

took a conservative approach for the heuristic based pruning.

Therefore, there was no accuracy loss for the pruned NN. Note

that even if there is a small accuracy reduction for a heuristic

based approach, the developer may choose to deploy the pruned

version of the NN as opposed to the original one.
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VI. THREATS TO VALIDITY

Construct validity. We leveraged the fairness definitions

from prior work and then encoded using well studied weakest

precondition and constraint based methodologies. In §III-A,

we argued why individual fairness is useful for verification.

However, as mentioned by Corbett-Davies and Goel [62], the

property can fall short in bias quantification. Our evaluation

shows that based on the number of certified partitions, future

work can be done to quantify individual fairness. In addition, the

proposed sound-pruning strategy leverages interval arithmetic

which is sound by construction; as shown by [47] i.e., NNs

have well-defined transformers (addition, subtraction, scaling)

and hence interval analysis provides sound approximation.

For individual verification, we used SMT based constraint

solving which is always sound. Additionally, input partitioning

(Algorithm 1) creates disjoint partitions of attributes and

covers the complete domain. Furthermore, to be able to verify

symbolically, we converted the models into Python functions

using the weights and biases extracted from the actual model.

We followed the same approach taken by prior work for such

conversion [20].

External validity. We evaluated Fairify on the popular

structured datasets extensively used in prior works [1, 3–

8, 20–24, 27]. As pointed out by [21, 27], verifying ML

models trained on unstructured data including image or natural-

language would require different approach. Yet, because of the

wide usage in real-world (loan approval, criminal sentencing,

etc.), this line of work only considered such structured data.

Further work is needed to scale the approach for high-

dimensional datasets. In addition, followed by [1, 8, 24, 27, 28],

we considered the ReLU based NNs. To further demonstrate

the applicability, we collected top-rated models from practice,

which are state-of-the-art accurate models for respective tasks.

Verifying fairness of other classes of NNs such as CNN or

LSTM could be potential future improvements. Finally, Fairify

is built on top of the popular open source libraries and SMT

solver Z3 so that other works can leverage the tool. Since

Fairify in built independent of specific constraint solver, other

solvers could also be used in future.

VII. RELATED WORKS

Fairness Testing and Verification. With the increasing need

to ensure fairness of AI based systems [2–5, 7, 63], many

recent works focused on the fairness testing and verification

of ML models [1, 8, 20–25, 64]. While many of the prior

works focused on testing ML models [1, 23, 24], more

recent works proposed individual fairness testing on NN

[8, 25]. While input test generation has been helpful to find

fairness violations, verification is more difficult since it proves

the property. Although some fairness testing works [1, 64]

leverages constraint solvers for test generation, they can not

guarantee the absence of violation.

Probabilistic verification techniques have been proposed

to verify group fairness property [20, 22]. Recently, John

et al. proposed individual fairness verification approach for

two different kinds of ML models [21], which do not apply

for NN. Urban et al. proposed Libra to provide certification

of another property called dependency fairness using abstract

interpretation [27]. Mazzucato and Urban extended Libra with

one abstract domain [28]. Another class of works proposed

methods of individually fair learning by enforcing it during

model training [65, 66]. However, our focus in this paper is to

verify the already trained models in ML pipeline [67].

NN Verification. Verification of neural network has been stud-

ied for various application domains and property of interest. The

robustness of NN has gained a lot of attention for safety-critical

applications e.g., autonomous vehicles [43, 44, 68]. Research

showed that NN can be fooled by applying small perturbations

to data instances i.e., adversarial inputs [43, 44, 46, 47, 69].

Algorithms have been proposed to detect adversarial inputs

and satisfy local robustness property [38, 45, 46, 70, 71].

§III further describes NN verification and how it compares

with the fairness property. Katz et al. proposed efficient SMT

solving algorithms to provide robustness guarantee in NN

[32, 33]. In addition, some verification algorithms leverage

off-the-shelve SMT solver [31, 36]. Research has also been

conducted to compute bounds of the neurons and provide

probabilistic guarantees for some properties [30, 34, 35]. With

the extensive use of NN, many recent works focused on new

types of properties using both static and dynamic analysis

techniques [41, 46, 72–74].

VIII. CONCLUSION AND FUTURE WORK

In this work, we addressed the fairness verification problem

of neural networks. Our technique, Fairify can verify individual

fairness and its relaxations on real-world NN models, which has

not been tackled before. We proposed lightweight techniques

to reduce the problem into multiple sub-problems and prune

the networks to reduce the verification complexity. Fairify

applies static interval analysis and individual verification to

provably prune the neurons. In addition, we conducted neuron

profiling to observe their heuristic and prune further. While

many prior works focused on individual fairness testing and

improving, Fairify provides formal guarantee of fairness. Our

work also bridges the gap between the theoretical formal

analysis and its usage in real-world, as Fairify provides

several practical benefits for the developers, e.g., provide

counterexample, targeted fairness. The result of Fairify can be

leveraged in fairness testing for guided test case generation.

Also, the counterexamples can be used to repair the NN in

interactive verification setting. Extending Fairify for other

activation functions would also be potential future work. Finally,

novel analysis can be proposed to prioritize the verification

of partitions and dynamically allocate time, which will guide

provable design of fairness-aware software.
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