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Abstract—Can we take a recurrent neural network (RNN)
trained to translate between languages and augment it to support
a new natural language without retraining the model from
scratch? Can we fix the faulty behavior of the RNN by replacing
portions associated with the faulty behavior? Recent works on
decomposing a fully connected neural network (FCNN) and
convolutional neural network (CNN) into modules have shown
the value of engineering deep models in this manner, which
is standard in traditional SE but foreign for deep learning
models. However, prior works focus on the image-based multi-
class classification problems and cannot be applied to RNN due
to (a) different layer structures, (b) loop structures, (c) different
types of input-output architectures, and (d) usage of both non-
linear and logistic activation functions. In this work, we propose
the first approach to decompose an RNN into modules. We study
different types of RNN:s, i.e., Vanilla, LSTM, and GRU. Further,
we show how such RNN modules can be reused and replaced in
various scenarios. We evaluate our approach against 5 canonical
datasets (i.e., Math QA, Brown Corpus, Wiki-toxicity, Clinc OOS,
and Tatoeba) and 4 model variants for each dataset. We found
that decomposing a trained model has a small cost (Accuracy:
-0.6%, BLEU score: +0.10%). Also, the decomposed modules can
be reused and replaced without needing to retrain.

Index Terms—recurrent neural networks, decomposing, mod-
ules, modularity

I. INTRODUCTION

Recurrent neural networks (RNNs), like fully-connected
neural networks (FCNN) and convolutional neural networks
(CNN), are a class of deep learning (DL) algorithms that
are critical for important problems such as text classification.
Depending on their architecture, they are further classified
into vanilla RNN, LSTM (Long Short Term Memory), or
GRU (Gated Recurrent Unit). To build such models, the
most common way is by training from scratch. Otherwise,
developers can also use transfer learning [1, 2] to reuse a
model by retraining its last few layers. Such types of model
reuse are coarse-grained, relying on the original model’s entire
structure. In contrast, we propose to decompose a trained RNN
model to enable fine-grained reuse without needing to retrain.

The term ‘modules’ has also appeared in the AI/ML commu-
nity; however, it serves a different purpose [5, 6, 7, 8, 9]. They
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TABLE I: Comparison with the existing works

[ Functionality [FCNN-D|CNN-D[Our Work

Image v

Input Sequential Data (e.g., Text)
Models with more than one output
Models classify into one of the labels
Model [Models with loops

Properties|Models with more than one input
Shared weight and bias

Gated layer architecture
Non-linear activation function
Logistic activation function

* FCNN-D: Fully Connected Neural Network decomposition approach [3], CNN-D:
Convolutional Neural Network decomposition approach [4]
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aim to add external memory capability to the DL models [9].
To illustrate, Ghazi et al. presents an example of a room and
objects within [9]. A DL model is excellent in answering
immediate questions such as “Is there a cat in the room”?
However, suppose a person often visits a room over many
years and later ponders an indirect question, "How often
was there a cat?”. In that case, a DL model is incapable
of answering it. As a remedy, this line of work proposes to
build a deep modular network consisting of many independent
neural networks [8, 9, 5]. Essentially, they view a module
as a function created in advance. Once a problem is given,
they dynamically instantiate a composition of the modules to
answer such questions. In all these cases, the end result is still
akin to a monolithic model tasked with solving a particular
problem. On the contrary, we aim to decompose a trained
RNN model to enable the benefit of software decomposition.

Along this line, recent work has proposed an approach
to decompose FCNN and CNN models into modules and
enable their reuse [3, 4]. However, those approaches cannot
be applied to RNNs due to the challenges listed in Table 1.
For instance, RNNs, particularly LSTM and GRU, incorporate
activation functions such as Tanh and Sigmoid in their internal
architecture, which are unsupported by prior works. RNNs
have five types of architecture depending on the network’s
input-output. Moreover, RNN includes a loop structure to
process sequence data effectively. These differences render
prior approaches inapplicable to RNNs.

Therefore, in this work, we ask: can we identify the RNN
model parts responsible for each task and decompose them
into modules? Doing so would allow us to (a) build a new
problem or (b) replace existing model functionality. In both
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Fig. 1: Motivating Examples De: German, En: Enghsh Et: Estonian, Fr: French, It: Itahan Ua: Ukrainian Language.

cases, this type of reuse removes the need for additional data
and training. To that end, we propose an approach for decom-
posing RNNs into modules. A key innovation in our work is
handling the loop in RNN in both time insensitive and sensitive
manner. Inspired by prior works on understanding loops in
SE [10, 11, 12], we propose to identify nodes and edges
responsible for each output class - (a) over all the iterations
of the loop (rolled) and (b) individually, for each iteration
in the loop (unrolled). Unrolled-variant is aware of the time
dimension of the model, while rolled is not. Second, to handle
different RNN architectures, we identify the concern (i.e., parts
of the network responsible for classifying an output label) and
untangle each output timestep at a time. In prior works, each
concern is identified and untangled separately; this does not
apply to models that produce many outputs. Third, we support
models built using logistic activation functions, i.e., Tanh,
Sigmoid, etc., which are commonly used in RNN [13, 14, 15].
In addition, we propose a decomposition approach assuming
ReLU activation as well.

To evaluate our approach, we apply it to five different input-
output (I/O) architecture types. Moreover, we evaluate differ-
ent RNN-variants (LSTM, GRU, Vanilla) for each architecture.
To that end, we utilize Math QA [16], Brown Corpus [17],
Wiki-toxicity [18], Clinc OOS [19], and Tatoeba [20] datasets
for training models in different setups, and decompose them.
In total, our benchmark consists of 60 models, i.e., 4 (#
models) * 3 (# RNN-variants) * 5 (# I/O architectures). In
this work, we use the terms “RNN” or “recurrent model”
interchangeably to refer to three RNN-variants collectively.

Key Results: To evaluate our approach, first, we measure the
cost of decomposition by comparing the accuracy of the model
composed using decomposed modules and the monolithic
model from which the modules are decomposed. We found
that the loss of accuracy is trivial (Avg.:-0.6%, median: -
0.24%). For language translation models, there is a slight gain
in performance (Avg.: +0.10%, median: +0.01%), measured
in BLEU score [21]. We also find that the decomposition of
models producing more than one output must be time-sensitive
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or aware of what output appears at what time. Second, we
evaluated our approach to reusing and replacing the decom-
posed modules to build various new problems. We compared
the accuracy of the models composed using decomposed
modules with monolithic ones, trained from scratch. When
reusing and replacing, we found that the performance change
is (accuracy: -2.38%, BLEU: +4.40%) and (accuracy: -7.16%,
BLEU: +0.98%), on average, respectively. All the results and
code for replication is available here [22].
The key contributions of this work are as follows:

« We propose an approach to decompose an RNN model.

o Our proposed approach is applicable for all five types of
I/O architectures.

o We propose two variants to support loops in RNN.

o Our approach supports both logistic and ReLU activation
and all 3 RNN:s, i.e., Vanilla, LSTM, and GRU.

o« We show that our approach can reuse and replace the
modules to build new problems without retraining.

II. MOTIVATING EXAMPLES

In this section, we show two examples of using RNN models
and how decomposing them into modules could help. The
RNN models are used for multilingual language translation.
Note that it is preferably performed in a multilingual setup to
improve the overall performance of the translation task [23,
24]. Fig. 1 shows two examples in which decomposition can
assist developers when building RNN models for translation.

Adding a new language to the European Union system.
To introduce a new input (new language) to an existing RNN
model, it must be trained from scratch. For instance, recently,
the European Commission (EC) presented a new requirement
to support the translation of languages that are not part of
the European Union (EU) [25, 26]. It needs to be retrained
to support the additional language. This process is expensive
and time-consuming as developers must preprocess the data
and train a model. Fig. 1 on the top right section shows
how decomposition could help in this regard. Here, we have
a monolithic model that translates an input in English into
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Fig. 2: High-level overview of our approach.

French, Italian, and German. Traditionally, a new model needs
to be trained by adding new examples to the existing dataset
to add the translation of English to the Ukrainian language.

In contrast, using our approach, one can take the existing
trained model and decompose it into modules, in which each
module is responsible for translating English to another non-
English language. Then, find a different multi-lingual model
trained to translate multiple languages, including English to
Ukrainian, and decompose it. Next, take the module respon-
sible for translating English to Ukrainian and compose it
with the existing model’s modules. Moreover, one can also
train a small model that only supports English to Ukrainian
translation. Then, compose it with the decomposed modules
from the existing model. In both cases, training the large
model can be avoided. The choice of approach depends on
the available resources and module(s).

Altering a part of a trained model. Like any software
system, neural network models can exhibit faulty behavior. For
instance, in Estonian, “ta on arst” means “She is a doctor”
in English. However, since Estonian is a gender-inclusive
language, when we used the Google translator [27], the output
was “He is a doctor”, which is incorrect and gender-biased. In
such scenarios, the European Language Resource Coordination
(ELRC) is set to actively enhances the multilingual translation
services of EU languages [25]. The most common approach
to updating existing models is two-pronged: 1) introducing
new examples to improve the faulty data, and 2) retraining
the whole model. However, this approach can be resource-
intensive because of the retraining.

In contrast, using our approach, one can handle the same
problem in two different ways (Fig. 1 bottom right part). In the
first approach, we decompose the existing trained model into
modules. Then, we remove the Estonian to English translation
module. Lastly, we use decomposition to select a replacement
from a non-biased Estonian to English model. We retrain a
small model using an improved dataset in the second approach.
Then we compose it with the previously decomposed modules.
In both cases, retraining the large model can be avoided. Thus,
saving computational resources and hardware costs.

III. RELATED WORKS

In the SE community, a vast body of work in software
decomposition [28, 29, 30, 31, 32] exists. The notion of
modularity exists in the ML community too [5, 6, 7, 8, 9],
however, to address different issues than what this work aims
to deliver. They eventually produce a monolithic model in the
sense that it does not enable fine-grained reuse.

Many studies reuse a DNN model to solve a software
engineering task [33, 34, 35]. Transfer learning is a common
technique to reuse the knowledge and structure of a trained
model [1, 2]. However, retraining and modification are re-
quired when applying transfer learning to a different task.
Moreover, replacing the model’s logic cannot be achieved by
transfer learning.

Along this line, the closest work was introduced by Pan
and Rajan [3, 4]. They propose an approach to decompose
an FCNN and CNN multi-class model into modules, which
can be (re)used with other module(s) or be replaced by
other modules to solve various problems. SaiRam et al. [36]
identified sections of a trained CNN model to reuse when the
target problem requires a set of output classes, i.e., the subset
of the original model. In contrast, our decomposed modules
can be reused and replaced with modules originating from the
same and different datasets.

While these works introduce the notion of decomposition in
various DL models, they cannot be directly applied to RNNs
for the following reasons: (a) loops in the architectures, (b) lo-
gistic activations, and (c) different I/O modes. In contrast, our
work addresses these novel technical challenges and proposes
an approach to decompose RNN models into modules.

IV. APPROACH

In this paper, we propose a decomposition technique for
recurrent models, where a binary module is produced for
each output label. Figure 2 shows the overall approach. It
starts with a trained model and produces decomposed modules.
We propose two variants (rolled and unrolled) to that end.
Each variant uses a different strategy to handle the loops in
the RNN architecture. Like prior work [3, 4], broadly, the
process of RNN decomposition has three steps — Concern
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Identification (CI), Tangling Identification (TI), and Concern
Modularization (CM). First, CI identifies the model parts
contributing to a concern (an output class). After CI, a model
can mostly recognize the target output class. Therefore, TI
aims to add/update some parts responsible for negative output
classes. Lastly, CM modularizes the concerns and creates a
module that can recognize a single output class. Next, we
describe technical challenges first, then each step in detail.

A. Challenge

Previous studies have proposed a decomposition approach
for FCNN and CNN [3, 4]. However, RNN models signif-
icantly differ from other model types rendering prior ap-
proaches inapplicable to RNNs. This section discusses such
differences that our approach addresses.

Challenge 1: Weight Sharing Across Time. Traditional
neural networks (i.e., CNNs and FCNNs) do not have loops
in their architecture — data directly flows from the input to
the output layer. However, for RNNs, loops are leveraged to
process sequential data. By doing so, the weights and biases
are shared across time. Therefore, the decomposition algorithm
must be aware of the time dimension in the network.

Challenge 2: Additional Learned Parameters. Unlike
traditional neural networks, every RNN cell (node) receives
two sets of learnable weights, i.e., weights associated with
input at a timestep, W, and internal recurrent state or memory
weights, U. The decomposition algorithm must decompose
these additional learned parameters associated with memory.

Challenge 3: Gated layer architecture. Improved RNN
variants, such as LSTM and GRU, perform gate operations,
which enable both long and short-term memory, unlike vanilla
RNN, which only involves short-term memory. For example,
LSTM involves three gates in its internal architecture: input,
forget, and output gate. Internal operations of an LSTM cell
is shown in [stm_op method in algorithm 3. Each of these
gates incorporates learnable (weights and biases) parameters
of its own. Hence, the decomposition technique must consider
these gates, i.e., identify relevant nodes across all gates.

Challenge 4: New activation function. Previous works
on DNN decomposition only support ReLU activation func-
tion [3, 4], which are common in FCNN and CNN. However,
in RNNSs, logistic activation functions, such as Tanh, Sigmoid,
are the most common [13, 14, 15]. Moreover, popular DL
libraries such as Keras, TensorFlow, and PyTorch use Tanh
as the default activation function for RNNs [37, 38, 39].
Therefore, to apply decomposition, we must support these
functions.

Challenge 5: Multiple I/0 Architecture. FCNN and CNN
models process a single output from one given input (/:7). As
a result, prior works [3, 4] were proposed for networks with
a 1:1 architecture. However, there are 5 different input-output
architectures in RNNSs, as shown in Figure 3, which also need
to be supported. 1:1 models receive a single input and produce
one output. 1:N models take a single input and produce
sequential outputs. M:1 models receive sequential inputs and
produce one output. M:N models receive a sequence of inputs
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and produce many outputs. Figure 3 shows the two sub-types
for M:N models. On the right, the architecture takes inputs and
produces outputs at different timesteps (e.g., encoder-decoder
models). The left one produces the output at the same timestep
as it receives its inputs.

B. Concern Identification

Concern identification (CI) aims to identify parts of the
network (nodes and edges) responsible for classifying an
output label, OL, referred to as a concern. The definition of
concern is aligned with the traditional SE and prior works
on decomposing DNN into modules [3, 4]. The output label
for which the concerned nodes and edges are identified is the
dominant output class in the concern, while other classes are
non-dominant. For instance, in Figure 2, for the concern verb,
verb (V) is the dominant class, and pronoun (P) and noun (),
are the non-dominant classes. In that example, we show how
a model, taking many inputs (words) and tagging each word
with a part-of-speech (POS), can be decomposed into modules
for each POS.

On a high level, CI aims to identify nodes and edges
relevant to a particular concern or output class. In a ReLU-
based network, relevant nodes can be identified by observing
activation values for a sample of that class, and nodes that
always remain active can be treated as relevant. However,
because of logistic activation used in RNNs, where the notion
of “active” or “inactive” is not as distinct as in ReLU, we
identify relevant nodes by comparing the central activation
level of a node in both positive and negative samples. Besides
that, CI for RNN must also be aware of the time loop,
multi-output, and gated architecture of RNNs. Our approach
unrolls the time loop in RNN and performs CI (i.e., identifying
relevant nodes) in both a time-sensitive (unrolled) and insensi-
tive manner (rolled). Moreover, improved RNN variants (i.e.,
LSTM) involve gates in its architecture, which we handle by
identifying relevant nodes across all gates. Finally, a different
CI approach is needed for multi-output models from a single
one, as one input example can be labeled with multiple
classes (concerns). While CI for single output can monitor
a single input sample for one particular class, we must enable
simultaneous detection of multiple concerns for multi-output
models. Next, we discuss our approaches to handling these
challenges while decomposing an RNN model in detail.

1) Identifying Concerns Across Time: First, in the RNN
models, the weights are shared across timesteps (in RNN
notations, each point in time is called a timestep). As a result,
different nodes may activate at distinct timesteps. Therefore,
in our approach, we propose two CI variants. In particular,
the rolled, which does not take the timesteps of a node into
account, and the unrolled, which is timestep-sensitive.

Rolled: In this variant, we identify the concern and remove
the unrelated nodes and edges. Instead of keeping multiple
copies of the updated edges and nodes (one for each timestep),
we keep a single copy of the modified edges and nodes. All
timesteps share the same weights obtained after removing
edges and nodes.
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Fig. 3: Different RNN input/output (I/O) architectures.

Algorithm 1 Decomposition:{One, Many }-to-One Models.

1: procedure ONE(model, activation, rolled, input_timestep, X,Y)
2 modules = []

3 for every output label, ol do

4. p_in = sample(X,Y,only = ol,size = M)

5: n_in = sample(X,Y,not = ol,size = M/|class| — 1)
6: concern_o = initConcern(model, timestep, rolled)

7 h_val_pos = monitor(p_in, model, rolled)

8: h_val_neg = monitor(n_in, model, rolled)

9: if rolled then

10: flat_p = flatten_obs(model, h_val_pos, timestep)
11: flat_n = flatten_obs(model, h_val_neg, timestep)
12: update_concern(concern_o, flat_p, flat_n, activation)
13: else

14: for ts € input_timestep do

15: p_ts = obs_at(model, h_val_pos, ts)

16: n_ts = obs_at(model, h_val_neg,ts)

17: con_ts = initConcern(model, timestep, True)
18: update_concern(con_ts, p_ts,n_ts, activation)
19: merge(concern_o, con_ts,ts)
20: cur_module = channel(concern_o)
21: append(modules, cur_module)

return modules

Unrolled: In traditional SE, to understand the impact of
each loop iteration, prior works have proposed approaches [10,
11, 12] to unroll the loops. Inspired by such works, the
unrolled variant follows a two-step concern identification
process. In particular, it first unrolls the RNN model loop while
transforming it into an equivalent sequence of operations.
Then, it identifies the nodes and edges responsible for each
concern at each timestep.

Algorithm 2 Decomposition: {One, Many }-to-Many Models.

for every output_timestep, ts do > monitor one step at a time

p_in = sample(X,Y, ts, only = ol, size = M)

n_in = sample(X,Y, ts,not = ol, size = M/|class| — 1)

h_val_pos = monitor(p_in, model, rolled)

h_val_neg = monitor(n_in, model, rolled)

p_ts = obs_at(h_val_pos,ts)

n_ts = obs_at(h_val_neg, ts)

if rolled then
concat(flat_p, h_val_pos_ts, axis = 0)
concat(flat_n,h_val_neg_ts,azis = 0)

else
con_ts = initConcern(model, timestep, True)
update_concern(con_ts,p_ts,n_ts, activation)
concern_o[ts].W,U, B = con_ts.W,U, B

1: procedure MANY(model, activation, rolled, output_timestep, X,Y)
2: modules = []

3: for every output label, ol do

4: concern_o = initConcern(model, timestep, rolled)

5: flat_p =1]

6: flat_n =]

7

8:

> Merge

DO e b e
~OVXNINRLN-OY

21 if rolled then

22: update_concern(concern_o, flat_p, flat_n, activation)
23: cur_module = channel(concern_o)

24 append(modules, cur_module)

return modules

2) Support logistic activation: Unlike ReLU, logistic acti-
vations squash the given input within a certain range [40]. For
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example, Tanh squashes input in range [—1, +1], and Sigmoid
in range [0, 1] [40]. In that regard, Lipton [15] et al. reported
that the hidden layers of a model using logistic activation
are rarely sparse, unlike ReLU-based layers. This is because
a node value is rarely exactly zero for logistic activation-
based layers, unlike ReLU-based ones [15]. As a result, prior
ReLU-based decomposition techniques, which leverages the
notion of “on” or “off” (“off”, if node value is 0, otherwise,
“on”) to identify concerned nodes, do not apply to the logistic
activation functions.

Algorithm 3 Helper algorithms for algorithm 1 and 2

1: procedure INITCONCERN (model, timestep, rolled)
2: con : object > Initialize new model object
3: for each layer,l € model do
4: if layer.generic_type == “Recurrent” and not rolled then
5: for each ts € timestep do
6: con[l].W|ts],Ults], Blts] = l.get_weights()
7: else
8: con[l].W,U, B = l.get_weights() > U=N/A if dense layer
return concern
9: procedure MONITOR(samples, model)
10: hidden_val =[]
11: for x € samples do
12: for each layer € model do
13: if layer.generic_type == “Recurrent” then
14: for ts € timestep do
15: if layer.type == “LSTM” then
16: ht,ct = lstm_op(layer,x, ht—1,ct—1)
17:
18: append(hidden_val, ts,layer, hy)
19: if layer.type == “Dense” then
20: ht = z.dot(layer.W) + layer.B
21: appendshiddenival, layer, ht)
return hidden_va
22: procedure FLATTEN _OBS(model, hidden_val, timestep)
23: flattened = []
24 for s € timestep do
25: for each layer € model do
26: append(flattened, layer, hidden_val[ts][layer])
return flattened
27: procedure OBS_AT(model, hidden_val, ts)
28: values = []
29: for each layer € model do
30: append(values, layer, hidden_val[ts][layer])
return values
31: procedure UPDATE_CONCERN(concern, h_pos, h_neg, activation)
32: if activation == “logistic” then
33: ct_pos = central_tendency(h_pos, model)
34: ct_neg = central_tendency(h_neg, model)
35: C1I_logistic(ct_pos, ct_neg, concern) > identify concern
36: if activation == “relu” then
37: rate_pos = active_rate(h_pos, model)
38: rate_neg = active_rate(h_neg, model)
39: CI_relu(rate_pos, concern) > identify dominant nodes
40: TI1_relu(rate_neg, concern) > identify tangling nodes
return concern > Return updated concern
41: procedure LSTM_OP (layer, T¢, ht—1,c¢t—1) > Apply LSTM Op.
42: st = z¢.dot(layer. W) + hi_1.dot(layer.U) + layer.B
43: n = layer.num_hidden_neuron
44: i, f,0=0(s¢[:,: n]),o(sef;,n: 2n]), 0(s¢[:,3n :]) > Gates.
45: ¢y = ixtanh(s¢[;,2n :3n]) + f*ce1 > Cell state.
46: ht = o * tanh(ct) > Hidden state.
47: return hy, cy




To address this issue, our intuition is that a logistic activation
value can be regarded as the excitation level of a node.
A higher activation value indicates to what extent it lets
information through that node. For instance, an activation
value 1 for Sigmoid allows maximum information through
that node, while 0.0 is the lowest. Leveraging this insight, we
compare the central activation tendency of a neuron in positive
and negative examples and identify concerns (Algorithm - 4).
To that end, first, we sample a set of positive (inputs with target
output label) and negative examples (inputs with other output
labels). Then, we monitor the activation of nodes for both sets
while comparing their central activation tendency. The method
central tendency measures the central activation tendency
of a neuron. First, it retrieves the distribution of activation
values for the observed examples (Line 22 of Algorithm 4)
for a neuron, node. Note that the absolute value of observed
activations is taken (Line 23 of Algorithm 4) as Tanh-activated
values could lie in the range [-1,4+1] and -1 allows as much
information as +1, but in the opposite direction. Then, it
computes the mean as a measure of central activation tendency
for that neuron after discarding outlier observations (Line 26
of Algorithm 4). In method C'I_logistic, a node is considered
more relevant to the dominant output label if its central
tendency is higher in positive examples than in negative ones
(Line 8 of Algorithm 4). Because it tends to allow more
information to pass through for the dominant class than for
other classes, we keep this node and edges going in/out
of it for the dominant class. The method stops removal if
the graph becomes too sparse. To that end, taking the 10%
removal threshold used by Pan et al. [3] as a starting point,
we evaluate the decomposition quality at a 5% interval (i.e.,
10%, 15%, 20%, etc.). For RNN models, we found that
beyond 20%, the graph starts to become too sparse, affecting
decomposition adversely, and we selected this as the threshold
in our experiments.

3) Support gated layer: To support the decomposition
of gated layer architecture, we propose two approaches: i)
decompose each gate based on its own activation, and ii)
decompose all gates based on LSTM/GRU final hidden state.
Note that hidden states or values refer to the output of the
model’s intermediate or hidden layers (between input and out-
put layers). In the first approach, we identify dominant nodes
in each gate based on their own activation values, while, in the
latter, we remove a node from all gates if its corresponding
hidden state value is found to be less significant in positive
samples. The hidden state at a particular timestep dictates the
output at that step. As a result, a node’s hidden value indicates
its relevance to the output produced at that step. Therefore,
in the second approach, we compare a node’s central hidden
state tendency for positive and negative examples. We remove
it from each gate if found to be more relevant to non-dominant
classes or negative examples (Line 8-15 in Algorithm 4).

4) Support Multiple I/O Architectures: To support the CI in
models with multiple input and output classes (i.e., /:N, and
M:N), we propose two approaches for two different output
modes, one and many. Algorithm 1 and 2 show the details as
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Algorithm 4 Concern identification for logistic activation.

1: procedure CI_LOGISTIC (ct_pos, ct_neg, concern, thres)
2: d={}
3: for each layer,l € concern do
4: for each node,n € 1 do
S: d[l][n] = ct_pos[l][n] — ct_neg[l][n]
6: d = sort(d, order = “ascending”)
7: for each layer,node € d.keys() do
8: if d[layer]|[node] < 0.0 then
9: removeN ode(concern, layer, node)
10: if layer.type = “LST M” orlayer.type = “GRU” then
11: hunit = layer.num_hidden_neurons
12: removeN ode(concern, layer, hunit + node)
13: removeN ode(concern, layer, 2 x hunit + node)
14: if layer.type = “LST M” then
15: removeN ode(concern, layer, 3 x hunit + node)
16: if removedPercent >= thres then
17: stop
return concern > Return updated concern
18: procedure CENTRAL_TENDENCY(hidden_val, concern, activation)
19: tendency = {}
20: for each layer, node € concern do
21: all_obs = ]
22: for each observation, o € hidden_val do
23: all_obs.append(abs(hidden_val[layer][node][o]))
24:
25: d = remove_outliers(all_obs)
26: tendency[layer]|[node] = mean(d)

return tendency

described next.

{One, Many }-to-One. Like any traditional network, RNN
can take a single input and produce a single output. However,
RNN can also take many inputs (i.e., sequential data). Algo-
rithm 1 shows our approach for concern identification in the
presence of an input loop and models that produce a single
output. Algorithm 1 receives a trained model, activation type,
modularization mode (i.e., rolled or unrolled), timesteps (1 for
one, > 1 for many at input end), and input examples. Next,
it iterates through every output label (OL) to create a module
for each output label. To identify the concern for OL, first,
our approach selects the examples labeled as the dominant
output class in the training dataset (Line 4 of Algorithm 1),
which we call a positive sample. Also, it selects negative
samples proportionally from each negative class (Line 5 of
Algorithm 1).

Then, in line 6 of algorithm 1, initConcern method ini-
tializes the modular weights. In particular, it initializes the
modular weights W, U, and B with the trained model ones.
These nodes and edges from the weights are removed and
updated as the algorithm proceeds to identify a concern. In
the unrolled mode, for recurrent layers, initConcern creates
timestep copies of W, U and B to allow individual timestep-
specific weight pruning (Line 5-6) in Algorithm 3).

In the next step, each neuron activation is monitored for
both positive and negative samples (Line 7-8 of Algorithm 3)
by feeding them to the trained model. monitor method of the
Algorithm 3 shows how the nodes are observed. In particular,
each example is propagated through the trained model while
recording the node hidden values for each example across
all timesteps. The method handles different types of trainable
layers found in a recurrent model. For recurrent layers, the
method handles the presence of a loop by implementing a



feedback loop (Line 14 of Algorithm 3). For example, for
LSTM layers, LSTM cell, Istm_op, is repeatedly fed with an
input, x, at a particular timestep, t, previous hidden and cell
state (Line 16 of Algorithm 3). The cell performs a stateful
input transformation, x;, by using the contextual information
from the previous cell and recording hidden values at each
timestep (Line 18 of Algorithm 3).

Algorithm 5 Concern identification for ReLU.

1: procedure ACTIVE_RATE(hidden_wval, concern)

2: rate = {}

3: for each node,n € concern do

4: activeCounter = 0

5: for each observation,o € hidden_val do

6: if isNodeActive(hidden_val[layer][n][o]) = True then

7: activeCounter+ =1

8: rate[n] = (activeCounter/len(hidden_val)) * 100.0
return rate

9: procedure CI_RELU(active_rate, concern, thres)

10: for each node n € concern do
11: if active_rate[n]==0.0 then
12: removeNode(concern, layer, n)
13: if removedPercent >= thres then
14: stop
return concern > Return updated concern
15: procedure TI_RELU(active_rate, concern)

16: for each node,n € concern do
17: if active_rate[n] > 0.0 then
18: restoreN ode(concern, layer, n)

return concern > Return updated concern

Rolled-variant of the algorithm identifies concern for the
dominant class in a timestep-insensitive manner. Instead of
identifying concerns in each timestep separately, all timesteps
share the same identified nodes and edges for an output
class. To that end, method flatten obs is called to flatten
observations/hidden values from all timesteps (Line 10 of Al-
gorithm 1). This method essentially treats observed activation
values of nodes at each timestep as a distinct observation of its
own. For example, consider a model with timestep, 10, and 100
input samples to observe. In this case, each neuron will have
100 = 10 observations after invoking monitor. In particular, it
will observe a neuron, X, 100 times in each timestep. However,
rolled-variant will treat hidden values from different timesteps
for a neuron as a separate observation as if there were 100% 10
input samples. Hence, in this mode, each neuron will have
1000 observations.

Then, the concern is updated based on the 1000 observations
in the update concern method (Line 12 of Algorithm 1).
For logistic activations, in update concern, it first computes
the central activation tendency for these 1000 observations
(Line 33-34 of Algorithm 3). Then, it identifies relevant
nodes and edges for the current concern, OL. Similarly, for
ReLU, it computes the active percent of a node given these
observations and identifies relevant nodes accordingly (Line
37-40 of Algorithm 3). In particular, we keep nodes that
are observed to be always active (for Relu-based models)
or comparatively more intensely activated (for logistic-based
models); otherwise, removed as shown in Algorithm 4 and 5.

However, in unrolled mode, the algorithm is timestep-
sensitive as it goes to identify dominant nodes at each timestep
separately (Line 14-19 of Algorithm 1). It iterates through
each timestep and retrieves observations at that timestep (Line
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15,16 of Algorithm 1). Then, it creates a temporary object,
con_ts, to represent concern at this particular timestep. Fi-
nally, it merges the identified relevant nodes at this timestep
to the concern under analysis, conern_ o, by adding them at
that timestep (line 19 of Algorithm 1).

{One, Many }-to-Many. Unlike {One, Many}-to-One, an
input example can be associated with multiple output classes in
{One, Many}-to-Many models. For instance, the POS-tagging
example shown in Figure 2 has many outputs. In this example,
every individual word in a given sentence is associated with
a POS tag in the output. This kind of many-output prob-
lem poses unique challenges to the decomposition technique
proposed for DNNs in the past [3, 4]. The one-output-based
technique can uniquely monitor a single input sample for one
particular output label, as shown in Algorithm 1. However, it
is not possible for many-output models as multiple concerns
may be present simultaneously in a single input. Therefore, to
decompose such models, our insight is to monitor each output
timestep at a time, as shown in Algorithm 2.

The Algorithm 2 starts by receiving the same parameters
as Algorithm 1. Then, to build one module for each output
class, it identifies dominant nodes in each timestep separately
(Line 7 of Algorithm 2). For each output timestep, it simi-
larly samples positive and negative examples to Algorithm 1.
However, the sampling procedure is timestep-sensitive (Line
8 of Algorithm 2). For example, consider an output label "V’
and timestep 2. Then, input with the label "V’ at the second
timestep will be treated as positive if "V’ is present at timestep
2 and negative otherwise, regardless of other labels in other
timesteps. After sampling, the algorithm monitors the neurons
(Line 10 of Algorithm 2). Next, it retrieves only observations
at the current timestep, as other observations at other timesteps
are irrelevant as they can be associated with other output
labels.

Next, in rolled mode, all observations at the currently mon-
itored timestep are concatenated with previous observations
at other timesteps as a distinct observation (Line 15 of
Algorithm 2). For example, for a model with 10 timesteps
and 100 examples at each timestep, there will be 1000 obser-
vations per neuron in rolled mode (Line 22 of Algorithm 2).
However, unlike Algorithm 1, it takes 100 observations from
timestep 0 when CI is done for timestep 0, ignoring other
(9*100) observations. Then, the next 100 observations are
taken from timestep 1 when CI is done for timestep 1,
ignoring the other 900 observations and so on. Finally, it uses
all 1000 observations to identify the concerns (Line 22 of
Algorithm 2). As such, in many-output models, rolled-variant
is unaware of the association between an output label and
timestep, i.e., contextual information on what labels appear
at what step usually. However, in unrolled mode, dominant
nodes are identified only based on current observations (Line
18 of Algorithm 2), and therefore, this variant is capable
of identifying concerns in a timestep-wise output-sensitive
manner.



C. Tangling Identification

The CI stage mostly identifies nodes relevant to positive
samples. However, a module is still required to recognize
negative classes. Therefore, tangling identification (TI) aims
to bring back some nodes after observing negative samples.
TI is particularly important for ReLU-based decomposition as
the CI stage only keeps the most active nodes after observing
positive examples. As a result, it may only recognize the
dominant output class, thus becoming a single class classi-
fier. However, for logistic activation-based models, we use
a different approach during CI that keeps nodes showing
higher central activation tendencies in positive examples. This
technique also keeps some tangled nodes as it does not remove
nodes that are almost similarly activated in both samples.

For ReLU-based models, we bring back a few nodes and
edges related to the non-dominant concerns by observing the
negative examples. For one-output models, in rolled mode,
the observations are flattened, similar to the CI stage (Line 11
of Algorithm 1). Then, it restores a node if it is active in
some negative examples (1] _relu method in Algorithm 5). In
unrolled mode, TI is performed in a timestep-sensitive manner
as was done for CI. It restores a node in a timestep if it is
found to be active in some negative examples in a timestep
(Line 16 of Algorithm 1).

D. Concern Modularization

For Concern Modularization, we channel the output layer
to convert /N output nodes into two types, dominant (D) and
non-dominant (N D) nodes. For each node in the layer before
the output layer, we average all the edges connecting to non-
dominant output class nodes. Then, we connect these nodes
to the newly introduced non-dominant ones. Next, we remove
all other edges from nodes in the preceding layer. Thus, it
converts the output layer into a binary classification-based
problem. For example, given an input, the module recognizes
whether it belongs to a dominant output class. For many-output
models, it performs this operation for each timestep, except
for the encoder-decoder architecture. For instance, in language
translation models, each module produces a single operation
translating an input sentence to a different language.

V. EVALUATION

This section describes the experimental setup and evaluates
our approach using three research questions.

A. Experimental Setups

1) Datasets: We perform our experiment on five widely
used datasets for text-based sequential problems. Each dataset
is used to train different types of RNN models.

MathQA [16]: This dataset contains a series of mathe-
matical questions. Each question has a particular tag (e.g.,
geometry, physics, probability, etc.). Also, the dataset has a
total of 6 output classes.

Wiki-toxicity [18]: This dataset contains Wikipedia pages’
comments. Each comment is annotated with seven toxicity
labels (e.g., toxic, severe toxicity, obscene, threat, insult, etc.).
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Clinc OOS [19]: In NLP, intent classification is a well-
known problem in which an input text is categorized based on
a user’s needs. This dataset has ten output classes.

Brown Corpus [17]: It contains English linguistic data.
Each word is annotated with a part-of-speech tag from 12
different tags.

Tatoeba [20]: This dataset contains sentences in more
than 400 languages. Each sentence in English is translated
into other languages. Thus, the dataset is especially used for
multilingual evaluation [? 41, 23]. We selected English, Italian,
German, and French languages as they have the richest (# of
training data) corpus.

2) Models: For every RNN variant, we built four models
for each of the five I/O architectures. Specifically, we used 1,
2, 3, and 4 RNN layers to build models and named them RNN-
<no. of RNN layers> (RNN refers to either of LSTM, GRU,
or Vanilla). The structure of the models has been inspired
by prior works [3]. Moreover, the data pre-processing and
architecture of the language models are based on a real-world
example [24]. In model architecture, we use a combination of
8 different Keras layers; (a) Embedding represents words as
a fixed-length high-dimensional vector, (b) RepeatVector
repeats the input n times, (c) Flatten converts a multidimen-
sional input into a single dimension, (d) SimpleRNN is the
vanilla RNN layer, (e) LSTM, (f) GRU, (g) Masking ignores
the padded inputs, and (h) TimeDistributed applies the
same layer across timesteps.

3) Evaluation metrics: To evaluate, we use three metrics.

Accuracy. For comparing the trained model with the mod-
ules, we use testing accuracy as one of the metrics. We
interchangeably use the trained model accuracy (TMA), mono-
lithic model accuracy (MMA), etc. For the modules, we use
a voting-based approach (similar to [3, 4]) to compute the
composed accuracy. All modules in a problem receive the
same input, with a joint decision computed at the end. We
use the following terminologies interchangeably — composed
model accuracy (CMA) and module accuracy (MA).

BLEU Score [21]. For language translations, we use the
BLEU score as it is widely applied [42, 43].

Jaccard Index. [3] We compute the Jaccard index (JI) to
measure the similarity of the model and the modules.

B. Results

In this section, we present the results and discuss them
briefly. We evaluated the decomposition on 60 models (20 for
each RNN variant). Moreover, we repeat the experiments in
both rolled, and unrolled modes. Due to space limitations, we
only present a summary of the results (detailed results can be
found here [22]). Moreover, for gated RNN variants, we repeat
all experiments in two proposed approaches for decomposing
gates in § IV-B2. We found that the decomposition cost of both
approaches is comparable, and only results from the second
approach are presented here.

1) RQI: Does decomposing RNN model into modules incur
cost? : In this research question, we evaluate the cost of
decomposition in 60 scenarios. To that end, we determine



TABLE II: Cost of Decomposing RNN into Modules

‘I/O Type‘ Dataset ‘ Mode ‘LSTM-I LSTM-2[LSTM-3|LSTM-4|GRU-1 ‘GRU-Z GRU-3‘GRU-4 Vanilla-1 Vanilla-Z‘Vanilla-3 Vanilla-4[Avg. JI‘
11 Math QA U]?.:gﬁ:d +0.13 +0.07 -0.03 +0.20 | +0.10 | +0.10 | +0.10 | -0.07 -0.30 -0.67 -0.64 -1.01 0.75
M:1 Clinc Rolled -0.13 | -0.44 | -1.40 | -0.44 | -020 [ +0.22 | -0.22 | -0.47 | -1.58 -5.51 227 240 | 0.85
’ 00S Unrolled +0.96 | +0.51 | +0.07 | -0.67 | +0.09 | +0.00 | -0.09 | -0.69 | -0.07 138 -0.87 0.11 0.86
N Toxic Rolled -14.73 | -14.98 | -94.59 | -80.78 | -0.49 | -1.82 | -6.05 | -1.02 | -1521 | -14.96 | -15.15 | -15.28 | 0.86
’ Comment|  Unrolled 0.0 | +0.05 | +0.17 | +0.44 | -0.27 | -0.76 | +0.04 | -0.14 | -0.97 148 -0.36 278 | 0.86
M:N | Brown Rolled -77.07 | -76.56 | -80.55 | -84.63 |-75.28 | -75.48 | -78.04 | -78.11 | -80.13 | -80.18 | -79.93 | -79.93 | 0.83
’ Corpus Unrolled 052 | 022 | 204 | 284 | -002 | 0.77 | 052 | 259 | -1.02 1.64 290 337 | 0.83
EN-FR| +0.02 | +0.18 | -045 | -0.49 [ +0.25| -0.06 | +0.02 | -0.05 | +0.13 | +0.16 | -0.68 -1.04 | 0.80
M:N Rolled [EN-DE| +0.05 | +0.06 | -0.07 | -0.15 | -0.16 | +0.03 | +0.01 | +2.01 | -0.02 2048 -0.56 028 | 0.80
(Encoder | 1 = EN-IT | +0.00 | +0.22 | +0.08 | -0.18 | +0.44 | +0.45 | +0.99 | +0.33 | -0.57 -1.60 | +238 | +2.51 | 0.80
- EN-FR| +0.04 | +0.31 | -0.18 | +0.14 | +0.44 | -0.45 | -0.50 | -0.11 | -0.25 +0.25 | 038 246 | 0.79
Decoder) Unrolled[EN-DE|[ +0.01 | +0.00 | -0.35 | -0.35 | +0.15 | -0.17 | -0.65 | -0.02 | -0.85 -0.26 -3.00 034 | 079
EN-IT| -0.10 | +0.12 | 0.03 | 025 | -0.51 | 0.26 | -0.26 | 0.50 | +0.76 | -0.52 | +3.59 | -0.48 | 0.79

ATl values are in % except Avg. JI. Here, I:I=one-to-one,M:T=many-to-one,I:N=one-to-many,M:N=many-to-many

the quality of the decomposition and composition approaches.
First, we decompose a trained RNN model into modules. Each
module receives the same input and recognizes an output
class. Next, we use the modules to compose a new model
using a voting-based approach. The modules’ decisions are
combined into one that matches the output type. For example,
the final decision is a single output class for {one, many }-to-
one. Whereas, for {one, many }-to-many, the final decision will
be a list of output classes. Then we compare the composed
accuracy with the monolithic one.

We apply the rolled and unrolled-variants to decompose the
60 models, and the decomposition cost is depicted in Table II
in terms of accuracy difference, d = CMA — M MA. In the
rolled-variant, we identify the concern for all the timesteps
at once. For the unrolled-variant, we check the concerns for
each timestep separately after unrolling loops in the RNN
model. We evaluate the unrolled-variant with the M:1, 1:N,
and M:N architectures. The unrolled-variant does not apply to
the /:1 architecture as it does not contain loops. We found
an average loss of 25.8% (median: -2.04%) accuracy for the
rolled-variant. In contrast, the average accuracy loss is 0.74%
(median: -0.44%) for the unrolled one. Moreover, in 31.25%
scenarios, CMA remains the same or improves (considering
rolled mode for 1:1 and unrolled for others).

For the rolled-variant, the bulk of the accuracy losses come
from the many-output models, while the differences in the
one-output model are trivial (Table II). In rolled mode, the
average accuracy loss for one-output models is -0.7%, while
it is -50.87% for many-output models. However, in unrolled
mode, decomposition quality for both one and many-output
models are comparable (avg. loss for one-output: -0.2% and
for many-output: -1.02%). This is because rolled-variant is
insensitive to timestep, therefore, more likely to lose output-
related contextual information at a timestep. In other words,
timestep-specific output sensitivity is lost in rolled-variant.
Many-output models, where each timestep has an output,
require that concern is identified for that output based on what
is observed in that timestep, which unrolled-variant does. On
the other hand, one-output models only rely on the hidden
state of the final RNN cell, requiring no output sensitivity for
different timesteps. Therefore, we recommend unrolled-variant
for many-output models, particularly where each timestep-
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output is subject to decomposition.

For language models, we compute the BLEU score for
each pair of languages. This score measures their translation
quality [21]. We found an average gain of 0.10% (median:
+0.01%) for the rolled-variant in the BLEU score. While, in
unrolled mode, the average BLEU score loss is -0.2% (median:
-0.25%). Based on the argument by [44], such a change in
the BLEU score does not affect the quality of the translation.
Furthermore, for 52.8% cases in rolled mode, the composed
model’s BLEU score remains the same or improves compared
to the original one.

Similarity: Apart from the cost, we also measure the
structural similarity (in terms of learned parameters) between
the monolithic model and module to assess the effectiveness
of decomposition. A high similarity indicates an ineffective
decomposition approach, creating modules replicating the
original model. To evaluate the variability among modules and
models, we compute Jaccard Index (JI). We found that, on
average, the JI value for the rolled-based approach is 0.82,
and for the unrolled one is 0.83. This result shows that the
modules are significantly different from the parent models.
Overall, we found that the RNN model can be decomposed
into modules at a very small cost. Also, the decomposed
modules are significantly different from the original model.

2) RQ2: Can Decomposed Modules be Reused to Create
a New Problem?: In this RQ, we reuse the decomposed
modules. Our evaluation focuses on two reusability cases: a)
(re)use the modules within the same input-output (I/O) type,
and b) from a different type, to create a new problem. We
perform these experiments separately for three RNN variants
(LSTM, GRU, and Vanilla). Next, we discuss the results from
each case.

TABLE III: Summary of intra and inter-reuse experiments

LSTM GRU Vanilla
Reuse Type /O Type Mean|Median|Mean [Median|Mean [Median
T 0.07| +0.00 |-0.03 | +0.00 |-0.05 | +0.00
M:1 0.82| 0.67 [-0.73] 044 [-0.53| -0.44
Intra N 220 031 |-5.49] -1.25 |+0.38] +0.02
MN 2050 -0.71 |+0.42] +0.24 |+0.01| -0.02
Ercodor D coder | £5-20| +3.49 [+3.83] 131 [+4.17) +3.00
Inter LI-I:N 249 -1.25 |-7.93| -3.10 |-8.23| -7.68
M:I-M:N__ [-2.92| -1.68 |-3.28| -2.50 |-3.55| -2.63

ATl values are in %.
Intra RNN Type Reuse. To evaluate this reuse type, we



take modules from the same I/O type of RNN. To do so, we use
the dataset available in our benchmark. We take two modules,
compose them, and evaluate the accuracy of the composed
models. Additionally, we train a model with the same model
architecture of the modules with examples of the dominant
classes of the modules. For example, consider the case of
intra-reuse for a M:1 GRU model trained on the Clinc OOS
dataset. In this case, consider the two output toxicity levels:
severe and threat. First, a model is trained from scratch using
inputs of these two labels alone to reuse them. Then, we take
corresponding modules from a previously decomposed model
with all labels and compare their composed accuracy with that
of the trained one newly.

We take 2 modules from each trained model and build a sub-
problem. The total possible combinations for taking 2 modules
from a model trained with a dataset having NV output classes
are (1; ) Our benchmark has 6, 7, 10, and 12 output classes
in the datasets used to train the models for 1:1, I:N, M:1,
and M:N (traditional) architectures, respectively. So, the total
possible combinations can be 152 ((g) + (;) + (120) + (122)).
For each case, we train a model from scratch using two labels.
Then, to get composed accuracy from reused modules, we
consider the modules decomposed from RNN-4 (one with the
highest number of layers), similar to prior work [3]. Then,
we compare their accuracies to understand the effectiveness
of intra-reuse. We found that for 7:1, I:N, M:1, and M:N
(traditional), the change of accuracy is -0.05% (median 0%), -
2.44% (median -0.17%), -0.69% (median -0.56%), and -0.02%
(median 0%), respectively.

In Table III, we report the results. Overall, there is a
slight loss (mean: -0.58%, median: -0.11%) of accuracy when
modules are reused. We also perform a similar evaluation
for language translation modules. Since there are 3 modules
produced from the trained model, taking 2 modules at a time
can create 3 possible scenarios. We also train a multi-lingual
model that takes English sentences as input and converts it into
the 2 chosen non-English languages. We report the results in
Table III. We found that there is an average gain of 4.40%
BLEU score (median: +2.66%) for each language pair.

Inter RNN Type Reuse. We use modules from different
I/O architecture types to evaluate this reuse type to build a
new problem. However, to compose the modules, all of them
should be able to process similar input types. For instance,
assume taking a module from an RNN model that receives
one input (I-to-{1, N}) and reusing it with a module from
a model that receives several inputs at a time (M-to-{1, N}).
This composition would not work because the two modules
do not satisfy the same input constraints. For that, we evaluate
in two different settings. First, 1-to-{1, N}, in which we take
one module decomposed from a /:/ model and another from a
1:N model. Then we compose them together to form a model.
Second, M-to-{1, N}, in which we take one module decom-
posed from the M:1 model and another from M:N (traditional)
model. The encoder-decoder architecture prevents model reuse
with other I/O types for language-translation models. However,
such modules can be reused if decomposed from different
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TABLE IV: Summary of intra and inter-replace experiments

LSTM GRU Vanilla
Replace Type 1/O Type Mean [Median|Mean|Median| Mean [Median
1:1 +0.52] -0.49 [+0.26] +0.25 | -0.55 | -0.54
M:1 -0.30 [ -0.13 [-0.20[ -0.14 | -2.57 | -1.52
Intra I:N -0.74 1 +0.04 [-0.07] -0.24 [-2.39 | -2.48
M:N -14T ] -1.56 [-1.81 -2.90 | -4.76 | -4.04
Enco dzf;lll\)leco der +0.30 | +0.16 |+1.72| +1.88 | +0.92 | +0.96
Inter 1:1-1:N -4.751 -0.02 |-5.10| -3.30 | -4.08 | -6.60
M:1-M:N -10.48] -12.23 [-6.71 -7.11 [-12.23]-13.68

All values are in %.

datasets. We discuss such an experiment in §V-B4, when we
recreate the motivation scenario and show the possibilities of
solving the problem. We found that for the former scenario
(1-to-{1, N}), there is an -6.22% (median -2.95%) loss of
accuracy, on average. Whereas, for the latter scenario (M-to-
{1, N}), the loss is, on average, -3.25% (median -2.20%).

3) RQ3: Can Decomposed Modules be Replaced?: This
RQ investigates how to replace a decomposed module with
another one. Similar to RQ2, we evaluate two different
scenarios—(a) replacing a module with another performing the
same operation within the same I/O type and (b) between
different I/O types (in our case, different datasets too). We
perform these experiments for different RNN-variants sepa-
rately. We discuss each scenario in the following paragraphs.

Intra RNN Type Replacement. Here, a module is replaced
with another one performing the same operation. The rationale
of this experiment is to investigate how decomposition can
help fix faulty models (e.g., low accuracy). To that end, we
take the model with the lowest performance score. Then, we
replace a module with one decomposed from the model with
the highest accuracy in that category. For instance, consider the
case of intra-replace for /:/ LSTM models trained on the Math
QA dataset. In this case, LSTM-1 performs best and worst
for LSTM-4. Therefore, we replace a module from LSTM-
4 with one decomposed from LSTM-1. Then, we compute
the accuracy of the composed model. Table IV shows the
result of the experiments for all types of RNN models. We
found that for a model trained with (/:7, Math QA), (M:1,
Clinc OOS), (I1:N, Toxic comment), and (M:N, Brown corpus)
architecture-dataset pair, the average change of accuracy is
+0.07% (median +0.25%), -1.03% (median -0.42%), -1.07%
(median -0.27%), and -2.66% (median -2.90%), respectively.
For the M:N encoder-decoder architecture, we replace the
modules from the lowest average BLEU score model with
the highest. As a result, we observed a 0.98% increase in the
BLEU score compared to the monolithic model’s BLEU score.

Inter RNN Type Replacement. Here, we replace a module
with another one between different I/O types. We use the
resulting composed model to perform different tasks. For
instance, we replace a module from a model with a I:/
architecture with one from a /:N model. Similar to the RQ2,
the replaced module must accept a similar input type. For this
reason, we perform two different experiments. First, for 1-to-
{1, N} architectures, we replace a module decomposed from
1:1 with one from an RNN model using the /:N architecture.
Second, for the M-to-{1, N}, we replace a module decom-



posed from a M:I with a module from an RNN model with
M:N architecture (traditional). Like RQ2, for M:N encoder-
decoder architecture, we cannot perform the inter-RNN type
replaceability due to the difference in the I/O architecture.

We found that for the 1-to-{1, N} replaceability, there is
an average -4.64% (median -3.85%) accuracy loss. Whereas
for M-to-{1, N} replaceability, the loss is -9.81% (median
-11.49%) (Table 1V). Overall, the loss is -8.47% (median -
10.79%) for the inter-model type replaceability.

4) Recreating Motivating Examples: Here, we evaluate the
scenarios discussed in the §II. For the first use case, a new
language needs to be added to an existing model. We created
a model with the languages from the motivating example (i.e.,
English, French, German, and Italian). Then, we decompose it
to create modules. We train another model with the Ukrainian
language as one of the target languages and decompose it
too. Next, we compose the modules from the original model
with the module that translates English to Ukrainian. In the
second approach, we train a new model that translates only
English to Ukrainian and uses it as a module. Lastly, we
compose it with the previously decomposed modules. We
found that both approaches can address the problem. However,
the average BLEU score of modules is slightly less than that
of the monolithic model for the first approach (see Table V).
Here, we only report the results for LSTM models. Results
for other models are similar and included in the replication
package [22].

For the second scenario, we replace the module from a
model that performs badly with a module decomposed from
a model that performs better. We build a model that translates
the Estonian language into English, Italian, and German. We
decompose the model into modules and replace the Estonian
with the English module with two approaches described in the
examples. We found that both approaches perform better than
the trained model from scratch.

TABLE V: Motivating Scenarios (Results for LSTM models)

‘ Scenario [ TMA [ MA1 [ MA2 |
[Add Ukranian Language [32.12%] 31.94%[32.53%|
[Update Estonian-English Translation|20.80%|20.89% [21.30% |

* MA{X}, TMA: Avg. BLEU score for scenario X and trained model.

a) Summary: We found that decomposing trained RNN
models into modules has a trivial cost (accuracy: -0.6% and
BLEU score: +0.10%). Also, these decomposed modules can
be reused (accuracy: -2.38%, BLEU: +4.40%) and replaced
(accuracy: -7.16%, BLEU: +0.98%) in various scenarios.

VI. THREATS TO VALIDITY

Internal threat: An internal threat can be the trained
models. To mitigate, we follow prior works [3, 4, 42] to build
the model (details in §-V.A). Another threat can arise from
the stochastic nature of DL. To mitigate, in RQ1, each task is
evaluated on four different model architectures, and in RQ2
and RQ3, every combination is exhaustively evaluated.

External threat: An external threat can be the experimental
datasets. To mitigate this, we chose canonical datasets already
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used in the literature [16, 17, 18, 19, 24]. These datasets have
a rich corpus and are adequately diverse to allow evaluation of
our technique in different practical usage of NLP, i.e., single-
output, multi-output, and generation (language translation).

VII. CONCLUSION AND FUTURE DIRECTIONS

Modularization and decomposition have been shown to
enable many benefits in traditional software, such as reuse,
replacement, hiding changes, and increased comprehensibility
of the modules [28, 45]. Recent works have demonstrated
that DL systems can also benefit from such a decomposition
and demonstrate these advantages for FCNN and CNN net-
works [3, 4]. This paper further advances our knowledge of
modularity in the context of DL systems by extending it to
RNNs, an important class of DNNs. It shows that different
RNN models can be effectively decomposed and reused in
different scenarios. Practitioners can use modules to compose
new models. Also, they can leverage modules to replace faulty
parts of existing models. The approach has been evaluated
extensively on a benchmark of 60 models in different setups,
i.e., different input/output types, RNN variants, and assuming
both non-linear and logistic activation functions, etc. We found
that decomposition has a small cost in terms of performance
(accuracy and BLEU score). While this work limits its focus
on the reuse and replace dimension of the modularity, we
envision this decomposition can also enable/facilitate other
benefits such as:

Hiding Changes: One of the key benefits of modularization
is its ability to isolate and hide changes to a smaller number of
components. This notion could be extended to deep learning
software, making maintenance of large models, particularly
in NLP, more manageable. Given the significance of change
hiding in these scenarios, it is worth exploring the potential
of the proposed modularization to streamline the maintenance
process.

Increase Comprehensibility: Modularization has been
shown to enhance our understanding of program logic, as
noted by Dijkstra [45]. In the context of deep learning models,
modularization could help reveal the internal logic more
efficiently by breaking down a monolithic black-box model
into distinct, functional units.
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