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and no down-sampling (standard lexicase). Overall, our results ver-

ify that random down-sampling is more susceptible to causing test

coverage loss than informed down-sampling. Our results are also

consistent with previous studies showing that down-sampling can

sometimes dramatically increase test coverage loss, while standard

lexicase with no down-sampling loses little to no test coverage.

2 METHODS

2.1 Selection methods

We analyze test coverage loss for four variants of lexicase selection,

each configured with a different down-sampling technique: random

down-sampled lexicase (Rand), informed down-sampled lexicase

(IDS), full-information informed down-sampled lexicase (Full-IDS),

and standard lexicase with no down-sampling (Lex).

Lexicase selection. We use standard lexicase selection as the base

parent selection algorithm for our analyses. To select a parent,

lexicase selection shuffles the training cases into a random order and

initially considers the entire population as candidates for selection.

The pool of candidates is filtered down by each training case in

sequence, maintaining only the individuals that are elite (among the

remaining candidates) on the current training case before moving

on to the next training case. If only one candidate remains after

filtering on a training case, that individual is selected. If all training

cases are used and multiple individuals remain as candidates, a

candidate is selected at random. More detailed descriptions of the

lexicase selection procedure can be found in [8].

Random down-sampled lexicase selection. Random down-sampled

lexicase creates a random down-sample of training cases each gen-

eration and then applies standard lexicase selection using only the

down-sampled set of training cases [9].

Informed down-sampled lexicase selection. Informed down-sampl-

ing evaluates a random subset of the population on the full training

set and then estimates the distance between each pair of training

cases based on the distribution of individuals that solve them. We

sample 1% of the population to evaluate on the full training set. For

example, two training cases that are solved by the same set of indi-

viduals have a distance of zero and are functionally synonymous,

whereas two training cases solved by complementary groups of

individuals are distant from one another and considered mutually

informative. These pairwise distances between training cases are

used to iteratively construct a down-sample by first including a

random training case in the down-sample and then by repeatedly

selecting the training case that has the maximum minimum dis-

tance from all training cases already included in the down-sample.

See [2] for a detailed description of the informed down-sampling

procedure. In informed down-sampled lexicase, the informed down-

sampling procedure is used to create a subset of the training set,

and then standard lexicase selection is applied using this subset.

Full-information informed down-sampled lexicase selection. As in

previous work [2], we use full-information informed down-sampled

lexicase selection as a control. This method first evaluates the entire

population on the full training set, and then applies the informed

down-sampling procedure to down-sample the training set. Next,

standard lexicase selection chooses parents using the down-sampled

training set. By using the full population to calculate distances

between all pairs of training cases, this method does not reduce

the number of per-generation evaluations needed to select parents,

and thus, we do not recommend using this technique in practice.

This technique, however, is a useful control, as it provides a best-

case scenario for informed down-sampling; that is, it allows us to

measure informed down-sampling’s potential assuming we had

access to perfect information about the population’s performance

on all training cases.

2.2 Test coverage analysis

We define a population’s test coverage as the number of training

cases solved by at least one individual (i.e., the number of training

cases łcoveredž by a population). Test coverage can indicate how

much of a problem a population collectively solves. A decrease in

test coverage from one generation to the next indicates the loss of

some functionality required to solve the overall problem, which

can be counter-productive for evolutionary search. A population’s

test coverage can increase only as a result of mutation or crossover.

In the absence of variation operators, parent selection can only

contribute to a loss of test coverage (e.g., if all individuals that solve

a particular training case are not selected).

Here, we measure test coverage loss as the difference in test

coverage between the original population and the selected parents.

We compare the test coverage loss that results from applying each

of the four selection methods described above to a population. In all

experiments, we selected a number of parents equal to the original

population size of 1,000.

2.2.1 Recorded population analyses. We recorded the populations

from the first generation of 80 independent genetic programming

runs: 40 attempting to solve the Count Odds program synthesis

problem [6], and 40 attempting to solve the Fizz Buzz program syn-

thesis problem [4]. We performed selection ten times on each pop-

ulation using full-information informed down-sampling, informed

down-sampling, random down-sampling, and no down-sampling

(standard lexicase).We repeated the analysis at three different down-

sampling levels: 0.05, 0.1 and 0.2, meaning 5%, 10% or 20% of the

entire training set (200 training cases) is included in each of the

down-samples. For each down-sampling level, we compared each

selection condition’s test coverage loss. To differentiate between

these distributions, we first performed a Kruskal-Wallis test to de-

tect significant differences across conditions (𝛼 < 0.05), and if so,

we applied a Wilcoxon rank-sum test to distinguish between pairs

of selection conditions using a Bonferroni correction for multiple

comparisons.

These recorded populations represent realistic scenarios encoun-

tered early on during an evolutionary search. While realistic, these

populations have a large amount of variance in the distribution of

individuals able to solve different test cases, motivating our syn-

thetic population analyses.

2.2.2 Synthetic population analyses. To complement the recorded

populations, we manually created synthetic populations with cer-

tain population-level properties by creating a set of 1,000 error

vectors representing individuals. We used these synthetic popu-

lations to exemplify differences in a selection scheme’s capacity
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Figure 1: Test coverage loss for each of full information informed down-sampling (Full-IDS), sparse information informed

down-sampling (IDS), random down-sampling (Rand) and standard lexicase selection at the 𝑟 = 0.05, 0.1 and 0.2 down-sampling

rates. Panels a - c and d - f are results from random populations generated for solving the Count Odds and Fizz Buzz problems,

respectively. Kruskal-Wallis tests for all down-sample configurations were statistically significant (𝑝 < 0.03).

(a) Count Odds, 𝑟 = 0.05 (b) Count Odds, 𝑟 = 0.1 (c) Count Odds, 𝑟 = 0.2

(d) Fizz Buzz, 𝑟 = 0.05 (e) Fizz Buzz, 𝑟 = 0.1 (f) Fizz Buzz, 𝑟 = 0.2

to preserve population-level test coverage. We evenly distributed

individuals among 10 mutually exclusive niches. Each niche was

associated with 20 training cases (out of the 200 total), and all 100

individuals assigned to a niche passed all 20 of the associated train-

ing cases while failing all others. Therefore, test coverage could

decrease only when every individual in a niche failed to be selected.

For our synthetic population analyses, we limited comparisons

to informed down-sampling, random down-sampling, and no down-

sampling (standard lexicase). As in our recorded population anal-

yses, we repeated this analysis at three different down-sampling

levels: 0.05, 0.1 and 0.2. For each configuration, we ran 20 repli-

cate analyses, each with a unique random number seed. Unlike our

recorded population analyses, we applied 300 rounds of selection

in each replicate analysis. For each round, we ran the treatment-

specific selection method to choose parents, and then we copied

those parents to create a łnewž population to be used in the next

round. No evolution occurred in these analyses, as we did not mu-

tate individuals at any point. By applying additional rounds of

selection, we can further isolate how stably a selection procedure

maintains high test coverage.

3 RESULTS

Figure 1 shows the test coverage loss for performing selection on a

random population initialized to solve the Count Odds and Fizz Buzz

problems. We see that, for small down-samples (𝑟=0.05), IDS has a

significantly lower test coverage loss than random down-sampling

(Wilcoxon rank-sum, 𝑝<0.005). Lexicase selection maintains all

of the test coverage (loss of zero) for all runs and configurations.

Full information IDS significantly outperforms both random and

informed down-sampling on all problems and down-sample sizes

(Wilcoxon rank-sum, 𝑝<10−4). In fact, for the Fizz Buzz problem,

Full-IDS maintains test coverage as well as lexicase selection does,

despite only having 10, 20, or 40 training cases in the sample.

Figure 2 shows the test coverage loss from our synthetic popula-

tion analyses. Overall, our data show that down-sampling substan-

tially increases test coverage loss relative to standard lexicase with

no down-sampling. Strikingly, standard lexicase selectionmaintains

full test coverage for all 300 selection rounds across all replicates.

Consistent with the recorded population analyses, random sam-

pling causes more test coverage loss than informed down-sampling.

As expected, as the down-sample size increases, the rate of test
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coverage loss slows for both informed and random down-sampling,

as more niches are likely to be included in the down-sample.
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Figure 2: Synthetic population test coverage loss over 300

rounds of selection for down-sampling rates (a) 0.05, (b) 0.10,

and (c) 0.20. Each line gives the mean value across 20 repli-

cates, and the shading around each line indicates a 95% con-

fidence interval.

Overall, our analyses support the hypothesis that informed down-

sampling better maintains population-level test coverage as com-

pared to random down-sampling. Interestingly, the Full-IDS results

from the recorded population analysis suggest that increasing the

parent sample size (𝜌) can reduce test coverage loss at the cost of

needing to evaluate more individuals on the entire training set. We

also recommend wider adoption of the kinds of static population

analyses performed in this work. These types of analyses can be

applied to any selection procedure, and can help us to better un-

derstand how selection schemes work in the context of different

population structures.

ACKNOWLEDGMENTS

The authors would like to thank Anil Saini, Charles Ofria, Dominik

Sobania, Edward Pantridge, Franz Rothlauf, Li Ding, Martin Bri-

esch, Nic McPhee, and the members of the PUSH Lab at Amherst

College for discussions that helped shape this work. This material

is based upon work supported by the National Science Foundation

under Grant No. 2117377. Any opinions, findings, and conclusions

or recommendations expressed in this publication are those of the

authors and do not necessarily reflect the views of the National

Science Foundation. This work was performed in part using high

performance computing equipment obtained under a grant from

the Collaborative R&D Fund managed by the Massachusetts Tech-

nology Collaborative.

REFERENCES
[1] Ryan Boldi, Ashley Bao, Martin Briesch, Thomas Helmuth, Dominik Sobania,

Lee Spector, and Alexander Lalejini. 2023. The Problem Solving Benefits of
Down-sampling Vary by Selection Scheme. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (Lisbon, Portugal) (GECCO ’23).
https://doi.org/10.1145/3583133.3590713

[2] Ryan Boldi, Martin Briesch, Dominik Sobania, Alexander Lalejini, Thomas Hel-
muth, Franz Rothlauf, Charles Ofria, and Lee Spector. 2023. Informed Down-
Sampled Lexicase Selection: Identifying productive training cases for efficient
problem solving. https://doi.org/10.48550/arXiv.2301.01488 arXiv:2301.01488.

[3] Li Ding and Lee Spector. 2021. Optimizing neural networks with gradient lexicase
selection. In International Conference on Learning Representations.

[4] Thomas Helmuth and Peter Kelly. 2021. PSB2: The Second Program Synthesis
Benchmark Suite. https://doi.org/10.48550/arXiv.2106.06086 arXiv:2106.06086.

[5] Thomas Helmuth and Peter Kelly. 2022. Applying genetic programming to PSB2:
the next generation program synthesis benchmark suite. Genetic Programming
and Evolvable Machines (June 2022). https://doi.org/10.1007/s10710-022-09434-y

[6] Thomas Helmuth and Lee Spector. 2015. General Program Synthesis Benchmark
Suite. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, Madrid Spain, 1039ś1046. https://doi.org/10.1145/2739480.
2754769

[7] Thomas Helmuth and Lee Spector. 2021. Problem-solving benefits of down-
sampled lexicase selection. Artificial Life (jun 2021), 1ś21. https://doi.org/10.
1162/artl_a_00341 arXiv:2106.06085

[8] Thomas Helmuth, Lee Spector, and James Matheson. 2015. Solving Uncompro-
mising Problems With Lexicase Selection. IEEE Transactions on Evolutionary
Computation 19, 5 (2015), 630ś643. https://doi.org/10.1109/TEVC.2014.2362729

[9] Jose Guadalupe Hernandez, Alexander Lalejini, Emily Dolson, and Charles Ofria.
2019. Random subsampling improves performance in lexicase selection. In
Proceedings of the Genetic and Evolutionary Computation Conference Compan-
ion. ACM, Prague Czech Republic, 2028ś2031. https://doi.org/10.1145/3319619.
3326900

[10] Jose Guadalupe Hernandez, Alexander Lalejini, and Charles Ofria. 2022. An
Exploration of Exploration: Measuring the Ability of Lexicase Selection to Find
Obscure Pathways to Optimality. In Genetic Programming Theory and Practice
XVIII, Wolfgang Banzhaf, Leonardo Trujillo, Stephan Winkler, and Bill Worzel
(Eds.). Springer Nature Singapore, Singapore, 83ś107. https://doi.org/10.1007/
978-981-16-8113-4_5

[11] Alexander Lalejini, Emily Dolson, Anya E Vostinar, and Luis Zaman. 2022. Artifi-
cial selection methods from evolutionary computing show promise for directed
evolution of microbes. eLife 11 (Aug. 2022), e79665. https://doi.org/10.7554/
eLife.79665

[12] Christian W.G. Lasarczyk, Peter Dittrich, and Wolfgang Banzhaf. 2004. Dynamic
Subset Selection Based on a Fitness Case Topology. Evolutionary Computation
12, 2 (June 2004), 223ś242. https://doi.org/10.1162/106365604773955157

[13] Jared M. Moore and Adam Stanton. 2017. Lexicase selection outperforms previous
strategies for incremental evolution of virtual creature controllers. In Proceedings
of the Fourteenth European Conference Artificial Life, ECAL 2017, Lyon, France,
September 4-8, 2017. MIT Press, 290ś297. http://cognet.mit.edu/journal/ecal2017

[14] Lee Spector. 2012. Assessment of Problem Modality by Differential Perfor-
mance of Lexicase Selection in Genetic Programming: A Preliminary Report.
In Proceedings of the 14th Annual Conference Companion on Genetic and Evo-
lutionary Computation (Philadelphia, Pennsylvania, USA) (GECCO ’12). As-
sociation for Computing Machinery, New York, NY, USA, 401ś408. https:
//doi.org/10.1145/2330784.2330846

[15] Adam Stanton and Jared M. Moore. 2022. Lexicase Selection for Multi-Task
Evolutionary Robotics. Artificial Life 28, 4 (Nov. 2022), 479ś498. https://doi.org/
10.1162/artl_a_00374

534


	Abstract
	1 Introduction
	2 Methods
	2.1 Selection methods
	2.2 Test coverage analysis

	3 Results
	Acknowledgments
	References

