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Abstract—Can we take a recurrent neural network (RNN)
trained to translate between languages and augment it to support
a new natural language without retraining the model from
scratch? Can we fix the faulty behavior of the RNN by replacing
portions associated with the faulty behavior? Recent works on
decomposing a fully connected neural network (FCNN) and
convolutional neural network (CNN) into modules have shown
the value of engineering deep models in this manner, which
is standard in traditional SE but foreign for deep learning
models. However, prior works focus on the image-based multi-
class classification problems and cannot be applied to RNN due
to (a) different layer structures, (b) loop structures, (c) different
types of input-output architectures, and (d) usage of both non-
linear and logistic activation functions. In this work, we propose
the first approach to decompose an RNN into modules. We study
different types of RNNs, i.e., Vanilla, LSTM, and GRU. Further,
we show how such RNN modules can be reused and replaced in
various scenarios. We evaluate our approach against 5 canonical
datasets (i.e., Math QA, Brown Corpus, Wiki-toxicity, Clinc OOS,
and Tatoeba) and 4 model variants for each dataset. We found
that decomposing a trained model has a small cost (Accuracy:
-0.6%, BLEU score: +0.10%). Also, the decomposed modules can
be reused and replaced without needing to retrain.

Index Terms—recurrent neural networks, decomposing, mod-
ules, modularity

I. INTRODUCTION

Recurrent neural networks (RNNs), like fully-connected

neural networks (FCNN) and convolutional neural networks

(CNN), are a class of deep learning (DL) algorithms that

are critical for important problems such as text classification.

Depending on their architecture, they are further classified

into vanilla RNN, LSTM (Long Short Term Memory), or

GRU (Gated Recurrent Unit). To build such models, the

most common way is by training from scratch. Otherwise,

developers can also use transfer learning [1, 2] to reuse a

model by retraining its last few layers. Such types of model

reuse are coarse-grained, relying on the original model’s entire

structure. In contrast, we propose to decompose a trained RNN

model to enable fine-grained reuse without needing to retrain.

The term ‘modules’ has also appeared in the AI/ML commu-

nity; however, it serves a different purpose [5, 6, 7, 8, 9]. They

§At the time this work was completed, Rangeet Pan was a graduate student
at Iowa State University

TABLE I: Comparison with the existing works

Functionality FCNN-D CNN-D Our Work

Input Image � � �
Sequential Data (e.g., Text) X X �

Model
Properties

Models with more than one output X X �
Models classify into one of the labels � � �
Models with loops X X �
Models with more than one input X X �
Shared weight and bias X � �
Gated layer architecture X X �
Non-linear activation function � � �
Logistic activation function X X �

* FCNN-D: Fully Connected Neural Network decomposition approach [3], CNN-D:
Convolutional Neural Network decomposition approach [4]

aim to add external memory capability to the DL models [9].

To illustrate, Ghazi et al. presents an example of a room and

objects within [9]. A DL model is excellent in answering

immediate questions such as ”Is there a cat in the room”?

However, suppose a person often visits a room over many

years and later ponders an indirect question, ”How often

was there a cat?”. In that case, a DL model is incapable

of answering it. As a remedy, this line of work proposes to

build a deep modular network consisting of many independent

neural networks [8, 9, 5]. Essentially, they view a module

as a function created in advance. Once a problem is given,

they dynamically instantiate a composition of the modules to

answer such questions. In all these cases, the end result is still

akin to a monolithic model tasked with solving a particular

problem. On the contrary, we aim to decompose a trained

RNN model to enable the benefit of software decomposition.

Along this line, recent work has proposed an approach

to decompose FCNN and CNN models into modules and

enable their reuse [3, 4]. However, those approaches cannot

be applied to RNNs due to the challenges listed in Table I.

For instance, RNNs, particularly LSTM and GRU, incorporate

activation functions such as Tanh and Sigmoid in their internal

architecture, which are unsupported by prior works. RNNs

have five types of architecture depending on the network’s

input-output. Moreover, RNN includes a loop structure to

process sequence data effectively. These differences render

prior approaches inapplicable to RNNs.

Therefore, in this work, we ask: can we identify the RNN

model parts responsible for each task and decompose them

into modules? Doing so would allow us to (a) build a new

problem or (b) replace existing model functionality. In both
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Fig. 1: Motivating Examples. De: German, En: English, Et: Estonian, Fr: French, It: Italian, Ua: Ukrainian Language.

cases, this type of reuse removes the need for additional data

and training. To that end, we propose an approach for decom-

posing RNNs into modules. A key innovation in our work is

handling the loop in RNN in both time insensitive and sensitive

manner. Inspired by prior works on understanding loops in

SE [10, 11, 12], we propose to identify nodes and edges

responsible for each output class - (a) over all the iterations

of the loop (rolled) and (b) individually, for each iteration

in the loop (unrolled). Unrolled-variant is aware of the time

dimension of the model, while rolled is not. Second, to handle

different RNN architectures, we identify the concern (i.e., parts

of the network responsible for classifying an output label) and

untangle each output timestep at a time. In prior works, each

concern is identified and untangled separately; this does not

apply to models that produce many outputs. Third, we support

models built using logistic activation functions, i.e., Tanh,

Sigmoid, etc., which are commonly used in RNN [13, 14, 15].

In addition, we propose a decomposition approach assuming

ReLU activation as well.

To evaluate our approach, we apply it to five different input-

output (I/O) architecture types. Moreover, we evaluate differ-

ent RNN-variants (LSTM, GRU, Vanilla) for each architecture.

To that end, we utilize Math QA [16], Brown Corpus [17],

Wiki-toxicity [18], Clinc OOS [19], and Tatoeba [20] datasets

for training models in different setups, and decompose them.

In total, our benchmark consists of 60 models, i.e., 4 (#

models) * 3 (# RNN-variants) * 5 (# I/O architectures). In

this work, we use the terms “RNN” or “recurrent model”

interchangeably to refer to three RNN-variants collectively.

Key Results: To evaluate our approach, first, we measure the

cost of decomposition by comparing the accuracy of the model

composed using decomposed modules and the monolithic

model from which the modules are decomposed. We found

that the loss of accuracy is trivial (Avg.:-0.6%, median: -

0.24%). For language translation models, there is a slight gain

in performance (Avg.: +0.10%, median: +0.01%), measured

in BLEU score [21]. We also find that the decomposition of

models producing more than one output must be time-sensitive

or aware of what output appears at what time. Second, we

evaluated our approach to reusing and replacing the decom-

posed modules to build various new problems. We compared

the accuracy of the models composed using decomposed

modules with monolithic ones, trained from scratch. When

reusing and replacing, we found that the performance change

is (accuracy: -2.38%, BLEU: +4.40%) and (accuracy: -7.16%,

BLEU: +0.98%), on average, respectively. All the results and
code for replication is available here [22].

The key contributions of this work are as follows:

• We propose an approach to decompose an RNN model.

• Our proposed approach is applicable for all five types of

I/O architectures.

• We propose two variants to support loops in RNN.

• Our approach supports both logistic and ReLU activation

and all 3 RNNs, i.e., Vanilla, LSTM, and GRU.

• We show that our approach can reuse and replace the

modules to build new problems without retraining.

II. MOTIVATING EXAMPLES

In this section, we show two examples of using RNN models

and how decomposing them into modules could help. The

RNN models are used for multilingual language translation.

Note that it is preferably performed in a multilingual setup to

improve the overall performance of the translation task [23,

24]. Fig. 1 shows two examples in which decomposition can

assist developers when building RNN models for translation.

Adding a new language to the European Union system.
To introduce a new input (new language) to an existing RNN

model, it must be trained from scratch. For instance, recently,

the European Commission (EC) presented a new requirement

to support the translation of languages that are not part of

the European Union (EU) [25, 26]. It needs to be retrained

to support the additional language. This process is expensive

and time-consuming as developers must preprocess the data

and train a model. Fig. 1 on the top right section shows

how decomposition could help in this regard. Here, we have

a monolithic model that translates an input in English into
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Fig. 2: High-level overview of our approach.

French, Italian, and German. Traditionally, a new model needs

to be trained by adding new examples to the existing dataset

to add the translation of English to the Ukrainian language.

In contrast, using our approach, one can take the existing

trained model and decompose it into modules, in which each

module is responsible for translating English to another non-

English language. Then, find a different multi-lingual model

trained to translate multiple languages, including English to

Ukrainian, and decompose it. Next, take the module respon-

sible for translating English to Ukrainian and compose it

with the existing model’s modules. Moreover, one can also

train a small model that only supports English to Ukrainian

translation. Then, compose it with the decomposed modules

from the existing model. In both cases, training the large

model can be avoided. The choice of approach depends on

the available resources and module(s).

Altering a part of a trained model. Like any software

system, neural network models can exhibit faulty behavior. For

instance, in Estonian, “ta on arst” means “She is a doctor”

in English. However, since Estonian is a gender-inclusive

language, when we used the Google translator [27], the output

was “He is a doctor”, which is incorrect and gender-biased. In

such scenarios, the European Language Resource Coordination

(ELRC) is set to actively enhances the multilingual translation

services of EU languages [25]. The most common approach

to updating existing models is two-pronged: 1) introducing

new examples to improve the faulty data, and 2) retraining

the whole model. However, this approach can be resource-

intensive because of the retraining.

In contrast, using our approach, one can handle the same

problem in two different ways (Fig. 1 bottom right part). In the

first approach, we decompose the existing trained model into

modules. Then, we remove the Estonian to English translation

module. Lastly, we use decomposition to select a replacement

from a non-biased Estonian to English model. We retrain a

small model using an improved dataset in the second approach.

Then we compose it with the previously decomposed modules.

In both cases, retraining the large model can be avoided. Thus,

saving computational resources and hardware costs.

III. RELATED WORKS

In the SE community, a vast body of work in software

decomposition [28, 29, 30, 31, 32] exists. The notion of

modularity exists in the ML community too [5, 6, 7, 8, 9],

however, to address different issues than what this work aims

to deliver. They eventually produce a monolithic model in the

sense that it does not enable fine-grained reuse.

Many studies reuse a DNN model to solve a software

engineering task [33, 34, 35]. Transfer learning is a common

technique to reuse the knowledge and structure of a trained

model [1, 2]. However, retraining and modification are re-

quired when applying transfer learning to a different task.

Moreover, replacing the model’s logic cannot be achieved by

transfer learning.

Along this line, the closest work was introduced by Pan

and Rajan [3, 4]. They propose an approach to decompose

an FCNN and CNN multi-class model into modules, which

can be (re)used with other module(s) or be replaced by

other modules to solve various problems. SaiRam et al. [36]

identified sections of a trained CNN model to reuse when the

target problem requires a set of output classes, i.e., the subset

of the original model. In contrast, our decomposed modules

can be reused and replaced with modules originating from the

same and different datasets.

While these works introduce the notion of decomposition in

various DL models, they cannot be directly applied to RNNs

for the following reasons: (a) loops in the architectures, (b) lo-

gistic activations, and (c) different I/O modes. In contrast, our

work addresses these novel technical challenges and proposes

an approach to decompose RNN models into modules.

IV. APPROACH

In this paper, we propose a decomposition technique for

recurrent models, where a binary module is produced for

each output label. Figure 2 shows the overall approach. It

starts with a trained model and produces decomposed modules.

We propose two variants (rolled and unrolled) to that end.

Each variant uses a different strategy to handle the loops in

the RNN architecture. Like prior work [3, 4], broadly, the

process of RNN decomposition has three steps – Concern
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Identification (CI), Tangling Identification (TI), and Concern

Modularization (CM). First, CI identifies the model parts

contributing to a concern (an output class). After CI, a model

can mostly recognize the target output class. Therefore, TI

aims to add/update some parts responsible for negative output

classes. Lastly, CM modularizes the concerns and creates a

module that can recognize a single output class. Next, we

describe technical challenges first, then each step in detail.

A. Challenge

Previous studies have proposed a decomposition approach

for FCNN and CNN [3, 4]. However, RNN models signif-

icantly differ from other model types rendering prior ap-

proaches inapplicable to RNNs. This section discusses such

differences that our approach addresses.

Challenge 1: Weight Sharing Across Time. Traditional

neural networks (i.e., CNNs and FCNNs) do not have loops

in their architecture – data directly flows from the input to

the output layer. However, for RNNs, loops are leveraged to

process sequential data. By doing so, the weights and biases

are shared across time. Therefore, the decomposition algorithm

must be aware of the time dimension in the network.

Challenge 2: Additional Learned Parameters. Unlike

traditional neural networks, every RNN cell (node) receives

two sets of learnable weights, i.e., weights associated with

input at a timestep, W , and internal recurrent state or memory

weights, U . The decomposition algorithm must decompose

these additional learned parameters associated with memory.

Challenge 3: Gated layer architecture. Improved RNN

variants, such as LSTM and GRU, perform gate operations,

which enable both long and short-term memory, unlike vanilla

RNN, which only involves short-term memory. For example,

LSTM involves three gates in its internal architecture: input,

forget, and output gate. Internal operations of an LSTM cell

is shown in lstm op method in algorithm 3. Each of these

gates incorporates learnable (weights and biases) parameters

of its own. Hence, the decomposition technique must consider

these gates, i.e., identify relevant nodes across all gates.

Challenge 4: New activation function. Previous works

on DNN decomposition only support ReLU activation func-

tion [3, 4], which are common in FCNN and CNN. However,

in RNNs, logistic activation functions, such as Tanh, Sigmoid,

are the most common [13, 14, 15]. Moreover, popular DL

libraries such as Keras, TensorFlow, and PyTorch use Tanh
as the default activation function for RNNs [37, 38, 39].

Therefore, to apply decomposition, we must support these

functions.

Challenge 5: Multiple I/O Architecture. FCNN and CNN

models process a single output from one given input (1:1). As

a result, prior works [3, 4] were proposed for networks with

a 1:1 architecture. However, there are 5 different input-output

architectures in RNNs, as shown in Figure 3, which also need

to be supported. 1:1 models receive a single input and produce

one output. 1:N models take a single input and produce

sequential outputs. M:1 models receive sequential inputs and

produce one output. M:N models receive a sequence of inputs

and produce many outputs. Figure 3 shows the two sub-types

for M:N models. On the right, the architecture takes inputs and

produces outputs at different timesteps (e.g., encoder-decoder

models). The left one produces the output at the same timestep

as it receives its inputs.

B. Concern Identification

Concern identification (CI) aims to identify parts of the

network (nodes and edges) responsible for classifying an

output label, OL, referred to as a concern. The definition of

concern is aligned with the traditional SE and prior works

on decomposing DNN into modules [3, 4]. The output label

for which the concerned nodes and edges are identified is the

dominant output class in the concern, while other classes are

non-dominant. For instance, in Figure 2, for the concern verb,

verb (V) is the dominant class, and pronoun (P) and noun (N),

are the non-dominant classes. In that example, we show how

a model, taking many inputs (words) and tagging each word

with a part-of-speech (POS), can be decomposed into modules

for each POS.

On a high level, CI aims to identify nodes and edges

relevant to a particular concern or output class. In a ReLU-

based network, relevant nodes can be identified by observing

activation values for a sample of that class, and nodes that

always remain active can be treated as relevant. However,

because of logistic activation used in RNNs, where the notion

of ”active” or ”inactive” is not as distinct as in ReLU, we

identify relevant nodes by comparing the central activation

level of a node in both positive and negative samples. Besides

that, CI for RNN must also be aware of the time loop,

multi-output, and gated architecture of RNNs. Our approach

unrolls the time loop in RNN and performs CI (i.e., identifying

relevant nodes) in both a time-sensitive (unrolled) and insensi-

tive manner (rolled). Moreover, improved RNN variants (i.e.,

LSTM) involve gates in its architecture, which we handle by

identifying relevant nodes across all gates. Finally, a different

CI approach is needed for multi-output models from a single

one, as one input example can be labeled with multiple

classes (concerns). While CI for single output can monitor

a single input sample for one particular class, we must enable

simultaneous detection of multiple concerns for multi-output

models. Next, we discuss our approaches to handling these

challenges while decomposing an RNN model in detail.

1) Identifying Concerns Across Time: First, in the RNN

models, the weights are shared across timesteps (in RNN

notations, each point in time is called a timestep). As a result,

different nodes may activate at distinct timesteps. Therefore,

in our approach, we propose two CI variants. In particular,

the rolled, which does not take the timesteps of a node into

account, and the unrolled, which is timestep-sensitive.

Rolled: In this variant, we identify the concern and remove

the unrelated nodes and edges. Instead of keeping multiple

copies of the updated edges and nodes (one for each timestep),

we keep a single copy of the modified edges and nodes. All

timesteps share the same weights obtained after removing

edges and nodes.
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Fig. 3: Different RNN input/output (I/O) architectures.

Algorithm 1 Decomposition:{One, Many}-to-One Models.

1: procedure ONE(model, activation, rolled, input timestep,X, Y )
2: modules = [ ]
3: for every output label, ol do
4: p in = sample(X,Y, only = ol, size = M)
5: n in = sample(X,Y, not = ol, size = M/|class| − 1)
6: concern o = initConcern(model, timestep, rolled)
7: h val pos = monitor(p in,model, rolled)
8: h val neg = monitor(n in,model, rolled)
9: if rolled then

10: flat p = flatten obs(model, h val pos, timestep)
11: flat n = flatten obs(model, h val neg, timestep)
12: update concern(concern o, flat p, flat n, activation)
13: else
14: for ts ∈ input timestep do
15: p ts = obs at(model, h val pos, ts)
16: n ts = obs at(model, h val neg, ts)
17: con ts = initConcern(model, timestep, True)
18: update concern(con ts, p ts, n ts, activation)
19: merge(concern o, con ts, ts)

20: cur module = channel(concern o)
21: append(modules, cur module)

return modules

Unrolled: In traditional SE, to understand the impact of

each loop iteration, prior works have proposed approaches [10,

11, 12] to unroll the loops. Inspired by such works, the

unrolled variant follows a two-step concern identification

process. In particular, it first unrolls the RNN model loop while

transforming it into an equivalent sequence of operations.

Then, it identifies the nodes and edges responsible for each

concern at each timestep.

Algorithm 2 Decomposition: {One, Many}-to-Many Models.

1: procedure MANY(model, activation, rolled, output timestep,X, Y )
2: modules = [ ]
3: for every output label, ol do
4: concern o = initConcern(model, timestep, rolled)
5: flat p = []
6: flat n = []
7: for every output timestep, ts do � monitor one step at a time
8: p in = sample(X,Y, ts, only = ol, size = M)
9: n in = sample(X,Y, ts, not = ol, size = M/|class| − 1)

10: h val pos = monitor(p in,model, rolled)
11: h val neg = monitor(n in,model, rolled)
12: p ts = obs at(h val pos, ts)
13: n ts = obs at(h val neg, ts)
14: if rolled then
15: concat(flat p, h val pos ts, axis = 0)
16: concat(flat n, h val neg ts, axis = 0)
17: else
18: con ts = initConcern(model, timestep, True)
19: update concern(con ts, p ts, n ts, activation)
20: concern o[ts].W, U,B = con ts.W,U,B � Merge

21: if rolled then
22: update concern(concern o, flat p, flat n, activation)

23: cur module = channel(concern o)
24: append(modules, cur module)

return modules

2) Support logistic activation: Unlike ReLU, logistic acti-

vations squash the given input within a certain range [40]. For

example, Tanh squashes input in range [−1,+1], and Sigmoid

in range [0, 1] [40]. In that regard, Lipton [15] et al. reported

that the hidden layers of a model using logistic activation

are rarely sparse, unlike ReLU-based layers. This is because

a node value is rarely exactly zero for logistic activation-

based layers, unlike ReLU-based ones [15]. As a result, prior

ReLU-based decomposition techniques, which leverages the

notion of “on” or “off” (“off”, if node value is 0, otherwise,

“on”) to identify concerned nodes, do not apply to the logistic

activation functions.

Algorithm 3 Helper algorithms for algorithm 1 and 2

1: procedure INITCONCERN (model, timestep, rolled)
2: con : object � Initialize new model object
3: for each layer, l ∈ model do
4: if layer.generic type == “Recurrent” and not rolled then
5: for each ts ∈ timestep do
6: con[l].W [ts], U [ts], B[ts] = l.get weights()

7: else
8: con[l].W, U,B = l.get weights() � U=N/A if dense layer

return concern
9: procedure MONITOR(samples, model)

10: hidden val = [ ]
11: for x ∈ samples do
12: for each layer ∈ model do
13: if layer.generic type == “Recurrent” then
14: for ts ∈ timestep do
15: if layer.type == “LSTM” then
16: ht, ct = lstm op(layer, x, ht−1, ct−1)

17: ...
18: append(hidden val, ts, layer, ht)

19: if layer.type == “Dense” then
20: ht = x.dot(layer.W ) + layer.B
21: append(hidden val, layer, ht)

return hidden val

22: procedure FLATTEN OBS(model, hidden val, timestep)
23: flattened = [ ]
24: for s ∈ timestep do
25: for each layer ∈ model do
26: append(flattened, layer, hidden val[ts][layer])

return flattened

27: procedure OBS AT(model, hidden val, ts)
28: values = [ ]
29: for each layer ∈ model do
30: append(values, layer, hidden val[ts][layer])

return values
31: procedure UPDATE CONCERN(concern, h pos, h neg, activation)
32: if activation == “logistic” then
33: ct pos = central tendency(h pos,model)
34: ct neg = central tendency(h neg,model)
35: CI logistic(ct pos, ct neg, concern) � identify concern

36: if activation == “relu” then
37: rate pos = active rate(h pos,model)
38: rate neg = active rate(h neg,model)
39: CI relu(rate pos, concern) � identify dominant nodes
40: TI relu(rate neg, concern) � identify tangling nodes

return concern � Return updated concern

41: procedure LSTM OP (layer, xt , ht−1 ,ct−1) � Apply LSTM Op.
42: st = xt.dot(layer.W ) + ht−1.dot(layer.U) + layer.B
43: n = layer.num hidden neuron
44: i, f, o = σ(st[:, : n]), σ(st[:, n : 2n]), σ(st[:, 3n :]) � Gates.
45: ct = i ∗ tanh(st[:, 2n : 3n]) + f ∗ ct−1 � Cell state.
46: ht = o ∗ tanh(ct) � Hidden state.
47: return ht, ct
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To address this issue, our intuition is that a logistic activation

value can be regarded as the excitation level of a node.

A higher activation value indicates to what extent it lets

information through that node. For instance, an activation

value 1 for Sigmoid allows maximum information through

that node, while 0.0 is the lowest. Leveraging this insight, we

compare the central activation tendency of a neuron in positive

and negative examples and identify concerns (Algorithm - 4).

To that end, first, we sample a set of positive (inputs with target

output label) and negative examples (inputs with other output

labels). Then, we monitor the activation of nodes for both sets

while comparing their central activation tendency. The method

central tendency measures the central activation tendency

of a neuron. First, it retrieves the distribution of activation

values for the observed examples (Line 22 of Algorithm 4)

for a neuron, node. Note that the absolute value of observed

activations is taken (Line 23 of Algorithm 4) as Tanh-activated

values could lie in the range [-1,+1] and -1 allows as much

information as +1, but in the opposite direction. Then, it

computes the mean as a measure of central activation tendency

for that neuron after discarding outlier observations (Line 26

of Algorithm 4). In method CI logistic, a node is considered

more relevant to the dominant output label if its central

tendency is higher in positive examples than in negative ones

(Line 8 of Algorithm 4). Because it tends to allow more

information to pass through for the dominant class than for

other classes, we keep this node and edges going in/out

of it for the dominant class. The method stops removal if

the graph becomes too sparse. To that end, taking the 10%

removal threshold used by Pan et al. [3] as a starting point,

we evaluate the decomposition quality at a 5% interval (i.e.,

10%, 15%, 20%, etc.). For RNN models, we found that

beyond 20%, the graph starts to become too sparse, affecting

decomposition adversely, and we selected this as the threshold

in our experiments.

3) Support gated layer: To support the decomposition

of gated layer architecture, we propose two approaches: i)

decompose each gate based on its own activation, and ii)

decompose all gates based on LSTM/GRU final hidden state.

Note that hidden states or values refer to the output of the

model’s intermediate or hidden layers (between input and out-

put layers). In the first approach, we identify dominant nodes

in each gate based on their own activation values, while, in the

latter, we remove a node from all gates if its corresponding

hidden state value is found to be less significant in positive

samples. The hidden state at a particular timestep dictates the

output at that step. As a result, a node’s hidden value indicates

its relevance to the output produced at that step. Therefore,

in the second approach, we compare a node’s central hidden

state tendency for positive and negative examples. We remove

it from each gate if found to be more relevant to non-dominant

classes or negative examples (Line 8-15 in Algorithm 4).

4) Support Multiple I/O Architectures: To support the CI in

models with multiple input and output classes (i.e., 1:N, and

M:N), we propose two approaches for two different output

modes, one and many. Algorithm 1 and 2 show the details as

Algorithm 4 Concern identification for logistic activation.

1: procedure CI LOGISTIC (ct pos, ct neg, concern, thres)
2: d = {}
3: for each layer, l ∈ concern do
4: for each node, n ∈ l do
5: d[l][n] = ct pos[l][n] − ct neg[l][n]

6: d = sort(d, order = “ascending”)
7: for each layer, node ∈ d.keys() do
8: if d[layer][node] < 0.0 then
9: removeNode(concern, layer, node)

10: if layer.type = “LSTM”orlayer.type = “GRU” then
11: hunit = layer.num hidden neurons
12: removeNode(concern, layer, hunit + node)
13: removeNode(concern, layer, 2 ∗ hunit + node)
14: if layer.type = “LSTM” then
15: removeNode(concern, layer, 3 ∗ hunit + node)

16: if removedPercent >= thres then
17: stop

return concern � Return updated concern

18: procedure CENTRAL TENDENCY(hidden val, concern, activation)
19: tendency = {}
20: for each layer, node ∈ concern do
21: all obs = []
22: for each observation, o ∈ hidden val do
23: all obs.append(abs(hidden val[layer][node][o]))
24:
25: d = remove outliers(all obs)
26: tendency[layer][node] = mean(d)

return tendency

described next.

{One, Many}-to-One. Like any traditional network, RNN

can take a single input and produce a single output. However,

RNN can also take many inputs (i.e., sequential data). Algo-

rithm 1 shows our approach for concern identification in the

presence of an input loop and models that produce a single

output. Algorithm 1 receives a trained model, activation type,

modularization mode (i.e., rolled or unrolled), timesteps (1 for

one, > 1 for many at input end), and input examples. Next,

it iterates through every output label (OL) to create a module

for each output label. To identify the concern for OL, first,

our approach selects the examples labeled as the dominant

output class in the training dataset (Line 4 of Algorithm 1),

which we call a positive sample. Also, it selects negative

samples proportionally from each negative class (Line 5 of

Algorithm 1).

Then, in line 6 of algorithm 1, initConcern method ini-

tializes the modular weights. In particular, it initializes the

modular weights W, U, and B with the trained model ones.

These nodes and edges from the weights are removed and

updated as the algorithm proceeds to identify a concern. In

the unrolled mode, for recurrent layers, initConcern creates

timestep copies of W, U and B to allow individual timestep-

specific weight pruning (Line 5-6) in Algorithm 3).

In the next step, each neuron activation is monitored for

both positive and negative samples (Line 7-8 of Algorithm 3)

by feeding them to the trained model. monitor method of the

Algorithm 3 shows how the nodes are observed. In particular,

each example is propagated through the trained model while

recording the node hidden values for each example across

all timesteps. The method handles different types of trainable

layers found in a recurrent model. For recurrent layers, the

method handles the presence of a loop by implementing a
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feedback loop (Line 14 of Algorithm 3). For example, for

LSTM layers, LSTM cell, lstm op, is repeatedly fed with an

input, xt, at a particular timestep, t, previous hidden and cell

state (Line 16 of Algorithm 3). The cell performs a stateful

input transformation, xt, by using the contextual information

from the previous cell and recording hidden values at each

timestep (Line 18 of Algorithm 3).

Algorithm 5 Concern identification for ReLU.

1: procedure ACTIVE RATE(hidden val, concern)
2: rate = {}
3: for each node, n ∈ concern do
4: activeCounter = 0
5: for each observation, o ∈ hidden val do
6: if isNodeActive(hidden val[layer][n][o]) = True then
7: activeCounter+ = 1

8: rate[n] = (activeCounter/len(hidden val)) ∗ 100.0
return rate

9: procedure CI RELU(active rate, concern, thres)
10: for each node n ∈ concern do
11: if active rate[n]==0.0 then
12: removeNode(concern, layer, n)

13: if removedPercent >= thres then
14: stop

return concern � Return updated concern

15: procedure TI RELU(active rate, concern)
16: for each node, n ∈ concern do
17: if active rate[n] > 0.0 then
18: restoreNode(concern, layer, n)

return concern � Return updated concern

Rolled-variant of the algorithm identifies concern for the

dominant class in a timestep-insensitive manner. Instead of

identifying concerns in each timestep separately, all timesteps

share the same identified nodes and edges for an output

class. To that end, method flatten obs is called to flatten

observations/hidden values from all timesteps (Line 10 of Al-

gorithm 1). This method essentially treats observed activation

values of nodes at each timestep as a distinct observation of its

own. For example, consider a model with timestep, 10, and 100

input samples to observe. In this case, each neuron will have

100 ∗ 10 observations after invoking monitor. In particular, it

will observe a neuron, X, 100 times in each timestep. However,

rolled-variant will treat hidden values from different timesteps

for a neuron as a separate observation as if there were 100∗10
input samples. Hence, in this mode, each neuron will have

1000 observations.
Then, the concern is updated based on the 1000 observations

in the update concern method (Line 12 of Algorithm 1).

For logistic activations, in update concern, it first computes

the central activation tendency for these 1000 observations

(Line 33-34 of Algorithm 3). Then, it identifies relevant

nodes and edges for the current concern, OL. Similarly, for

ReLU, it computes the active percent of a node given these

observations and identifies relevant nodes accordingly (Line

37-40 of Algorithm 3). In particular, we keep nodes that

are observed to be always active (for Relu-based models)

or comparatively more intensely activated (for logistic-based

models); otherwise, removed as shown in Algorithm 4 and 5.
However, in unrolled mode, the algorithm is timestep-

sensitive as it goes to identify dominant nodes at each timestep

separately (Line 14-19 of Algorithm 1). It iterates through

each timestep and retrieves observations at that timestep (Line

15,16 of Algorithm 1). Then, it creates a temporary object,

con ts, to represent concern at this particular timestep. Fi-

nally, it merges the identified relevant nodes at this timestep

to the concern under analysis, conern o, by adding them at

that timestep (line 19 of Algorithm 1).

{One, Many}-to-Many. Unlike {One, Many}-to-One, an

input example can be associated with multiple output classes in

{One, Many}-to-Many models. For instance, the POS-tagging

example shown in Figure 2 has many outputs. In this example,

every individual word in a given sentence is associated with

a POS tag in the output. This kind of many-output prob-

lem poses unique challenges to the decomposition technique

proposed for DNNs in the past [3, 4]. The one-output-based

technique can uniquely monitor a single input sample for one

particular output label, as shown in Algorithm 1. However, it

is not possible for many-output models as multiple concerns

may be present simultaneously in a single input. Therefore, to

decompose such models, our insight is to monitor each output

timestep at a time, as shown in Algorithm 2.

The Algorithm 2 starts by receiving the same parameters

as Algorithm 1. Then, to build one module for each output

class, it identifies dominant nodes in each timestep separately

(Line 7 of Algorithm 2). For each output timestep, it simi-

larly samples positive and negative examples to Algorithm 1.

However, the sampling procedure is timestep-sensitive (Line

8 of Algorithm 2). For example, consider an output label ’V’

and timestep 2. Then, input with the label ’V’ at the second

timestep will be treated as positive if ’V’ is present at timestep

2 and negative otherwise, regardless of other labels in other

timesteps. After sampling, the algorithm monitors the neurons

(Line 10 of Algorithm 2). Next, it retrieves only observations

at the current timestep, as other observations at other timesteps

are irrelevant as they can be associated with other output

labels.

Next, in rolled mode, all observations at the currently mon-

itored timestep are concatenated with previous observations

at other timesteps as a distinct observation (Line 15 of

Algorithm 2). For example, for a model with 10 timesteps

and 100 examples at each timestep, there will be 1000 obser-

vations per neuron in rolled mode (Line 22 of Algorithm 2).

However, unlike Algorithm 1, it takes 100 observations from

timestep 0 when CI is done for timestep 0, ignoring other

(9*100) observations. Then, the next 100 observations are

taken from timestep 1 when CI is done for timestep 1,

ignoring the other 900 observations and so on. Finally, it uses

all 1000 observations to identify the concerns (Line 22 of

Algorithm 2). As such, in many-output models, rolled-variant

is unaware of the association between an output label and

timestep, i.e., contextual information on what labels appear

at what step usually. However, in unrolled mode, dominant

nodes are identified only based on current observations (Line

18 of Algorithm 2), and therefore, this variant is capable

of identifying concerns in a timestep-wise output-sensitive

manner.
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C. Tangling Identification

The CI stage mostly identifies nodes relevant to positive

samples. However, a module is still required to recognize

negative classes. Therefore, tangling identification (TI) aims

to bring back some nodes after observing negative samples.

TI is particularly important for ReLU-based decomposition as

the CI stage only keeps the most active nodes after observing

positive examples. As a result, it may only recognize the

dominant output class, thus becoming a single class classi-

fier. However, for logistic activation-based models, we use

a different approach during CI that keeps nodes showing

higher central activation tendencies in positive examples. This

technique also keeps some tangled nodes as it does not remove

nodes that are almost similarly activated in both samples.

For ReLU-based models, we bring back a few nodes and

edges related to the non-dominant concerns by observing the

negative examples. For one-output models, in rolled mode,

the observations are flattened, similar to the CI stage (Line 11

of Algorithm 1). Then, it restores a node if it is active in

some negative examples (TI relu method in Algorithm 5). In

unrolled mode, TI is performed in a timestep-sensitive manner

as was done for CI. It restores a node in a timestep if it is

found to be active in some negative examples in a timestep

(Line 16 of Algorithm 1).

D. Concern Modularization

For Concern Modularization, we channel the output layer

to convert N output nodes into two types, dominant (D) and

non-dominant (ND) nodes. For each node in the layer before

the output layer, we average all the edges connecting to non-

dominant output class nodes. Then, we connect these nodes

to the newly introduced non-dominant ones. Next, we remove

all other edges from nodes in the preceding layer. Thus, it

converts the output layer into a binary classification-based

problem. For example, given an input, the module recognizes

whether it belongs to a dominant output class. For many-output

models, it performs this operation for each timestep, except

for the encoder-decoder architecture. For instance, in language

translation models, each module produces a single operation

translating an input sentence to a different language.

V. EVALUATION

This section describes the experimental setup and evaluates

our approach using three research questions.

A. Experimental Setups

1) Datasets: We perform our experiment on five widely

used datasets for text-based sequential problems. Each dataset

is used to train different types of RNN models.

MathQA [16]: This dataset contains a series of mathe-

matical questions. Each question has a particular tag (e.g.,

geometry, physics, probability, etc.). Also, the dataset has a

total of 6 output classes.

Wiki-toxicity [18]: This dataset contains Wikipedia pages’

comments. Each comment is annotated with seven toxicity

labels (e.g., toxic, severe toxicity, obscene, threat, insult, etc.).

Clinc OOS [19]: In NLP, intent classification is a well-

known problem in which an input text is categorized based on

a user’s needs. This dataset has ten output classes.

Brown Corpus [17]: It contains English linguistic data.

Each word is annotated with a part-of-speech tag from 12

different tags.

Tatoeba [20]: This dataset contains sentences in more

than 400 languages. Each sentence in English is translated

into other languages. Thus, the dataset is especially used for

multilingual evaluation [? 41, 23]. We selected English, Italian,

German, and French languages as they have the richest (# of

training data) corpus.

2) Models: For every RNN variant, we built four models

for each of the five I/O architectures. Specifically, we used 1,

2, 3, and 4 RNN layers to build models and named them RNN-

<no. of RNN layers> (RNN refers to either of LSTM, GRU,

or Vanilla). The structure of the models has been inspired

by prior works [3]. Moreover, the data pre-processing and

architecture of the language models are based on a real-world

example [24]. In model architecture, we use a combination of

8 different Keras layers; (a) Embedding represents words as

a fixed-length high-dimensional vector, (b) RepeatVector
repeats the input n times, (c) Flatten converts a multidimen-

sional input into a single dimension, (d) SimpleRNN is the

vanilla RNN layer, (e) LSTM, (f) GRU, (g) Masking ignores

the padded inputs, and (h) TimeDistributed applies the

same layer across timesteps.

3) Evaluation metrics: To evaluate, we use three metrics.

Accuracy. For comparing the trained model with the mod-

ules, we use testing accuracy as one of the metrics. We

interchangeably use the trained model accuracy (TMA), mono-

lithic model accuracy (MMA), etc. For the modules, we use

a voting-based approach (similar to [3, 4]) to compute the

composed accuracy. All modules in a problem receive the

same input, with a joint decision computed at the end. We

use the following terminologies interchangeably – composed

model accuracy (CMA) and module accuracy (MA).

BLEU Score [21]. For language translations, we use the

BLEU score as it is widely applied [42, 43].

Jaccard Index. [3] We compute the Jaccard index (JI) to

measure the similarity of the model and the modules.

B. Results

In this section, we present the results and discuss them

briefly. We evaluated the decomposition on 60 models (20 for

each RNN variant). Moreover, we repeat the experiments in

both rolled, and unrolled modes. Due to space limitations, we

only present a summary of the results (detailed results can be

found here [22]). Moreover, for gated RNN variants, we repeat

all experiments in two proposed approaches for decomposing

gates in § IV-B2. We found that the decomposition cost of both

approaches is comparable, and only results from the second

approach are presented here.

1) RQ1: Does decomposing RNN model into modules incur
cost? : In this research question, we evaluate the cost of

decomposition in 60 scenarios. To that end, we determine
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TABLE II: Cost of Decomposing RNN into Modules

I/O Type Dataset Mode LSTM-1 LSTM-2 LSTM-3 LSTM-4 GRU-1 GRU-2 GRU-3 GRU-4 Vanilla-1 Vanilla-2 Vanilla-3 Vanilla-4 Avg. JI

Rolled +0.13 +0.07 -0.03 +0.20 +0.10 +0.10 +0.10 -0.07 -0.30 -0.67 -0.64 -1.01 0.75
1:1 Math QA

Unrolled N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Rolled -0.13 -0.44 -1.40 -0.44 -0.20 +0.22 -0.22 -0.47 -1.58 -5.51 -2.27 -2.40 0.85

M:1
Clinc
OOS Unrolled +0.96 +0.51 +0.07 -0.67 +0.09 +0.00 -0.09 -0.69 -0.07 -1.38 -0.87 -0.11 0.86

Rolled -14.73 -14.98 -94.59 -80.78 -0.49 -1.82 -6.05 -1.02 -15.21 -14.96 -15.15 -15.28 0.86
1:N

Toxic
Comment Unrolled -0.01 +0.05 +0.17 +0.44 -0.27 -0.76 +0.04 -0.14 -0.97 -1.48 -0.36 -2.78 0.86

Rolled -77.07 -76.56 -80.55 -84.63 -75.28 -75.48 -78.04 -78.11 -80.13 -80.18 -79.93 -79.93 0.83
M:N

Brown
Corpus Unrolled -0.52 -0.22 -2.04 -2.84 -0.02 -0.77 -0.52 -2.59 -1.02 -1.64 -2.90 -3.37 0.83

EN-FR +0.02 +0.18 -0.45 -0.49 +0.25 -0.06 +0.02 -0.05 +0.13 +0.16 -0.68 -1.04 0.80
EN-DE +0.05 +0.06 -0.07 -0.15 -0.16 +0.03 +0.01 +2.01 -0.02 -0.48 -0.56 -0.28 0.80Rolled
EN-IT +0.00 +0.22 +0.08 -0.18 +0.44 +0.45 +0.99 +0.33 -0.57 -1.60 +2.38 +2.51 0.80
EN-FR +0.04 +0.31 -0.18 +0.14 +0.44 -0.45 -0.50 -0.11 -0.25 +0.25 -0.38 -2.46 0.79
EN-DE +0.01 +0.00 -0.35 -0.35 +0.15 -0.17 -0.65 -0.02 -0.85 -0.26 -3.00 -0.34 0.79

M:N
(Encoder

-
Decoder)

Tatoeba

Unrolled
EN-IT -0.10 +0.12 -0.03 -0.25 -0.51 -0.26 -0.26 -0.50 +0.76 -0.52 +3.59 -0.48 0.79

All values are in % except Avg. JI. Here, 1:1=one-to-one,M:1=many-to-one,1:N=one-to-many,M:N=many-to-many

the quality of the decomposition and composition approaches.

First, we decompose a trained RNN model into modules. Each

module receives the same input and recognizes an output

class. Next, we use the modules to compose a new model

using a voting-based approach. The modules’ decisions are

combined into one that matches the output type. For example,

the final decision is a single output class for {one, many}-to-

one. Whereas, for {one, many}-to-many, the final decision will

be a list of output classes. Then we compare the composed

accuracy with the monolithic one.

We apply the rolled and unrolled-variants to decompose the

60 models, and the decomposition cost is depicted in Table II

in terms of accuracy difference, δ = CMA −MMA. In the

rolled-variant, we identify the concern for all the timesteps

at once. For the unrolled-variant, we check the concerns for

each timestep separately after unrolling loops in the RNN

model. We evaluate the unrolled-variant with the M:1, 1:N,

and M:N architectures. The unrolled-variant does not apply to

the 1:1 architecture as it does not contain loops. We found

an average loss of 25.8% (median: -2.04%) accuracy for the

rolled-variant. In contrast, the average accuracy loss is 0.74%

(median: -0.44%) for the unrolled one. Moreover, in 31.25%

scenarios, CMA remains the same or improves (considering

rolled mode for 1:1 and unrolled for others).

For the rolled-variant, the bulk of the accuracy losses come

from the many-output models, while the differences in the

one-output model are trivial (Table II). In rolled mode, the

average accuracy loss for one-output models is -0.7%, while

it is -50.87% for many-output models. However, in unrolled
mode, decomposition quality for both one and many-output

models are comparable (avg. loss for one-output: -0.2% and

for many-output: -1.02%). This is because rolled-variant is

insensitive to timestep, therefore, more likely to lose output-

related contextual information at a timestep. In other words,

timestep-specific output sensitivity is lost in rolled-variant.

Many-output models, where each timestep has an output,

require that concern is identified for that output based on what

is observed in that timestep, which unrolled-variant does. On

the other hand, one-output models only rely on the hidden

state of the final RNN cell, requiring no output sensitivity for

different timesteps. Therefore, we recommend unrolled-variant

for many-output models, particularly where each timestep-

output is subject to decomposition.

For language models, we compute the BLEU score for

each pair of languages. This score measures their translation

quality [21]. We found an average gain of 0.10% (median:

+0.01%) for the rolled-variant in the BLEU score. While, in

unrolled mode, the average BLEU score loss is -0.2% (median:

-0.25%). Based on the argument by [44], such a change in

the BLEU score does not affect the quality of the translation.

Furthermore, for 52.8% cases in rolled mode, the composed

model’s BLEU score remains the same or improves compared

to the original one.

Similarity: Apart from the cost, we also measure the

structural similarity (in terms of learned parameters) between

the monolithic model and module to assess the effectiveness

of decomposition. A high similarity indicates an ineffective

decomposition approach, creating modules replicating the

original model. To evaluate the variability among modules and

models, we compute Jaccard Index (JI). We found that, on

average, the JI value for the rolled-based approach is 0.82,

and for the unrolled one is 0.83. This result shows that the

modules are significantly different from the parent models.

Overall, we found that the RNN model can be decomposed

into modules at a very small cost. Also, the decomposed

modules are significantly different from the original model.

2) RQ2: Can Decomposed Modules be Reused to Create
a New Problem?: In this RQ, we reuse the decomposed

modules. Our evaluation focuses on two reusability cases: a)

(re)use the modules within the same input-output (I/O) type,

and b) from a different type, to create a new problem. We

perform these experiments separately for three RNN variants

(LSTM, GRU, and Vanilla). Next, we discuss the results from

each case.
TABLE III: Summary of intra and inter-reuse experiments

Reuse Type I/O Type LSTM GRU Vanilla
Mean Median Mean Median Mean Median

Intra

1:1 -0.07 +0.00 -0.03 +0.00 -0.05 +0.00
M:1 -0.82 -0.67 -0.73 -0.44 -0.53 -0.44
1:N -2.20 -0.31 -5.49 -1.25 +0.38 +0.02
M:N -0.50 -0.71 +0.42 +0.24 +0.01 -0.02
M:N

Encoder-Decoder
+5.20 +3.49 +3.83 -1.31 +4.17 +3.00

Inter
1:1-1:N -2.49 -1.25 -7.93 -3.10 -8.23 -7.68

M:1-M:N -2.92 -1.68 -3.28 -2.50 -3.55 -2.63
All values are in %.

Intra RNN Type Reuse. To evaluate this reuse type, we
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take modules from the same I/O type of RNN. To do so, we use

the dataset available in our benchmark. We take two modules,

compose them, and evaluate the accuracy of the composed

models. Additionally, we train a model with the same model

architecture of the modules with examples of the dominant

classes of the modules. For example, consider the case of

intra-reuse for a M:1 GRU model trained on the Clinc OOS

dataset. In this case, consider the two output toxicity levels:

severe and threat. First, a model is trained from scratch using

inputs of these two labels alone to reuse them. Then, we take

corresponding modules from a previously decomposed model

with all labels and compare their composed accuracy with that

of the trained one newly.

We take 2 modules from each trained model and build a sub-

problem. The total possible combinations for taking 2 modules

from a model trained with a dataset having N output classes

are
(
N
2

)
. Our benchmark has 6, 7, 10, and 12 output classes

in the datasets used to train the models for 1:1, 1:N, M:1,

and M:N (traditional) architectures, respectively. So, the total

possible combinations can be 152 (
(
6
2

)
+

(
7
2

)
+

(
10
2

)
+

(
12
2

)
).

For each case, we train a model from scratch using two labels.

Then, to get composed accuracy from reused modules, we

consider the modules decomposed from RNN-4 (one with the

highest number of layers), similar to prior work [3]. Then,

we compare their accuracies to understand the effectiveness

of intra-reuse. We found that for 1:1, 1:N, M:1, and M:N
(traditional), the change of accuracy is -0.05% (median 0%), -

2.44% (median -0.17%), -0.69% (median -0.56%), and -0.02%

(median 0%), respectively.

In Table III, we report the results. Overall, there is a

slight loss (mean: -0.58%, median: -0.11%) of accuracy when

modules are reused. We also perform a similar evaluation

for language translation modules. Since there are 3 modules

produced from the trained model, taking 2 modules at a time

can create 3 possible scenarios. We also train a multi-lingual

model that takes English sentences as input and converts it into

the 2 chosen non-English languages. We report the results in

Table III. We found that there is an average gain of 4.40%

BLEU score (median: +2.66%) for each language pair.

Inter RNN Type Reuse. We use modules from different

I/O architecture types to evaluate this reuse type to build a

new problem. However, to compose the modules, all of them

should be able to process similar input types. For instance,

assume taking a module from an RNN model that receives

one input (1-to-{1, N}) and reusing it with a module from

a model that receives several inputs at a time (M-to-{1, N}).

This composition would not work because the two modules

do not satisfy the same input constraints. For that, we evaluate

in two different settings. First, 1-to-{1, N}, in which we take

one module decomposed from a 1:1 model and another from a

1:N model. Then we compose them together to form a model.

Second, M-to-{1, N}, in which we take one module decom-

posed from the M:1 model and another from M:N (traditional)

model. The encoder-decoder architecture prevents model reuse

with other I/O types for language-translation models. However,

such modules can be reused if decomposed from different

TABLE IV: Summary of intra and inter-replace experiments

Replace Type I/O Type LSTM GRU Vanilla
Mean Median Mean Median Mean Median

Intra

1:1 +0.52 -0.49 +0.26 +0.25 -0.55 -0.54
M:1 -0.30 -0.13 -0.20 -0.14 -2.57 -1.52
1:N -0.74 +0.04 -0.07 -0.24 -2.39 -2.48
M:N -1.41 -1.56 -1.81 -2.90 -4.76 -4.04
M:N

Encoder-Decoder
+0.30 +0.16 +1.72 +1.88 +0.92 +0.96

Inter
1:1-1:N -4.75 -0.02 -5.10 -3.30 -4.08 -6.60

M:1-M:N -10.48 -12.23 -6.71 -7.11 -12.23 -13.68
All values are in %.

datasets. We discuss such an experiment in §V-B4, when we

recreate the motivation scenario and show the possibilities of

solving the problem. We found that for the former scenario

(1-to-{1, N}), there is an -6.22% (median -2.95%) loss of

accuracy, on average. Whereas, for the latter scenario (M-to-

{1, N}), the loss is, on average, -3.25% (median -2.20%).

3) RQ3: Can Decomposed Modules be Replaced?: This

RQ investigates how to replace a decomposed module with

another one. Similar to RQ2, we evaluate two different

scenarios–(a) replacing a module with another performing the

same operation within the same I/O type and (b) between

different I/O types (in our case, different datasets too). We

perform these experiments for different RNN-variants sepa-

rately. We discuss each scenario in the following paragraphs.

Intra RNN Type Replacement. Here, a module is replaced

with another one performing the same operation. The rationale

of this experiment is to investigate how decomposition can

help fix faulty models (e.g., low accuracy). To that end, we

take the model with the lowest performance score. Then, we

replace a module with one decomposed from the model with

the highest accuracy in that category. For instance, consider the

case of intra-replace for 1:1 LSTM models trained on the Math

QA dataset. In this case, LSTM-1 performs best and worst

for LSTM-4. Therefore, we replace a module from LSTM-

4 with one decomposed from LSTM-1. Then, we compute

the accuracy of the composed model. Table IV shows the

result of the experiments for all types of RNN models. We

found that for a model trained with (1:1, Math QA), (M:1,

Clinc OOS), (1:N, Toxic comment), and (M:N, Brown corpus)

architecture-dataset pair, the average change of accuracy is

+0.07% (median +0.25%), -1.03% (median -0.42%), -1.07%

(median -0.27%), and -2.66% (median -2.90%), respectively.

For the M:N encoder-decoder architecture, we replace the

modules from the lowest average BLEU score model with

the highest. As a result, we observed a 0.98% increase in the

BLEU score compared to the monolithic model’s BLEU score.

Inter RNN Type Replacement. Here, we replace a module

with another one between different I/O types. We use the

resulting composed model to perform different tasks. For

instance, we replace a module from a model with a 1:1
architecture with one from a 1:N model. Similar to the RQ2,

the replaced module must accept a similar input type. For this

reason, we perform two different experiments. First, for 1-to-
{1, N} architectures, we replace a module decomposed from

1:1 with one from an RNN model using the 1:N architecture.

Second, for the M-to-{1, N}, we replace a module decom-
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posed from a M:1 with a module from an RNN model with

M:N architecture (traditional). Like RQ2, for M:N encoder-

decoder architecture, we cannot perform the inter-RNN type

replaceability due to the difference in the I/O architecture.

We found that for the 1-to-{1, N} replaceability, there is

an average -4.64% (median -3.85%) accuracy loss. Whereas

for M-to-{1, N} replaceability, the loss is -9.81% (median

-11.49%) (Table IV). Overall, the loss is -8.47% (median -

10.79%) for the inter-model type replaceability.

4) Recreating Motivating Examples: Here, we evaluate the

scenarios discussed in the §II. For the first use case, a new

language needs to be added to an existing model. We created

a model with the languages from the motivating example (i.e.,

English, French, German, and Italian). Then, we decompose it

to create modules. We train another model with the Ukrainian

language as one of the target languages and decompose it

too. Next, we compose the modules from the original model

with the module that translates English to Ukrainian. In the

second approach, we train a new model that translates only

English to Ukrainian and uses it as a module. Lastly, we

compose it with the previously decomposed modules. We

found that both approaches can address the problem. However,

the average BLEU score of modules is slightly less than that

of the monolithic model for the first approach (see Table V).

Here, we only report the results for LSTM models. Results

for other models are similar and included in the replication

package [22].

For the second scenario, we replace the module from a

model that performs badly with a module decomposed from

a model that performs better. We build a model that translates

the Estonian language into English, Italian, and German. We

decompose the model into modules and replace the Estonian

with the English module with two approaches described in the

examples. We found that both approaches perform better than

the trained model from scratch.

TABLE V: Motivating Scenarios (Results for LSTM models)

Scenario TMA MA1 MA2
Add Ukranian Language 32.12% 31.94% 32.53%
Update Estonian-English Translation 20.80% 20.89% 21.30%

* MA{X}, TMA: Avg. BLEU score for scenario X and trained model.

a) Summary: We found that decomposing trained RNN

models into modules has a trivial cost (accuracy: -0.6% and

BLEU score: +0.10%). Also, these decomposed modules can

be reused (accuracy: -2.38%, BLEU: +4.40%) and replaced

(accuracy: -7.16%, BLEU: +0.98%) in various scenarios.

VI. THREATS TO VALIDITY

Internal threat: An internal threat can be the trained

models. To mitigate, we follow prior works [3, 4, 42] to build

the model (details in §-V.A). Another threat can arise from

the stochastic nature of DL. To mitigate, in RQ1, each task is

evaluated on four different model architectures, and in RQ2

and RQ3, every combination is exhaustively evaluated.

External threat: An external threat can be the experimental

datasets. To mitigate this, we chose canonical datasets already

used in the literature [16, 17, 18, 19, 24]. These datasets have

a rich corpus and are adequately diverse to allow evaluation of

our technique in different practical usage of NLP, i.e., single-

output, multi-output, and generation (language translation).

VII. CONCLUSION AND FUTURE DIRECTIONS

Modularization and decomposition have been shown to

enable many benefits in traditional software, such as reuse,

replacement, hiding changes, and increased comprehensibility

of the modules [28, 45]. Recent works have demonstrated

that DL systems can also benefit from such a decomposition

and demonstrate these advantages for FCNN and CNN net-

works [3, 4]. This paper further advances our knowledge of

modularity in the context of DL systems by extending it to

RNNs, an important class of DNNs. It shows that different

RNN models can be effectively decomposed and reused in

different scenarios. Practitioners can use modules to compose

new models. Also, they can leverage modules to replace faulty

parts of existing models. The approach has been evaluated

extensively on a benchmark of 60 models in different setups,

i.e., different input/output types, RNN variants, and assuming

both non-linear and logistic activation functions, etc. We found

that decomposition has a small cost in terms of performance

(accuracy and BLEU score). While this work limits its focus

on the reuse and replace dimension of the modularity, we

envision this decomposition can also enable/facilitate other

benefits such as:

Hiding Changes: One of the key benefits of modularization

is its ability to isolate and hide changes to a smaller number of

components. This notion could be extended to deep learning

software, making maintenance of large models, particularly

in NLP, more manageable. Given the significance of change

hiding in these scenarios, it is worth exploring the potential

of the proposed modularization to streamline the maintenance

process.

Increase Comprehensibility: Modularization has been

shown to enhance our understanding of program logic, as

noted by Dijkstra [45]. In the context of deep learning models,

modularization could help reveal the internal logic more

efficiently by breaking down a monolithic black-box model

into distinct, functional units.
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