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PushGP system. In each of these previous studies, down-sampling is

applied in the context of standard lexicase selection. To our knowl-

edge, these down-sampling techniques have yet to be evaluated in

combination with other commonly used parent selection methods

in GP, like tournament or fitness proportionate selection.

Here, we ask whether random or informed down-sampling can

benefit GP systems beyond the context of lexicase selection. We

analyze the problem-solving success of the PushGP system [20]

on four program synthesis and four integer-based symbolic re-

gression problems when using different combinations of selection

scheme and down-sampling method. Specifically, for each of fitness-

proportionate, tournament, and lexicase selection, we compare

the impact of random, informed, and no down-sampling. We find

that down-sampling either improved or did not significantly af-

fect problem-solving success in all instances. Surprisingly, we find

that lexicase selection benefits most consistently from the addi-

tion of down-sampling. Overall, our results highlight the potential

problem-solving benefits of down-sampling in GP systems; though,

some selection algorithms are likely to benefit more than others.

2 METHODS

We applied the PushGP system [20] to the following four program

synthesis benchmark problems [6, 9]: Count Odds, Fizz Buzz, Small

or Large, and Fuel Cost. These problems have been explored in

previous work on informed down-sampling [1] and are therefore

a good basis for our investigation. We included problems where

informed down-sampling has been shown to improve problem-

solving success (Count Odds and Fizz Buzz), reduce problem-solving

success (Small or Large), and have no significant effect on problem-

solving success (Fuel Cost).

In addition to the four program synthesis problems, we applied

PushGP to four simple, integer-based symbolic regression problems

to test whether the benefits of down-sampling extend beyond pro-

gram synthesis. These symbolic regression problems included 3rd,

4th, and 5th-degree polynomials with randomly chosen coefficients

(given in Table 2), and inputs and outputs were restricted to integers.

For each problem, we limited the inputs of the training and testing

sets [−5, 5] and [−10,−5) ∪ (5, 10], respectively. A similar sized

training set was used by Koza [17], and allowed our GP system to

find solutions within our allotted computational budget.

For each problem, we measured the problem-solving success of

different down-sampling techniques in combination with each of

the following well-established parent selection methods: fitness-

proportionate (also known as roulette), tournament, and lexicase

selection. We used standard implementations of these selection

schemes, and for brevity, we refer readers to [3, 11] for detailed

descriptions of each. For both fitness-proportionate and tournament

selection, we compute the fitness of the individual as 1

1+𝑒𝑖
where 𝑒𝑖

is the aggregate error the individual achieved on the training set.

We used a tournament size of 𝑡 = 10.

For each selection scheme, we compared three down-sampling

treatments: randomdown-sampling (Rnd), informed down-sampling

(IDS), and no down-sampling (No). These down-sampling meth-

ods are detailed in [1]. Briefly, random-down sampling evaluates

individuals on a random subset of training cases each generation.

Informed down-sampling uses runtime population statistics to build

Table 1: System parameters used for experiments.

Parameter Value (PS) Value (SR)

GP system parameters

runs per problem 50 200

population size 1000 1000

initial training set size 200 11

testing set size 1000 10

maximum program executions 60,000,000 3,300,000

variation operator UMAD UMAD

instruction set Boldi et al. [1] Boldi et al. [1]

Down-sampling parameters (when used)

down-sample rate 𝑟 0.05 0.30

parent sample rate 𝜌 0.01 0.01

generational interval 𝑘 100 100

down-samples that contain more distinct training cases. To esti-

mate how distinct training cases are from one another, informed

down-sampling evaluates a random subset of the population on

the full training set every 𝑘 generations (the generational interval),

and then uses those error vectors to sample training cases solved

by different subsets of the population. Both random and informed

down-sampling afford per-generation computational savings by

not evaluating the entire population on the entire training set. The

no down-sampling treatment uses standard lexicase on the full

training set each generation.

The configuration used for each problem is given in Table 1.

For each treatment, we report the number of generalizing runs,

which is the number of runs that produce a program that success-

fully passes all of the test cases in the held out testing set. For our

experiments, we held the maximum allowed number of program

evaluations constant (problem-specific, Table 1); as such, down-

sampling treatments that require fewer per-generation evaluations

were run for more generations than treatments that require greater

per-generation evaluations.

3 RESULTS AND DISCUSSION

Table 2 shows problem-solving successes for the chosen program

synthesis problems. A run is considered to be successful if a pro-

gram that solves all training and unseen testing cases is found.

Consistent with previous work with lexicase selection [1, 7, 10, 14],

not all program synthesis problems benefited from down-sampling.

However, we found no instances where selection configurations

without down-sampling significantly outperformed configurations

with down-sampling enabled. In fact, when using lexicase selec-

tion, problem-solving success was significantly improved for all

problems by at least one of the down-sampling methods, and when

using tournament selection, down-sampling significantly improved

problem-solving success for all but one problem (Fizz Buzz). Overall,

fitness-proportionate selection benefited the least from the addition

of down-sampling, as problem-solving success was significantly

better for only one out of four problems. We also found examples

where fitness proportionate and tournament selection failed to find

any solutions unless we used down-sampling.

Across all configurations of program synthesis problems, we

detected a significant difference in problem-solving success between
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Table 2: Number of generalizing solutions (successes) for program synthesis (Program Synth.) and symbolic regression (Sym.

Reg.) problems (out of 50 and 200 runs, respectively). Bolded results indicate that performing down-sampling offers significant

(𝑝<0.05) benefits over the standard (no down-sampling) version of the same selection scheme. A dagger signifies where random

down-sampling significantly outperforms informed down-sampling, and an asterisks indicates where informed down-sampling

outperforms random down-sampling. All significance analysis was conducted with a two proportion z-test with a Bonferroni

correction for multiple comparisons.

Selection Scheme: FPS Tournament Lexicase

Down-sample Type: No Rnd IDS No Rnd IDS No Rnd IDS

Count Odds 0 1 0 0 26 33 10 10 49*

Fizz Buzz 0 0 0 0 0 1 5 32 45*

Fuel Cost 0 19 14 1 28 25 20 40 41

P
r o
g
ra
m

sy
n
th
.

Small or Large 0 5 5 13 18 47* 16 42 38

2𝑥5 − 𝑥4 + 2𝑥3 + 3𝑥2 + 2𝑥 + 6 1 2 2 0 0 0 21 36 43

𝑥4 − 2𝑥3 + 3𝑥2 + 2𝑥 + 3 7 8 11 19 16 11 120 180 179

𝑥4 − 2𝑥2 + 4𝑥 + 3 2 0 0 131 156 172 187 198† 189S
y
m
. R

eg
.

3𝑥3 − 4𝑥2 + 8𝑥 + 3 0 0 0 0 0 0 34 71 83

informed and random down-sampling in three instances: the small

or large problem with tournament selection and the count odds and

fizz buzz problemswith lexicase selection. In each of these instances,

informed down-sampling outperformed random down-sampling.

Table 2 shows problem-solving success for four symbolic regres-

sion problems. Like our program synthesis results, not all symbolic

regression problems benefited from down-sampling. In fact, we did

not detect any significant problem-solving benefits from applying

down-sampling to fitness-proportionate selection on any of the four

symbolic regression problems. Though not statistically significant,

we observed one problem where fitness proportionate found two

solutions (out of 200 runs) without down-sampling and failed to find

any solutionswith either form of down-sampling enabled. As before,

however, we detected no instances where selection configurations

without down-sampling significantly outperformed configurations

with down-sampling. When using tournament selection, one out

of four problems significantly benefited from down-sampling, and

when using lexicase selection, all four problems benefited from at

least one type of down-sampling.

Across all configurations of symbolic regression problems, we

detected a significant difference in problem-solving success between

informed and random down-sampling for only one problem in the

context of lexicase selection. Unlike our program synthesis results,

random down-sampling outperformed informed down-sampling

on this problem.

Across both problem domains (program synthesis and symbolic

regression) and all three selection methods, our results indicate

that down-sampling is often beneficial or neutral for problem-

solving success. We did not find compelling evidence that down-

sampling impeded problem-solving success in any of our experi-

ments. Though, we do note that others have found down-sampling

to impede problem-solving success when there are strong trade-offs

between training cases (e.g., low error on one excludes low error

on another) or when a training set lacks some redundancy [14].

Indeed, our findings are consistent with many previous studies

that report substantial problem-solving gains in GP when applying

down-sampling in order to reallocate computational resources to

running deeper evolutionary searches [1, 10, 13]. These previous

studies, however, focused on using down-sampling in the context

of lexicase selection. Our results indicate that random and informed

down-sampling are also potentially valuable additions to GP sys-

tems using other selection methods, such as fitness-proportionate

selection or tournament selection. Further study is needed to verify

that the value of using down-sampling with fitness-proportionate

selection or tournament selection stems from the increase in genera-

tions that we can run evolution with fixed computational resources.

Surprisingly, we found that down-sampling was most consis-

tently beneficial in the context of lexicase selection, as problem-

solving successwas improved by at least one down-samplingmethod

across all problems. Further investigation is necessary to tease this

apart. Fitness-proportionate and tournament selection are known

to be susceptible to premature convergence [15, 16], while lexi-

case selection is more capable of maintaining both phenotypic and

phylogenetic diversity [4, 8, 12, 19]. Given this, we hypothesize

that lexicase selection benefits more from the increased number

of generations afforded by down-sampling than tournament or

fitness-proportionate selection. That is, if a population evolving un-

der fitness-proportionate and tournament selection has converged

to a local fitness optimum, that population may not benefit from

extra generations of evolution. In contrast, a more diverse popu-

lation evolving under lexicase selection may benefit substantially

from running for an increased number of generations.

Overall, our results suggest that down-sampling, selection scheme,

and search space topology interact to influence the likelihood of
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problem-solving success. Even with our limited set of problems,

neither down-sampling method completely dominated the other,

and the benefits of down-sampling dramatically varied by problem

and selection scheme.

4 CONCLUSION

We extended previous studies that evaluated the efficacy of random

and informed down-sampling in the context of lexicase selection.

We show that both random and informed down-sampling may also

benefit GP systems that use fitness-proportionate or tournament

selection. For fitness-proportionate, tournament, and lexicase se-

lection, applying some form of down-sampling either helped or

had no significant effect on problem-solving success (across four

program synthesis and four symbolic regression problems). This

result suggests that evolutionary computing practitioners should

experiment with different forms of down-sampling in combina-

tion with their preferred selection methods, as it can be used to

improve problem-solving success by reallocating per-generation

computational savings to running a deeper evolutionary search.

Previous studies have shown that the benefits of down-sampling

stem from reallocating the computational savings to running an

evolutionary search for more generations or evaluating more in-

dividuals [5, 10, 13]. We hypothesize that this explanation holds

across each of the selection schemes that we tested in this work. We

did, however, find that different selection schemes benefitedmore or

less from the addition of down-sampling: fitness-proportionate se-

lection seemed to benefit the least, while lexicase selection benefited

on all eight problems. We hypothesize that populations evolving

under lexicase selection are more diverse and therefore benefit the

most from the extra generations afforded by down-sampling. In

contrast, fitness-proportionate and tournament selection are known

to be susceptible to premature convergence to local optima and

might not always benefit from more generations of evolution; that

is, if an entire population is stuck on a local optimum, tournament

and fitness-proportionate selection have no built-in mechanisms to

escape in subsequent generations.

We did not observe consistent differences between random and

informed down-sampling. The best choice of down-samplingmethod

depended on the selection strategy and the problem. Future work

should investigate the interaction between down-sampling and

selection methodology further to determine when informed down-

sampling should be used over different down-sampling strategies.
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