
Reconstruction of Viral Variants via Monte Carlo

Clustering

Akshay Juyal,
1†

Roya Hosseini,
1†

Daniel Novikov,
1

Mark Grinshpon,
2⇤

Alex Zelikovsky
1⇤

1
Department of Computer Science, Georgia State University,

Atlanta, GA 30303, USA

2
Department of Mathematics and Statistics, Georgia State University,

Atlanta, GA 30303, USA

†
Joint first authors

⇤
To whom correspondence should be addressed;

E-mail: mgrinshpon@gsu.edu, alexz@gsu.edu.

September 20, 2023

Keywords: Clustering, Entropy, Hamming distance, Monte Carlo optimiza-

tion, Viral genomic sequences

Abstract: Identifying viral variants via clustering is essential for

understanding the composition and structure of viral populations

within and between hosts, which play a crucial role in disease pro-

gression and epidemic spread. This paper proposes and validates

novel Monte Carlo methods for clustering aligned viral sequences by

minimizing either entropy or Hamming distance from consensuses.
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2 1 INTRODUCTION

We validate these methods on four benchmarks: two SARS-CoV-2

interhost datasets and two HIV intrahost datasets. A parallelized

version of our tool is scalable to very large datasets. We show that

both entropy and Hamming distance based Monte Carlo clusterings

discern the meaningful information from sequencing data. The pro-

posed clustering methods consistently converge to similar clusterings

across di↵erent runs. Finally, we show that Monte Carlo clustering

improves reconstruction of intrahost viral population from sequenc-

ing data.

1 Introduction

Clustering viral sequences is crucial in characterizing the composition and struc-

ture of intrahost and interhost viral populations, which are significant factors

in disease progression and epidemic spread. In the case of intrahost popula-

tions, clustering enables us to identify the various viral variants present in a

patient, including minor low-frequency variants that can cause immune evasion,

drug resistance, and an increase in virulence and infectivity (Beerenwinkel et al.,

2005; Douek et al., 2006; Gaschen et al., 2002; Holland et al., 1992; Rhee et al.,

2007; Campo et al., 2014; Skums et al., 2015). These minor variants are often

responsible for transmissions and the establishment of infection in new hosts.

Therefore, clustering viral sequences not only provides a better understanding

of the virus’s behavior but also aids in the development of e↵ective control

strategies (Campo et al., 2016; Glebova et al., 2017; Skums et al., 2017).

On the other hand, clustering viral populations across di↵erent hosts pro-

vides valuable insights into major strains of closely related viral samples. This

information is particularly helpful in tracking transmissions and informing pub-

lic health strategies (Bousali et al., 2021). By clustering viral sequences, we
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can identify the source of an outbreak and determine whether it is present in

the sampled population. Clustering can also indicate whether two viral samples

belong to the same outbreak and whether one infected the other (Melnyk et al.,

2020). As a result, accurate characterization of viral mutation profiles from in-

fected individuals through clustering is essential for viral research, therapeutics,

and epidemiological investigations.

Viral sequences can be thought of as vectors of categorical data, as they

are composed of strings from a fixed nucleotide alphabet. In the optimal clus-

tering scenario, the sequences within a cluster are as homogeneous as possible

at each site. Traditionally, this is accomplished by minimizing the Hamming

distances between sequences within a cluster or by minimizing the distances to

the cluster’s consensus (de la Vega et al., 2003). However, Hamming distance

assumes that all mutations at all sites are of equal cost, which may not be true

in reality. Furthermore, Hamming distance does not consider the distribution

of values within a given category, treating all mismatches as equal. To address

these shortcomings of Hamming distance, in this paper we propose, as an al-

ternative, the use of entropy for clustering viral sequences. Unlike Hamming

distance, entropy takes into account the distribution of nucleotides at each site,

enabling us to capture di↵erent types of mismatches.

This paper proposes a Monte Carlo (MC) optimization method for clustering

viral sequences by minimizing either the total Hamming distance or the total

entropy. The MC method repeatedly improves an initial clustering by attempt-

ing to randomly move a sequence between clusters and accepting such move if

it reduces Hamming distance or entropy.

To improve runtime and ensure that the method is scalable to very large

datasets, we incorporate a tag selection preprocessing step, which chooses a

smaller predefined number of sites with the highest site entropies. We show
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that this enhancement results in a significant reduction in runtime.

We have validated the e↵ectiveness of our MC clustering method on real

viral sequencing datasets. We estimate the amount of meaningful information

extracted by the clustering. Furthermore, we demonstrate stability of the MC

method by showing that it converges to similar clusterings across multiple runs.

We also show that the MC clustering method enhances the CliqueSNV tool

(Knyazev et al., 2021). We apply MC clustering to haplotypes produced by

CliqueSNV for HIV intrahost sequencing benchmarks and obtain better char-

acterizations of the intrahost populations.

2 Methods

In this section, we begin by reviewing the definitions of entropy and Hamming

distance measures for clusterings of set of aligned viral sequences. We then

present a Monte Carlo clustering algorithm that is a modification of a previ-

ously proposed algorithm from Li et al. (2004). This algorithm can use either

entropy or Hamming distance as the measure to minimize. Finally, we describe

a preprocessing step of tag selection, which significantly reduces the runtime of

the algorithm by selecting the highest entropy sites to represent the sequences.

2.1 Entropy Based Clustering of Viral Sequences

We consider aligned viral sequences as vectors of categorical data, where the

categories are the sites along the sequences, and the values are the letters of the

nucleotide alphabet {A, C, G, T}, not counting the gap symbol (-).

The entropy of a set of sequences at a site quantifies homogeneity of the

values at this site: it is lower when a single value is highly frequent, and it is

higher when all values are equally frequent. Summing over all sites, we measure

homogeneity of the set of viral sequences. Given a clustering of a set of aligned
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viral sequences, we can do this for every cluster to obtain a measure of similarity

within each cluster.

In Juyal et al. (2022), the entropy of a cluster is defined as the sum of site

entropies within this cluster, and then the entropy of the clustering is the sum

of cluster entropies weighted by clusters’ relative sizes.

In Li et al. (2004), the authors prove that clustering entropy defined in

this way is a convex function, allowing any optimization procedure to reach a

global minimum. Therefore, minimizing clustering entropy is a valid objective

for applying minimization techniques to clustering aligned viral sequences.

2.2 Hamming Distance Based Clustering of Viral Sequences

The Hamming distance of a clustering was also defined in Juyal et al. (2022) in

a similar fashion. The Hamming distance at a site is total Hamming distance

from the consensus letter at his site; e↵ectively, it is the total frequency of all

letters di↵erent from the consensus one at this site. Then the Hamming distance

of a cluster is defined as the sum of site Hamming distances, and the Hamming

distance of the clustering is the sum of cluster Hamming distances.

2.3 Monte Carlo Optimization Algorithm

In Juyal et al. (2022), the authors describe an algorithm implementing a Monte

Carlo optimization method, with certain modifications that are intended to

reduce its runtime and improve the quality of the clusterings it produces.

Given an initial clustering of a set of viral sequences, Monte Carlo optimiza-

tion attempts to apply random changes, accepting a change only if it improves

the objective. In this case, the objective is to minimize either the clustering

entropy or the clustering Hamming distance.

The algorithm in Juyal et al. (2022) starts with an initialization phase, where
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it computes nucleotide counts for each column in each cluster. These counts are

then used to compute the values of the entropy or the Hamming distance for

each cluster, as well as the overall clustering entropy or Hamming distance.

Then the algorithm enters an optimization loop by repeatedly attempting a

trial step, which will be accepted or rejected depending on whether it su�ciently

improves the objective. Each trial step amounts to picking a random sequence s

from a randomly selected cluster A and moving it to another randomly selected

cluster B. If the relative entropy reduction from this move is positive and higher

than a predefined threshold value, the move is accepted; otherwise, the move is

rejected and the clustering is reverted to its previous state (i.e., the sequence s

is returned to cluster A).

The algorithm terminates if no moves are accepted for a su�ciently long

time, i.e., if there are no changes for a certain predefined number of consecutive

iterations of the trial loop.

3 Clustering of Inter/Intrahost Viral Populations

We validate the Monte Carlo clustering optimization method by estimating

improvement over an existing clustering technique. To that end, we apply this

algorithm to clusterings obtained from the CliqueSNV tool (Knyazev et al.,

2021).

3.1 Datasets

We validate our entropy based and Hamming distance based Monte Carlo clus-

tering methods on four datasets: two interhost benchmarks of the SARS-CoV-2

virus and two intrahost benchmarks of the HIV virus, see Table 1.
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3.1.1 Interhost viral sequencing benchmarks

We use two datasets of SARS-CoV-2 sequences introduced in Melnyk et al.

(2021). For both datasets, we applied CliqueSNV to obtain an initial clustering.

Interhost D1: This dataset encompasses all the sequences that were submitted

to the global GISAID viral database (Khare et al., 2021) between Decem-

ber 2019 and the beginning of March 2020. It comprises a total of 3688

aligned SARS-CoV-2 sequences, each 29891 nucleotides long. The initial

clustering of this dataset consists of 28 clusters produced by CliqueSNV.

Interhost D2: This dataset includes all sequences submitted to the UK-based

EMBL-EBI (2023) database from the end of January 2020 to the end of

December 2020. It consists of 148000 aligned SARS-CoV-2 sequences,

each 29903 nucleotides long. CliqueSNV produced an initial clustering of

this dataset consisting of 15 clusters.

3.1.2 Intrahost viral sequencing benchmarks

We use two datasets HIV2 (Intrahost D3) and HIV5 (Intrahost D4) of HIV

sequences with 2 and 5 true haplotypes, respectively, introduced in Knyazev

et al. (2021). For both datasets, we applied CliqueSNV to obtain an initial

clustering.

Intrahost D3: This dataset contains 49988 Illumina MiSeq 2⇥ 300 bp paired

reads from the 1074 bp long region of HIV known protease and reverses

transcriptase genes. The initiasl clustering of this dataset consists of 45

haplotypes produced by CliqueSNV for the threshold frequency of TF =

0.001 and 27 haplotypes for TF = 0.002.

Intrahost D4: This dataset contains 711228 Illumina MiSeq 2⇥250 bp paired

reads from the 9275 bp long region of HIV known protease and reverses
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transcriptase genes.

These updated datasets provide a significant number of aligned sequences

for each HIV type, allowing for more in-depth analysis of genetic variations and

clustering using the CliqueSNV method.

3.2 Distinguishing Signal from Noise

We estimate the amount of meaningful information extracted by the cluster-

ings obtained by our Monte Carlo optimization method. To distinguish be-

tween sample-specific noise and meaningfully extracted information, we run our

method on a perturbed version of the input with the same starting entropy.

For this experiment, we use the D1 dataset with 3688 sequences, alongside the

initial clustering from CliqueSNV of 28 clusters.

The permutation procedure is as follows. Within each cluster, every site is

shu✏ed into a random permutation. Importantly, by respecting clusters during

permutation, the initial nucleotide frequencies within each site in each cluster

stay the same. Thus, the permuted input has the same starting entropy as the

original input; what changes is the haplotypes being clustered.

We run the program on both of these inputs for exactly 100000 Monte Carlo

trials each, accepting all moves that reduce entropy. We compare the result-

ing entropy reductions between the two runs. Any entropy reduction present

in the permuted data is sample-specific noise extracted by our method, while

the di↵erence in resulting entropies between the original and permuted inputs

corresponds to the amount of meaningful information extracted by our method.

3.3 Stability of Monte Carlo Clustering

Now we evaluate the robustness of our method against slight permutations of the

input data as well as changes in random seed. Rather than completely shu✏ing
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each site, we only shu✏e a small percentage p of nucleotides at each site. We still

respect clusters when permuting the data, to ensure that nucleotide frequencies

in each site in each cluster remain unchanged.

We chose two values of p to create slightly permuted data sets for validation,

p = 1% and p = 5%, to be compared with the original data with 0% permuta-

tion. For each of the three datasets (two permuted and one original), we run

our method three times, on two di↵erent objectives: first minimizing entropy,

and second minimizing Hamming distance between sequences and their cluster

consensus. As a result, for each degree of permutation and for each Monte Carlo

objective, we obtain three clusterings.

The Rand index, which quantifies the degree of agreement between two clus-

terings, is measured between the initial clustering and each of the resulting clus-

terings, to get a sense of how far away the resulting clusterings have moved from

the initial one under varying degrees of permutation. Further, we also measure

the Rand index between the resulting clusterings, to determine whether the

proposed method converges to similar clusterings across multiple runs.

3.4 Enhancing CliqueSNV with Read Clustering

In this section we show how we enhance CliqueSNV to more accurately recover

intrahost haplotypes from Illumina sequencing data. Since the MC clustering

requires full-length genomes, we fill all uncovered regions with dashes, see Fig-

ure (1). Here each dash represents a single undetermined nucleotide. If the

paired reads overlap, then we also replace the mismatched sites within the over-

lap with dashes, Figure (1b).

CliqueSNV outputs a set of haplotypes with their frequencies. The CliqueSNV

clustering is obtained by assigning each read to the closest haplotype with the

highest frequency, i.e., if a read is within the same minimal Hamming distance
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to multiple haplotypes, it is assigned to the most frequent one. The updated

haplotypes are consensuses of the resulting clusters.

We initialize entropy and Hamming distance clusterings with the CliqueSNV

clustering and update them using the Monte Carlo algorithm.

3.5 Validation Metrics for Viral Population Inference

3.5.1 Distance to the closest predicted haplotype (DCPH).

DCPH measures the quality of true haplotype prediction. For each true hap-

lotype, we report the Hamming distance, or the number of mismatches, to the

closest predicted haplotype. For dataset D3 we reported two numbers (Table 4),

and for dataset D4 we report five numbers (Table 5).

3.5.2 Earth mover’s distance (EMD) between populations.

In order to simultaneously match haplotype sequences and their frequencies

for true population T and predicted population P , we allowed for a fractional

matching when portions of a single haplotype p of population P are matched to

portions of possibly several haplotypes of T and vice versa. Thus, we partition

the frequency of p, fp, as fp =
P

t2T fpt, fpt � 0, where each fpt denotes the

portion of p matched to t. Symmetrically, the frequency of each t, ft, is also

partitioned as ft =
P

p2P fpt. The matching error between haplotypes p and t

is equal to the Hamming distance between them and is denoted dpt. Finally, we

choose the values of all fpt as to minimize the total error of matching T to P .

This is known as Wasserstein metric or the Earth Mover’s Distance between T

and P (Levina and Bickel, 2001; Mallows, 1972):

EMD(T, P ) = min
fpt�0

2

4
X

t2T

X

p2P

fptdpt

3

5



11

such that
X

t2T

fpt = fp and
X

p2P

fpt = ft.

EMD is e�ciently computed as an instance of the transportation problem using

network flows.

Values of EMD can vary significantly over di↵erent benchmarks since they

may have di↵erent complexities, which depend on the number of true variants,

the frequency distribution, the similarity between haplotypes, sequencing depth,

sequencing error rate, and many other parameters. Hence, we measured the

complexity of a benchmark as the EMD between the true population and a

population consisting of a single consensus haplotype (Yang et al., 2012).

4 Results

We ran an implementation of the proposed MC clustering method on the clus-

ter hardware consisting of 128 cores Intel® Xeon® CPU E7-4850 v4 CPU @

2.10GHz, with 3 TB of RAM, running Ubuntu 16.04.7 LTS.

4.1 Distinguishing Signal in Clustering

By minimizing entropy on the permuted data, we find that the method reduces

entropy to 29.62, while on the original, unshu✏ed data the method reaches

a much lower entropy of 24.77 (Table 2). This di↵erence in the entropies of

resulting clusterings, 29.62�24.77 = 4.85, accounts for the amount of meaningful

information, which is not noise, that our method was able to extract from the

real data.

For the entropy and Hamming distance, we report the average, the minimum

and the standard deviation � achieved over 20 runs for the benchmark D1 and

for the benchmark D3 (TF = 0.001, TF = 0.002).
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Notice that the standard deviation � for the original unpermuted data is

significantly smaller than for the permuted data.

4.2 Stability of Monte Carlo Output

Table 3 shows the results of stability validation, in which we compare clustering

similarity for various degrees of permutation of the input data.

The second column in Table 3 compares the resulting clusterings to the

initial clustering. Without any permutations, the resultant clustering moves

significantly further away from the initial one, giving a Rand index of 0.93. As

the permutation degree increases, we observed that the clusterings produced by

the Monte Carlo algorithm do not move as far away from the initial clustering;

in other words, even after Monte Carlo was applied, the resulting clusterings

had a high degree of agreement with the initial clustering.

The third column in Table 3 gives the average Rand index between multi-

ple runs of Monte Carlo for a given permutation. We see that for all degrees

of permutation, the method stably converges towards similar clusterings, with

Rand index scores of 0.97–0.98. The same trends can be observed when using

Hamming distance to cluster toward the consensus as the objective, as shown

in the fifth column.

4.3 Monte Carlo Clustering Enhancement of CliqueSNV

Tables 4 and 5 compare performance of CliqueSNV with three clustering meth-

ods: CliqueSNV clustering, entropy MC clustering, and Hamming distance MC

clustering. Both tables show the numbers of haplotypes or clusters, the values

of the earth mover’s distance (EMD) between the true and predicted haplo-

types, and the distances to the closest predicted haplotype (DCPH) for each

true haplotype.
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For the benchmark D3 (see Table 4). for the both TF = 0.001 and TF =

0.002, the original CliqueSNV matches the second haplotype exactly and pre-

dicts the first haplotype with a single mismatch. While clustering methods lose

to the original CliqueSNV for TF = 0.001, they match the quality of CliqueSNV

for TF = 0.002.

For the benchmark D4, CliqueSNV produced 13 haplotypes for the threshold

frequency of TF = 0.05 (Table 5). Here, Monte Carlo clusterings improve

over both CliqueSNV and CliqueSNV clustering in matching true haplotypes

(DCPH).

EMD to the true solution is smaller for CliqueSNV than for the clustering

methods because CliqueSNV more accurately estimates hyplotype frequencies

using the expectation-maximization method.

Figures (2), (3), and (4) show how the clustering entropy decreases with

the number of Monte Carlo moves. Note that for larger datasets the entropy

reduction is relatively smaller.

5 Conclusions

We have developed Monte Carlo methods for clustering sets of aligned viral

genomic sequences. The methods are scalable to millions of sequences and

is made even faster without significant loss of accuracy by picking a subset

of tags with maximum entropy to represent the sequences. We have shown

that both minimum entropy and minimum Hamming distance Monte Carlo

clustering methods discern the meaningful information from sequencing data

and that both clustering methods consistently converge to similar clusterings

across di↵erent runs. Finally, we have shown that Monte Carlo clusterings

achieve more accurate reconstruction of intrahost viral populations.
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11 Tables

Table 1: Four sequencing datasets of SARS-CoV-2 and HIV.

Dataset Data type Virus
Number of

input
sequences

Type of input
sequences

Number of
true sequences
or clusters

D1 Interhost SARS-CoV-2 3688 Full genomes 28

D2 Interhost SARS-CoV-2 148000 Full genomes 15

D3 Intrahost HIV 49988 Illumina reads 2

D4 Intrahost HIV 711228 Illumina reads 5
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Table 2: Results after running Monte Carlo clustering optimizing entropy and Hamming
distance over three datasets.

Benchmarks D1 D3, TF=0.001 D3, TF=0.002

Entropy

Initial 31.524 846.19 875.22

Unpermuted

Avg 24.77 616.56 708.72

Min 24.7 599.16 708.72

� 0.049 12.28 8.28

Permuted

Avg 29.65 779.3 860.54

Min 28.6 701.23 839.07

� 0.7 55.2 15.18

Entropy reduction over permuted data 3.95 102.05 130.35

Hamming distance

Initial 1008.41 59165.26 176293.27

Unpermuted

Avg 373.14 34935.99 96535.57

Min 369.14 34815.03 93919.13

� 2.82 85.53 1850.1

Permuted

Avg 770.39 44719.8 135549.43

Min 689.97 43675.66 124817.3

� 56.56 738.31 7588.76

Distance reduction over permuted data 320.83 8860.63 30898.17
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Table 3: Clustering similarity (Rand index) across three choices of the degree
of permutation. The method was run three times for each permuted instance,
each run consisting of 100000 Monte Carlo trials. Reported are average Rand
index similarity of the resulting clusterings to the initial clustering, as well as
between resulting clusterings.

% permutation

Cluster similarity (Rand index)

Entropy Hamming distance

With original With runs With original With runs

0 0.936476 0.970195 0.936114 0.970135

1 0.978898 0.979435 0.936126 0.970374

5 0.980458 0.980688 0.936180 0.970616
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Table 4: Results for CliqueSNV with minimum frequencies 0.1% and 0.2% run on
the benchmark D3, and for enhancements by CliqueSNV clustering, entropy MC
clustering, and Hamming distance MC clustering. We report the number of hap-
lotypes/clusters, earth mover’s distance (EMD) to the true sequences, and distance
from the closest predicted haplotype (DCPH).

Benchmark D3, TF = 0.001

Method # haplotypes/clusters EMD DCPH

CliqueSNV 45 3 [1, 0]

CliqueSNV clustering 45 19 [5, 0]

Entropy MC clustering 45 49 [5, 21]

Hamming distance MC clustering 45 7 [5, 11]

Benchmark D3, TF = 0.002

Method # haplotypes/clusters EMD DCPH

CliqueSNV 27 2 [1, 0]

CliqueSNV clustering 27 27 [0, 3]

Entropy MC clustering 27 61 [0, 1]

Hamming distance MC clustering 27 7 [0, 1]
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Table 5: Results for CliqueSNV with minimum frequency 5% run on the benchmark D4,
and for enhancements by CliqueSNV clustering, entropy MC clustering, and Hamming
distance MC clustering. We report the number of haplotypes/clusters, earth mover’s
distance (EMD) to the true sequences, and distance from the closest predicted haplotype
(DCPH).

Benchmark D4, TF = 0.05

Method # haplotypes/clusters EMD DCPH

CliqueSNV 13 243 [3, 1, 9, 7, 1]

CliqueSNV clustering 8 294 [1, 3, 2, 4, 3]

Entropy MC clustering 8 311 [2, 0, 6, 3, 2]

Hamming distance MC clustering 8 311 [2, 0, 6, 3, 2]
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12 Figure Legends

Figure 1: Illumina paired reads aligned to the full length reference genome. All
uncovered position are filled with dashes (a). If the paired reads overlap, then
any mismatched positions in the overlap are replaced with a dash (b).
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Figure 2: Entropy reduction for benchmark D3, with the threshold frequency
of TF = 0.001.

Figure 3: Entropy reduction for benchmark D3, with the threshold frequency
of TF = 0.002.

Figure 4: Entropy reduction for benchmark D4, with the threshold frequency
of TF = 0.05. Entropy decreased by approximately 0.6%.
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