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Abstract

Chord measures and L, chord measures were recently introduced by Lutwak-Xi-
Yang-Zhang by establishing a variational formula regarding a family of fundamental
integral geometric invariants called chord integrals. Prescribing the L, chord measure
is known as the L, chord Minkowski problem, which includes the L, Minkowski
problem heavily studied in the past 2 decades as special cases. In the current work,
we solve the L chord Minkowski problem when 0 < p < 1, without symmetry
assumptions.

Mathematics Subject Classification 52A38 - 52A40

1 Introduction

Central to the theory of convex bodies are geometric invariants and measures associ-
ated with convex bodies. Geometric invariants and measures are usually investigated
through isoperimetric inequalities and Minkowski problems. They are intimately con-
nected. As an example, the celebrated Brunn-Minkowski inequality reveals that the
volume functional is log-concave in a certain sense and the classical isoperimetric
inequality, as a direct consequence of it, reveals that ball is the geometric shape
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that minimizes surface area among convex bodies with fixed volume. The classi-
cal Minkowski problem asks for the existence, uniqueness, and regularity of a convex
body whose surface area measure is equal to a pre-given spherical Borel measure.
The two problems are closely connected since surface area measure can be viewed
as the “derivative” of the volume functional. The classical Minkowski problem has
motivated much of the study of fully nonlinear partial differential equation, as demon-
strated by the works of Minkowski [1], Aleksandrov [2], Cheng-Yau [3], Pogorelov
[4], and Caffarelli [5—7] throughout the last century.

The volume functional is a special case of quermassintegrals that includes surface
area and mean width as two other more well-known invariants. Quermassintegrals
are fundamental invariants in the classical Brunn-Minkowski theory. Depending on
parametrization, their “derivatives” include the area measures introduced by Aleksan-
drov, Fenchel, and Jessen in the 1930, as well as the curvature measures introduced by
Federer in the late 1950s. With sufficient regularity assumptions on the convex body,
area measures and curvature measures involve elementary symmetric functions of
principal curvatures and radii of curvature. This makes them much more complicated
than the surface area measure studied in the classical Minkowski problem. Minkowski
problems for area measures and curvature measures include the Christoffel problem
(for the area measure S1) and the long-standing Christoffel-Minkowski problem (for
the area measure S,_»)." See, for example, Guan-Guan [8], Guan-Li-Li [9], Guan-Ma
[10], Guan-Ma-Zhou [11].

In the 19705, Lutwak introduced the dual Brunn-Minkowski theory. Compared to
the classical theory which focuses more on projections and boundary shapes of convex
bodies, the dual Brunn-Minkowski theory focuses more on intersections and interior
properties of convex bodies. This explains the crucial role that the dual theory played
in the solution of the well-known and the then long-standing Busemann-Petty problem
in the 1990s. See, for example, [12—15]. The counterparts for the quermassintegrals
in the dual theory are the dual quermassintegrals. See Sect.2.2. However, it was not
until the groundbreaking work [16] of Huang-Lutwak-Yang-Zhang (Huang-LYZ) that
the geometric measures associated with dual quermassintegrals were revealed. This
led to dual curvature measures dual to Federer’s curvature measures. The Minkowski
problem for dual curvature measures, now known as the dual Minkowski problem,
has been the focus in convex geometry and fully nonlinear elliptic PDEs for the last
couple of years and has already led to a number of papers in a short period. See,
for example, Boroczky-Henk-Pollehn [17], Chen-Chen-Li [18], Chen-Huang-Zhao
[19], Chen-Li [20], Gardner-Hug-Weil-Xing-Ye [21], Henk-Pollehn [22], Li-Sheng-
Wang [23], Liu-Lu [24], Zhao [25]. It is important to note that the list is by no means
exhaustive.

Unlike quermassintegrals, dual quermassintegrals, which depend on lower dimen-
sional central sectional areas, are not translation invariant. Integrating dual quer-
massintegrals of a convex body over all its translated copies (that contain the origin)
leads to a basic geometric invariant in integral geometry, known as chord integral.
Chord integrals are naturally translation invariant. From an analysis point of view,

I Asa comparison, the classical Minkowski problem studies the surface area measure which is also known
as the area measure S;,_1.
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The Lp chord Minkowski problem in a critical interval

chord integrals are Riesz potentials of characteristic functions of convex bodies. For
isoperimetric problems involving chord integrals, readers should refer to Kniipfer-
Muratov [26, 27], Figalli-Fusco-Maggi-Millot-Morini [28], Haddad-Ludwig [29] and
the references cited therein.

Recently, the “derivative” of chord integrals, called chord measures, was obtained
in Xi-LYZ [30]. The Minkowski problem for chord measures was posed and studied
in the same paper. It is called the chord Minkowski problem. The chord Minkowski
problem includes the classical Minkowski problem and the previously mentioned
long-standing Christoffel-Minkowski problem—the latter as a critical limiting case.
The L, extensions of chord measures and the chord Minkowski problem are natural
and present many interesting and challenging problems. More details on this will
follow. The Lo chord Minkowski problem, in particular, is also known as the chord
log-Minkowski problem as it contains the unsolved logarithmic Minkowski problem
(see, for example, [31]) as a special case.

Xi-LYZ [30] solved completely the chord Minkowski problem (corresponding
to p = 1) except for the limiting Christoffel-Minkowski problem case and they
also demonstrated a sufficient condition for the o-symmetric case of the chord log-
Minkowski problem. Xi-Yang-Zhang-Zhao [32] solved the L, chord Minkowski
problem for p > 1 as well as the o-symmetric case of 0 < p < 1. Origin sym-
metry in the case of 0 < p < 1 plays an important role in obtaining a-priori C°
bounds—even more so in the critical p = 0 case.

The purpose of the current paper is to show that the symmetric restriction in both
works can be dropped via an approximation scheme from the polytopal case.

Let K be a convex body in R”. For each g > 0, the ¢-th chord (power) integral of
K, denoted by 1,(K), is given by

1,(K) = f |K N e de,
&n

where |K N ¢] is the length of the chord K N £ and the integration is with respect to
Haar measure on the affine Grassmannian .£". Chord integrals contain volume and
surface area as important special cases:

Wy n—+1

o(K) = —

LS(K), LK) = V(K), 1K) = V(K)?,

n n

where wj, is the volume of the unit ball in R". In particular, the chord integral I, for
g € (0, 1) can be seen as an interpolation between volume (or, the quermassintegral
W) and surface area (or, the quermassintegral Wy). Chord integrals also take the form
of Riesz potential, see (2.2).

Xi-LYZ [30] demonstrated that for each ¢ > 0, the “derivative” of the chord integral
I,(K) uniquely defines the chord measure F, (K, -) on sl

d
— Iq(K+tL):/ hi(v)dF,(K,v), (1.1
dt =0+ sn—1
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for each pair of convex bodies K and L. Here & is the support function of L. A precise
definition of the chord measure F, can be found in Sect.2.3. It is important to note that
the ¢ = 0, 1 cases of (1.1) are classic and in such cases, the chord measure F; (K, -)
recovers surface area measure (¢ = 1) and the area measure S,_>2(K, -) (g = 0). In
this way, the chord measure F, (K, ) interpolates between surface area measure and
the (n — 2)-th order area measure.

The chord Minkowski problem. Given a finite Borel measure  on S"~1 what are
the necessary and sufficient conditions on u so that there exists a convex body K such
that Fy (K, -) = u?

The chord Minkowski problem recovers the classical Minkowski problem (when
q = 1) and the long-standing Christoffel-Minkowski problem (when g = 0). The
chord Minkowski problem for g > 0 was completely solved in [30].

In the past three decades, many classical concepts and results in the theory of
convex bodies have been extended to their L, counterparts. This was initiated by two
landmark papers [33, 34] by Lutwak in the early 1990s where he defined the L, surface
area measure fundamental in the now fruitful L, Brunn-Minkowski theory central in
modern convex geometric analysis. It is crucial to point out that such extension is
highly nontrivial and often requires new techniques. See, for example, [35-52] for a
(not even close to exhaustive) list of works in the L, Brunn-Minkowski theory. In
particular, the theory becomes significantly harder when p < 1. These include the
critical centro-affine case p = —n and the logarithmic case p = 0. Isoperimetric
inequalities and Minkowski problems in neither case have been fully addressed. In
particular, the log Minkowski problem (for the cone volume measure) has not yet been
fully solved. See, for example, Bianchi-Boroczky-Colesanti-Yang [53], Chou-Wang
[35], Guang-Li-Wang [54], Zhu [41, 55] among many other works. In fact, the p = 0
case harbors the log Brunn-Minkowski conjecture (see, for example, Boroczky-LYZ
[56])—arguably the most crucial conjecture in convex geometric analysis in the past
decade. The log Brunn-Minkowski conjecture has been verified in dimension 2 and in
various special classes of convex bodies. See, for example, Chen-Huang-Li-Liu [57],
Colesanti-Livshyts-Marsiglietti [58], Kolesnikov-Livshyts [59], Kolesnikov-Milman
[60], Milman [61], Putterman [62], Saroglou [63]. If proven correct, it is much stronger
than the classical Brunn-Minkowski inequality.

Motivated by this success, the L, chord measure was introduced in [30]. For each
p € R, g > 0, and convex body K containing the origin in its interior, the (p, g)-th
chord measure, denoted by F), ;,(K, -), is a finite Borel measure on $"~1 given by

dF, (K, =hg PdF,(K,").

For p < 1, since the exponent 1 — p is nonnegative, the above definition naturally
extendstoall K € K" aslongas o € K. We point out that when ¢ = 1, since the chord
measure F,; becomes the surface area measure, the (p, 1)-th chord measure becomes
nothing but the family of L, surface area measure in the L, Brunn-Minkowski theory.

The L, chord Minkowski problem. Given p € R, g > 0, and a finite Borel
measure p on S"~!, what are the necessary and sufficient conditions on g so that
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there exists a convex body K containing the origin (as an interior point if p > 1) such
that Fp, ,(K, ) = pn?

When the given measure 1 has a nonnegative density f, the L, chord Minkowski
problem reduces to solving the following Monge-Ampére type equation on S~

1_ ~
hy "V 1(K, Vhg)det (V5 1hg + hgdij) = f. (1.2)
Here Vgn,lh k 1s the Hessian of hg on the unit sphere with respect to the standard

metric, and Vi is the Euclidean gradient of Ak that is connected to the spherical
gradient V-1 hg in the following way:

Vhg () = Vag-1hg(v) + hg (v)v.

We remark at this point that when ¢ = 1, the L, chord Minkowski problem reduces
to the L, Minkowski problem.

In [32], it was shown that if p € (0, 1), ¢ > 0, and the given measure w is an even
measure, then the L, chord Minkowski problem has an o-symmetric solution. The
origin-symmetry assumption is heavily utilized there so that a-priori bounds can be
achieved. If the origin-symmetry assumption is dropped, then the situation is vastly
different. In fact, the maximization problem used in [32] (for the sake of variational
approach) is no longer applicable in the general case. Similar to the L, Minkowski
problem for p < 1, a min-max problem has to be considered—in another word, we
are instead searching for a saddle point. The first of our main results is the following:

Theorem 1.1 Let 0 < p < 1, g > 0, and  be a finite Borel measure on S~ not
concentrated in any closed hemisphere. Then, there exists K € K" with o € K such
that

Fpq(K,-) = p.

Moreover, if 1 is a finite discrete measure, then K is a polytope that contains the origin
as an interior point.

To prove Theorem 1.1, we first establish the case when p is discrete. This is con-
tained in Theorem 4.6. The polytopal solutions are then used to obtain the general
solution via an approximation scheme (Theorem 5.7). In particular, Theorem 1.1 con-
tains the solution to the L, Minkowski problem when 0 < p < 1 previously obtained
in Zhu [64] and Chen-Li-Zhu [65].

When p = 0, (up to a constant) the Ly chord measure is also known as the cone
chord measure G:

Gy(K.) =~

——Fy (K, ).
“rC[—l O,q( )

The special normalization is so that G4 (K, sn—lhy = I,(K). See Sect.2.3 for details.
We remark that the cone chord measure G (K, -) is equal to the cone volume mea-
sure Vk sitting at the center of the aforementioned log-Brunn-Minkowski conjecture.
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Recall that the Minkowski problem for cone volume measure is known as the log
Minkowski problem. For this reason, we also refer to the Lo chord Minkowski problem
as the chord log-Minkowski problem.

It turns out that the chord log-Minkowski problem is connected to a subspace mass
inequality. Let 1 < g < n + 1. We say that a given finite Borel measure p satisfies
the subspace mass inequality if

(& NS i + min{i, g — 1}
[ 4] n+q—1

) (1.3)

for each i dimensional subspace & C R” andeachi =1,...,n — 1.

It was shown in [30] that with the additional assumption that w is even, (1.3) is
sufficient to guarantee an o-symmetric solution K € K such that © = G4 (K, ). We
show in the current work that the symmetric assumption can be removed. We remark
at this point that as (1.3) demonstrates, the chord log-Minkowski problem with general
© is much more complicated than its special case when p is absolutely continuous
(i.e., equation (1.2)). Indeed, if w is absolutely continuous, then its mass in any proper
subspace is 0 and therefore the subspace mass inequality (1.3) is trivially satisfied.

To solve the chord log-Minkowski problem, we first prove the polytopal case when
the given normal vectors are in general position. Polytopes possessing this special
feature have the additional property that if they blow up (collapse, resp.), then they
have to blow up (collapse, resp.) in a uniform fashion. This will make it easier to obtain
uniform a-priori bounds. Vectors in general position and polytopes with normals in
general position will be discussed in Sect. 3. Using this, we will show

Theorem 1.2 Let g > 0, and 1 be a discrete measure on R" whose support set is not

contained in any closed hemisphere and is in general position in dimension n. Then
there exists a polytope P containing the origin in its interior such that

G, (P, =p.

Theorem 1.2 is implied by Theorem 4.5 and the homogeneity of G, (P, -) in P.
Section 5.2 is devoted to using Theorem 1.2 and an approximation scheme to show:

Theorem 1.3 Let 1 < g < n + 1. If u is a finite Borel measure on S"~! that satisfies
(1.3), then there exists a convex body K € K" with o € K such that

G,(K,") = pu.

We remark that Theorem 1.2 and Theorem 1.3 extend the previously obtained results
on the log Minkowski problem in Zhu [55] and Chen-Li-Zhu [66].

2 Preliminaries

In this section, we gather notations and results needed in subsequent sections.
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2.1 Basics of convex bodies

The central objects in study in convex geometry are convex bodies which are nothing
but compact convex sets in R” with non-empty interiors. It is important to note that
we require no additional regularity other than convexity of the set. We will write K"
for the set of all convex bodies in R". The symbols K7 will be used for the subclass
of K that contains convex bodies that have the origin in their interiors and K]} will be
used for the subclass of o-symmetric convex bodies. We write w, for the volume of
the unit ball in R”. We will also use the notation || for the total mass of a measure .

Readers should consult the classical volume [67] by Schneider for details of the
results covered in this section.

A compact convex set K is uniquely determined by its support function hg :
§"~1 — R given by

hg(v) = maxx - v.
X€E

It is worth noting that the support function can be trivially extended to R" as a 1-
homogeneous function and it is convex.

Let K € K" and x € R". The radial function of K with respect to x, denoted by
ok .x : S"~1 — R can be written as

ok .x(m) =max{t : tu +x € K}.

It is simple to see that when x € int K, we have that pg x is a positive continuous
function on $" L. For simplicity, we write px = Pk o-

We will use vg : 9K — S"~! to denote the Gauss map of K. In particular, the
convexity of K implies that vk is almost everywhere defined on 0K .

Since all support functions have to be convex, it is obvious that not all functions on
§"=1 are support functions of convex bodies. However, the so-called Wulff shape or
Aleksandrov body connects continuous functions defined on subsets of $” ! to convex
bodies. In particular, let 2 C S"~! be a subset that is not entirely contained in any
closed hemisphere and f : 2 — [0, co) be a continuous function. The Wulff shape
[f, 2] is defined to be

[f,2]={xeR":x-v < f(v), Vv e }.
It is clear that [ f, 2] is convex and compact. Moreover when f > 0, the Wulff shape

[f, €2] contains the origin as an interior point. For simplicity, when the context is clear,
we shall write [ f] without explicitly mentioning €2. It is simple to see that

hipy = f- 2.1
It is important that the above inequality may very well be strict for many f. A critical
observation regarding Wulff shape is that for almost all x € d[ f], the normal vector

v[f](x) e Q.
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Let K,, be a sequence of compact convex sets in R”. We say that K,, converges to
K in Hausdorff metric if ||hx, — hglloc — 0 as n — oo. We shall use frequently
the fact that if f; € C(€2) converges to f € C(L2) uniformly, then [f;] — [f] in
Hausdorff metric.

When Q = {vy, ..., vy} is a finite set not contained in any closed hemisphere, we
will slightly abuse our notation and for each z = (z1, ..., zy) € RY, write

[, Q=xeR":x-v;<z, i=1,...,N}L

When the context is clear, we shall write [z] for simplicity. We will write P (vy, ..., vy)
for the collection of convex bodies generated in this fashion. Specifically, the set
P(v1, ..., vy) contains all polytopes in R” whose normals to facets are contained in
{vl, ey UN}.

A special collection of polytopes are those whose facet normals are in general
position in dimension n. We say vy, ..., vy are in general position in dimension »n if
for any n-tuple 1 < iy <ip < --- < i, < N, the vectors v;,, ..., v;, are linearly
independent. In Sect. 3, we will show that for polytopes whose normals are in general
position, if they grow in size, then they have to grow uniformly.

2.2 Invariants in integral geometry

In this subsection, we gather notions from integral geometry. Readers are referred to
the books [68] by Santald and [69] by Ren.

In the classical Brunn-Minkowski theory of convex bodies, quermassintegrals
Wo, W1, ..., W, are fundamental geometric invariants that include volume, surface
area, and mean width as important special cases. They arise in many different ways.
One way to see them is as coefficients of the Steiner formula fundamental in the clas-
sical Brunn-Minkowski theory (see Section 4.2 in [67]). It also naturally arises from
an integral geometry point of view. The quermassintegrals W, _; can be defined as

Woi(K) = " f H (K |£)de,
EEGn,i

i

where G, ; is the Grassmannian manifold containing all i dimensional subspaces of
R", the set K |£ is the image of the orthogonal projection of K onto &, and the integration
is with respect to the Haar measure in G, ;. Quermassintegrals satisfy the fundamental
kinematic formula; see (4.54) in [67]. With sufficient regularity assumptions on the
boundary of the convex body, quermassintegrals are integrals of elementary symmetric
polynomials of principal curvatures of the body.

While quermassintegrals are heavily connected to boundary shape and orthogonal
projection areas of convex bodies, dual quermassintegrals fundamental in the dual
Brunn-Minkowski theory are related to interior properties and central sectional areas
of convex bodies. They arise naturally as coefficients of the dual Steiner formula (see
Section 9.3 in [67]). From an integral geometric point of view, for each K € K], the
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dual quermassintegrals of K can be defined as
~ wy, ;
Wi (K) = —/ HI(K N E)dE.
Wi £eGy,;

It was shown in Zhang [70] that the dual quermassintegrals enjoy a kinematic formula
dual to the fundamental kinematic formula. Using polar coordinates, it is not hard to
show that dual quermassintegrals satisfy an integral representation via radial functions:

~ 1 ,
Wi (K) =~ / Pl (),
n Jen—l1

which allows an immediate extension from VT/n,,- (K) to VT’n,q (K) foreachg e R. It
is apparent that, unlike quermassintegrals, dual quermassintegrals are not translation
invariant in K. Therefore, we may define for each z € K and g € R:

~ 1
Wo—g(K,2) = ~ /S+ P (wadu,

where S = {u € S"7! : pg . (u) > 0}. Note that when z € intK, we have S =
sl For the sake of notational simplicity, we will write V (K,z2) = Wy_4(K, z)

The integrals of dual quermassintegrals with respect to z € K naturally give rise
to translation invariant quantities. These are known as chord integrals in integral
geometry. More specifically, let g > 0 and K € K", the ¢g-th chord (power) integral
of K is given by

I,(K) = / K N de,
Zn

where | K N £] is the length of the chord K N ¢ and the integration is with respect to
Haar measure on .Z”" which denotes the affine Grassmannian of lines (1-dimensional
affine subspaces). For g > 0, the chord integral can be written as the integral of dual
quermassintegrals in z € K:

if Vq_l(K, 2)dz.
K

n

14(K) =

In analysis, chord integral can be recognized as Riesz potential: for each ¢ > 1, we
have

q(q —1)
I,(K) = / /1; |x—z|”+1 qudz 2.2)

Aside from translation invariance, we shall make frequent use of the fact that I, is
homogeneous of degree n +g — 1, i.e, I,(tK) = el I;(K)fort > 0.Forg >0,
there is an obvious extension of I, to the set of all compact convex subsets of R” and
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1, is a continuous functional with respect to the Hausdorff metric. The proof of these
facts can be found in, for example, [30].

2.3 L, chord measures

In the landmark paper [30], a new family of geometric measures in the setting of
integral geometry, called chord measures, was defined. Let K € K" and ¢ > 0, the
chord measure F, (K, -) is a finite Borel measure on 5"~ given by

2 -
F,(K,n) = -4 /_]( ) V,—1(K,z)dH""'(z),  foreach Borel  C §"~ 1.
v (n

wWp

If K is a polytope, its chord measure becomes a discrete measure that is concentrated
on the set of facet normals of K . On the other side, when K is C% T, the chord measure
F,(K, ) is absolutely continuous with respect to the spherical Lebesgue measure:

20 ~
dF,(K,v) = “LV,_\(K, Vhg)det(V2,_ hg + hg Ddv.
Wp

Chord measures naturally appear when one differentiates in a certain sense the
chord integral /. Particularly,

Theorem 2.1 (Theorem 5.5 in [30]) Let g > 0, and Q2 be a compact subset of S"~!
that is not contained in any closed hemisphere. Suppose that g : Q2 — R is continuous
and h; : Q — (0, 00) is a family of continuous functions given by

hy = ho +1g +o(t,),

for each t € (—34,9) for some § > 0. Here o(t,-) € C(S2) and o(t, -)/v tends to 0
uniformly on Q ast — 0. Let K; be the Wulff shape generated by h, and K be the
Wulff shape generated by hg. Then,

d

dt

I;,(K;) =/ g(v)qu(K,v).
=0 Q

Remark 2.2 Note that the above quoted Theorem is slightly different from Theorem
5.5 in [30]. Indeed, the domain of g in Theorem 5.5 in [30] is S~ and is changed to
2 here. Despite the change, the proof, however, works for any 2 without any essential
changes once we realize the fact that if 4 : Q@ — R, then for almost all x € d[h], we
have vj;)(x) € Q. In this exact quoted form, a proof of Theorem 2.1 can be found in
the Appendix of [32].

In the discrete case, Theorem 2.1 becomes the following.

Corollary 2.3 Let vy, ..., vy be N unit vectors that are not contained in any closed
hemisphere and 7 = (z1,...,2N) € (R+)N. Let B = (B1,...,BN) € RN, For
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sufficiently small |t|, consider z(t) = z + t and

N
Pi=[z0l=()xr eR" 1x v <zi(0) =z +1B}.

i=1

Then, for g > 0, we have

N
dt ‘t:OIq(PZ) = Z:Bin(P(), U,’).

i=1

Chord measures inherit their translation invariance and homogeneity (of degree n +
g — 2) from chord integrals. It was shown in [32] that the chord measure F; (K, -)
is weakly continuous on K" with respect to Hausdorff metric. Inspired by the much
fruitful L, Brunn-Minkowski theory, it is natural to consider the L, version of the
chord measures. For each p € R and K € K}, the L, chord measure F,, ,(K, ) is

defined by
dF, ,(K,v) = hg(v)' "PdF,;(K,v).

We remark here that the L, chord measure naturally arises from replacing the
Minkowski sum K + ¢L in (1.1) by the L, Minkowski sum K +, ¢ - L. See Xi-LYZ
[30] for details.

For p < 1, since the exponent 1 — p is nonnegative, the definition of F), , (K, -)
naturally extends to all K € K" aslong as o € K. Itis important to notice that with the
exception of p = 1, the L, chord measure loses its translation invariance. However,
it is still homogeneous in K; that is

FpqK, ) =1"t"P"1F, (K, )

for each ¢+ > 0. In this paper, we focus our attention on the case p € [0, 1). In this
case, it was shown in [32] that the L, chord measure is weakly continuous on the
set of convex bodies containing the origin (not necessarily as an interior point) with
respect to Hausdorff metric.

Proposition2.4 Let p € [0,1), ¢ > Oand K;, K C K". Ifo € K; N K and K;
converges to K in Hausdorff metric, then Fy, 4(K;, -) converges weakly to Fp, 4(K, -).

In particular, wheng = 1, the L, chord measures are nothing but the L , surface area
measures fundamental in the L, Brunn-Minkowski theory. Note that when p = 0, the
L surface area enjoys significant geometric meaning—up to a dimensional constant,
it is more widely known as cone volume measure. Following this, for ¢ > 0 and
K € K", we define the cone chord measure of K, denoted by G, (K, -), as the finite
Borel measure on §"~! given by

Gy(K,") = Foq(K, ).

n+q—1
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It was shown in [30] that the total measure of G, is nothing but the chord integral /,;
that is

1G4(K, )| = 14(K).

It is worthwhile to note that when ¢ = 1, this simply recovers the fact that the total
measure of the cone volume measure gives the volume of a convex body.

3 Polytopes whose normals are in general position

The main result in this section demonstrates that if P is a polytope whose outer unit
facet normals are in general position, then the size of P, if it is large, has to be large
uniformly in every direction.

We first gather the following fact about polytopes whose normals are in general
position.

Lemma 3.1 (Lemma 4.1 in [55]) Let vy, ..., vy be N unit vectors that are not con-
tained in any closed hemisphere and P € P(vy, ..., vy). Assume that vy, ..., VN
are in general position in dimension n. Then F (P, v;) is either a point or a facet.
Moreover, if n > 3 and F (P, v;) is a facet, then the outer unit normals of F(P, v;)
(viewed as an (n — 1)-dimensional convex body in the hyperplane containing it) are
in general position in dimension (n — 1).

We need the following trivial lemma.

Lemma 3.2 The set of all orthornormal bases, as a subset of S*™' x .- x §"~1 s
compact.
Proof Note that (e, ..., e,) € "1 x -+ x §"~! is an orthonormal basis if and only

ife; -e; =0foranyi # j. We set

fler....oen) = lei-ejl.
i#]

It is simple to see f is continuous on sl ... x §"1 and (e1,...,ey) is an
orthonormal basis if and only if f(ey, ..., e,) = 0. Hence, the set of all orthonormal
bases is a closed subset and being a closed subset of a compact set makes it compact.

O

Letvy, ..., vy be N unit vectors that are in general position in dimension n. Define

gler,...,ey) = min  min max {\/l — (vi, - €))%, \/1 — (vj, -ej)2} )

I<iij<i2<N 1<j<n

Note that since v1, ..., vy are in general position, for any 1 < i; < ip < N, the
vectors v;; and v;, are not parallel. Thus, we have

max {\/1 — (v, '3]')2,\/1 — (viy ‘ej)z} >0,
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for any arbitrary unit vector e;.Therefore, we conclude that g is a positive function.
It is simple to see that g is also continuous. By Lemma 3.2, there exists cop > 0 such
that

gler,...,en) = co, 3.D

ifer, ..., e, forms an orthonormal basis. Note that cg here only dependson vy, ..., vy.

We need the following estimate. Note that to avoid introducing constants that look
like c1000, we will use cq to denote a constant that may change from line to line (and
certainly from lemma to lemma).

Lemma3.3 Let vy,...,vy € S"! be in general position in dimension n and 1 <
i1 <ip <N. Let B{'_l and Bg_l be two (n — 1)-dimensional balls of radius R such
that B!™' L v;, and By~ L v;,. Consider

K = conv {B?il, Bgil}.
Then, there exists co > 0, and xo € int K such that
B(xg,coR) C K.

Here, the constant co > 0 only depends onn and vy, . .., vy. In particular, it does not
depend on i1 and i.

Proof Note that since v;, and v;, are linearly independent, the convex set K has to

have nonempty interior. By John’s lemma, there exists xo € int K and ay, ..., a, >0
and an orthonormal basis ey, . .., e, such that the ellipsoid
2 2
X —Xxg)-e X —Xxg)-e
P R e R T (Rt DL
aj ay;

satisfies

E C K C x4+ n(E — xp). (3.2)

For simplicity of notation, we denote xo+n(E —xo) by E’, which s just an enlargement
of E with respect to its center xq by a factor of n.
Since K C E’, we have
P, K| < Py E'| = 2na;,

for each i = 1,...,n. Here, we use P, K to denote the image of the orthogonal
projection of K onto the line spanned by e;. On the other hand, since B’f_l C K and
Bg_l C K, we have

|P; K| > max{| P, B{ |, | P, By~ 1}.
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Note that since B~ L v;, and By~ L v;,, we have

|Po, By = 2R\/1 — (v, - €i)2,
|Po BY ™' = 2R\/1 — (vy, - €)2.

Combining the above, we have

R
, - _ . )2 (1 .p0)2
a; > " max{\/l (vi, - ei) ,\/1 (vi, - ei) }

By (3.1), there exists c¢p > 0 independent of the choice of i and i> such that

a; > coR.
By the left half of (3.2), we have
B(xp, coR) C K.
O

The following key lemma reveals the special structure for polytopes whose normals
are in general position: if the polytope gets large, then it has to get large uniformly in
all directions.

Lemma3.4 Let vy,..., vy be N unit vectors that are not contained in any closed
hemisphere, and P; be a sequence of polytopes in P (v, ..., vy). Assume the vectors
V1, ..., Uy are in general position in dimension n. If the outer radii R; of P; are not
uniformly bounded in i, then their inner radii r; are not uniformly bounded in i either.

Proof We will do induction on the dimension #.

First, let us consider the n = 2 case. Since R; are not uniformly bounded in i, there
exists an edge E; from each P; such that | E;| are not uniformly bounded. Recall that
the surface area measure has its centroid at the origin; that is,

N

S IFPL vy = o,

j=1
where F(P;,vj) = {x € P; : x -vj = hp,(vj)}. Therefore, there must exist another
edge El/ (different from E;) of P; such that |Elf| are not uniformly bounded either. By

taking a subsequence (and without causing confusion, use the same subscript for the
subsequence), we can assume

|Eil, |E]| > 2i.
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Observe that since E; and El’ are edges of P;, there exist i1 # iy such that v;; and v;,
are the corresponding normals. We now take line segments L; and L} of length 2i that
are subsets of E; and E’, respectively.

Consider

Ki =conv{L;, L}} C conv{E;, E]} C P;. (3.3)
By Lemma 3.3, there exists ¢op > 0 and x; € int K; C int P; such that
B(x;, cpi) C K;.

This, when combined with (3.3), implies that the inner radii r; of P; are not uniformly
bounded. This proves the base step.

We now assume that the lemma is true in dimension (n — 1) and use that to establish
the dimension n case.

Since R; are not uniformly bounded, there exists a facet E; from each P; such that
the outer radii R; of E; are not uniformly bounded. By possibly taking a subsequence,
we may assume all E; have the same normal vector; that is, they are parallel. By
Lemma 3.1, the outer unit normals of E; are in general position in dimension (n — 1).
Therefore, by the inductive hypothesis, the inner radii of E; are not uniformly bounded.
In particular, their (n — 1)-dimensional areas are not uniformly bounded in i. Using
again the fact that surface area measure has its centroid at the origin, we may find a facet
E l/ from P; such that the (n — 1)-dimensional areas of E l’ are not uniformly bounded
either; as a consequence, the outer radii ﬁl’ of E! are not uniformly bounded. Repeating
the same argument as for E;, we may use the inductive hypothesis to conclude that
the inner radii of E; are not uniformly bounded.

Observe that since E; and E l/ are facets of P;, there existi; # iy such that v;, and v;,
are the corresponding normals. Since the inner radii for E; and E; are not uniformly
bounded, by taking a subsequence (and using the same notation for the subsequence),
we can assume both E; and E; contain (n — 1) dimensional balls of radius ;. We denote
these balls by B; and B;.

Consider

K; = conv{B;, B]} C conv{E;, E{} C P,. 3.4)
By Lemma 3.3, there exists cop > 0 and x; € int K; C int P; such that
B(x;, coi) C K;.

This, when combined with (3.4), implies that the inner radii r; of P; are not uniformly
bounded. This completes the proof. O

An immediate consequence of Lemma 3.4 is the following result in dimensions
greater than or equal to 2.

Corollary 3.5 Let vy, ..., vy € "1 be N unit vectors that are not contained in any
closed hemisphere and P € P(vy, ..., vN). Assume that vy, ..., vy are in general
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position in dimension n. If the outer radius R; of P; is not uniformly bounded and
q > 0, then the q-th chord integral 1,(P;) is also unbounded.

Proof This follows immediately from Lemma 3.4, the homogeneity and the translation
invariance of /,, and the fact that /,(B) is positive for the centered unit ball B. O

4 The discrete L, chord Minkowski problem

Let 4 be a finite discrete Borel measure on S”~! that is not concentrated in any closed
hemisphere; that is

N
p= by, @.1)
i=1

for some «; > 0 and unit vectors vy, ...vy € S"! not contained in any closed
hemisphere.

In this section, we will solve the discrete L, chord Minkowski problem for g > 0
and0 <p < 1.

Forany z = (z1,...,2n) € R¥ such that [z] has nonempty interior, we define

Y =& P, ifpe ),
D) (2, 8) =
Zyzllog(zj—émjyaj, if p=0,

for each & € [z]. We adopt the convention that log0 = —oo. When there is no
confusion about what the underlying measure  is, we shall write &, = &, ;.

Itis simple to see that for each p € [0, 1), the functional @ (z, ) is strictly concave
in & € int[z]. Therefore, the maximizer to the problem

Sup CDP(Z’ S)?
§elz]

if it exists, must be unique. When p = 0, the existence of the maximizer £ € int[z]
follows from the fact that if a sequence of interior points int[z] > §; — 9[z], then
®o(z, &) — —oo. This follows from the trivial fact that log0 = —oo. In the case
p € (0, 1), the existence of maximizer is less trivial and was shown in Zhu [64]. We
summarize both the p = 0 and p € (0, 1) case in the following lemma.

Lemma4.1 ([64]) Letz = (21, ...,2n) € RN be such that [z] has nonempty interior
and p € [0, 1). Then the maximizer of the following optimization problem

sup @,(z, §)
£elz]

is uniquely attained at some &y € int[z].
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We will use &, ,(z) to denote the unique maximizer in Lemma 4.1. Similar to
before, when the context is clear, we will suppress the subscript .

It is simple to observe that the operator &, is homogeneous of degree 1. That is, for
any A > 0, we have §,(Az) = 1§, (2).

The following fact regarding the continuity of &, in z is well-known. For the sake
of completeness, we provide a quick proof.

Lemma4.2 Let z; € RN be such that limj_, o 77 = z € RN and p € [0, ). If [z] has
nonempty interior, then

Jlim &, (z1) = £,(2), “4.2)
and
ll_l)rglo Dy (21, Ep(z1) = Pp(z, §p(2)). (4.3)

Proof We first note that (4.3) is a direct consequence of (4.2) by the definition of ®,.
Therefore, only (4.2) requires a proof.

By the fact that z; — z, the assumption that [z] has nonempty interior, and Lemma
4.1, both &, (z;) for sufficiently large / and &,(z) are well-defined. Moreover, we can
conclude from the fact that z; — z and the fact that £,,(z;) € int[z;] that &,(z;) are
uniformly bounded in /. Therefore, if (4.2) is false, there must exist a subsequence
(which we still denote as &, (z;)) such that

ép(zl) - 5/ * ép(z)~

Note that it must be the case that &’ € [z]. Moreover, by the definition of & p and
Lemma 4.1,

Il_l)rgo (21, Ep(21) = Pp(z,8) < Dp(z,6p(2) = ll_lfgo Py (21, 6p(2)).

However,
lim @, (z;,6,(2)) < lim @ (21, §,(21)) = Pp(z, &).
[—00 [—00
The above contradiction immediately gives the desired result. O

The next lemma shows that &, (z) is a differentiable function with respect to vector
addition in z.

Lemma4.3 Letz = (21,...,2N) € Rf, p € [0, 1), and 1 be as given in (4.1). For
each B € RN, consider

z(t) =z + 1B,
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for sufficiently small |t| so that z(t) € Rﬁ. Denote £, (t) = £p(z(1)). If §,(0) = o,
then EI’, (0) exists. Moreover,

o= "aju;. (4.4)

Proof Since £,(t) € int[z(¢)] and maximizes

sup @, (z(1), §),
gelz()]

taking the derivative in & shows
N
0= (zj(t) = £p(1) - v ' arjv;. (4.5)
Jj=l1

In particular, at # = 0, we have

which establishes (4.4).
Set

N
Fp(t,6) =) (z;() =& -v))P'ajv;.
j=1
Then, (4.5) simply says
Fp(ta‘i:p(t)) = 0.

By a direct computation, the Jacobian with respect to & of F, att =0 and & = o is

aF N
-2
a—; :(l—p)ZZf ajv; v;.
0,0 j=1
Since vy, ..., vy span R", we conclude that the Jacobian % is positive-definite at

t = 0 and £ = 0. By the implicit function theorem, we conclude that f;‘l/, (0) exists. O

Foreach 0 < p < 1 and g > 0, we consider the optimization problem

inf{®,(z,€,(2)) : z € R, I,([z]) = |ul}. (4.6)
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Lemma4d.4 Let 0 < p < 1 and q > 0. If there exists z € Rﬁ with £,(z) = o and
1,([z]) = || satisfying

®,(z,0) = inf{®(z,£,(2)) : z € RN, [, ([z]) = |ul},

then, there exists a polytope P € P(vy, ..., vN) containing the origin in its interior
such that
Fp,q(Pv D)= w
Moreover, for eachi =1, ..., N, we have
hiz1(vi) = zi. 4.7)

Proof Because of homogeneity, we may assume || = 1. Let 8 € RY be arbitrary
and set

z(t) =z + 8.

For sufficiently small |¢|, we have z(¢) € ]R_A(. Set

1t = I, ()7

Note that A(0) = 1. By homogeneity of I, it is apparent that I, ([A(¢)z(¢)]) = 1. By
Corollary 2.3, we have

/ 1 al
2(0) = —Hq—_lgﬂi&(m, vi). (4.8)

Let§,(1) = §p(A(1)z(1)) = A(1)§p(2(1)) and
V(1) = @, (A(1)z(1), £, (1)).

By Lemma 4.3, &, is differentiable at # = 0. Moreover, (4.4) holds.
Since z is a minimizer, the fact that 0 = \IJ;, (0) shows

N

N
0=2O [ Y ra; | + 3 2 iy — £,0)- Zz” lajv;
i=1

j=1

By (4.4) and (4.8), we have

0=- n+6]—1 ZZ i) Z,BIF ([z], U,)‘f‘Z,B,Zp la,',
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Since B is arbitrary, we conclude that

n+q—1

—(bp(z’ o) n(),

Fp‘q([Z], )=

if p € (0, 1) and
Gy([z]) = n().

The existence of P now immediately follows from the fact that F, ,(K,-) is
homogeneous of degreen +g — 1 — p # 0in K.

We now show (4.7). Assume that it fails for some iy. Let 7 € Ri\_’ be such that
Zi = hiz1(vi). By (2.1), we have Z;, < zj, and Z; < z; fori # ip. Note that [z] = [Z]
and consequently, I, ([Z]) = |u|. By definition of ®, and &,,, we have

(Dp(E’ Ep(Z)) < ch(Z9 %-p(Z)) = q>p(Z7 ép(Z)) = (Dp(z, 0).
This is a contradiction to z being a minimizer. O

We are in position to solve the discrete L, chord Minkowski problem when 0 <
p<landg > 0.

Theorem4.5 Let0 < p < 1, g > 0, and 11 be as given in (4.1). If vy, ... vy € S*!
are in general position in dimension n, then there exists a polytope P € P(vy, ..., vN)
containing the origin in its interior such that

Fpy(P,) = p.

Proof We consider the minimization problem (4.6). Let z' € R" be a minimizing
sequence; that is Iq([zl]) = |u| and

Il_i)rglo D, &,(2)) = inf{®,(z,6,(2)) 1 z € RN, 1, ([2]) = |ul}.

Note that by translation invariance of I, and the simple fact that & ,(z, &) = ®,(z/, 0)
where z// = z; — & - vj, we can assume without loss of generality that £, ) = o.
Moreover, by the definition of ® p» it must be the case that

= hpn(v)). (4.9)

The fact that 0o = ép(zl) € int[z'] now implies that le > 0. Since Iq([zl]) = |u| is
finite, Corollary 3.5 implies that the outer radii of [zl] are uniformly bounded. This,
when combined with the fact that o € [Z], implies that ('] is uniformly bounded,
which by (4.9) implies that z' is uniformly bounded in R¥ in [. Therefore, we may
(by potentially taking a subsequence) assume that z/ — z° for some z° € RV. By
continuity of /;, we have Iq([zo]) = ||, which implies that [z°] contains nonempty
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interior. Lemma 4.2 now implies that &, (z°%) = limj_ o0 £ » (z') = o. This and the fact
that & p(zo) € int[z%] imply that e Rﬁ . Moreover, by the definition of @, we have

®,(2°,0) = Jlim ®,(Z, 0) = inf{®,(z,&,(2)) : z € RY, I, ([z]) = |ul}.

Lemma 4.4 now implies the existence of P. O

When 0 < p < 1, Theorem 4.5 in fact holds even without the assumption that
v1,...vy € $""! are in general position in dimension 7.

Theorem 4.6 Let0 < p < 1, g > 0, and 11 be as given in (4.1). Then there exists a
polytope P € P(vy, ..., vN) containing the origin in its interior such that

Fpq(P,-)=p.

Proof The proof for Theorem 4.5 remains valid aside from the fact that we can no
longer use Corollary 3.5 to show z! is uniformly bounded in R¥ .

We show in this proof that in the case of 0 < p < 1, the uniform boundedness of
7zl can still be obtained.

Set¢(r) = (r,r,...,1) € RY. Then, by the homogeneity of /,, we may find
ro > 0 such that I, ([{ (r0)]) = |u|. Therefore,

llinolo ®,(z',0) < @, (£ (r0), £p(£(r0)))

N
= (r0—& €0 - vj)" a;

j=1

N
< Z(zro)f’aj < o0, (4.10)

j=1
where we used the fact that &, (¢ (r9)) € int[¢ (r0)] (by Lemma 4.1).

On the other hand, if we set L; = max zll., then

n
Iy _ l . P
@, 0) =) (Z)Pa; > L mina;. 4.11)

j=1

The uniform boundedness of z/ now comes from (4.10), (4.11), and the definition of
L. O

Remark 4.7 The proof for uniform upper bound in Theorem 4.6 would not work for
p = 0 since the logarithm function takes both positive and negative values.
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5 The general case

Throughout this section, we assume p € [0, 1) and g > 0 unless otherwise specified.
Recall that, for Q = {vy, ..., vy} and for every z € R, we use [z, 2] to denote the
Waulff shape generated by z on €2; that is

[, Q=xeR":x-v;<zy, i=1,...,N}L

For the purpose of the section, we need to explicitly mention the different underlying
Q2 in different expressions (as they change between contexts).

Let 1 be a finite Borel measure (not necessarily discrete) on §"~1 that is not
concentrated in any closed hemisphere. The purpose of the section is to solve the L,
chord Minkowski problem for u; that is, to solve

Fp,q(Ka )=,

via an approximation scheme based on the polytopal solution we obtained in Sect. 4.

We first construct a sequence of discrete measures whose support sets are in general
position such that the sequence of discrete measures converges to i weakly.

For each positive integer m, it is simple to see that there is a way to partition §” !
into sufficiently many pieces so that the diameter of each small piece is less than n%;
that is, there exists V,, > 0 and a partition of "1, denoted by Utm, -, UN,,.m
such that d(U; ) < % and U; ,, contains nonempty interior (relative to the topology
of §7~1 ). We may choose v; ,, € Uj  sothat vy, ..., VA, m arein general position.
When m is large, it is clear that the vectors vy, ..., UA;, » cannot be contained in
any closed hemisphere.

We define the discrete measure i, on "~ ! by

j\/;ﬂ 1
Mm = Z (M(Ui,m) + m) ‘Svi,mv
i=1 m
and
|l
n = i (5.1)
m

Denote by 2, the support of the discrete measure p,,; that is,

Q= {Vims-- oy U, .m} C st

ms

Itis clear that 1z, is a discrete measure on §”~! satisfying the conditions in Theorem 4.5
and yz,,,—u weakly. Therefore, by Theorem 4.5, there exist polytopes P, containing
the origin in their interiors such that

Fp,q(Pma )= o - (5.2)
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A careful examination of the proofs for Theorem 4.5 and Lemma 4.4 immedi-

ately reveals that P, is a rescaled version of [z, 2,,] where 7" € Rﬁ[’" satisfies
&p. @") =0, 1,([z2", Qul) = |um| and

®, 7, (" 0) = inf{®p 7, 2. Ep, () : 2 € RN Iy (2, Q) = |pml}. (5.3)

In particular,

1
D,z (2", 0)\ rarT )
(%) [ Q. if p e, 1),

! ﬁ noQ if 0
(”‘H]——l) [z", Q] up=u

(5.4)

Lemma 5.1 If Py, in (5.2) are uniformly bounded and 1,(Py,) > cq for some constant
co > 0, then there exists a convex body K € K" with o € K such that

Fpg(K, ) =p. (5.5)

Proof By the Blaschke selection theorem, there exists a subsequence Py,; such that

Pp; — K for some compact convex set K containing the origin. By the continuity of

I, and the fact that I, (P,) > co, we have I, (K) > 0. This in turn implies that K has

nonempty interior. Equation (5.5) now readily follows from taking the limit of (5.2)

on both sides and Proposition 2.4. O
We require the following lemma.

Lemma5.2 Let vy, ... UN,.m € S~ be as given above. Consider

N
Om =[x eR" :x v < 1}. (5.6)
i=1
Then, for sufficiently large m, we have

B C Qn C2B, 5.7

where B is the centered unit ball.
Proof Only the right side of (5.7) requires a proof.
For each u € §"~1, since U; m forms a partition of S~ there must exist i, such

thatu € U;,, ,».Recallthatd(U; ) < %.Hence, we may choose Ny > 0 (independent
of u) such that for each m > N,

u-vi,.m>1/2.
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Since pg,, (W)u € O, we have

PO (U)/2 < P, (W)t~ Vi < 1.
Hence pg,, < 2 for each m > Ny, which proves the desired inequality. O

With a slight abuse of notation, for £ € K, we will write

w1 ht L du, if p € (0, 1),
By (K. 6) = (ot i P €O
fS”—l loghg_gdp, if p=0.
Note that when u is a discrete measure, 2 = {vi, ..., vy} is the support of u, and

z € R satisfies Zj = hiz,Q1(v;), we have

D[z, 21, 8) = Py u(z, 6).

That is: in this special case, ®, ;, ([z, 2], &) is precisely @, , (z, &) defined in Sect. 4.
With the help of Lemma 5.2, we have the following estimate.

Lemma5.3 Let P, be as given in (5.2) and 7" be the minimizer to (5.3) with
&pm, @) = 0. If |u| = 1 (and consequently |i,,| = 1), then there exists co > 0
independent of m, such that

@1, (Pn,0) < co.
Proof Let Q,, be as given in (5.6). Consider r Q,, for r > 0. Note that by Lemma 5.2,

for sufficiently large m, we have r B C r Q, C 2r B. By the homogeneity of 7, there
exists ro(m) > 0 such that

1y (ro(m)Qm) = 1.
Since rB C r Q,,, we have
ro(m)"*4=11,(B) = I,(ro(m)B) < I, (ro(m)Qm) = 1.
Therefore, ro(m) < ro for some constant ry independent of m.

Since z™ is a minimizer and using the fact that ro(m) Q,, C 2ro(m)B C 2roB, we
have

@y, (2", 0)
p — P g _ -
/SH Hro ) O~ 7, o my @) TPom. = /SH hiyygdFom = (410)", if pe 1),

/5 _, 108 gm0 —807,, (rom) Q) A = /S _, loghar,pdiy,, = log((4r0)). if p = 0.

The desired bound now follows from (5.4) and the definition of ®, 7 . o
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Remark 5.4 In the proof of Lemma 5.3, in fact, we have shown something stronger:
q>p‘/7“m (Zm ’ 0)

is also uniformly bounded from above. Here 7" € Rﬁf"’ with &, z (") = o is the
minimizer to (5.3).

The rest of the section is devoted to verifying the hypotheses in Lemma 5.1. Since

there is a major difference between the p = 0 case and the 0 < p < 1 case, we shall
prove them separately in two different subsections.

5.1 The0 < p < 1 case
Throughout this subsection, we assume 0 < p < 1 and ¢ > 0, both of which are
fixed.

It is a well-known fact that for each finite Borel measure x on S"~! that is not
concentrated in any closed hemisphere, there exists a constant €, (1) > 0 such that

fS e 0ldp) = €,

uniformly for each u € §"~!. We prove in the next lemma that for our choice of 1,
the constants €, (it,,) can be chosen uniformly.

Lemma 5.5 Let 1, be as given in (5.1). Then, for sufficiently large m, we have

1
[ @ 0t = S0,
Sn—l

Proof For notational simplicity, let

gm (1) Z/S,l(“'”)id”’”(”)’

gm(u) = / (u : v)idﬁm(v) = ﬂgm(u)v
sn—1 [t

and
g = [ odu,

Note that g > €, () and as a consequence, it suffices to show g,, = g. To do that,
one only needs to show g,, = g.
Let ¢ > 0 be arbitrary.
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Note that the function (u, v) — (u - v)ﬂ’r is uniformly continuous on sn—l o gn-l,
Therefore, for sufficiently large m (independent of the choice of u), we have

[(u - v)i —(u- vi,m)_’u <é,

for each v € U; ;. As a consequence,

N,
= 1
lgm () — gw)| = Y [(u “vim)Y (M(Ui,m) + J\W) —/ (u - v)idu]
i=1 m Ui,m
1
<elu|l+ —.

Nin

Note that the above estimate is independent of u. Since N,, — 00, we conclude the
desired uniform convergence. O

Lemma 5.6 If || = 1 (and consequently |it,,| = 1), the polytopes P,, obtained in
(5.2) are uniformly bounded and there exists co > 0 such that 1;(Py,) > co.

Proof We fix an arbitrary m that is sufficiently large and prove that the desired bounds
for P,, can be chosen independent of m.

We first prove that P,, are uniformly bounded (from above).

Let L(m) = maxg.—1 hp,. Then by definition of ®, 7 , we have, for some u €
Sn—l ,

@1, (Pn,0) = /

S}'l

i, )P, @)
2/ (L(m)u - v)! dz,, (v)
sn—1
1
> L(m)”flp(u), (5.8)

owing to Lemma 5.5. By Lemma 5.3 and (5.8), we conclude that L(m) is uniformly
bounded from above in m. By definition of L(m), this in turn implies the uniform
boundedness of P, (from above).

Let z” be the minimizer to (5.3) with &, (z”) = 0 and L'(m) =
max gi-1 h;m @,,1. Repeating the same argument, we have

1
@, (@"0) =Py (2", Qul o) = L/(m)”§¢p(u). (5.9

Note here that in the first inequality, we used (2.1). By Remark 5.4, we conclude that
[z"™, ;] also has a uniform upper bound. Note that 1, ([z", €2,,]) = 1. This implies
that there must exist ¢, > 0 such that [z, 2,,,] contains a ball of radius c. In turn,
since o € int[z", ,,], this implies L’(m) > ¢, and as a consequence of (5.9), we
obtain a uniform lower bound for @, 7 (z", 0). The existence of ¢y now follows from
(5.4) and the translation-invariance and monotonicity of /. m]
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Theorem5.7 Let 0 < p < 1, g > 0, and 1 be a finite Borel measure on S"~ not
concentrated in any closed hemisphere. Then, there exists K € K" with o € K such
that

Fp,q(K» ) =

Proof By homogeneity of F), ,, it suffices to prove the case when |u| = 1. In this
case, the result follows immediately from Lemmas 5.1 and 5.6. O

5.2 Thecasep =0

The desired uniform bounds on P,, in the case p = 0 are much more complicated.
This is caused by the fact that a uniform estimate as in Lemma 5.5 is unavailable for
the integral

(/' log(u - v) +d T (V).
sn—1

In fact, the above integral could well go to —oo.
It turns out that the chord log-Minkowski problem (or the chord Lo-Minkowski
problem) is heavily connected to subspace mass concentration phenomenon.
Throughout the rest of the section, we assume 1 < ¢ < n + 1 is fixed. We say that
a given finite Borel measure u satisfies the subspace mass inequality if

p@& NS i+ minfi,q — 1}
<

, 5.10
[l n+q—1 619

for each i dimensional subspace & C R” andeachi =1,...,n — 1.

It was shown in Xi-LYZ [30] that when restricting to origin-symmetric cases, the
above subspace mass inequality is sufficient for the existence of solutions to the chord
log-Minkowski problem:

Theorem 5.8 ([30]) Let 1 < g < n + 1. If ju is an even finite Borel measure on sn-l
that satisfies (5.10), then there exists an origin-symmetric convex body K in R" such
that

G,(K,) =pn.

In this section, we show that the above theorem remains true without symmetric
assumptions by employing an approximation scheme via solutions we obtained in
Theorem 4.5.

Following the discussion at the beginning of the section, we only need to verify
that the conditions in Lemma 5.1 are satisfied.

Lemma5.9 Let P, be as given in (5.2); that is,

1
Foq(Pn, ) = ——

Gq(Pma')Z n+q_1:um

n+q—1
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Then there exists co > 0 such that 1,(Py) > co for every m.

Proof By definition of G, (K, -) and I, (K), it follows that

1 _ 1
I;(Pn) = |Gy (P, )| = mmm = —_1|M| i=co > 0.

n+gq
O

The rest of the section is devoted to showing that the P,, in (5.2) is uniformly
bounded when u (not necessarily even) satisfies the subspace mass inequality (5.10).
For simplicity, we will write

i +min{i,q — 1}

Ai =
n+q—1

For each w C $"~! and n > 0, we define
N,(w) ={v e §" 1 lv—u| < n, forsome u € w)}.

The next lemma shows that when u satisfies the subspace mass inequality, then the
sequence of approximating discrete measures i, satisfies a slightly stronger subspace
mass inequality for sufficiently large m.

Lemma 5.10 Let pu be a finite Borel measure on "~ and Iy be constructed as in
(5.1). If u satisfies the subspace mass inequality (5.10), then there exist A; € (0, X;),
No > 0, and no € (0, 1) such that for all m > Ny,

— . n—1
Bap &0 g, 1)

for each i-dimensional subspace & C R" andi =1,...,n— 1.

Proof Note that if we can prove the existence of Ny, no for a fixed i, then it is simple

to find Ng and ng for alli = 1,...,n — 1—Dby taking the maximum of Ny and the
minimum of 7g.
For the rest of the proof, leti = 1, ..., n— 1 be fixed. We argue by contradiction. If

the desired result is false, then there exist sequences m ;, n; and Algj ), and a sequence

£ of i-dimensional subspaces such that m; — oo, n; — 0, )ngj) — A; and

M (@) n—1
Mmj(mﬂj(%- mS )) >kf])

> (5.12)

el
Letey j, ..., e ;j be an orthonormal basis of £(). By taking a subsequence, we may
assume e; ; — e, foreach 1 < k < i and that ey, ..., ¢; are orthonormal. Let
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& = span{ey,...,e;}. Let n > 0 be an arbitrarily fixed real number. Then, since
n; — 0, we have for sufficiently large j,

N, €D Ns"hH oy Ens.

This and (5.12) imply

ﬁmj(mﬂ(é}. N Sn_l)) - A(J)
|l -

Now, since ﬁmi converges weakly to 1, 0N, (& N §7—1y is compact, and )ij ) Ais
we have '

pO,ENS)

Ai.
| ]
Letting n — 0, we have
m Sl‘l—l
nensh
el
which contradicts (5.10). O

For notational simplicity, we will write ®, (K, §) for ®¢ , (K, §).
Letey, ..., e, be an orthonormal basis in R”. We define the following partition of
the unit sphere. For each § € (0, \/Lﬁ)’ define

Ais={v e sl [v-e| =34,|v-ej| <8, for j > i}, (5.13)

foreachi =1, ..., n. These sets are non-empty since e; € A; 5. They are obviously
disjoint. Furthermore, it can be seen that the union of A; s covers §7~1 Indeed, for
any unit vector v € S"!, by the choice of §, there has to be at least one i such that
|v-e;| > 8. Letig be the largest i that makes |v - e;| > 8. Then v € A;; 5. We use this
spherical partition to prove the following lower bound on ®z (E},;, 0) when Ej, is a
sequence of centered ellipsoids.

Lemma 5.11 Suppose 1 < q < n + 1. Let u be a nonzero finite Borel measure on
S"=1 and 1, be as constructed in (5.1). Let E,, be a sequence of centered ellipsoids

2 2
|x 'el,m| |x'en,m|
Em: XER"2—++2—§1 .
rl,m nom
where el m, ..., enm is an orthonormal basis in R" and 0 < ri,, < -+ < rpm.
Assume further that e\ p, . .., en.m converges to an orthonormal basis ey, ..., e, in

R* and ry ,m > 1.
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If u satisfies the subspace mass inequality (5.10), then there exists 8y, ty € (0, 1)
and No > 0 such that for each m > Ny, we have

1 3
— &z (Em,0) > log (—0> +tologry.m
P 2

) g—lgl+1
+ (1 - to)[ Z n+61——1 logrim + W—_llogquJ,m

i=1
~ 1
—logrim|.
+.Z ntq—1 grl,mi|
i=lg]+1

Here we adopt the convention that a sum disappears if the upper index is strictly
smaller than the lower index.

Proof Let A; 5 be constructed as in (5.13) with respect to ey, . .., e,.

Since p satisfies the subspace mass inequality (5.10), by Lemma 5.10, there exists
No > 0,10 € (0, 1), and ’)ti € (0, A;) such that for all m > Ny, (5.11) holds for each
i-dimensional proper subspace &, C R”". Let 7y > 0 be sufficiently small so that

(1 —1t)r; > 3:,'.
Hence, for all m > Ny, we have

o My (& N S™71)
[l

< (I =10)Ai, (5.14)

for each i-dimensional subspace §; C R" andi = 1,...,n — 1. In particular, we let
& = span{ey, ..., e}
Observe that for sufficiently small §y € (0, 1), we have

i
L Ajs € OMye& NS,
j=1

and as a consequence of (5.14) and the fact that A 5, forms a partition of S we
have

Y T (Ajs)) X (A s)

— = < (I —19)Ai, (5.15)
[ | ]
foreachi = 1,...,n — 1. Here, we also used the fact that |z, | = |u/.
Since ey, ..., ey, converges to ey, ..., ey, there exists N; > Ny such that for
eachm > Ny,
3
eim — €| < 50, fori=1,...,n.
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Note that since 7; ne; n € E,,, we have for each v € A; 5,

o
heg, (W) > |v-emlrim > (v-el—|v-(eim—e)Drim > > Tim-

Hence, by the fact that A; 5 forms a partition of $"~1 we have

1 & _
@, (Em, 0) = Z f log hg,, (v)d]L,, (v)
m| A,‘g
1 —
__ZIOg rzm Mm(Ai,ag)
o W (Aisy)
:10g<5>+21gr,m Bal i)
=lo 8—0 +Zlo Fim Vi
= log ) — Srim " Vi,
1=

7]

(5.16)

where we set

ﬁm (Al'ﬁo)
[ |

P =

We further sets; = y1 +---+y; fori = 1,...,n and so = 0. Note that 5, = 1.
We have y; = s; — sj—1 fori = 1,...,n. Thus,

n n
D logrim-yi =Y (si —si-1)logrim
i=1 i=1

n—1

= lOgrn,m + Zsi (lOg Vim — lOgri+1,m)s
i=1

where in the last equality, we performed summation by parts. Note that by definition
of s;, equation (5.15) simply states

si < (1 —t)A;.
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This, together with the fact that r; ,,, < ;41 ,, implies

n—1

Zloghm Yi >10grnm+Z(l_t0))\ (IOszm 10grl+lm)
i=1 i=1

=tglogrym + (1 —1to) (5.17)

n—1
(Z Ai(logrim —1ogrit1m) + log rn,m> :

i=1

At this point, we perform summation by parts again and use the definition of A;.
We do it in three cases.
Case 1: ¢ € (1, 2). In this case, we have A; = '+q 1 . Thus,

n—1

Z Ai(logrim —1ogriv1m) +1ogrym
i1

n—1
= hilogrim + ) (ki = A1) 10grim + (1= hy-1) log ry m
=2
q « 1 (5.18)
=—— 1o + —— logr; :
ntq—1 27 ,m ;n+q_] S¥i.m

n+q—2
(1= e

n
q 1
=T _togria+ Y ——logr;
n+q—1 E71,m gn—l—q—l ETim

Case 2: ¢ € [2, n). Note thatif n = 2, there is no need to consider this case. Hence,
for here, we assume n > 3. We have

n—1
Z Ai(logrim —logriyim) +1ogry m
i=1

n—1

=M logrim + Z(M —Xi—)logrim + (1 —Ay_1)logrym

i=2
lgl—1
2 q—lgl+1
=—1lo — logr; —— 1o
ntqg—1 grl,m"‘é ntqg—1 grim + ntq—1 g7rql.m
+ Z logri,m‘i‘(l_)\n—l_—>10grn,m
i LqJ+l q—l n+q—1
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~ lg] +1
; log Tiom + %IOgrLQJ,m

1
+ Z W—_llogrtm, (519)
i=|g]+1

where in the last equality, we use the fact that 1— A, 1 — # =1-% ig:% e ; — =

0.

Case 3: g € [n,n + 1). In this case, we have |g| = n, A; = n+q p fori =
1,...,n—1,and
n—1
Z)»i(l()gri,m —logrit1,m) +1ogrym
i=1
n—1
=X 10g riym + Z()Li —Ai—1) 1Ogri,m + (1 = Ap-1) 10g "'n,m
i=2
n—1
= ———logrim+ (1 —Ap—1)logrym (5.20)
o +q—1
n—1
_ qg—n+1
= ;mlogri)m + mlogrn,m
n—1
q—lgl+1
= —1 i —1 .
ntq—1 ogrim+ g+n—1 0L n,m

1

Note that (5.18), (5.19) and (5.20) can be written in a uniform way by adopting the
convention that a sum disappears if the lower index is strictly bigger than the upper
index:

n—1

Z Li(logrim —logrisim) +10grnm

i=1

lg]—1
= 2 % logrim + %logrmm (5.21)
P N S log i
sl a1
Combining (5.16), (5.17) and (5.21) provides the desired result. O

The following lemma is an estimate on the chord integral of ellipsoids obtained in
Xi-LYZ [30].
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Lemma 5.12 ([30]) Suppose q € (1, n + 1) is not an integer. If E is the ellipsoid in
R" given by

2 2
X-e X-e
E = XER”Il 1| ++| n| <1t
2 2 =
1 n
where ey, . .., e, is an orthonormal basis in R" and 0 < ry < --- <r,. Then

lgl—-1 n
log I,(E) < Z 2logri +(q — lg] + Dlogriq) + Z logri | +c(q,n)
i=1 i=|g]+1

where c(q, n) is a constant (not necessarily positive) that only depends on q and n.

For the rest of the section, we will use symbols like c(a, b) to denote constants that
depend only on a and b.
We now prove that P,, is uniformly bounded when g € (1, n 4 1) is not an integer.

Lemma 5.13 Suppose g € (1, n+ 1) is not an integer. Let 1 be a finite Borel measure
on S" ! and ., be as constructed in (5.1). Let Py, be as given in (5.2). If u satisfies
the subspace mass inequality (5.10), then Py, is uniformly bounded.

Proof Because of homogeneity, we may assume g is a probability measure.
We argue by contradiction and assume that P, is not uniformly bounded.
Let E,, be the John ellipsoid of P, ; that is
En C Py Cn(Ewm — 0m) + Om, (5.22)

where the ellipsoid E,, centered at 0,, € int P, is given by

(& —om)-etml 16— 0m) - enml?

Em = J{X € R" : = 1 s
2 2
1,m n,m
for some orthonormal basis €1, . . ., €ym INR*and 0 < ry p < --- < ry . Since Py,

is not uniformly bounded, by taking a subsequence, we may assume r,_,, — 0o and
Tn.m > 1. By the compactness of $"~1 we may take a subsequence and assume that
€l.m,---,en,mconvergestoei, ..., e,—an orthonormal basis in R"”. By the definition
of &z ,(5.22) and Lemma 5.11, there exists 8o, #p > 0 and No > 0 such that for each
m > Ny, we have

— @z, (P, 0m) = —— Py, (En, 0m)
[ 7
1
:__(Dum(Em_Ova)
o |

1)
> log (30> +tologry,m + (1 —t9)
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lg]—1
2 —lgl+1
[ Z —— logrinm +Llogrm,m

= n+tq- 1 ’ n+q—1
- 1
+ Z logr,m]
i= gl n+q—1
8o 1—1
>log| = ) +tologrym + —————log I,(Ey) + c(to, n,q), (5.23)
2 n+q-—1

where c(fy, n, q) is not necessarily positive. Here, the last inequality follows from
Lemma 5.12. By homogeneity and translation invariance of I,;, (5.22), and the choice
of P,, we have

[
Iq(Em) = Iq(Em —0p) =n "l Iq(n(Em — 0m) + Om)

1
— 1\, 5.24
ey 220 (5.24)

1 1
= 0 L (Py) = T
Let y" € Rﬁf"’ be such that y* = hp, (vi,m). By (4.7) and (5.4), we have that y™
is a constant multiple of ", where z™ is the minimizer to (5.3) with &y 7, (z") = 0.
This, when combined with the homogeneity of &y 7, , implies that &z, (") = o.
This, (5.24), that |, | = |, (5.23), and that r, ,,, — oo imply

Dy, (P, 0) = O (P, 0py) — 00, as m — 00. (5.25)
This is a contradiction to Lemma 5.3. O
The uniform upper bound for P,, when g = 2, ..., n is an integer is slightly more

complicated. We require the following lemma obtained in [30], which follows from a
simple argument using Jensen’s inequality.

Lemma5.14 ([30D) If K € K} and 1 <r < s, then
I (K) < C(T,S)V(K)lfg]s([()%’

where c(r, s) > 0 only depends on r and s.

The following lemma provides the desired uniform upper bound for P,, when ¢ is
an integer.

Lemma 5.15 Suppose q € {2, ...,n}). Let ju be a finite Borel measure on S"~' and
., be as constructed in (5.1). Let Py, be as given in (5.2). If u satisfies the subspace
mass inequality (5.10), then P, is uniformly bounded.

Proof The proofis similar to that of Lemma 5.13. Hence, we only outline the necessary
changes here.
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~ Using Lemma 5.10, we can conclude the existence of Ny > 0, 9 € (0, 1), and
Ai € (0, A;) such that for all m > Ny, equation (5.11) holds. We choose ty > 0
sufficiently small so that

o minti 0 1 3
(1 — gy Fmintg =1 5 (5.26)
n+q—1

Note that the left-side of (5.26), when viewed as a function of ¢, is continuous for
q > 1. Therefore, it is possible to choose ¢’ € (g, g + 1) sufficiently close to ¢ so
that

 pmind — 1)
(=), 1= (1 — gy T mintlng =1} o (5.27)
n+q —1

and

1—1 ¢ —q

e
g —1gq

n > 0. (5.28)

Equations (5.27) and (5.11) now imply that for all m > Ny, equation (5.14) holds
with 2; replaced by A;. Thus, Lemma 5.11 holds with g replaced by ¢’. Using this in
(5.23) and recognizing that ¢’ is now non-integer so that one may once again invoke
Lemma 5.12, we get

_1 (P 0, ) > 10 -
b —_
p— |(D/,Lm m» Om g )

1—1
+10108 P + —————log I/ (Ey) + c(io, 1, ¢') (5.29)
n+q —1

in place of (5.23). Using Lemma 5.14 with r = ¢ and s = ¢’, we have

/

-1 r_
L= togl,(En) — 2

logl,(E;,) >
qu(m)_q_l q—

Llog V(Ew) +c(g.q)  (5.30)
for some constant c(q, ¢"). Combining (5.29) and (5.30), we have

do
_(Dﬁm(Pmy om) = log <3) + 1o logram

|
1—1 g —1
_ log I, (E
ntq —1lg—1 og 1y (Ep)
l—10 q'—¢q

———nlo ,q’ . n, o).
n+q/_1q_1n grn,m"‘c(qq n, to)

@ Springer



The Lp chord Minkowski problem in a critical interval

Here, we used the fact that ‘Z/%;’ > 0 and that V(Ey,) < wyry, . Therefore,

o -1 ¢ —q
W‘bﬁm (Pm, Om) > IOg (5) + (t() — n—l—q—/—l . 1 n logrn,m

L=t =Lt (B + g n10)
— o c(g,q’,n,t).
ntq —1g_1 &lalfm)Tcdq,ml

As argued in (5.24), the term involving log I, (E,,) is bounded from below. There-
fore, as ry ;; — 00, with the help of (5.28), we may conclude that &5 (P, 0) — 00
as in (5.25). This is a contradiction to Lemma 5.3. O

Theorem 5.16 Let 1 < g < n+ 1. If ju is a finite Borel measure on S"~" that satisfies
(5.10), then there exists a convex body K € K" with o € K such that

G, (K, = p.

Proof The result follows immediately from Lemmas 5.1, 5.9, 5.13 (in the case ¢ is a
non-integer), and 5.15 (in the case ¢ is an integer). O
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