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(a) Medium Map
(b) Hard Map

Figure 1: Two deceptive mazes, adapted from [15]. In both maps, the large circle is the starting point of the robot and the small

circle represents the goal. Both maps are deceptive in the sense that the path that minimizes euclidean distance to the goal will

get stuck at local optima.

optimization in reaching the objective. For example, Lehman and

Stanley [15] compare novelty search to single-objective fitness

based optimization in maze domains. Pugh et al. [21] compare qual-

ity diversity techniques to using only a single distance metric as

an objective. Gaier et al. [8] compare using MAP-Elites to a (sin-

gle) image similarity objective in evolving a target image. There

are notably few studies comparing it to multi-objective or multi-

modal optimization. Vassiliades et al. [23] compared MAP-Elites

and NS to other multi-modal selection schemes for a maze navi-

gation task. Nordmoen et al. [19] compared MAP-Elites [16] to a

single- and multi-objective optimization algorithm. However, the

multi-objective algorithms simply use diversity as a secondary ob-

jective, which does not necessarily provide a fair ground between

QD algorithms and MOOs as QD has access to all dimensions of

diversity, where MOOs simply get access to an aggregated version

of this information. Other work looked at combining QDwithMOO,

but not on comparing them to each other (partly due to them having

different goals in the majority of the cases) [17, 20].

When comparing QD’s problem solving ability to single objective

or limited multi-objective optimization paradigms, the information

accessible to both systems is not the same, preventing a fair com-

parison. In this paper, we consider the problem of providing quality

diversity algorithms with the same information as that available to

multi-objective optimization. This allows for both MOOs and QD

to be compared faithfully in their ability to maximize objective(s)

where diversity is instrumental (extrinsic), as opposed to being a

goal that we are trying to optimize in and of itself (intrinsic).

To do this, we propose the use of a dimensionality reduction

technique to generate the behavioral descriptors for the quality

diversity methods, and a slightly augmented version of this model

to generate the objective values for MOO. This allows for a faithful

comparison between both techniques as they will have access to

the same performance signal.

2 MOTIVATION

To motivate the use of comparison scheme like this, we discuss

the potential effects of learning the fitness function from hand-

written measures (as it usually is in the literature), and provide a

motivating example that shows how optimizing for combinations of

these objectives through multi-objective optimization could result

in the maintenance of diversity automatically.

A common motivating example for quality diversity algorithms

aimed at solving deceptive single objective problems is one of the

deceptive hard maze. Two mazes that are of medium and hard

difficulty can be found in Figure 1. These mazes are both deceptive

as an individual greedily moving towards the goal will get stuck at

sub-optimal traps. For this reason, diversity must be emphasized to

ensure that the goal is actually reached. This fits into scope of the

problems discussed in this paper as the sole objective is to reach

the goal, yet diversity is intstrumental in reaching this objective.

Consider what an arbitrary QD algorithm could do in this sce-

nario. For example, MAP-elites [16] could be implemented with

hand written behavioral descriptors such as 1) distance to goal

on 𝑥 axis, 2) distance to goal on 𝑦 axis, 3) total distance travelled,

and perhaps 4) number of turns taken. Using measure functions

like these, solving deceptive mazes like above would be relatively

straightforward, as demonstrated by Pugh et al. [21].

Why not single objectives? Single objectives often rely on an

aggregation of sub-objectives that each represent qualitatively dif-

ferent goals. This aggregation procedure results in a loss of infor-

mation regarding the performance of an individual.

Instead, we use multi-objective optimization directly on the sub-

objectives to help facilitate the discovery of high performing in-

dividuals. With MOOs, then, finding solutions that optimize com-

binations of the sub-objectives creates diversity in the population

similar to that with QD. However, the diversity that results from

this is implicitly optimized for, as opposed to it being explicitly op-

timized for like in QD. What this means is QD maintains diversity
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as an objective in-and-of itself, whereas MOOs only optimize for

their given objectives.

In order to use multi-objective optimization on this domain using

the scheme we present in this paper, we make an assumption that

the fitness function (proximity to goal) can be approximated as a

linear combination of these 4 measures. It is important to note that

the raw value of the fitness function need not matter, as long as it

matches the original fitness function in ranking the individuals. It

is clear that both 𝑥 and 𝑦 distance are negatively correlated with

proximity to the goal. For the sake of the example, let us suppose

that the total distance travelled could also have a negative (yet

smaller in magnitude) correlation to proximity to the goal. Finally,

let us say that the number of turns is neutral to fitness (individuals

that turn more on average perform no better than those that turn

less).

We then set each feature as its own objective for multi-objective

optimization. Each individual is evaluated on all 4 of these metrics,

and individuals are selected based on the multi-objective optimiza-

tion algorithm being used. Consider an individual that has perfectly

matched the 𝑥 location of the goal. This individual will likely be

selected regardless of its 𝑦 location, distance, or turn values. Con-

sider an individual that is very far from the goal, yet has covered a

large amount of distance. This individual would also be selected,

regardless of its distance to the goal. These different trade offs result

in a diversity of individuals that solve different combinations of the

sub-problems. When using a multi-objective selection scheme like

Lexicase selection, this diversity is maintained automatically until

convergence to a final goal. [10]

Importantly, these systems have access to the same information

as the quality diversity optimization algorithms. However, the key

difference here is that MOOs could solve these deceptive problems

without explicitly maintaining diversity. If QD algorithms can out-

perform MOOs in this domain, this would mean that the diversity

that that specific QD algorithm maintains is instrumental in over-

coming the deception in this domain. In the next section, we discuss

how to extend this comparison scheme to any domain, regardless

of the existence of human-written behavioral descriptors.

3 COMPARISON SCHEME

In this section, we will bring together all the ideas presented in

this paper into a simple scheme to fairly compare quality diversity

algorithms with objective-based algorithms. We operate under the

assumption that humans have little intuition about the domain, and

that reasonable choices behavioral descriptors or objectives will

therefore not be obvious in advance.

3.1 From Phenotype to Measures

Consider learning of a set of measures𝑚(𝜃 ) as an unsupervised

learning task. This can be learned with a variational autoencoder

(VAE, [5]) as done in some previous work in QD [2, 9].

Figure 2 outlines an example autoencoder architecture that could

be used to learn a latent embedding of a given phenotype. Using

reconstruction loss, this autoencoder can be used to learn a com-

pressed representation of a phenotype in lower-dimensional space.

This makes it possible for QD algorithms such as MAP-Elites to

Encoder𝑝 (𝜃 ) Decoder 𝑝 (𝜃 )

𝑧 (𝜃 )

Figure 2: Variational autoencoder architecture used to learn

a latent embedding 𝑧 (𝜃 ) of a phenotype 𝑝 (𝜃 ). As this is a vari-

ational autoencoder, 𝑧 (𝜃 ) is sampled from a distribution that

is parameterized by the output of the encoder (not pictured

here for simplicity).

Encoder𝑝 (𝜃 )

𝑧 (𝜃 )

𝑚(𝜃 )

Figure 3: Using the encoder of a VAE to predict measures

𝑚(𝜃 ) of a phenotype 𝑝 (𝜃 )

cover a large set of behavioral niches without needing to store a

high dimensional archive.

Figure 3 shows how the architecture outline in Figure 2 can be

used to generate the qualitative measures𝑚(𝜃 ) that can be used to

emphasize diversity using one of many QD techniques.

3.2 From Measures to Fitness

In order to facilitate a comparison between quality diversity tech-

niques and multi-objective optimization techniques, one should

try to present them both with as close to the same information as

possible.

In order to apply multi-objective optimization, we need to extract

the sub-objectives from both the phenotype 𝑝 (𝜃 ) and the ground

truth fitness function 𝑓 (𝜃 ). This can be done by simply augmenting

the dimensionality reduction architecture used to generate the mea-

sures. We assume that the ground truth fitness can be approximated

by a linear combination of the measure functions. Although this

is a large assumption, it is one that is commonly made in the re-

ward learning literature 1. In inverse reinforcement learning (IRL),

where the task is to learn a reward function that explains an expert

trajectory, it is often the case that this reward function is learned

as a linear combination of state features 𝜙𝑠 [18]. More recent work

in IRL uses a set of pretraining algorithms to learn the state fea-

tures (either with an autoencoder, or predicting a forward dynamics

model, etc) before learning the final linear combination of these

features that results in a reward function [1].

1It is possible to relax this assumption to be that fitness is a non-linear function of
the measures by incorporating a second multi-layer perception that learns the fitness
from the output of the encoder. However, a similar de-aggregation procedure would
be necessary on the penultimate layer of the newly added MLP.

2154



GECCO ’23 Companion, July 15ś19, 2023, Lisbon, Portugal Ryan Boldi and Lee Spector

Encoder𝑝 (𝜃 )

𝑧 (𝜃 )

®𝑓 (𝜃 )

Encoder𝑝 (𝜃 )

𝑧 (𝜃 )

𝑓 (𝜃 )

Figure 4: Top: Learning the weights for a linear combination

of features that sums to an approximation for the true fitness

function 𝑓 (𝜃 ). These weights can then be used to predict

fitness from measures 𝑚(𝜃 ) = 𝑧 (𝜃 ), or even straight from

the phenotype 𝑝 (𝜃 ). Bottom: De-aggregation of last layer of

learned fitness model to result in a set of sub-objectives ®𝑓 (𝜃 )

that sum to an approximation of the ground truth fitness

𝑓 (𝜃 ).

Figure 4 gives an overview of the training procedure of the

fitness prediction model. First, after having trained the autoencoder

to a satisfactory level, we freeze the encoder weights, and add a

final layer that leads to a single fitness value. We can update the

weights of this last layer (through back-propagation, or any other

linear regression technique), to accurately predict the fitness value.

Then, once the weights are determined, we can de-aggregate them

into a vector of sub-fitness values. These values correspond well to

sub-objectives for multi-objective optimization algorithms.

3.3 Bringing It All Together

Given a genotype𝑔(𝜃 ), we can create a phenotype 𝑝 (𝜃 ) and a gound

truth fitness value 𝑓 (𝜃 ). This is domain specific but does not de-

pend on which optimization algorithm being used. Examples of

the phenotype could be the trajectory of a reinforcement learning

agent, raw sensory information from a robot, or any other charac-

terization of how the genotype behaves after translation. Then, we

train a dimensionality reduction model (such as an autoencoder) to

learn a lower dimensional representation of the phenotype 𝑧 (𝜃 ).

Quality Diversity. Using the lower dimensional representation,

we can assign the measures to simply be the values of the latent

variables (i.e.𝑚(𝜃 ) = 𝑧 (𝜃 )). Then, we can assign the fitness value

to be the ground truth fitness 𝑓 (𝜃 ). This is very similar to the

procedure done by Cully [2] to automatically discover the measure

functions.

Multi-objective Optimization. We can then augment our measure

function to include a final layer that predicts the ground truth

fitness. Once this model is trained to convergence, we simply de-

aggregate the final node, resulting in an element-wisemultiplication

of the measures and their corresponding weights. These values ®𝑓 (𝜃 )

should sum approximately to the ground truth fitness 𝑓 (𝜃 ). These

fitness functions can then be used as the multiple objectives for any

MOO scheme.

Fair Comparison? What metric do we use to evaluate how these

methods are performing? Since the domain is one that ultimately

does have a single objective, we should measure the performance

of the algorithms by how well they solve this objective. Including a

comparison about diversity would not be yield a fair performance

comparison as only QD methods explicitly optimize for diversity.

So, in the context of solving hard exploration problems, we should

be measuring how well each algorithm solves these problems. The

authors suggest simply using the ground truth fitness function of

the individuals produced through both optimization paradigms.

3.4 Practical Details

In practice, using the scheme we presented requires some choices to

be made by the user. In this section, we discuss such details and con-

siderations that experimenters attempting to use this comparison

scheme should be aware of.

Training the Models. In order to train the models, one needs to

amass a significant amount of training data. Cully [2] solves this

issue by using the archive of individuals produced through a run

of MAP-elites to train the dimensionality reduction model. As we

are attempting to form a comparison scheme between two classes

of algorithms, it is important that the model used does not vary

much between these two systems. In order to this, the authors see

2 options:

(1) Pre-trained: Generate the training data from a series of prior

evolutionary runs (or perhaps exhaustively enumerating all

of genotype space, if tractable), and train the models using

that. Use the entire dataset to train the VAE, and then do a

second pass to learn the weights of the linear layer given the

ground truth fitness as a label.

(2) Incremental: Train the models with some random pheno-

types from randomly sampling from genotype space, and

fine-tune the models differently for each system, using the

phenotypes cached throughout their respective evolutionary

runs and the ground truth fitness.

In order to facilitate a fair comparison, the authors recommend

method (1). This is because method (2) results in two different

models being used to extract the information from phenotype used

for selection. This could result in the lack of clarity regarding each

system’s performance: was it due to actually solving the domain

better, or due to generating better training data for the models to

later perform better using?

Dimensionality of the latent layer. Another practical considera-

tion to be made is the extent to which we shrink dimensions using

the dimensionality reduction technique. If the bottleneck layer is

too small, it could result in poor reconstruction capability. If the

bottleneck layer is too large, it could prohibit effective learning by

the optimization algorithms. This is a domain specific considera-

tion, but could be addressed through a series of hyperparameter

optimization runs. For example, one could run AURORA [2] using

various latent layer sizes, and take the latent layer size that results
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in the highest QD-Score. As this is simply a benchmark, the cost

of training the model can be amortized over many benchmarking

tasks.

4 CONCLUSION AND FUTUREWORK

We have presented a method to compare quality diversity tech-

niques to objective based techniques for a variety of hard explo-

ration or deceptive problems. The key insight is that the comparison

to single objective optimization is not a fair comparison due to the

aggregation that occurs when we aggregate an individual’s per-

formance to be a single number. Each individual solves different

sub-objectives to different extents. Optimizing for different com-

binations of all these sub-objectives could correspondingly also

extrinsically optimize for diversity without needing to explicitly

be tasked to. This means we can compare the quality of solutions

that are created by explicitly optimizing for diversity to directly

optimizing for the sub-objectives in their ability to use extrinsic

diversity in their favor.

We present a dimensionality reduction technique based on an

autoencoder to automatically learn the measure functions from

a given phenotype. Then, fitness is approximated as a weighted

sum of these measure values. Finally, we remove the summation

operation, and set the sub-objectives to simply be an element-wise

multiplication of the measure and its weight (i.e. positive weighted

measures are increased, negatives decreased).We can performmulti-

objective optimization on the sub-objectives, and quality diversity

straight on the measures (with access to the ground truth fitness).

Future work in improving this benchmark should address the

limitation that the sub-objectives might not be a function of themea-

sures. This could be addressed by training a new fitness prediction

architecture that does not re-use weights from the measure predict-

ing autoencoder. Simply de-aggregating the penultimate layer on

this model would similarly allow for multiple sub-objectives that

are learned straight from the phenotype.
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