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ABSTRACT

When using Quality Diversity (QD) optimization to solve hard ex-
ploration or deceptive search problems, we assume that diversity
is extrinsically valuable. This means that diversity is important to
help us reach an objective, but is not an objective in itself. Often,
in these domains, practitioners benchmark their QD algorithms
against single objective optimization frameworks. In this paper, we
argue that the correct comparison should be made to multi-objective
optimization frameworks. This is because single objective optimiza-
tion frameworks rely on the aggregation of sub-objectives, which
could result in decreased information that is crucial for maintaining
diverse populations automatically. In order to facilitate a fair com-
parison between quality diversity and multi-objective optimization,
we present a method that utilizes dimensionality reduction to auto-
matically determine a set of behavioral descriptors for an individual,
as well as a set of objectives for an individual to solve. Using the
former, one can generate solutions using standard quality diversity
optimization techniques, and using the latter, one can generate
solutions using standard multi-objective optimization techniques.
This allows for a level comparison between these two classes of
algorithms, without requiring domain and algorithm specific modi-
fications to facilitate a comparison.
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1 INTRODUCTION AND BACKGROUND

Quality Diversity (QD) optimization is a relatively recent advance-
ment in the evolutionary computation literature where a diverse
set of high performing individuals are maintained over the course
of the run. This results in divergent, rather than the traditional
convergent evolutionary search [21].

There are often two reasons to apply quality diversity optimiza-
tion. The first of them is to generate a large archive of qualitatively
diverse individuals that solve certain problems. For example, find-
ing diverse sets of robot behaviors [3, 12] or creating diverse video
game or training scenarios [6, 7]. The second reason is generally to
solve hard exploration problems that often have deceptive reward
signals. For example, Lehman and Stanley [15] explore using Nov-
elty Search (NS) to solve a deceptive maze, where there is a single
goal, although many ways to solve this goal. They also used NS
to evolve a controller for bipedal locomotion that outperformed
fitness-based search with the particular fitness function and selec-
tion scheme studied. Some more recent examples are the QD-Maze
brought forward by Pugh et al. [22], or the modular robotics do-
main used by Nordmoen et al. [19], which also have a single (real)
objective. Despite the only goal for experimenters being solving
the single objective, there is the assumption that diversity here is
instrumental to solving the task. The intuition behind this makes
sense: diverse low-performing solutions might be stepping stones
that lead to high performing solutions in the future. This paper
focuses on bench-marking Quality Diversity on the second use case,
as an exploration algorithm that ultimately solves a single problem,
although possibly in unexpected ways.

Multi-objective optimization (MOO) is a common paradigm in
optimization literature that attempts to optimize for multiple objec-
tives at the same time. For example, non dominated sorting genetic
algorithm (NSGA2) [4] and strength pareto evolutionary algorithm
(SPEAZ2) [24] both deal with situations where there are multiple
different objectives that often have numerous trade-offs for each
other. Lexicase selection, a parent selection technique, has also been
found to be useful at optimizing for multiple objectives [13]. There
are often many different solutions that can be made by having
different trade-offs between objectives, which can be visualized as
existing on a Pareto front. These solutions could be highly diverse,
as individuals that trade off between objectives differently would
likely have qualitatively different behavior [11, 14] These meth-
ods can therefore be used as a form of implicit quality diversity
optimization: the quality comes from solving objectives, and the
diversity comes from solving different combinations of objectives.

How do you determine whether a quality diversity algorithm
is performing well in hard exploration or deceptive domains? Pre-
vious studies compare quality diversity to using single objective
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Figure 1: Two deceptive mazes, adapted from [15]. In both maps, the large circle is the starting point of the robot and the small
circle represents the goal. Both maps are deceptive in the sense that the path that minimizes euclidean distance to the goal will

get stuck at local optima.

optimization in reaching the objective. For example, Lehman and
Stanley [15] compare novelty search to single-objective fitness
based optimization in maze domains. Pugh et al. [21] compare qual-
ity diversity techniques to using only a single distance metric as
an objective. Gaier et al. [8] compare using MAP-Elites to a (sin-
gle) image similarity objective in evolving a target image. There
are notably few studies comparing it to multi-objective or multi-
modal optimization. Vassiliades et al. [23] compared MAP-Elites
and NS to other multi-modal selection schemes for a maze navi-
gation task. Nordmoen et al. [19] compared MAP-Elites [16] to a
single- and multi-objective optimization algorithm. However, the
multi-objective algorithms simply use diversity as a secondary ob-
jective, which does not necessarily provide a fair ground between
QD algorithms and MOOs as QD has access to all dimensions of
diversity, where MOOs simply get access to an aggregated version
of this information. Other work looked at combining QD with MOO,
but not on comparing them to each other (partly due to them having
different goals in the majority of the cases) [17, 20].

When comparing QD’s problem solving ability to single objective
or limited multi-objective optimization paradigms, the information
accessible to both systems is not the same, preventing a fair com-
parison. In this paper, we consider the problem of providing quality
diversity algorithms with the same information as that available to
multi-objective optimization. This allows for both MOOs and QD
to be compared faithfully in their ability to maximize objective(s)
where diversity is instrumental (extrinsic), as opposed to being a
goal that we are trying to optimize in and of itself (intrinsic).

To do this, we propose the use of a dimensionality reduction
technique to generate the behavioral descriptors for the quality
diversity methods, and a slightly augmented version of this model
to generate the objective values for MOO. This allows for a faithful
comparison between both techniques as they will have access to
the same performance signal.

2153

2 MOTIVATION

To motivate the use of comparison scheme like this, we discuss
the potential effects of learning the fitness function from hand-
written measures (as it usually is in the literature), and provide a
motivating example that shows how optimizing for combinations of
these objectives through multi-objective optimization could result
in the maintenance of diversity automatically.

A common motivating example for quality diversity algorithms
aimed at solving deceptive single objective problems is one of the
deceptive hard maze. Two mazes that are of medium and hard
difficulty can be found in Figure 1. These mazes are both deceptive
as an individual greedily moving towards the goal will get stuck at
sub-optimal traps. For this reason, diversity must be emphasized to
ensure that the goal is actually reached. This fits into scope of the
problems discussed in this paper as the sole objective is to reach
the goal, yet diversity is intstrumental in reaching this objective.

Consider what an arbitrary QD algorithm could do in this sce-
nario. For example, MAP-elites [16] could be implemented with
hand written behavioral descriptors such as 1) distance to goal
on x axis, 2) distance to goal on y axis, 3) total distance travelled,
and perhaps 4) number of turns taken. Using measure functions
like these, solving deceptive mazes like above would be relatively
straightforward, as demonstrated by Pugh et al. [21].

Why not single objectives? Single objectives often rely on an
aggregation of sub-objectives that each represent qualitatively dif-
ferent goals. This aggregation procedure results in a loss of infor-
mation regarding the performance of an individual.

Instead, we use multi-objective optimization directly on the sub-
objectives to help facilitate the discovery of high performing in-
dividuals. With MOOs, then, finding solutions that optimize com-
binations of the sub-objectives creates diversity in the population
similar to that with QD. However, the diversity that results from
this is implicitly optimized for, as opposed to it being explicitly op-
timized for like in QD. What this means is QD maintains diversity
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as an objective in-and-of itself, whereas MOOs only optimize for
their given objectives.

In order to use multi-objective optimization on this domain using
the scheme we present in this paper, we make an assumption that
the fitness function (proximity to goal) can be approximated as a
linear combination of these 4 measures. It is important to note that
the raw value of the fitness function need not matter, as long as it
matches the original fitness function in ranking the individuals. It
is clear that both x and y distance are negatively correlated with
proximity to the goal. For the sake of the example, let us suppose
that the total distance travelled could also have a negative (yet
smaller in magnitude) correlation to proximity to the goal. Finally,
let us say that the number of turns is neutral to fitness (individuals
that turn more on average perform no better than those that turn
less).

We then set each feature as its own objective for multi-objective
optimization. Each individual is evaluated on all 4 of these metrics,
and individuals are selected based on the multi-objective optimiza-
tion algorithm being used. Consider an individual that has perfectly
matched the x location of the goal. This individual will likely be
selected regardless of its y location, distance, or turn values. Con-
sider an individual that is very far from the goal, yet has covered a
large amount of distance. This individual would also be selected,
regardless of its distance to the goal. These different trade offs result
in a diversity of individuals that solve different combinations of the
sub-problems. When using a multi-objective selection scheme like
Lexicase selection, this diversity is maintained automatically until
convergence to a final goal. [10]

Importantly, these systems have access to the same information
as the quality diversity optimization algorithms. However, the key
difference here is that MOOs could solve these deceptive problems
without explicitly maintaining diversity. If QD algorithms can out-
perform MOOs in this domain, this would mean that the diversity
that that specific QD algorithm maintains is instrumental in over-
coming the deception in this domain. In the next section, we discuss
how to extend this comparison scheme to any domain, regardless
of the existence of human-written behavioral descriptors.

3 COMPARISON SCHEME

In this section, we will bring together all the ideas presented in
this paper into a simple scheme to fairly compare quality diversity
algorithms with objective-based algorithms. We operate under the
assumption that humans have little intuition about the domain, and
that reasonable choices behavioral descriptors or objectives will
therefore not be obvious in advance.

3.1 From Phenotype to Measures

Consider learning of a set of measures m(6) as an unsupervised
learning task. This can be learned with a variational autoencoder
(VAE, [5]) as done in some previous work in QD [2, 9].

Figure 2 outlines an example autoencoder architecture that could
be used to learn a latent embedding of a given phenotype. Using
reconstruction loss, this autoencoder can be used to learn a com-
pressed representation of a phenotype in lower-dimensional space.
This makes it possible for QD algorithms such as MAP-Elites to
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Figure 2: Variational autoencoder architecture used to learn
a latent embedding z(0) of a phenotype p(0). As this is a vari-
ational autoencoder, z(0) is sampled from a distribution that
is parameterized by the output of the encoder (not pictured
here for simplicity).

Encoder

p(6) m(0)

2(0)

Figure 3: Using the encoder of a VAE to predict measures
m(0) of a phenotype p(0)

cover a large set of behavioral niches without needing to store a
high dimensional archive.

Figure 3 shows how the architecture outline in Figure 2 can be
used to generate the qualitative measures m(6) that can be used to
emphasize diversity using one of many QD techniques.

3.2 From Measures to Fitness

In order to facilitate a comparison between quality diversity tech-
niques and multi-objective optimization techniques, one should
try to present them both with as close to the same information as
possible.

In order to apply multi-objective optimization, we need to extract
the sub-objectives from both the phenotype p(6) and the ground
truth fitness function f(6). This can be done by simply augmenting
the dimensionality reduction architecture used to generate the mea-
sures. We assume that the ground truth fitness can be approximated
by a linear combination of the measure functions. Although this
is a large assumption, it is one that is commonly made in the re-
ward learning literature 1. In inverse reinforcement learning (IRL),
where the task is to learn a reward function that explains an expert
trajectory, it is often the case that this reward function is learned
as a linear combination of state features ¢ [18]. More recent work
in IRL uses a set of pretraining algorithms to learn the state fea-
tures (either with an autoencoder, or predicting a forward dynamics
model, etc) before learning the final linear combination of these
features that results in a reward function [1].

!t is possible to relax this assumption to be that fitness is a non-linear function of
the measures by incorporating a second multi-layer perception that learns the fitness
from the output of the encoder. However, a similar de-aggregation procedure would
be necessary on the penultimate layer of the newly added MLP.
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Figure 4: Top: Learning the weights for a linear combination
of features that sums to an approximation for the true fitness
function f(0). These weights can then be used to predict
fitness from measures m(0) = z(0), or even straight from
the phenotype p(6). Bottom: De-aggregation of last layer of
learned fitness model to result in a set of sub-objectives ]? (0)
that sum to an approximation of the ground truth fitness

f(0).

Figure 4 gives an overview of the training procedure of the
fitness prediction model. First, after having trained the autoencoder
to a satisfactory level, we freeze the encoder weights, and add a
final layer that leads to a single fitness value. We can update the
weights of this last layer (through back-propagation, or any other
linear regression technique), to accurately predict the fitness value.
Then, once the weights are determined, we can de-aggregate them
into a vector of sub-fitness values. These values correspond well to
sub-objectives for multi-objective optimization algorithms.

3.3 Bringing It All Together

Given a genotype g(6), we can create a phenotype p(60) and a gound
truth fitness value f(0). This is domain specific but does not de-
pend on which optimization algorithm being used. Examples of
the phenotype could be the trajectory of a reinforcement learning
agent, raw sensory information from a robot, or any other charac-
terization of how the genotype behaves after translation. Then, we
train a dimensionality reduction model (such as an autoencoder) to
learn a lower dimensional representation of the phenotype z(0).

Quality Diversity. Using the lower dimensional representation,
we can assign the measures to simply be the values of the latent
variables (i.e. m(0) = z(0)). Then, we can assign the fitness value
to be the ground truth fitness (). This is very similar to the
procedure done by Cully [2] to automatically discover the measure
functions.

Multi-objective Optimization. We can then augment our measure
function to include a final layer that predicts the ground truth
fitness. Once this model is trained to convergence, we simply de-
aggregate the final node, resulting in an element-wise multiplication
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of the measures and their corresponding weights. These values f 9)
should sum approximately to the ground truth fitness f(6). These
fitness functions can then be used as the multiple objectives for any
MOO scheme.

Fair Comparison? What metric do we use to evaluate how these
methods are performing? Since the domain is one that ultimately
does have a single objective, we should measure the performance
of the algorithms by how well they solve this objective. Including a
comparison about diversity would not be yield a fair performance
comparison as only QD methods explicitly optimize for diversity.
So, in the context of solving hard exploration problems, we should
be measuring how well each algorithm solves these problems. The
authors suggest simply using the ground truth fitness function of
the individuals produced through both optimization paradigms.

3.4 Practical Details

In practice, using the scheme we presented requires some choices to
be made by the user. In this section, we discuss such details and con-
siderations that experimenters attempting to use this comparison
scheme should be aware of.

Training the Models. In order to train the models, one needs to
amass a significant amount of training data. Cully [2] solves this
issue by using the archive of individuals produced through a run
of MAP-elites to train the dimensionality reduction model. As we
are attempting to form a comparison scheme between two classes
of algorithms, it is important that the model used does not vary
much between these two systems. In order to this, the authors see
2 options:

(1) Pre-trained: Generate the training data from a series of prior

evolutionary runs (or perhaps exhaustively enumerating all
of genotype space, if tractable), and train the models using
that. Use the entire dataset to train the VAE, and then do a
second pass to learn the weights of the linear layer given the
ground truth fitness as a label.
Incremental: Train the models with some random pheno-
types from randomly sampling from genotype space, and
fine-tune the models differently for each system, using the
phenotypes cached throughout their respective evolutionary
runs and the ground truth fitness.

In order to facilitate a fair comparison, the authors recommend
method (1). This is because method (2) results in two different
models being used to extract the information from phenotype used
for selection. This could result in the lack of clarity regarding each
system’s performance: was it due to actually solving the domain
better, or due to generating better training data for the models to
later perform better using?

Dimensionality of the latent layer. Another practical considera-
tion to be made is the extent to which we shrink dimensions using
the dimensionality reduction technique. If the bottleneck layer is
too small, it could result in poor reconstruction capability. If the
bottleneck layer is too large, it could prohibit effective learning by
the optimization algorithms. This is a domain specific considera-
tion, but could be addressed through a series of hyperparameter
optimization runs. For example, one could run AURORA [2] using
various latent layer sizes, and take the latent layer size that results
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in the highest QD-Score. As this is simply a benchmark, the cost
of training the model can be amortized over many benchmarking
tasks.

4 CONCLUSION AND FUTURE WORK

We have presented a method to compare quality diversity tech-
niques to objective based techniques for a variety of hard explo-
ration or deceptive problems. The key insight is that the comparison
to single objective optimization is not a fair comparison due to the
aggregation that occurs when we aggregate an individual’s per-
formance to be a single number. Each individual solves different
sub-objectives to different extents. Optimizing for different com-
binations of all these sub-objectives could correspondingly also
extrinsically optimize for diversity without needing to explicitly
be tasked to. This means we can compare the quality of solutions
that are created by explicitly optimizing for diversity to directly
optimizing for the sub-objectives in their ability to use extrinsic
diversity in their favor.

We present a dimensionality reduction technique based on an
autoencoder to automatically learn the measure functions from
a given phenotype. Then, fitness is approximated as a weighted
sum of these measure values. Finally, we remove the summation
operation, and set the sub-objectives to simply be an element-wise
multiplication of the measure and its weight (i.e. positive weighted
measures are increased, negatives decreased). We can perform multi-
objective optimization on the sub-objectives, and quality diversity
straight on the measures (with access to the ground truth fitness).

Future work in improving this benchmark should address the
limitation that the sub-objectives might not be a function of the mea-
sures. This could be addressed by training a new fitness prediction
architecture that does not re-use weights from the measure predict-
ing autoencoder. Simply de-aggregating the penultimate layer on
this model would similarly allow for multiple sub-objectives that
are learned straight from the phenotype.
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