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Abstract
Chord measures and L p chord measures were recently introduced by Lutwak-Xi-
Yang-Zhang by establishing a variational formula regarding a family of fundamental
integral geometric invariants called chord integrals. Prescribing the L p chord measure
is known as the L p chord Minkowski problem, which includes the L p Minkowski
problem heavily studied in the past 2 decades as special cases. In the current work,
we solve the L p chord Minkowski problem when 0 ≤ p < 1, without symmetry
assumptions.

Mathematics Subject Classification 52A38 · 52A40

1 Introduction

Central to the theory of convex bodies are geometric invariants and measures associ-
ated with convex bodies. Geometric invariants and measures are usually investigated
through isoperimetric inequalities andMinkowski problems. They are intimately con-
nected. As an example, the celebrated Brunn-Minkowski inequality reveals that the
volume functional is log-concave in a certain sense and the classical isoperimetric
inequality, as a direct consequence of it, reveals that ball is the geometric shape
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that minimizes surface area among convex bodies with fixed volume. The classi-
cal Minkowski problem asks for the existence, uniqueness, and regularity of a convex
body whose surface area measure is equal to a pre-given spherical Borel measure.
The two problems are closely connected since surface area measure can be viewed
as the “derivative” of the volume functional. The classical Minkowski problem has
motivated much of the study of fully nonlinear partial differential equation, as demon-
strated by the works of Minkowski [1], Aleksandrov [2], Cheng-Yau [3], Pogorelov
[4], and Caffarelli [5–7] throughout the last century.

The volume functional is a special case of quermassintegrals that includes surface
area and mean width as two other more well-known invariants. Quermassintegrals
are fundamental invariants in the classical Brunn-Minkowski theory. Depending on
parametrization, their “derivatives” include the area measures introduced by Aleksan-
drov, Fenchel, and Jessen in the 1930s, aswell as the curvaturemeasures introduced by
Federer in the late 1950s. With sufficient regularity assumptions on the convex body,
area measures and curvature measures involve elementary symmetric functions of
principal curvatures and radii of curvature. This makes them much more complicated
than the surface area measure studied in the classical Minkowski problem.Minkowski
problems for area measures and curvature measures include the Christoffel problem
(for the area measure S1) and the long-standing Christoffel-Minkowski problem (for
the area measure Sn−2).1 See, for example, Guan-Guan [8], Guan-Li-Li [9], Guan-Ma
[10], Guan-Ma-Zhou [11].

In the 1970s, Lutwak introduced the dual Brunn-Minkowski theory. Compared to
the classical theory which focuses more on projections and boundary shapes of convex
bodies, the dual Brunn-Minkowski theory focuses more on intersections and interior
properties of convex bodies. This explains the crucial role that the dual theory played
in the solution of the well-known and the then long-standing Busemann-Petty problem
in the 1990s. See, for example, [12–15]. The counterparts for the quermassintegrals
in the dual theory are the dual quermassintegrals. See Sect. 2.2. However, it was not
until the groundbreaking work [16] of Huang-Lutwak-Yang-Zhang (Huang-LYZ) that
the geometric measures associated with dual quermassintegrals were revealed. This
led to dual curvature measures dual to Federer’s curvature measures. The Minkowski
problem for dual curvature measures, now known as the dual Minkowski problem,
has been the focus in convex geometry and fully nonlinear elliptic PDEs for the last
couple of years and has already led to a number of papers in a short period. See,
for example, Böröczky-Henk-Pollehn [17], Chen-Chen-Li [18], Chen-Huang-Zhao
[19], Chen-Li [20], Gardner-Hug-Weil-Xing-Ye [21], Henk-Pollehn [22], Li-Sheng-
Wang [23], Liu-Lu [24], Zhao [25]. It is important to note that the list is by no means
exhaustive.

Unlike quermassintegrals, dual quermassintegrals, which depend on lower dimen-
sional central sectional areas, are not translation invariant. Integrating dual quer-
massintegrals of a convex body over all its translated copies (that contain the origin)
leads to a basic geometric invariant in integral geometry, known as chord integral.
Chord integrals are naturally translation invariant. From an analysis point of view,

1 As a comparison, the classical Minkowski problem studies the surface area measure which is also known
as the area measure Sn−1.
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chord integrals are Riesz potentials of characteristic functions of convex bodies. For
isoperimetric problems involving chord integrals, readers should refer to Knüpfer-
Muratov [26, 27], Figalli-Fusco-Maggi-Millot-Morini [28], Haddad-Ludwig [29] and
the references cited therein.

Recently, the “derivative” of chord integrals, called chord measures, was obtained
in Xi-LYZ [30]. The Minkowski problem for chord measures was posed and studied
in the same paper. It is called the chord Minkowski problem. The chord Minkowski
problem includes the classical Minkowski problem and the previously mentioned
long-standing Christoffel-Minkowski problem—the latter as a critical limiting case.
The L p extensions of chord measures and the chord Minkowski problem are natural
and present many interesting and challenging problems. More details on this will
follow. The L0 chord Minkowski problem, in particular, is also known as the chord
log-Minkowski problem as it contains the unsolved logarithmic Minkowski problem
(see, for example, [31]) as a special case.

Xi-LYZ [30] solved completely the chord Minkowski problem (corresponding
to p = 1) except for the limiting Christoffel-Minkowski problem case and they
also demonstrated a sufficient condition for the o-symmetric case of the chord log-
Minkowski problem. Xi-Yang-Zhang-Zhao [32] solved the L p chord Minkowski
problem for p > 1 as well as the o-symmetric case of 0 < p < 1. Origin sym-
metry in the case of 0 ≤ p < 1 plays an important role in obtaining a-priori C0

bounds—even more so in the critical p = 0 case.
The purpose of the current paper is to show that the symmetric restriction in both

works can be dropped via an approximation scheme from the polytopal case.
Let K be a convex body in R

n . For each q ≥ 0, the q-th chord (power) integral of
K , denoted by Iq(K ), is given by

Iq(K ) =
∫
L n

|K ∩ �|q d�,

where |K ∩ �| is the length of the chord K ∩ � and the integration is with respect to
Haar measure on the affine Grassmannian L n . Chord integrals contain volume and
surface area as important special cases:

I0(K ) = ωn−1

nωn
S(K ), I1(K ) = V (K ), In+1(K ) = n + 1

ωn
V (K )2,

where ωn is the volume of the unit ball in R
n . In particular, the chord integral Iq for

q ∈ (0, 1) can be seen as an interpolation between volume (or, the quermassintegral
W0) and surface area (or, the quermassintegralW1). Chord integrals also take the form
of Riesz potential, see (2.2).

Xi-LYZ [30] demonstrated that for each q ≥ 0, the “derivative” of the chord integral
Iq(K ) uniquely defines the chord measure Fq(K , ·) on Sn−1:

d

dt

∣∣∣∣
t=0+

Iq(K + t L) =
∫
Sn−1

hL(v)dFq(K , v), (1.1)
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for each pair of convex bodies K and L . Here hL is the support function of L . A precise
definition of the chord measure Fq can be found in Sect. 2.3. It is important to note that
the q = 0, 1 cases of (1.1) are classic and in such cases, the chord measure Fq(K , ·)
recovers surface area measure (q = 1) and the area measure Sn−2(K , ·) (q = 0). In
this way, the chord measure Fq(K , ·) interpolates between surface area measure and
the (n − 2)-th order area measure.

The chord Minkowski problem. Given a finite Borel measure μ on Sn−1, what are
the necessary and sufficient conditions on μ so that there exists a convex body K such
that Fq(K , ·) = μ?

The chord Minkowski problem recovers the classical Minkowski problem (when
q = 1) and the long-standing Christoffel-Minkowski problem (when q = 0). The
chord Minkowski problem for q > 0 was completely solved in [30].

In the past three decades, many classical concepts and results in the theory of
convex bodies have been extended to their L p counterparts. This was initiated by two
landmark papers [33, 34] byLutwak in the early 1990swhere he defined the L p surface
area measure fundamental in the now fruitful L p Brunn-Minkowski theory central in
modern convex geometric analysis. It is crucial to point out that such extension is
highly nontrivial and often requires new techniques. See, for example, [35–52] for a
(not even close to exhaustive) list of works in the L p Brunn-Minkowski theory. In
particular, the theory becomes significantly harder when p < 1. These include the
critical centro-affine case p = −n and the logarithmic case p = 0. Isoperimetric
inequalities and Minkowski problems in neither case have been fully addressed. In
particular, the log Minkowski problem (for the cone volume measure) has not yet been
fully solved. See, for example, Bianchi-Böröczky-Colesanti-Yang [53], Chou-Wang
[35], Guang-Li-Wang [54], Zhu [41, 55] among many other works. In fact, the p = 0
case harbors the log Brunn-Minkowski conjecture (see, for example, Böröczky-LYZ
[56])—arguably the most crucial conjecture in convex geometric analysis in the past
decade. The log Brunn-Minkowski conjecture has been verified in dimension 2 and in
various special classes of convex bodies. See, for example, Chen-Huang-Li-Liu [57],
Colesanti-Livshyts-Marsiglietti [58], Kolesnikov-Livshyts [59], Kolesnikov-Milman
[60],Milman [61], Putterman [62], Saroglou [63]. If proven correct, it ismuch stronger
than the classical Brunn-Minkowski inequality.

Motivated by this success, the L p chord measure was introduced in [30]. For each
p ∈ R, q > 0, and convex body K containing the origin in its interior, the (p, q)-th
chord measure, denoted by Fp,q(K , ·), is a finite Borel measure on Sn−1 given by

dFp,q(K , ·) = h1−p
K dFq(K , ·).

For p ≤ 1, since the exponent 1 − p is nonnegative, the above definition naturally
extends to all K ∈ Kn as long as o ∈ K . We point out that when q = 1, since the chord
measure Fq becomes the surface area measure, the (p, 1)-th chord measure becomes
nothing but the family of L p surface area measure in the L p Brunn-Minkowski theory.

The L p chord Minkowski problem. Given p ∈ R, q > 0, and a finite Borel
measure μ on Sn−1, what are the necessary and sufficient conditions on μ so that
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there exists a convex body K containing the origin (as an interior point if p > 1) such
that Fp,q(K , ·) = μ?

When the given measure μ has a nonnegative density f , the L p chord Minkowski
problem reduces to solving the following Monge-Ampère type equation on Sn−1:

h1−p
K Ṽq−1(K ,∇hK ) det

(∇2
Sn−1hK + hK δi j ) = f . (1.2)

Here ∇2
Sn−1hK is the Hessian of hK on the unit sphere with respect to the standard

metric, and ∇hK is the Euclidean gradient of hK that is connected to the spherical
gradient ∇Sn−1hK in the following way:

∇hK (v) = ∇Sn−1hK (v) + hK (v)v.

We remark at this point that when q = 1, the L p chord Minkowski problem reduces
to the L p Minkowski problem.

In [32], it was shown that if p ∈ (0, 1), q > 0, and the given measure μ is an even
measure, then the L p chord Minkowski problem has an o-symmetric solution. The
origin-symmetry assumption is heavily utilized there so that a-priori bounds can be
achieved. If the origin-symmetry assumption is dropped, then the situation is vastly
different. In fact, the maximization problem used in [32] (for the sake of variational
approach) is no longer applicable in the general case. Similar to the L p Minkowski
problem for p < 1, a min-max problem has to be considered—in another word, we
are instead searching for a saddle point. The first of our main results is the following:

Theorem 1.1 Let 0 < p < 1, q > 0, and μ be a finite Borel measure on Sn−1 not
concentrated in any closed hemisphere. Then, there exists K ∈ Kn with o ∈ K such
that

Fp,q(K , ·) = μ.

Moreover, ifμ is a finite discrete measure, then K is a polytope that contains the origin
as an interior point.

To prove Theorem 1.1, we first establish the case when μ is discrete. This is con-
tained in Theorem 4.6. The polytopal solutions are then used to obtain the general
solution via an approximation scheme (Theorem 5.7). In particular, Theorem 1.1 con-
tains the solution to the L p Minkowski problem when 0 < p < 1 previously obtained
in Zhu [64] and Chen-Li-Zhu [65].

When p = 0, (up to a constant) the L0 chord measure is also known as the cone
chord measure Gq :

Gq(K , ·) = 1

n + q − 1
F0,q(K , ·).

The special normalization is so that Gq(K , Sn−1) = Iq(K ). See Sect. 2.3 for details.
We remark that the cone chord measure G1(K , ·) is equal to the cone volume mea-
sure VK sitting at the center of the aforementioned log-Brunn-Minkowski conjecture.
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Recall that the Minkowski problem for cone volume measure is known as the log
Minkowski problem. For this reason, we also refer to the L0 chordMinkowski problem
as the chord log-Minkowski problem.

It turns out that the chord log-Minkowski problem is connected to a subspace mass
inequality. Let 1 < q < n + 1. We say that a given finite Borel measure μ satisfies
the subspace mass inequality if

μ(ξi ∩ Sn−1)

|μ| <
i + min{i, q − 1}

n + q − 1
, (1.3)

for each i dimensional subspace ξi ⊂ R
n and each i = 1, . . . , n − 1.

It was shown in [30] that with the additional assumption that μ is even, (1.3) is
sufficient to guarantee an o-symmetric solution K ∈ Kn

o such that μ = Gq(K , ·). We
show in the current work that the symmetric assumption can be removed. We remark
at this point that as (1.3) demonstrates, the chord log-Minkowski problemwith general
μ is much more complicated than its special case when μ is absolutely continuous
(i.e., equation (1.2)). Indeed, if μ is absolutely continuous, then its mass in any proper
subspace is 0 and therefore the subspace mass inequality (1.3) is trivially satisfied.

To solve the chord log-Minkowski problem, we first prove the polytopal case when
the given normal vectors are in general position. Polytopes possessing this special
feature have the additional property that if they blow up (collapse, resp.), then they
have to blow up (collapse, resp.) in a uniform fashion. This will make it easier to obtain
uniform a-priori bounds. Vectors in general position and polytopes with normals in
general position will be discussed in Sect. 3. Using this, we will show

Theorem 1.2 Let q > 0, and μ be a discrete measure on R
n whose support set is not

contained in any closed hemisphere and is in general position in dimension n. Then
there exists a polytope P containing the origin in its interior such that

Gq(P, ·) = μ.

Theorem 1.2 is implied by Theorem 4.5 and the homogeneity of Gq(P, ·) in P .
Section 5.2 is devoted to using Theorem 1.2 and an approximation scheme to show:

Theorem 1.3 Let 1 < q < n + 1. If μ is a finite Borel measure on Sn−1 that satisfies
(1.3), then there exists a convex body K ∈ Kn with o ∈ K such that

Gq(K , ·) = μ.

We remark that Theorem 1.2 and Theorem 1.3 extend the previously obtained results
on the log Minkowski problem in Zhu [55] and Chen-Li-Zhu [66].

2 Preliminaries

In this section, we gather notations and results needed in subsequent sections.
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2.1 Basics of convex bodies

The central objects in study in convex geometry are convex bodies which are nothing
but compact convex sets in R

n with non-empty interiors. It is important to note that
we require no additional regularity other than convexity of the set. We will write Kn

for the set of all convex bodies in R
n . The symbols Kn

o will be used for the subclass
ofKn that contains convex bodies that have the origin in their interiors andKn

e will be
used for the subclass of o-symmetric convex bodies. We write ωn for the volume of
the unit ball inRn . We will also use the notation |μ| for the total mass of a measure μ.

Readers should consult the classical volume [67] by Schneider for details of the
results covered in this section.

A compact convex set K is uniquely determined by its support function hK :
Sn−1 → R given by

hK (v) = max
x∈K x · v.

It is worth noting that the support function can be trivially extended to R
n as a 1-

homogeneous function and it is convex.
Let K ∈ Kn and x ∈ R

n . The radial function of K with respect to x , denoted by
ρK ,x : Sn−1 → R can be written as

ρK ,x (u) = max{t : tu + x ∈ K }.

It is simple to see that when x ∈ int K , we have that ρK ,x is a positive continuous
function on Sn−1. For simplicity, we write ρK = ρK ,o.

We will use νK : ∂K → Sn−1 to denote the Gauss map of K . In particular, the
convexity of K implies that νK is almost everywhere defined on ∂K .

Since all support functions have to be convex, it is obvious that not all functions on
Sn−1 are support functions of convex bodies. However, the so-called Wulff shape or
Aleksandrov body connects continuous functions defined on subsets of Sn−1 to convex
bodies. In particular, let 	 ⊂ Sn−1 be a subset that is not entirely contained in any
closed hemisphere and f : 	 → [0,∞) be a continuous function. The Wulff shape
[ f ,	] is defined to be

[ f ,	] = {x ∈ R
n : x · v ≤ f (v),∀v ∈ 	}.

It is clear that [ f ,	] is convex and compact. Moreover when f > 0, the Wulff shape
[ f ,	] contains the origin as an interior point. For simplicity, when the context is clear,
we shall write [ f ] without explicitly mentioning 	. It is simple to see that

h[ f ] ≤ f . (2.1)

It is important that the above inequality may very well be strict for many f . A critical
observation regarding Wulff shape is that for almost all x ∈ ∂[ f ], the normal vector
ν[ f ](x) ∈ 	.
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Let Kn be a sequence of compact convex sets in R
n . We say that Kn converges to

K in Hausdorff metric if ‖hKn − hK ‖∞ → 0 as n → ∞. We shall use frequently
the fact that if fi ∈ C(	) converges to f ∈ C(	) uniformly, then [ fi ] → [ f ] in
Hausdorff metric.

When 	 = {v1, . . . , vN } is a finite set not contained in any closed hemisphere, we
will slightly abuse our notation and for each z = (z1, . . . , zN ) ∈ R

N , write

[z,	] = {x ∈ R
n : x · vi ≤ zi , i = 1, . . . , N }.

When the context is clear,we shallwrite [z] for simplicity.WewillwriteP(v1, . . . , vN )

for the collection of convex bodies generated in this fashion. Specifically, the set
P(v1, . . . , vN ) contains all polytopes in Rn whose normals to facets are contained in
{v1, . . . , vN }.

A special collection of polytopes are those whose facet normals are in general
position in dimension n. We say v1, . . . , vN are in general position in dimension n if
for any n-tuple 1 ≤ i1 < i2 < · · · < in ≤ N , the vectors vi1 , . . . , vin are linearly
independent. In Sect. 3, we will show that for polytopes whose normals are in general
position, if they grow in size, then they have to grow uniformly.

2.2 Invariants in integral geometry

In this subsection, we gather notions from integral geometry. Readers are referred to
the books [68] by Santalò and [69] by Ren.

In the classical Brunn-Minkowski theory of convex bodies, quermassintegrals
W0,W1, . . . ,Wn are fundamental geometric invariants that include volume, surface
area, and mean width as important special cases. They arise in many different ways.
One way to see them is as coefficients of the Steiner formula fundamental in the clas-
sical Brunn-Minkowski theory (see Section 4.2 in [67]). It also naturally arises from
an integral geometry point of view. The quermassintegrals Wn−i can be defined as

Wn−i (K ) = ωn

ωi

∫
ξ∈Gn,i

Hi (K |ξ)dξ,

where Gn,i is the Grassmannian manifold containing all i dimensional subspaces of
R
n , the set K |ξ is the imageof theorthogonal projectionof K onto ξ , and the integration

is with respect to the Haar measure inGn,i . Quermassintegrals satisfy the fundamental
kinematic formula; see (4.54) in [67]. With sufficient regularity assumptions on the
boundary of the convex body, quermassintegrals are integrals of elementary symmetric
polynomials of principal curvatures of the body.

While quermassintegrals are heavily connected to boundary shape and orthogonal
projection areas of convex bodies, dual quermassintegrals fundamental in the dual
Brunn-Minkowski theory are related to interior properties and central sectional areas
of convex bodies. They arise naturally as coefficients of the dual Steiner formula (see
Section 9.3 in [67]). From an integral geometric point of view, for each K ∈ Kn

o , the
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dual quermassintegrals of K can be defined as

W̃n−i (K ) = ωn

ωi

∫
ξ∈Gn,i

Hi (K ∩ ξ)dξ.

It was shown in Zhang [70] that the dual quermassintegrals enjoy a kinematic formula
dual to the fundamental kinematic formula. Using polar coordinates, it is not hard to
show that dual quermassintegrals satisfy an integral representation via radial functions:

W̃n−i (K ) = 1

n

∫
Sn−1

ρi
K (u)du,

which allows an immediate extension from W̃n−i (K ) to W̃n−q(K ) for each q ∈ R. It
is apparent that, unlike quermassintegrals, dual quermassintegrals are not translation
invariant in K . Therefore, we may define for each z ∈ K and q ∈ R:

W̃n−q(K , z) = 1

n

∫
S+
z

ρ
q
K ,z(u)du,

where S+
z = {u ∈ Sn−1 : ρK ,z(u) > 0}. Note that when z ∈ int K , we have S+

z =
Sn−1. For the sake of notational simplicity, we will write Ṽq(K , z) = W̃n−q(K , z).

The integrals of dual quermassintegrals with respect to z ∈ K naturally give rise
to translation invariant quantities. These are known as chord integrals in integral
geometry. More specifically, let q ≥ 0 and K ∈ Kn , the q-th chord (power) integral
of K is given by

Iq(K ) =
∫
L n

|K ∩ �|q d�,

where |K ∩ �| is the length of the chord K ∩ � and the integration is with respect to
Haar measure onL n which denotes the affine Grassmannian of lines (1-dimensional
affine subspaces). For q > 0, the chord integral can be written as the integral of dual
quermassintegrals in z ∈ K :

Iq(K ) = q

ωn

∫
K
Ṽq−1(K , z)dz.

In analysis, chord integral can be recognized as Riesz potential: for each q > 1, we
have

Iq(K ) = q(q − 1)

nωn

∫
K

∫
K

1

|x − z|n+1−q
dxdz. (2.2)

Aside from translation invariance, we shall make frequent use of the fact that Iq is
homogeneous of degree n+q − 1, i.e., Iq(t K ) = tn+q−1 Iq(K ) for t > 0. For q ≥ 0,
there is an obvious extension of Iq to the set of all compact convex subsets of Rn and
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Iq is a continuous functional with respect to the Hausdorff metric. The proof of these
facts can be found in, for example, [30].

2.3 Lp chordmeasures

In the landmark paper [30], a new family of geometric measures in the setting of
integral geometry, called chord measures, was defined. Let K ∈ Kn and q > 0, the
chord measure Fq(K , ·) is a finite Borel measure on Sn−1 given by

Fq(K , η) = 2q

ωn

∫
ν−1
K (η)

Ṽq−1(K , z)dHn−1(z), for each Borel η ⊂ Sn−1.

If K is a polytope, its chord measure becomes a discrete measure that is concentrated
on the set of facet normals of K . On the other side, when K isC2,+, the chord measure
Fq(K , ·) is absolutely continuous with respect to the spherical Lebesgue measure:

dFq(K , v) = 2q

ωn
Ṽq−1(K ,∇hK ) det(∇2

Sn−1hK + hK I )dv.

Chord measures naturally appear when one differentiates in a certain sense the
chord integral Iq . Particularly,

Theorem 2.1 (Theorem 5.5 in [30]) Let q > 0, and 	 be a compact subset of Sn−1

that is not contained in any closed hemisphere. Suppose that g : 	 → R is continuous
and ht : 	 → (0,∞) is a family of continuous functions given by

ht = h0 + tg + o(t, ·),

for each t ∈ (−δ, δ) for some δ > 0. Here o(t, ·) ∈ C(	) and o(t, ·)/v tends to 0
uniformly on 	 as t → 0. Let Kt be the Wulff shape generated by ht and K be the
Wulff shape generated by h0. Then,

d

dt

∣∣∣∣
t=0

Iq(Kt ) =
∫

	

g(v)dFq(K , v).

Remark 2.2 Note that the above quoted Theorem is slightly different from Theorem
5.5 in [30]. Indeed, the domain of g in Theorem 5.5 in [30] is Sn−1 and is changed to
	 here. Despite the change, the proof, however, works for any	without any essential
changes once we realize the fact that if h : 	 → R, then for almost all x ∈ ∂[h], we
have ν[h](x) ∈ 	. In this exact quoted form, a proof of Theorem 2.1 can be found in
the Appendix of [32].

In the discrete case, Theorem 2.1 becomes the following.

Corollary 2.3 Let v1, . . . , vN be N unit vectors that are not contained in any closed
hemisphere and z = (z1, . . . , zN ) ∈ (R+)N . Let β = (β1, . . . , βN ) ∈ R

N . For
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sufficiently small |t |, consider z(t) = z + tβ and

Pt = [z(t)] =
N⋂
i=1

{x ∈ R
n : x · vi ≤ zi (t) = zi + tβi }.

Then, for q > 0, we have

d

dt

∣∣∣
t=0

Iq(Pt ) =
N∑
i=1

βi Fq(P0, vi ).

Chord measures inherit their translation invariance and homogeneity (of degree n +
q − 2) from chord integrals. It was shown in [32] that the chord measure Fq(K , ·)
is weakly continuous on Kn with respect to Hausdorff metric. Inspired by the much
fruitful L p Brunn-Minkowski theory, it is natural to consider the L p version of the
chord measures. For each p ∈ R and K ∈ Kn

o , the L p chord measure Fp,q(K , ·) is
defined by

dFp,q(K , v) = hK (v)1−pdFq(K , v).

We remark here that the L p chord measure naturally arises from replacing the
Minkowski sum K + t L in (1.1) by the L p Minkowski sum K +p t · L . See Xi-LYZ
[30] for details.

For p ≤ 1, since the exponent 1 − p is nonnegative, the definition of Fp,q(K , ·)
naturally extends to all K ∈ Kn as long as o ∈ K . It is important to notice that with the
exception of p = 1, the L p chord measure loses its translation invariance. However,
it is still homogeneous in K ; that is

Fp,q(t K , ·) = tn+q−p−1Fp,q(K , ·)

for each t > 0. In this paper, we focus our attention on the case p ∈ [0, 1). In this
case, it was shown in [32] that the L p chord measure is weakly continuous on the
set of convex bodies containing the origin (not necessarily as an interior point) with
respect to Hausdorff metric.

Proposition 2.4 Let p ∈ [0, 1), q > 0 and Ki , K ⊂ Kn. If o ∈ Ki ∩ K and Ki

converges to K in Hausdorff metric, then Fp,q(Ki , ·) converges weakly to Fp,q(K , ·).
In particular,whenq = 1, the L p chordmeasures are nothing but the L p surface area

measures fundamental in the L p Brunn-Minkowski theory. Note that when p = 0, the
L0 surface area enjoys significant geometric meaning—up to a dimensional constant,
it is more widely known as cone volume measure. Following this, for q > 0 and
K ∈ Kn , we define the cone chord measure of K , denoted by Gq(K , ·), as the finite
Borel measure on Sn−1 given by

Gq(K , ·) = 1

n + q − 1
F0,q(K , ·).
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It was shown in [30] that the total measure of Gq is nothing but the chord integral Iq ;
that is

|Gq(K , ·)| = Iq(K ).

It is worthwhile to note that when q = 1, this simply recovers the fact that the total
measure of the cone volume measure gives the volume of a convex body.

3 Polytopes whose normals are in general position

The main result in this section demonstrates that if P is a polytope whose outer unit
facet normals are in general position, then the size of P , if it is large, has to be large
uniformly in every direction.

We first gather the following fact about polytopes whose normals are in general
position.

Lemma 3.1 (Lemma 4.1 in [55]) Let v1, . . . , vN be N unit vectors that are not con-
tained in any closed hemisphere and P ∈ P(v1, . . . , vN ). Assume that v1, . . . , vN
are in general position in dimension n. Then F(P, vi ) is either a point or a facet.
Moreover, if n ≥ 3 and F(P, vi ) is a facet, then the outer unit normals of F(P, vi )

(viewed as an (n − 1)-dimensional convex body in the hyperplane containing it) are
in general position in dimension (n − 1).

We need the following trivial lemma.

Lemma 3.2 The set of all orthornormal bases, as a subset of Sn−1 × · · · × Sn−1, is
compact.

Proof Note that (e1, . . . , en) ∈ Sn−1 ×· · ·× Sn−1 is an orthonormal basis if and only
if ei · e j = 0 for any i �= j . We set

f (e1, . . . , en) =
∑
i �= j

|ei · e j |.

It is simple to see f is continuous on Sn−1 × · · · × Sn−1 and (e1, . . . , en) is an
orthonormal basis if and only if f (e1, . . . , en) = 0. Hence, the set of all orthonormal
bases is a closed subset and being a closed subset of a compact set makes it compact.


�
Let v1, . . . , vN be N unit vectors that are in general position in dimension n. Define

g(e1, . . . , en) = min
1≤i1<i2≤N

min
1≤ j≤n

max

{√
1 − (vi1 · e j )2,

√
1 − (vi2 · e j )2

}
.

Note that since v1, . . . , vN are in general position, for any 1 ≤ i1 < i2 ≤ N , the
vectors vi1 and vi2 are not parallel. Thus, we have

max

{√
1 − (vi1 · e j )2,

√
1 − (vi2 · e j )2

}
> 0,
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for any arbitrary unit vector e j .Therefore, we conclude that g is a positive function.
It is simple to see that g is also continuous. By Lemma 3.2, there exists c0 > 0 such
that

g(e1, . . . , en) ≥ c0, (3.1)

if e1, . . . , en forms anorthonormal basis.Note that c0 here only depends onv1, . . . , vN .
We need the following estimate. Note that to avoid introducing constants that look

like c1000, we will use c0 to denote a constant that may change from line to line (and
certainly from lemma to lemma).

Lemma 3.3 Let v1, . . . , vN ∈ Sn−1 be in general position in dimension n and 1 ≤
i1 < i2 ≤ N. Let Bn−1

1 and Bn−1
2 be two (n − 1)-dimensional balls of radius R such

that Bn−1
1 ⊥ vi1 and Bn−1

2 ⊥ vi2 . Consider

K = conv {Bn−1
1 , Bn−1

2 }.

Then, there exists c0 > 0, and x0 ∈ int K such that

B(x0, c0R) ⊂ K .

Here, the constant c0 > 0 only depends on n and v1, . . . , vN . In particular, it does not
depend on i1 and i2.

Proof Note that since vi1 and vi2 are linearly independent, the convex set K has to
have nonempty interior. By John’s lemma, there exists x0 ∈ int K and a1, . . . , an > 0
and an orthonormal basis e1, . . . , en such that the ellipsoid

E =
{
x ∈ R

n : |(x − x0) · e1|2
a21

+ · · · + |(x − x0) · en|2
a2n

≤ 1

}

satisfies

E ⊂ K ⊂ x0 + n(E − x0). (3.2)

For simplicity of notation,we denote x0+n(E−x0) by E ′, which is just an enlargement
of E with respect to its center x0 by a factor of n.

Since K ⊂ E ′, we have

|Pei K | ≤ |Pei E ′| = 2nai ,

for each i = 1, . . . , n. Here, we use Pei K to denote the image of the orthogonal
projection of K onto the line spanned by ei . On the other hand, since Bn−1

1 ⊂ K and
Bn−1
2 ⊂ K , we have

|Pei K | ≥ max{|Pei Bn−1
1 |, |Pei Bn−1

2 |}.
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Note that since Bn−1
1 ⊥ vi1 and Bn−1

2 ⊥ vi2 , we have

|Pei Bn−1
1 | = 2R

√
1 − (vi1 · ei )2,

|Pei Bn−1
2 | = 2R

√
1 − (vi2 · ei )2.

Combining the above, we have

ai ≥ R

n
max

{√
1 − (vi1 · ei )2,

√
1 − (vi2 · ei )2

}
.

By (3.1), there exists c0 > 0 independent of the choice of i1 and i2 such that

ai ≥ c0R.

By the left half of (3.2), we have

B(x0, c0R) ⊂ K .


�
The following key lemma reveals the special structure for polytopes whose normals

are in general position: if the polytope gets large, then it has to get large uniformly in
all directions.

Lemma 3.4 Let v1, . . . , vN be N unit vectors that are not contained in any closed
hemisphere, and Pi be a sequence of polytopes in P(v1, . . . , vN ). Assume the vectors
v1, . . . , vN are in general position in dimension n. If the outer radii Ri of Pi are not
uniformly bounded in i , then their inner radii ri are not uniformly bounded in i either.

Proof We will do induction on the dimension n.
First, let us consider the n = 2 case. Since Ri are not uniformly bounded in i , there

exists an edge Ei from each Pi such that |Ei | are not uniformly bounded. Recall that
the surface area measure has its centroid at the origin; that is,

N∑
j=1

|F(Pi , v j )|v j = o,

where F(Pi , v j ) = {x ∈ Pi : x · v j = hPi (v j )}. Therefore, there must exist another
edge E ′

i (different from Ei ) of Pi such that |E ′
i | are not uniformly bounded either. By

taking a subsequence (and without causing confusion, use the same subscript for the
subsequence), we can assume

|Ei |, |E ′
i | > 2i .
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Observe that since Ei and E ′
i are edges of Pi , there exist i1 �= i2 such that vi1 and vi2

are the corresponding normals. We now take line segments Li and L ′
i of length 2i that

are subsets of Ei and E ′
i , respectively.

Consider

Ki = conv
{
Li , L

′
i

} ⊂ conv {Ei , E
′
i } ⊂ Pi . (3.3)

By Lemma 3.3, there exists c0 > 0 and xi ∈ int Ki ⊂ int Pi such that

B(xi , c0i) ⊂ Ki .

This, when combined with (3.3), implies that the inner radii ri of Pi are not uniformly
bounded. This proves the base step.

We now assume that the lemma is true in dimension (n−1) and use that to establish
the dimension n case.

Since Ri are not uniformly bounded, there exists a facet Ei from each Pi such that
the outer radii R̃i of Ei are not uniformly bounded. By possibly taking a subsequence,
we may assume all Ei have the same normal vector; that is, they are parallel. By
Lemma 3.1, the outer unit normals of Ei are in general position in dimension (n − 1).
Therefore, by the inductive hypothesis, the inner radii of Ei are not uniformly bounded.
In particular, their (n − 1)-dimensional areas are not uniformly bounded in i . Using
again the fact that surface areameasure has its centroid at the origin,wemayfind a facet
E ′
i from Pi such that the (n − 1)-dimensional areas of E ′

i are not uniformly bounded
either; as a consequence, the outer radii R̃′

i of E
′
i are not uniformly bounded. Repeating

the same argument as for Ei , we may use the inductive hypothesis to conclude that
the inner radii of E ′

i are not uniformly bounded.
Observe that since Ei and E ′

i are facets of Pi , there exist i1 �= i2 such that vi1 and vi2
are the corresponding normals. Since the inner radii for Ei and E ′

i are not uniformly
bounded, by taking a subsequence (and using the same notation for the subsequence),
we can assume both Ei and E ′

i contain (n−1) dimensional balls of radius i . We denote
these balls by Bi and B ′

i .
Consider

Ki = conv {Bi , B ′
i } ⊂ conv {Ei , E

′
i } ⊂ Pi . (3.4)

By Lemma 3.3, there exists c0 > 0 and xi ∈ int Ki ⊂ int Pi such that

B(xi , c0i) ⊂ Ki .

This, when combined with (3.4), implies that the inner radii ri of Pi are not uniformly
bounded. This completes the proof. 
�

An immediate consequence of Lemma 3.4 is the following result in dimensions
greater than or equal to 2.

Corollary 3.5 Let v1, . . . , vN ∈ Sn−1 be N unit vectors that are not contained in any
closed hemisphere and P ∈ P(v1, . . . , vN ). Assume that v1, . . . , vN are in general
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position in dimension n. If the outer radius Ri of Pi is not uniformly bounded and
q ≥ 0, then the q-th chord integral Iq(Pi ) is also unbounded.

Proof This follows immediately fromLemma 3.4, the homogeneity and the translation
invariance of Iq , and the fact that Iq(B) is positive for the centered unit ball B. 
�

4 The discrete Lp chordMinkowski problem

Let μ be a finite discrete Borel measure on Sn−1 that is not concentrated in any closed
hemisphere; that is

μ =
N∑
i=1

αiδvi , (4.1)

for some αi > 0 and unit vectors v1, . . . vN ∈ Sn−1 not contained in any closed
hemisphere.

In this section, we will solve the discrete L p chord Minkowski problem for q > 0
and 0 ≤ p < 1.

For any z = (z1, . . . , zN ) ∈ R
N such that [z] has nonempty interior, we define


p,μ(z, ξ) =

⎧⎪⎨
⎪⎩

∑N
j=1(z j − ξ · v j )

p · α j , if p ∈ (0, 1),

∑N
j=1 log(z j − ξ · v j ) · α j , if p = 0,

for each ξ ∈ [z]. We adopt the convention that log 0 = −∞. When there is no
confusion about what the underlying measure μ is, we shall write 
p = 
p,μ.

It is simple to see that for each p ∈ [0, 1), the functional
p(z, ·) is strictly concave
in ξ ∈ int[z]. Therefore, the maximizer to the problem

sup
ξ∈[z]


p(z, ξ),

if it exists, must be unique. When p = 0, the existence of the maximizer ξ ∈ int[z]
follows from the fact that if a sequence of interior points int[z] � ξ j → ∂[z], then

0(z, ξ j ) → −∞. This follows from the trivial fact that log 0 = −∞. In the case
p ∈ (0, 1), the existence of maximizer is less trivial and was shown in Zhu [64]. We
summarize both the p = 0 and p ∈ (0, 1) case in the following lemma.

Lemma 4.1 ([64]) Let z = (z1, . . . , zN ) ∈ R
N be such that [z] has nonempty interior

and p ∈ [0, 1). Then the maximizer of the following optimization problem

sup
ξ∈[z]


p(z, ξ)

is uniquely attained at some ξ0 ∈ int [z].

123



The Lp chord Minkowski problem in a critical interval

We will use ξp,μ(z) to denote the unique maximizer in Lemma 4.1. Similar to
before, when the context is clear, we will suppress the subscript μ.

It is simple to observe that the operator ξp is homogeneous of degree 1. That is, for
any λ > 0, we have ξp(λz) = λξp(z).

The following fact regarding the continuity of ξp in z is well-known. For the sake
of completeness, we provide a quick proof.

Lemma 4.2 Let zl ∈ R
N be such that liml→∞ zl = z ∈ R

N and p ∈ [0, 1). If [z] has
nonempty interior, then

lim
l→∞ ξp(zl) = ξp(z), (4.2)

and

lim
l→∞ 
p(zl , ξp(zl)) = 
p(z, ξp(z)). (4.3)

Proof We first note that (4.3) is a direct consequence of (4.2) by the definition of 
p.
Therefore, only (4.2) requires a proof.

By the fact that zl → z, the assumption that [z] has nonempty interior, and Lemma
4.1, both ξp(zl) for sufficiently large l and ξp(z) are well-defined. Moreover, we can
conclude from the fact that zl → z and the fact that ξp(zl) ∈ int[zl ] that ξp(zl) are
uniformly bounded in l. Therefore, if (4.2) is false, there must exist a subsequence
(which we still denote as ξp(zl)) such that

ξp(zl) → ξ ′ �= ξp(z).

Note that it must be the case that ξ ′ ∈ [z]. Moreover, by the definition of 
p and
Lemma 4.1,

lim
l→∞ 
p(zl , ξp(zl)) = 
p(z, ξ

′) < 
p(z, ξp(z)) = lim
l→∞ 
p(zl , ξp(z)).

However,

lim
l→∞ 
p(zl , ξp(z)) ≤ lim

l→∞ 
p(zl , ξp(zl)) = 
p(z, ξ
′).

The above contradiction immediately gives the desired result. 
�
The next lemma shows that ξp(z) is a differentiable function with respect to vector

addition in z.

Lemma 4.3 Let z = (z1, . . . , zN ) ∈ R
N+ , p ∈ [0, 1), and μ be as given in (4.1). For

each β ∈ R
N , consider

z(t) = z + tβ,

123



L. Guo et al.

for sufficiently small |t | so that z(t) ∈ R
N+ . Denote ξp(t) = ξp(z(t)). If ξp(0) = o,

then ξ ′
p(0) exists. Moreover,

o =
N∑
j=1

z p−1
j α jv j . (4.4)

Proof Since ξp(t) ∈ int[z(t)] and maximizes

sup
ξ∈[z(t)]


p(z(t), ξ),

taking the derivative in ξ shows

o =
N∑
j=1

(z j (t) − ξp(t) · v j )
p−1α jv j . (4.5)

In particular, at t = 0, we have

o =
N∑
j=1

z p−1
j α jv j .

which establishes (4.4).
Set

Fp(t, ξ) =
N∑
j=1

(z j (t) − ξ · v j )
p−1α jv j .

Then, (4.5) simply says

Fp(t, ξp(t)) = o.

By a direct computation, the Jacobian with respect to ξ of Fp at t = 0 and ξ = o is

∂Fp

∂ξ

∣∣∣∣
(0,o)

= (1 − p)
N∑
j=1

z p−2
j α jv j ⊗ v j .

Since v1, . . . , vN span R
n , we conclude that the Jacobian ∂Fp

∂ξ
is positive-definite at

t = 0 and ξ = o. By the implicit function theorem, we conclude that ξ ′
p(0) exists. 
�

For each 0 ≤ p < 1 and q > 0, we consider the optimization problem

inf{
p(z, ξp(z)) : z ∈ R
N , Iq([z]) = |μ|}. (4.6)
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Lemma 4.4 Let 0 ≤ p < 1 and q > 0. If there exists z ∈ R
N+ with ξp(z) = o and

Iq([z]) = |μ| satisfying


p(z, o) = inf{
p(z, ξp(z)) : z ∈ R
N , Iq([z]) = |μ|},

then, there exists a polytope P ∈ P(v1, . . . , vN ) containing the origin in its interior
such that

Fp,q(P, ·) = μ.

Moreover, for each i = 1, . . . , N, we have

h[z](vi ) = zi . (4.7)

Proof Because of homogeneity, we may assume |μ| = 1. Let β ∈ R
N be arbitrary

and set

z(t) = z + tβ.

For sufficiently small |t |, we have z(t) ∈ R
N+ . Set

λ(t) = Iq([z(t)])−
1

n+q−1 .

Note that λ(0) = 1. By homogeneity of Iq , it is apparent that Iq([λ(t)z(t)]) = 1. By
Corollary 2.3, we have

λ′(0) = − 1

n + q − 1

N∑
i=1

βi Fq([z], vi ). (4.8)

Let ξp(t) = ξp(λ(t)z(t)) = λ(t)ξp(z(t)) and

�p(t) = 
p(λ(t)z(t), ξp(t)).

By Lemma 4.3, ξp is differentiable at t = 0. Moreover, (4.4) holds.
Since z is a minimizer, the fact that 0 = � ′

p(0) shows

0 = λ′(0)

⎛
⎝ N∑

j=1

z pj α j

⎞
⎠+

N∑
i=1

z p−1
i αiβi − ξ ′

p(0) ·
⎛
⎝ N∑

j=1

z p−1
j α jv j

⎞
⎠ .

By (4.4) and (4.8), we have

0 = − 1

n + q − 1

⎛
⎝ N∑

j=1

z pj α j

⎞
⎠ N∑

i=1

βi Fq([z], vi ) +
N∑
i=1

βi z
p−1
i αi .
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Since β is arbitrary, we conclude that

Fp,q([z], ·) = n + q − 1


p(z, o)
μ(·),

if p ∈ (0, 1) and

Gq([z]) = μ(·).

The existence of P now immediately follows from the fact that Fp,q(K , ·) is
homogeneous of degree n + q − 1 − p �= 0 in K .

We now show (4.7). Assume that it fails for some i0. Let z̃ ∈ R
N+ be such that

z̃i = h[z](vi ). By (2.1), we have z̃i0 < zi0 and z̃i ≤ zi for i �= i0. Note that [z] = [̃z]
and consequently, Iq([̃z]) = |μ|. By definition of 
p and ξp, we have


p (̃z, ξp (̃z)) < 
p(z, ξp (̃z)) ≤ 
p(z, ξp(z)) = 
p(z, o).

This is a contradiction to z being a minimizer. 
�
We are in position to solve the discrete L p chord Minkowski problem when 0 ≤

p < 1 and q > 0.

Theorem 4.5 Let 0 ≤ p < 1, q > 0, and μ be as given in (4.1). If v1, . . . vN ∈ Sn−1

are in general position in dimension n, then there exists a polytope P ∈ P(v1, . . . , vN )

containing the origin in its interior such that

Fp,q(P, ·) = μ.

Proof We consider the minimization problem (4.6). Let zl ∈ R
N be a minimizing

sequence; that is Iq([zl ]) = |μ| and

lim
l→∞ 
p(z

l , ξp(z
l)) = inf{
p(z, ξp(z)) : z ∈ R

N , Iq([z]) = |μ|}.

Note that by translation invariance of Iq and the simple fact that
p(z, ξ) = 
p(z′, o)
where z′j = z j − ξ · v j , we can assume without loss of generality that ξp(zl) = o.
Moreover, by the definition of 
p, it must be the case that

zlj = h[zl ](v j ). (4.9)

The fact that o = ξp(zl) ∈ int[zl ] now implies that zlj > 0. Since Iq([zl ]) = |μ| is
finite, Corollary 3.5 implies that the outer radii of [zl ] are uniformly bounded. This,
when combined with the fact that o ∈ [zl ], implies that [zl ] is uniformly bounded,
which by (4.9) implies that zl is uniformly bounded in R

N in l. Therefore, we may
(by potentially taking a subsequence) assume that zl → z0 for some z0 ∈ R

N . By
continuity of Iq , we have Iq([z0]) = |μ|, which implies that [z0] contains nonempty
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interior. Lemma 4.2 now implies that ξp(z0) = liml→∞ ξp(zl) = o. This and the fact
that ξp(z0) ∈ int[z0] imply that z0 ∈ R

N+ . Moreover, by the definition of 
p, we have


p(z
0, o) = lim

l→∞ 
p(z
l , o) = inf{
p(z, ξp(z)) : z ∈ R

N , Iq([z]) = |μ|}.

Lemma 4.4 now implies the existence of P . 
�

When 0 < p < 1, Theorem 4.5 in fact holds even without the assumption that
v1, . . . vN ∈ Sn−1 are in general position in dimension n.

Theorem 4.6 Let 0 < p < 1, q > 0, and μ be as given in (4.1). Then there exists a
polytope P ∈ P(v1, . . . , vN ) containing the origin in its interior such that

Fp,q(P, ·) = μ.

Proof The proof for Theorem 4.5 remains valid aside from the fact that we can no
longer use Corollary 3.5 to show zl is uniformly bounded in RN .

We show in this proof that in the case of 0 < p < 1, the uniform boundedness of
zl can still be obtained.

Set ζ(r) = (r , r , . . . , r) ∈ R
N . Then, by the homogeneity of Iq , we may find

r0 > 0 such that Iq([ζ(r0)]) = |μ|. Therefore,

lim
l→∞ 
p(z

l , o) ≤ 
p(ζ(r0), ξp(ζ(r0)))

=
N∑
j=1

(
r0 − ξp (ζ(r0)) · v j

)p
α j

≤
N∑
j=1

(2r0)
pα j < ∞, (4.10)

where we used the fact that ξp(ζ(r0)) ∈ int[ζ(r0)] (by Lemma 4.1).
On the other hand, if we set Ll = max j zlj , then


p(z
l , o) =

n∑
j=1

(zlj )
pα j ≥ L p

l min
j

α j . (4.11)

The uniform boundedness of zl now comes from (4.10), (4.11), and the definition of
Ll . 
�

Remark 4.7 The proof for uniform upper bound in Theorem 4.6 would not work for
p = 0 since the logarithm function takes both positive and negative values.
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5 The general case

Throughout this section, we assume p ∈ [0, 1) and q > 0 unless otherwise specified.
Recall that, for 	 = {v1, . . . , vN } and for every z ∈ R

N , we use [z,	] to denote the
Wulff shape generated by z on 	; that is

[z,	] = {x ∈ R
n : x · vi ≤ zi , i = 1, . . . , N }.

For the purpose of the section, we need to explicitly mention the different underlying
	 in different expressions (as they change between contexts).

Let μ be a finite Borel measure (not necessarily discrete) on Sn−1 that is not
concentrated in any closed hemisphere. The purpose of the section is to solve the L p

chord Minkowski problem for μ; that is, to solve

Fp,q(K , ·) = μ,

via an approximation scheme based on the polytopal solution we obtained in Sect. 4.
We first construct a sequence of discrete measures whose support sets are in general

position such that the sequence of discrete measures converges to μ weakly.
For each positive integer m, it is simple to see that there is a way to partition Sn−1

into sufficiently many pieces so that the diameter of each small piece is less than 1
m ;

that is, there exists Nm > 0 and a partition of Sn−1, denoted by U1,m, . . . ,UNm ,m

such that d(Ui,m) < 1
m and Ui,m contains nonempty interior (relative to the topology

of Sn−1). We may choose vi,m ∈ Ui,m so that v1,m, . . . , vNm ,m are in general position.
When m is large, it is clear that the vectors v1,m, . . . , vNm ,m cannot be contained in
any closed hemisphere.

We define the discrete measure μm on Sn−1 by

μm =
Nm∑
i=1

(
μ(Ui,m) + 1

N 2
m

)
δvi,m ,

and

μm = |μ|
|μm |μm . (5.1)

Denote by 	m the support of the discrete measure μm ; that is,

	m = {v1,m, . . . , vNm ,m} ⊂ Sn−1.

It is clear thatμm is a discretemeasure on Sn−1 satisfying the conditions inTheorem4.5
and μm⇀μ weakly. Therefore, by Theorem 4.5, there exist polytopes Pm containing
the origin in their interiors such that

Fp,q(Pm, ·) = μm . (5.2)
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A careful examination of the proofs for Theorem 4.5 and Lemma 4.4 immedi-
ately reveals that Pm is a rescaled version of [zm,	m] where zm ∈ R

Nm+ satisfies
ξp,μm (zm) = o, Iq([zm,	m]) = |μm | and


p,μm (zm, o) = inf{
p,μm (z, ξp,μm (z)) : z ∈ R
Nm , Iq([z,	m]) = |μm |}. (5.3)

In particular,

Pm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(

p,μm (zm, o)

n + q − 1

) 1
n+q−p−1 [zm,	m], if p ∈ (0, 1),

(
1

n + q − 1

) 1
n+q−1 [zm,	m] if p = 0.

(5.4)

Lemma 5.1 If Pm in (5.2) are uniformly bounded and Iq(Pm) > c0 for some constant
c0 > 0, then there exists a convex body K ∈ Kn with o ∈ K such that

Fp,q(K , ·) = μ. (5.5)

Proof By the Blaschke selection theorem, there exists a subsequence Pm j such that
Pm j → K for some compact convex set K containing the origin. By the continuity of
Iq and the fact that Iq(Pm) > c0, we have Iq(K ) > 0. This in turn implies that K has
nonempty interior. Equation (5.5) now readily follows from taking the limit of (5.2)
on both sides and Proposition 2.4. 
�

We require the following lemma.

Lemma 5.2 Let v1,m, . . . vNm ,m ∈ Sn−1 be as given above. Consider

Qm =
Nm⋂
i=1

{x ∈ R
n : x · vi,m ≤ 1}. (5.6)

Then, for sufficiently large m, we have

B ⊂ Qm ⊂ 2B, (5.7)

where B is the centered unit ball.

Proof Only the right side of (5.7) requires a proof.
For each u ∈ Sn−1, since Ui,m forms a partition of Sn−1, there must exist im such

that u ∈ Uim ,m . Recall that d(Ui,m) < 1
m . Hence, wemay choose N0 > 0 (independent

of u) such that for each m > N0,

u · vim ,m > 1/2.
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Since ρQm (u)u ∈ Qm , we have

ρQm (u)/2 < ρQm (u)u · vim ,m ≤ 1.

Hence ρQm < 2 for each m > N0, which proves the desired inequality. 
�
With a slight abuse of notation, for ξ ∈ K , we will write


p,μ(K , ξ) =
{∫

Sn−1 h
p
K−ξdμ, if p ∈ (0, 1),∫

Sn−1 log hK−ξdμ, if p = 0.

Note that when μ is a discrete measure, 	 = {v1, . . . , vN } is the support of μ, and
z ∈ R

N satisfies z j = h[z,	](vi ), we have


p,μ([z,	], ξ) = 
p,μ(z, ξ).

That is: in this special case, 
p,μ([z,	], ξ) is precisely 
p,μ(z, ξ) defined in Sect. 4.
With the help of Lemma 5.2, we have the following estimate.

Lemma 5.3 Let Pm be as given in (5.2) and zm be the minimizer to (5.3) with
ξp,μm (zm) = 0. If |μ| = 1 (and consequently |μm | = 1), then there exists c0 > 0
independent of m, such that


p,μm (Pm, o) < c0.

Proof Let Qm be as given in (5.6). Consider r Qm for r > 0. Note that by Lemma 5.2,
for sufficiently large m, we have r B ⊂ r Qm ⊂ 2r B. By the homogeneity of Iq , there
exists r0(m) > 0 such that

Iq(r0(m)Qm) = 1.

Since r B ⊂ r Qm , we have

r0(m)n+q−1 Iq(B) = Iq(r0(m)B) ≤ Iq(r0(m)Qm) = 1.

Therefore, r0(m) ≤ r0 for some constant r0 independent of m.
Since zm is a minimizer and using the fact that r0(m)Qm ⊂ 2r0(m)B ⊂ 2r0B, we

have


p,μm (zm , o)

≤

⎧⎪⎪⎨
⎪⎪⎩

∫
Sn−1

h p
r0(m)Qm−ξp,μm (r0(m)Qm )dμm ≤

∫
Sn−1

h p
4r0B

dμm = (4r0)
p, if p ∈ (0, 1),

∫
Sn−1

log hr0(m)Qm−ξ0,μm (r0(m)Qm )dμm ≤
∫
Sn−1

log h4r0Bdμm = log((4r0)), if p = 0.

The desired bound now follows from (5.4) and the definition of 
p,μm . 
�
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Remark 5.4 In the proof of Lemma 5.3, in fact, we have shown something stronger:


p,μm (zm, o)

is also uniformly bounded from above. Here zm ∈ R
Nm+ with ξp,μm (zm) = o is the

minimizer to (5.3).

The rest of the section is devoted to verifying the hypotheses in Lemma 5.1. Since
there is a major difference between the p = 0 case and the 0 < p < 1 case, we shall
prove them separately in two different subsections.

5.1 The 0 < p < 1 case

Throughout this subsection, we assume 0 < p < 1 and q > 0, both of which are
fixed.

It is a well-known fact that for each finite Borel measure μ on Sn−1 that is not
concentrated in any closed hemisphere, there exists a constant Cp(μ) > 0 such that

∫
Sn−1

(u · v)
p
+dμ(v) ≥ Cp(μ),

uniformly for each u ∈ Sn−1. We prove in the next lemma that for our choice of μm ,
the constants Cp(μm) can be chosen uniformly.

Lemma 5.5 Let μm be as given in (5.1). Then, for sufficiently large m, we have

∫
Sn−1

(u · v)
p
+dμm(v) ≥ 1

2
Cp(μ).

Proof For notational simplicity, let

gm(u) =
∫
Sn−1

(u · v)
p
+dμm(v),

gm(u) =
∫
Sn−1

(u · v)
p
+dμm(v) = |μ|

|μm |gm(u),

and

g(u) =
∫
Sn−1

(u · v)
p
+dμ(v).

Note that g ≥ Cp(μ) and as a consequence, it suffices to show gm ⇒ g. To do that,
one only needs to show gm ⇒ g.

Let ε > 0 be arbitrary.
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Note that the function (u, v) �→ (u · v)
p
+ is uniformly continuous on Sn−1 × Sn−1.

Therefore, for sufficiently large m (independent of the choice of u), we have

|(u · v)
p
+ − (u · vi,m)

p
+| < ε,

for each v ∈ Ui,m . As a consequence,

|gm(u) − g(u)| =
∣∣∣∣∣∣
Nm∑
i=1

[
(u · vi,m)

p
+
(

μ(Ui,m) + 1

N 2
m

)
−
∫
Ui,m

(u · v)
p
+dμ

]∣∣∣∣∣∣
≤ ε|μ| + 1

Nm
.

Note that the above estimate is independent of u. Since Nm → ∞, we conclude the
desired uniform convergence. 
�
Lemma 5.6 If |μ| = 1 (and consequently |μm | = 1), the polytopes Pm obtained in
(5.2) are uniformly bounded and there exists c0 > 0 such that Iq(Pm) > c0.

Proof We fix an arbitrarym that is sufficiently large and prove that the desired bounds
for Pm can be chosen independent of m.

We first prove that Pm are uniformly bounded (from above).
Let L(m) = maxSn−1 hPm . Then by definition of 
p,μm , we have, for some u ∈

Sn−1,


p,μm (Pm, o) =
∫
Sn−1

hPm (v)pdμm(v)

≥
∫
Sn−1

(L(m)u · v)
p
+dμm(v)

≥ L(m)p
1

2
Cp(μ), (5.8)

owing to Lemma 5.5. By Lemma 5.3 and (5.8), we conclude that L(m) is uniformly
bounded from above in m. By definition of L(m), this in turn implies the uniform
boundedness of Pm (from above).

Let zm be the minimizer to (5.3) with ξp,μm (zm) = 0 and L ′(m) =
maxSn−1 h[zm ,	m ]. Repeating the same argument, we have


p,μm (zm, o) ≥ 
p,μm ([zm,	m], o) ≥ L ′(m)p
1

2
Cp(μ). (5.9)

Note here that in the first inequality, we used (2.1). By Remark 5.4, we conclude that
[zm,	m] also has a uniform upper bound. Note that Iq([zm,	m]) = 1. This implies
that there must exist c∗ > 0 such that [zm,	m] contains a ball of radius c∗. In turn,
since o ∈ int[zm,	m], this implies L ′(m) ≥ c∗ and as a consequence of (5.9), we
obtain a uniform lower bound for
p,μm (zm, o). The existence of c0 now follows from
(5.4) and the translation-invariance and monotonicity of Iq . 
�
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Theorem 5.7 Let 0 < p < 1, q > 0, and μ be a finite Borel measure on Sn−1 not
concentrated in any closed hemisphere. Then, there exists K ∈ Kn with o ∈ K such
that

Fp,q(K , ·) = μ.

Proof By homogeneity of Fp,q , it suffices to prove the case when |μ| = 1. In this
case, the result follows immediately from Lemmas 5.1 and 5.6. 
�

5.2 The case p = 0

The desired uniform bounds on Pm in the case p = 0 are much more complicated.
This is caused by the fact that a uniform estimate as in Lemma 5.5 is unavailable for
the integral

∫
Sn−1

log(u · v)+dμm(v).

In fact, the above integral could well go to −∞.
It turns out that the chord log-Minkowski problem (or the chord L0-Minkowski

problem) is heavily connected to subspace mass concentration phenomenon.
Throughout the rest of the section, we assume 1 < q < n + 1 is fixed. We say that

a given finite Borel measure μ satisfies the subspace mass inequality if

μ(ξi ∩ Sn−1)

|μ| <
i + min{i, q − 1}

n + q − 1
, (5.10)

for each i dimensional subspace ξi ⊂ R
n and each i = 1, . . . , n − 1.

It was shown in Xi-LYZ [30] that when restricting to origin-symmetric cases, the
above subspace mass inequality is sufficient for the existence of solutions to the chord
log-Minkowski problem:

Theorem 5.8 ([30]) Let 1 < q < n + 1. If μ is an even finite Borel measure on Sn−1

that satisfies (5.10), then there exists an origin-symmetric convex body K in R
n such

that

Gq(K , ·) = μ.

In this section, we show that the above theorem remains true without symmetric
assumptions by employing an approximation scheme via solutions we obtained in
Theorem 4.5.

Following the discussion at the beginning of the section, we only need to verify
that the conditions in Lemma 5.1 are satisfied.

Lemma 5.9 Let Pm be as given in (5.2); that is,

Gq(Pm, ·) = 1

n + q − 1
F0,q(Pm, ·) = 1

n + q − 1
μm .
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Then there exists c0 > 0 such that Iq(Pm) > c0 for every m.

Proof By definition of Gq(K , ·) and Iq(K ), it follows that

Iq(Pm) = |Gq(Pm, ·)| = 1

n + q − 1
|μm | = 1

n + q − 1
|μ| := c0 > 0.


�
The rest of the section is devoted to showing that the Pm in (5.2) is uniformly

bounded when μ (not necessarily even) satisfies the subspace mass inequality (5.10).
For simplicity, we will write

λi = i + min{i, q − 1}
n + q − 1

.

For each ω ⊂ Sn−1 and η > 0, we define

Nη(ω) = {v ∈ Sn−1 : |v − u| < η, for some u ∈ ω}.

The next lemma shows that when μ satisfies the subspace mass inequality, then the
sequence of approximating discrete measuresμm satisfies a slightly stronger subspace
mass inequality for sufficiently large m.

Lemma 5.10 Let μ be a finite Borel measure on Sn−1 and μm be constructed as in
(5.1). If μ satisfies the subspace mass inequality (5.10), then there exist λ̃i ∈ (0, λi ),
N0 > 0, and η0 ∈ (0, 1) such that for all m > N0,

μm(Nη0(ξi ∩ Sn−1))

|μ| < λ̃i , (5.11)

for each i-dimensional subspace ξi ⊂ R
n and i = 1, . . . , n − 1.

Proof Note that if we can prove the existence of N0, η0 for a fixed i , then it is simple
to find N0 and η0 for all i = 1, . . . , n − 1—by taking the maximum of N0 and the
minimum of η0.

For the rest of the proof, let i = 1, . . . , n−1 be fixed. We argue by contradiction. If
the desired result is false, then there exist sequences m j , η j and λ

( j)
i , and a sequence

ξ ( j) of i-dimensional subspaces such that m j → ∞, η j → 0, λ( j)
i → λi and

μm j
(Nη j (ξ

( j) ∩ Sn−1))

|μ| ≥ λ
( j)
i . (5.12)

Let e1, j , . . . , ei, j be an orthonormal basis of ξ ( j). By taking a subsequence, we may
assume ek, j → ek for each 1 ≤ k ≤ i and that e1, . . . , ei are orthonormal. Let
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ξ = span{e1, . . . , ei }. Let η > 0 be an arbitrarily fixed real number. Then, since
η j → 0, we have for sufficiently large j ,

Nη j (ξ
( j) ∩ Sn−1) ⊂ Nη(ξ ∩ Sn−1).

This and (5.12) imply

μm j
(Nη(ξ ∩ Sn−1))

|μ| ≥ λ
( j)
i .

Now, since μm j
converges weakly to μ, Nη(ξ ∩ Sn−1) is compact, and λ

( j)
i → λi ,

we have

μ(Nη(ξ ∩ Sn−1))

|μ| ≥ λi .

Letting η → 0, we have

μ(ξ ∩ Sn−1)

|μ| ≥ λi ,

which contradicts (5.10). 
�
For notational simplicity, we will write 
μ(K , ξ) for 
0,μ(K , ξ).
Let e1, . . . , en be an orthonormal basis in Rn . We define the following partition of

the unit sphere. For each δ ∈ (0, 1√
n
), define

Ai,δ = {v ∈ Sn−1 : |v · ei | ≥ δ, |v · e j | < δ, for j > i}, (5.13)

for each i = 1, . . . , n. These sets are non-empty since ei ∈ Ai,δ . They are obviously
disjoint. Furthermore, it can be seen that the union of Ai,δ covers Sn−1. Indeed, for
any unit vector v ∈ Sn−1, by the choice of δ, there has to be at least one i such that
|v · ei | ≥ δ. Let i0 be the largest i that makes |v · ei | ≥ δ. Then v ∈ Ai0,δ . We use this
spherical partition to prove the following lower bound on 
μm (Em, o) when Em is a
sequence of centered ellipsoids.

Lemma 5.11 Suppose 1 < q < n + 1. Let μ be a nonzero finite Borel measure on
Sn−1 and μm be as constructed in (5.1). Let Em be a sequence of centered ellipsoids

Em =
{
x ∈ R

n : |x · e1,m |2
r21,m

+ · · · + |x · en,m |2
r2n,m

≤ 1

}
,

where e1,m, . . . , en,m is an orthonormal basis in R
n and 0 < r1,m ≤ · · · ≤ rn,m.

Assume further that e1,m, . . . , en,m converges to an orthonormal basis e1, . . . , en in
R
n and rn,m ≥ 1.
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If μ satisfies the subspace mass inequality (5.10), then there exists δ0, t0 ∈ (0, 1)
and N0 > 0 such that for each m > N0, we have

1

|μm |
μm (Em, o) ≥ log

(
δ0

2

)
+ t0 log rn,m

+ (1 − t0)

[ �q�−1∑
i=1

2

n + q − 1
log ri,m + q − �q� + 1

n + q − 1
log r�q�,m

+
n∑

i=�q�+1

1

n + q − 1
log ri,m

]
.

Here we adopt the convention that a sum disappears if the upper index is strictly
smaller than the lower index.

Proof Let Ai,δ be constructed as in (5.13) with respect to e1, . . . , en .
Since μ satisfies the subspace mass inequality (5.10), by Lemma 5.10, there exists

N0 > 0, η0 ∈ (0, 1), and λ̃i ∈ (0, λi ) such that for all m > N0, (5.11) holds for each
i-dimensional proper subspace ξn ⊂ R

n . Let t0 > 0 be sufficiently small so that

(1 − t0)λi > λ̃i .

Hence, for all m > N0, we have

μm(Nη0(ξi ∩ Sn−1))

|μ| < (1 − t0)λi , (5.14)

for each i-dimensional subspace ξi ⊂ R
n and i = 1, . . . , n − 1. In particular, we let

ξi = span{e1, . . . , ei }.
Observe that for sufficiently small δ0 ∈ (0, 1), we have

i⋃
j=1

A j,δ0 ⊂ Nη0(ξi ∩ Sn−1),

and as a consequence of (5.14) and the fact that A j,δ0 forms a partition of Sn−1, we
have

∑i
j=1 μm(A j,δ0)

|μm | =
∑i

j=1 μm(A j,δ0)

|μ| < (1 − t0)λi , (5.15)

for each i = 1, . . . , n − 1. Here, we also used the fact that |μm | = |μ|.
Since e1,m, . . . , en,m converges to e1, . . . , en , there exists N1 > N0 such that for

each m > N1,

|ei,m − ei | <
δ0

2
, for i = 1, . . . , n.
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Note that since ±ri,mei,m ∈ Em , we have for each v ∈ Ai,δ0

hEm (v) ≥ |v · ei,m |ri,m ≥ (|v · ei | − |v · (ei,m − ei )|)ri,m ≥ δ0

2
ri,m .

Hence, by the fact that Ai,δ forms a partition of Sn−1, we have

1

|μm |
μm (Em, o) = 1

|μm |
n∑

i=1

∫
Ai,δ0

log hEm (v)dμm(v)

≥ 1

|μm |
n∑

i=1

log

(
δ0

2
ri,m

)
μm(Ai,δ0)

= log

(
δ0

2

)
+

n∑
i=1

log ri,m
μm(Ai,δ0)

|μm |

= log

(
δ0

2

)
+

n∑
i=1

log ri,m · γi ,

(5.16)

where we set

γi = μm(Ai,δ0)

|μm | .

We further set si = γ1 + · · · + γi for i = 1, . . . , n and s0 = 0. Note that sn = 1.
We have γi = si − si−1 for i = 1, . . . , n. Thus,

n∑
i=1

log ri,m · γi =
n∑

i=1

(si − si−1) log ri,m

= log rn,m +
n−1∑
i=1

si (log ri,m − log ri+1,m),

where in the last equality, we performed summation by parts. Note that by definition
of si , equation (5.15) simply states

si < (1 − t0)λi .

123



L. Guo et al.

This, together with the fact that ri,m ≤ ri+1,m , implies

n∑
i=1

log ri,m · γi ≥ log rn,m +
n−1∑
i=1

(1 − t0)λi (log ri,m − log ri+1,m)

= t0 log rn,m + (1 − t0)(
n−1∑
i=1

λi (log ri,m − log ri+1,m) + log rn,m

)
.

(5.17)

At this point, we perform summation by parts again and use the definition of λi .
We do it in three cases.
Case 1: q ∈ (1, 2). In this case, we have λi = i+q−1

n+q−1 . Thus,

n−1∑
i=1

λi (log ri,m − log ri+1,m) + log rn,m

= λ1 log r1,m +
n−1∑
i=2

(λi − λi−1) log ri,m + (1 − λn−1) log rn,m

= q

n + q − 1
log r1,m +

n−1∑
i=2

1

n + q − 1
log ri,m

+
(
1 − n + q − 2

n + q − 1

)
log rn,m

= q

n + q − 1
log r1,m +

n∑
i=2

1

n + q − 1
log ri,m

(5.18)

Case 2: q ∈ [2, n). Note that if n = 2, there is no need to consider this case. Hence,
for here, we assume n ≥ 3. We have

n−1∑
i=1

λi (log ri,m − log ri+1,m) + log rn,m

= λ1 log r1,m +
n−1∑
i=2

(λi − λi−1) log ri,m + (1 − λn−1) log rn,m

= 2

n + q − 1
log r1,m +

�q�−1∑
i=2

2

n + q − 1
log ri,m + q − �q� + 1

n + q − 1
log r�q�,m

+
n∑

i=�q�+1

1

n + q − 1
log ri,m +

(
1 − λn−1 − 1

n + q − 1

)
log rn,m
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=
�q�−1∑
i=1

2

n + q − 1
log ri,m + q − �q� + 1

n + q − 1
log r�q�,m

+
n∑

i=�q�+1

1

n + q − 1
log ri,m, (5.19)

where in the last equality,weuse the fact that 1−λn−1− 1
n+q−1 = 1− n+q−2

n+q−1− 1
n+q−1 =

0.
Case 3: q ∈ [n, n + 1). In this case, we have �q� = n, λi = 2i

n+q−1 for i =
1, . . . , n − 1, and

n−1∑
i=1

λi (log ri,m − log ri+1,m) + log rn,m

= λ1 log r1,m +
n−1∑
i=2

(λi − λi−1) log ri,m + (1 − λn−1) log rn,m

=
n−1∑
i=1

2

n + q − 1
log ri,m + (1 − λn−1) log rn,m

=
n−1∑
i=1

2

n + q − 1
log ri,m + q − n + 1

q + n − 1
log rn,m

=
n−1∑
i=1

2

n + q − 1
log ri,m + q − �q� + 1

q + n − 1
log rn,m .

(5.20)

Note that (5.18), (5.19) and (5.20) can be written in a uniform way by adopting the
convention that a sum disappears if the lower index is strictly bigger than the upper
index:

n−1∑
i=1

λi (log ri,m − log ri+1,m) + log rn,m

=
�q�−1∑
i=1

2

n + q − 1
log ri,m + q − �q� + 1

n + q − 1
log r�q�,m

+
n∑

i=�q�+1

1

n + q − 1
log ri,m .

(5.21)

Combining (5.16), (5.17) and (5.21) provides the desired result. 
�
The following lemma is an estimate on the chord integral of ellipsoids obtained in

Xi-LYZ [30].
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Lemma 5.12 ([30]) Suppose q ∈ (1, n + 1) is not an integer. If E is the ellipsoid in
R
n given by

E =
{
x ∈ R

n : |x · e1|2
r21

+ · · · + |x · en|2
r2n

≤ 1

}
,

where e1, . . . , en is an orthonormal basis in Rn and 0 < r1 ≤ · · · ≤ rn. Then

log Iq(E) ≤
⎡
⎣

�q�−1∑
i=1

2 log ri + (q − �q� + 1)log r�q� +
n∑

i=�q�+1

log ri

⎤
⎦+ c(q, n)

where c(q, n) is a constant (not necessarily positive) that only depends on q and n.

For the rest of the section, we will use symbols like c(a, b) to denote constants that
depend only on a and b.

We now prove that Pm is uniformly bounded when q ∈ (1, n+1) is not an integer.

Lemma 5.13 Suppose q ∈ (1, n + 1) is not an integer. Let μ be a finite Borel measure
on Sn−1 and μm be as constructed in (5.1). Let Pm be as given in (5.2). If μ satisfies
the subspace mass inequality (5.10), then Pm is uniformly bounded.

Proof Because of homogeneity, we may assume μ is a probability measure.
We argue by contradiction and assume that Pm is not uniformly bounded.
Let Em be the John ellipsoid of Pm ; that is

Em ⊂ Pm ⊂ n(Em − om) + om, (5.22)

where the ellipsoid Em centered at om ∈ int Pm is given by

Em =
{
x ∈ R

n : |(x − om) · e1,m |2
r21,m

+ · · · + |(x − om) · en,m |2
r2n,m

≤ 1

}
,

for some orthonormal basis e1,m, . . . , en,m inRn and 0 < r1,m ≤ · · · ≤ rn,m . Since Pm
is not uniformly bounded, by taking a subsequence, we may assume rn,m → ∞ and
rn,m ≥ 1. By the compactness of Sn−1, we may take a subsequence and assume that
e1,m, . . . , en,m converges to e1, . . . , en—an orthonormal basis inRn . By the definition
of 
μm , (5.22) and Lemma 5.11, there exists δ0, t0 > 0 and N0 > 0 such that for each
m > N0, we have

1

|μm |
μm (Pm, om) ≥ 1

|μm |
μm (Em, om)

= 1

|μm |
μm (Em − om, o)

≥ log

(
δ0

2

)
+ t0 log rn,m + (1 − t0)
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[ �q�−1∑
i=1

2

n + q − 1
log ri,m + q − �q� + 1

n + q − 1
log r�q�,m

+
n∑

i=�q�+1

1

n + q − 1
log ri,m

]

≥ log

(
δ0

2

)
+ t0 log rn,m + 1 − t0

n + q − 1
log Iq(Em) + c(t0, n, q), (5.23)

where c(t0, n, q) is not necessarily positive. Here, the last inequality follows from
Lemma 5.12. By homogeneity and translation invariance of Iq , (5.22), and the choice
of Pm , we have

Iq(Em) = Iq(Em − om) = n− 1
n+q−1 Iq(n(Em − om) + om)

≥ n− 1
n+q−1 Iq(Pm) = n− 1

n+q−1
1

n + q − 1
|μm |. (5.24)

Let ym ∈ R
Nm+ be such that ymi = hPm (vi,m). By (4.7) and (5.4), we have that ym

is a constant multiple of zm , where zm is the minimizer to (5.3) with ξ0,μm (zm) = 0.
This, when combined with the homogeneity of ξ0,μm , implies that ξ0,μm (ym) = o.
This, (5.24), that |μm | = |μ|, (5.23), and that rn,m → ∞ imply


μm (Pm, o) ≥ 
μm (Pm, om) → ∞, as m → ∞. (5.25)

This is a contradiction to Lemma 5.3. 
�
The uniform upper bound for Pm when q = 2, . . . , n is an integer is slightly more

complicated. We require the following lemma obtained in [30], which follows from a
simple argument using Jensen’s inequality.

Lemma 5.14 ([30]) If K ∈ Kn
o and 1 ≤ r < s, then

Ir (K ) ≤ c(r , s)V (K )1−
r−1
s−1 Is(K )

r−1
s−1 ,

where c(r , s) > 0 only depends on r and s.

The following lemma provides the desired uniform upper bound for Pm when q is
an integer.

Lemma 5.15 Suppose q ∈ {2, . . . , n}. Let μ be a finite Borel measure on Sn−1 and
μm be as constructed in (5.1). Let Pm be as given in (5.2). If μ satisfies the subspace
mass inequality (5.10), then Pm is uniformly bounded.

Proof The proof is similar to that of Lemma 5.13. Hence, we only outline the necessary
changes here.
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Using Lemma 5.10, we can conclude the existence of N0 > 0, η0 ∈ (0, 1), and
λ̃i ∈ (0, λi ) such that for all m > N0, equation (5.11) holds. We choose t0 > 0
sufficiently small so that

(1 − t0)
i + min{i, q − 1}

n + q − 1
= (1 − t0)λi > λ̃i . (5.26)

Note that the left-side of (5.26), when viewed as a function of q, is continuous for
q ≥ 1. Therefore, it is possible to choose q ′ ∈ (q, q + 1) sufficiently close to q so
that

(1 − t0)λ
′
i := (1 − t0)

i + min{i, q ′ − 1}
n + q ′ − 1

> λ̃i , (5.27)

and

t0 − 1 − t0
n + q ′ − 1

q ′ − q

q − 1
n > 0. (5.28)

Equations (5.27) and (5.11) now imply that for all m > N0, equation (5.14) holds
with λi replaced by λ′

i . Thus, Lemma 5.11 holds with q replaced by q ′. Using this in
(5.23) and recognizing that q ′ is now non-integer so that one may once again invoke
Lemma 5.12, we get

1

|μm |
μm (Pm, om) ≥ log

(
δ0

2

)

+t0 log rn,m + 1 − t0
n + q ′ − 1

log Iq ′(Em) + c(t0, n, q ′) (5.29)

in place of (5.23). Using Lemma 5.14 with r = q and s = q ′, we have

log Iq ′(Em) ≥ q ′ − 1

q − 1
log Iq(Em) − q ′ − q

q − 1
log V (Em) + c(q, q ′) (5.30)

for some constant c(q, q ′). Combining (5.29) and (5.30), we have

1

|μm |
μm (Pm, om) ≥ log

(
δ0

2

)
+ t0 log rn,m

+ 1 − t0
n + q ′ − 1

q ′ − 1

q − 1
log Iq(Em)

− 1 − t0
n + q ′ − 1

q ′ − q

q − 1
n log rn,m + c(q, q ′, n, t0).
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Here, we used the fact that q ′−q
q−1 > 0 and that V (Em) ≤ ωnrnn,m . Therefore,

1

|μm |
μm (Pm, om) ≥ log

(
δ0

2

)
+
(
t0 − 1 − t0

n + q ′ − 1

q ′ − q

q − 1
n

)
log rn,m

+ 1 − t0
n + q ′ − 1

q ′ − 1

q − 1
log Iq(Em) + c(q, q ′, n, t0).

As argued in (5.24), the term involving log Iq(Em) is bounded from below. There-
fore, as rn,m → ∞, with the help of (5.28), we may conclude that 
μm (Pm, o) → ∞
as in (5.25). This is a contradiction to Lemma 5.3. 
�
Theorem 5.16 Let 1 < q < n + 1. If μ is a finite Borel measure on Sn−1 that satisfies
(5.10), then there exists a convex body K ∈ Kn with o ∈ K such that

Gq(K , ·) = μ.

Proof The result follows immediately from Lemmas 5.1, 5.9, 5.13 (in the case q is a
non-integer), and 5.15 (in the case q is an integer). 
�
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