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Abstract: The emergence of third-generation single-molecule sequencing (TGS) technology has
revolutionized the generation of long reads, which are essential for genome assembly and have been
widely employed in sequencing the SARS-CoV-2 virus during the COVID-19 pandemic. Although
long-read sequencing has been crucial in understanding the evolution and transmission of the
virus, the high error rate associated with these reads can lead to inadequate genome assembly and
downstream biological interpretation. In this study, we evaluate the accuracy and robustness of
machine learning (ML) models using six different embedding techniques on SARS-CoV-2 error-
incorporated genome sequences. Our analysis includes two types of error-incorporated genome
sequences: those generated using simulation tools to emulate error profiles of long-read sequencing
platforms and those generated by introducing random errors. We show that the spaced k-mers
embedding method achieves high accuracy in classifying error-free SARS-CoV-2 genome sequences,
and the spaced k-mers and weighted k-mers embedding methods are highly accurate in predicting
error-incorporated sequences. The fixed-length vectors generated by these methods contribute to the
high accuracy achieved. Our study provides valuable insights for researchers to effectively evaluate
ML models and gain a better understanding of the approach for accurate identification of critical
SARS-CoV-2 genome sequences.

Keywords: sequencing error; third-generation single-molecule sequencing (TGS); long read; machine
learning; embedding methods; classification

1. Introduction

During the COVID-19 pandemic, whole genome sequencing (WGS) of the SARS-CoV-2
virus has played a crucial role in unraveling important biological information. Through
phylogenetic analysis, it has been revealed that SARS-CoV-2 shares 50% and 79% sequence
similarity with MERS-CoV and SARS-CoV, respectively, indicating their evolutionary
connections [1]. Notably, the genome sequence of SARS-CoV-2 exhibits an 85% similarity
to a bat coronavirus, establishing its zoonotic origin within the Coronaviridae family and
the Betacoronavirus genus [2]. These genomic data have been instrumental in confirming
the virus’s source and classification. Recognizing the significance of gathering genetic
data from diverse SARS-CoV-2 sequences and variants, researchers worldwide swiftly
recognized the need for comprehensive genome information [3,4]. The Centers for Disease
Control and Prevention’s Office of Advanced Molecular Detection (AMD) released details
regarding SARS-CoV-2 whole genome sequencing on various platforms, including PacBio,
Illumina, and Ion Torrent. Emphasizing the importance of publicly accessible genome
sequences, the World Health Organization (WHO) strongly supports their utilization in
developing novel public health strategies and conducting research to combat the spread
of COVID-19. A valuable resource in this endeavor is the Global Initiative on Sharing
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All Influenza Data (GISAID), which hosts one of the largest international databases of
SARS-CoV-2 genome sequences [5]. Leveraging GISAID, along with the open-source
tools NextStrain and NextClade, researchers have made significant advancements in their
investigations [6,7]. These resources have proven instrumental in understanding the
evolution and characteristics of the virus, aiding in the development of efficient strategies
to mitigate the COVID-19 infection’s spread [8–10].

Third-generation sequencing technology has emerged as a widely used method for se-
quencing SARS-CoV-2 during the pandemic. These technologies, known for their ability to
generate long reads, are increasingly employed in transcriptomics studies. Advancements
in long-read sequencing enable the comprehensive sequencing of RNA molecules, utilizing
cDNA or direct RNA protocols from Oxford Nanopore Technologies (ONT) and Pacific
Biosciences (PacBio) [11–13]. However, the high error rates associated with long-read tech-
nologies pose challenges for accurate and efficient downstream analysis, such as genome
assembly. Indels, or insertions and deletions, are the primary error types that complicate
alignment processes. While various error correction tools exist, there remains a need for
further development in this computational biology domain. To effectively combat the
COVID-19 infection and facilitate research, an increased number of SARS-CoV-2 genome
sequences are required [14,15]. Researchers worldwide rely on third-generation sequencing
technologies to sequence the virus. Cutting-edge technology heavily relies on SARS-CoV-2
genomic sequences for virus tracking. To analyze genomic data effectively, scientists em-
ploy machine learning (ML) and deep learning (DL) algorithms along with embedding
methods for classification purposes [16–19]. ML and DL algorithms have become valuable
tools even for novice bioinformatics practitioners and core data analysts who may lack prior
knowledge of sequencing technologies and associated challenges. These algorithms enable
comprehensive analysis of SARS-CoV-2 sequencing data, contributing to advancements
in classification techniques and aiding in our understanding of the virus’s genetic charac-
teristics and behavior. Therefore, it is crucial to establish a robust benchmark report on
SARS-CoV-2 genome sequences generated using third-generation sequencing technology,
which will serve as a guide for future genomic research involving long-read sequencing.

The current study aims to evaluate the performance of current classification models
in handling third-generation sequencer-specific errors present in SARS-CoV-2 genome
sequences. Specifically, the study investigates the effectiveness of various embedding
methods under specified levels of disturbance. The evaluation of machine learning mod-
els on SARS-CoV-2 genomic sequences remains limited, with only a few existing studies
in this area. For instance, a previous study [20] conducted a benchmark of ML and DL
models using different embedding methods for classifying SARS-CoV-2 genome sequences
that included sequencer-specific errors. However, this study did not identify the best ML
model for SARS-CoV-2 genome sequence classification. In line with a similar approach,
our current study focuses exclusively on SARS-CoV-2 genomes generated using long
reads obtained from third-generation sequencing (TGS) technologies, such as PacBio and
Nanopore, while also considering the possibility of random errors occurring by chance.
To assess the effectiveness of machine learning algorithms on SARS-CoV-2 genome se-
quences, we conducted simulations that accounted for various error types. Our simulations
employed two primary approaches: one involved generating SARS-CoV-2 genome se-
quences with platform-specific errors (PacBio or ONT), while the other introduced random
errors. The workflow for these simulations is depicted in Figure 1. To analyze the SARS-
CoV-2 sequences, we employed six distinct embedding methods, including one-hot encod-
ing (OHE), Wasserstein-distance-guided representation learning (WDGRL), string kernel,
spaced k -mers, weighted k-mers, and weighted position weight matrix (PWM). Leveraging
these embedding methods, we performed supervised analyses using a variety of linear and
non-linear classifiers considering both clean and error-incorporated SARS-CoV-2 sequences.
This comprehensive methodology enabled us to evaluate the effectiveness of these methods
in detecting errors and classifying sequences.
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Figure 1. Workflow employed for generating a dataset incorporating long-read (PacBio and ONT)
specific errors, which was subsequently used to evaluate the robustness of machine learning models
employing different embedding techniques. The workflow comprises four distinct steps: 1. collection
of high-quality SARS-CoV-2 reference genome sequences from GISAID, 2. generating long-read se-
quences tailored to PacBio and ONT sequencers, incorporating sequencer-specific errors (represented
as star), utilizing the reference genome for the ORF1a gene, 3. aligning the error-incorporated long
reads (reads marked with star) to the reference genome, and 4. creating the final compilation of
SARS-CoV-2 genome sequences, encompassing long-read sequencer-specific errors (represented as
star) in the ORF1a gene.

The subsequent sections of the current study are described in an arranged manner as
follows. Section 2 comprises comprehensive details of the dataset statistics, dataset genera-
tion methodology, and various embedding techniques considered to convert SARS-CoV-2
genome sequences to fixed-length numerical representations. Our results for accuracy and
robustness are reported in Section 3. Finally, the current study concludes in Section 4.

2. Dataset and Methodology

This section is devoted to the elucidation of the datasets utilized in this study and the
process through which the validation dataset incorporating long-read specific error models
(PacBio and ONT) and random errors was generated (refer to Section 2.1). In addition,
Section 2.2 provides a succinct overview of the different types of embedding methods em-
ployed. The methodology adopted for the development of machine learning classification
algorithms and the computation of their accuracy and robustness is presented in Section 2.3.
Finally, Section 2.4 expounds on the visualization of the high-dimensional SARS-CoV-2
sequencing data.

2.1. Dataset Generation

In this study, four distinct datasets were employed. One of these datasets encompasses
all genomes from the Global Initiative on Sharing All Influenza Data (GISAID), which have
been meticulously curated to ensure their accuracy. The remaining three datasets were
derived from distinct error models. Specifically, two datasets were generated through the
use of PacBio and ONT models, while the fourth dataset was produced via a random error
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model. A detailed exposition of the dataset properties and characteristics is provided in
their corresponding sections, namely Sections 2.1.1–2.1.4.

2.1.1. Dataset 1: High-Quality SARS-CoV-2 Genome Sequences
To create a dataset of high-sequencing quality SARS-CoV-2 whole genome sequences,

we analyzed 8172 sequences from GISAID between September and December 2021. Our
selection criteria focused on complete and high-coverage genome sequences to ensure
the collection of high-quality genomes. We specifically limited our sequence collection to
those obtained from the human host. Additionally, we gathered lineage information for the
sequences, resulting in 41 unique Pango lineages within our dataset. For detailed sequence
statistics, please refer to Table 1.

Table 1. Dataset statistics for different lineages in our data. The total number of SARS-CoV-2 genome
sequences (and corresponding lineages) was 8172 after preprocessing.

Lineage No. Sequences Lineage No. Sequences

AY.103 2253 AY.121 40
AY.44 1407 AY.75 36

AY.100 715 AY.3.1 30
AY.3 705 AY.3.3 28

AY.25 582 AY.107 27
AY.25.1 381 AY.34.1 25
AY.39 247 AY.46.6 21

AY.119 241 AY.98.1 20
B.1.617.2 173 AY.13 19

AY.20 129 AY.116.1 18
AY.26 107 AY.126 17
AY.4 99 AY.114 15

AY.117 93 AY.46.1 14
AY.113 92 AY.34 14
AY.118 86 AY.125 14
AY.43 85 AY.92 13

AY.122 84 AY.46.4 12
BA.1 79 AY.98 12

AY.119.2 74 AY.127 12
AY.47 73 AY.111 10

AY.39.1 70 _ _

2.1.2. Dataset 2: SARS-CoV-2 Genome Sequences Generated from Long Reads
Incorporating PacBio Sequencing Errors

To generate the second SARS-CoV-2 genome sequence dataset, we utilized Pacific
Biosciences (PacBio) sequencing technology and simulated long reads with PacBio sequenc-
ing errors. This was accomplished using PBSIM, a tool specifically designed to simulate
PacBio sequencing reads with varying error rates [21]. PBSIM can generate two types of
reads associated with the PacBio sequencer: continuous long reads (CLR) and circular
consensus sequencing (CCS) short reads. CCS reads generally exhibit lower error rates
compared to CLR reads. PBSIM offers two simulation approaches: sampling-based and
model-based simulation, which facilitate the generation of PacBio CCS and CLR reads.
In the sampling-based simulation, PBSIM considers the quality and length of the input
read set, while the model-based simulation incorporates a built-in error model.

In our study, we employed the model-based approach of PBSIM, utilizing the pbsim-
v1.0.3 tool to simulate PacBio long reads with errors based on the genomic sequence of
SARS-CoV-2. Subsequently, these erroneous long reads were aligned to the SARS-CoV-2
reference genome (GenBank accession number NC_0455122) using Minimap v2-2.24 [22],
and variants were called from the aligned reads using bcftools v1.6 [23]. This process
resulted in the generation of a consensus sequence, which represents a SARS-CoV-2 genome
sequence incorporating typical long-read errors. We generated simulated reads with errors
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at two distinct depths, namely 5⇥ and 10⇥, specifically on Dataset 1, leading to the creation
of Dataset 2.

2.1.3. Dataset 3: SARS-CoV-2 Genome Sequences Generated from Long Reads
Incorporating Oxford Nanopore Technology (ONT) Sequencing Errors

The third dataset was generated using long reads simulated with an Oxford Nanopore
Technologies (ONT) sequencing error profile. To simulate long reads with Nanopore
sequencing errors, we employed the Badread software tool, known for incorporating
realistic artifacts introduced by Nanopore sequencers, including chimeras, junk reads,
glitches, and adapters [24]. Badread utilizes a gamma distribution for read length, allowing
for user-specified mean and standard deviation parameters.

We utilized Badread v0.2.0 to simulate ONT (Oxford Nanopore Technologies) long
reads with errors based on the genome sequence of SARS-CoV-2. Following this, we aligned
these error-prone long reads to the SARS-CoV-2 reference genome (GenBank accession
number NC_0455122) using Minimap v2-2.24 [22]. By leveraging bcftools v1.6 [23] to
call variants from the aligned reads, we obtained a consensus SARS-CoV-2 sequence that
incorporated errors typically associated with Nanopore sequencing technologies. In order
to ensure a comprehensive analysis, we generated erroneous simulated reads at two distinct
depths: 5⇥ and 10⇥. These steps were specifically performed on Dataset 1, resulting in the
creation of Dataset 3.

2.1.4. Dataset 4: SARS-CoV-2 Genome Sequences Generated from Long Reads
Incorporating Random Errors

The fourth dataset of the SARS-CoV-2 genome sequence was generated using long
reads with random errors. For this purpose, we utilized the random option in the Badread
software tool, known for its ability to simulate long reads with various types of errors,
including random errors [24].

By utilizing the random option available in Badread v0.2.0, we simulated long reads
with random errors. Subsequently, these long reads were aligned to the SARS-CoV-2 refer-
ence genome (GenBank accession number NC_0455122) using Minimap v2-2.24 [22]. We
then performed variant calling using bcftools v1.6 [23] and derived a consensus SARS-CoV-
2 sequence by incorporating the introduced variants caused by random errors. To ensure a
comprehensive analysis, we repeated this procedure at two different read depths, specif-
ically 5⇥ and 10⇥, which aligns with the approach taken for Datasets 2 and 3. These
aforementioned steps were executed on Dataset 1, resulting in the creation of Dataset 4.

2.2. Embedding Generation Methods

This section delineates the analytical methodologies used to examine the datasets
explicated in the previous section. Six distinct embedding methods, namely one-hot
encoding (OHE), Wasserstein-distance-guided representation learning (WDGRL), string
kernel, spaced k-mers, weighted k-mers, and weighted position weight matrix (PWM),
were implemented to transform the sequences into machine-readable, low-dimensional
numerical embeddings (also known as feature vectors) in this study. The specifics of
each method are elaborated upon in their respective sections, namely Sections 2.2.1–2.2.6,
respectively.

2.2.1. One-Hot Encoding (OHE)
One-hot encoding is a common method for generating numerical embedding from a

nucleotide sequence (OHE). OHE represents each nucleotide in the sequence as a binary
(0–1) vector; in this case, the nucleotides are A, T, C, and G [17,18]. To illustrate this
mathematically for nucleotide sequences, consider a mathematical function ( f ) that maps
each nucleotide to its appropriate one-hot encoding vector. We can write the function
as follows:

f (S) = (One-hot encoded vector) (1)
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Suppose in Equation (1), S is a one of the nucleotides from {A, T, C, G}. For instance,

f (A) = (1, 0, 0, 0)
f (C) = (0, 1, 0, 0)
f (G) = (0, 0, 1, 0)
f (T) = (0, 0, 0, 1)

After this, we can concatenate all the one-hot encoded vectors generated for individual
nucleotides using function ( f ) from a DNA sequence to get a conclusive embedding vector.

Using the above concept, suppose a DNA sequence (X) of length (n) can then be
represented by creating a final binary vector (fx) in Equation (2) by concatenating all the
individual components (X) generated using the function ( f ).

fx = ( f (X1), f (X2), . . . , f (Xn)) (2)

In the above equation, Xi is the nucleotide in DNA sequence X at position i. The fx’s
dimension in this instance is |S|⇥ n (|S| is the size of the nucleotide alphabet, i.e., 4 in
this case.)

2.2.2. Wasserstein-Distance-Based Generative Adversarial Network for Representation
Learning (WDGRL)

The Wasserstein-distance-based generative adversarial network for representation
learning (WDGRL) is an unsupervised method intended to generate a low-dimensional
embedding [25]. It accomplishes the goal by extracting the features from input data using a
neural network-based model that takes advantage of the source and encoded target data
distribution. The model determines the Wasserstein distance (WD) between the original
high-dimensional vector and low-dimensional representation. WDGRL considers one-hot
encoded (OHE) vectors as input and generates a very-low-dimensional representation that
consists solely of essential features.

Let us consider X numbers of one-hot encoded (OHE) SARS-COV-2 genome sequences
as input data D to the neural network model Mq . The model Mq with parameters q maps
every OHE vector Xi from X to a low-dimensional representation hi in R

d . During this pro-
cess, Mq learns to generate an hi that captures the essential features from Xi by considering
the encoded distribution of the source and the target data.

Suppose the distributions of the encoded representation of hi for the source and target
data are Ps(h) and Pt(h). Here, Ps(h) and Pt(h) can be estimated by a density estimation
method. The loss function for the WDGRL can be written as

L(q) = max f (E[hsPs[ f (hs)]]� E[htPt[ f (ht)]]) (3)

In Equation (3), f is a Lipschitz-1 function to approximate the Wasserstein distance
between the distributions Ps(h) and Pt(h). Here, the function f (h) can be parameterized by
another neural network Da, which considers the encoded representation of hi as input and
outputs a scalar value. The loss function is optimized by minimizing the negative of its
value with respect to the parameter’s q and a:

L(q, a) = �L(q) = min
q,a

(E[hsPs[Da(hs)]]� E[htPt[Da(ht)]]) (4)

The neural networks Gq and Da are jointly trained to minimize the WDGRL loss func-
tion using gradient descent or other optimization methods. The resulting low-dimensional
representation captures important features of the input data that are useful for downstream
tasks, such as classification.



Biomolecules 2023, 13, 934 7 of 21

2.2.3. String Kernel
The string kernel method operates in the non-Euclidean space and measures the

similarity between the SARS-CoV-2 genome sequences by computing a kernel matrix, also
known as a Gram matrix [26].

Given a set of SARS-COV-2 genome sequences X = {X1, X2, X3, . . . ., Xn}, the string
kernel method first computes the k-mers of length k ; for the current scenario, k is 3 for
each genome sequence. The term k-mer refers to a substring of length k that occurs in the
SARS-CoV-2 genome sequence.

Let us consider M be the matrix of all possible k-mers for a SARS-CoV-2 genome
sequence j, and Mij is the number of times the k-mer i occurs in the sequence j. Then,
the similarity between two SAR-CoV-2 genome sequences Xi and Xj can be computed
using the kernel function, Equation (5).

K(xi, xj) = Â
i2xi

Â
j2xj

Mik ⇤ Mjk (5)

Here, Mik and Mjk are the number of occurrences of k-mer i and j in sequences Xi and
Xj, respectively.

To reduce the computational complexity, the string kernel method considers a locally
sensitive hashing-based approach to estimate the k-mers of two sequences at distance m
from each other. This approach hashes k-mers into bins considering their locality and
further uses the bin information to estimate the matching k-mers between the two SARS-
CoV-2 sequences. The resulting kernel matrix K from Equation (5) is a symmetric matrix,
and Kij is the kernel value between the genome sequences Xi and Xj.

To generate a low-dimensional representation of the input genome sequences, we
performed kernel principal component analysis (PCA) on the kernel matrix K. Kernel
PCA is a nonlinear dimensionality reduction technique that maps the input data to a new
space defined by the eigenvectors of the kernel matrix. The top components are further
considered as the reduced dimensional feature vector for the downstream analysis.

Suppose for the kernel matrix K, V is the matrix of eigenvectors and Lambda is the
diagonal matrix of the corresponding eigenvectors. Then, the top k principal components
are represented by:

PCk = (lk)
1/2

V[:, k] (6)

where V[:,k] is the k-th column of the matrix V and lk is the k-th diagonal element of
Lambda. For this analysis, the top 500 principal components are selected by considering a
standard validation approach, and these components are used as the final feature vector
for each SARS-CoV-2 genome sequence for downstream tasks such as classification.

2.2.4. Spaced k-Mers
The spaced k-mers method is used to reduce the sparsity and size of k-mers (nucleotide

substrings of length k) in the SARS-CoV-2 genome sequence [19]. Given a SARS-CoV-2
genome sequence S, the spaced k-mers method first computes g-mers. Here, g-mers are
nucleotide subsequences of length g (where g is an integer > 1). From those g-mers,
the method then computes k-mers, where k < g. While generating k-mers from g-mers,
the method skips some of the characters (nucleotides) between adjacent g-mers. The size of
the gap between adjacent g-mers is determined by g-k.

Formally, suppose S is a SARS-CoV-2 genome sequence of length L. Then, the definition
of g-mers is as follows:

G = {Si : i + g � 1 | i = 1, 2, . . . , L � g + 1} (7)

(Here, Si: i + g � 1 represents the genomic subsequences of S starting at position i and
ending at position i + g � 1.)
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From the above computed set of G mers, the method computes the set of k-mers
as follows:

K = {Si : i + k � 1 | i = 1, 2, . . . , g � k + 1} (8)

(Here, Si: i + k � 1 represents the genomic subsequences of S starting at position i and
ending at position i + k � 1.)

After computing the k-mers, the method generates a numerical vector of length |S|k
(where S corresponds to the alphabet A, C, G, T).

In our case, the spaced k-mer method considers k = 4 and g = 9, which is deter-
mined using a standard validation approach. This means we compute k-mers of length 4
from SARS-CoV-2 genomic subsequences of length 9, with a gap of 5 nucleotide between
adjacent subsequences.

2.2.5. Weighted k-Mers
The weighted k-mers-based spectrum method is used to denote biological sequences

as fixed-length vectors that capture the occurrences of all possible k-mers (k represents the
length of the subsequences). The method allocates weights to the k-mers that are calculated
based on their inverse document frequency (IDF), which determines how uncommon a
particular k-mer is across all sequences.

Formally, to compute the IDF weights, we first calculate the total number of input
SARS-CoV-2 genome sequences, N, and the number of input genome sequences that contain
a specific k-mer, ni. The IDF weight for the k-mer i is then provided by:

IDF(i) = log(N/ni) (9)

Then, we generate a list of all possible k-mers based on the nucleotide set A, C, G, T
of the input SARS-CoV-2 genome sequences. For each SARS-CoV-2 genome sequence, we
calculate the frequency of each k-mer and multiply it by the corresponding IDF weight to
obtain a weighted frequency, which is given by:

w(i, j) = f (i, j) ⇤ IDF(i) (10)

Here, w(i, j) is the weighted frequency of k-mer i in SARS-CoV-2 genome sequence j,
f (i, j) is the frequency of k-mer i in SARS-CoV-2 genome sequence j, and IDF(i) is the IDF
weight of k-mer i.

The above weighted frequency values are then used to construct a frequency vec-
tor, where each element represents the frequency of a particular k-mer in the sequence.
The frequency vector for sequence j is given by:

v(j) = [w(1, j), w(2, j), ..., w(m, j)] (11)

where m is the total number of possible k-mers. In our experiment, we considered k = 3,
which is selected by a standard validation approach.

2.2.6. The Weighted Position Weight Matrix (PWM)
The weighted position weight matrix (PWM) technique generates PWM scores for all

possible k-mers (k is the length of subsequences) in SARS-CoV-2 genome sequences [27].
The PWM is produced by a two-step method: In the first step, the method calculates the
occurrence of each base at every position of the k-mers. In the second step, it computes
a weighted score for each k-mer considering the log-odd ratio of its observed frequency
compared to the background frequency. The background frequency is estimated using the
LaPlace pseudocount and the equal probability assumption for each nucleotide.

The formula for computing the PWM is as follows:
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PWM(k-mer) =
K

Â
i=1

log2

✓
f (k-meri, b)

bi

◆
(12)

where k-mer is the k-mer sequence, K is the length of the k-mer, f (k�meri, b) is the count of
the nucleotide b at position i in the k-mer, bi is the background frequency of the nucleotide
b, and log2 is the base-2 logarithm function.

The final output is a list of scores for each k-mer in each input sequence, where the
score is the sum of the weight scores for each base in the k-mer. For the current experiment,
k = 3 was selected using the standard validation set approach.

2.3. Machine Learning Classification Algorithms: SVM, NB, MLP, KNN, RF, LR, and DT

To perform the classification task, we utilize seven machine learning algorithms:
Support Vector Machine (SVM), Naïve Bayes (NB), Multi-Layer Perceptron (MLP), K-
Nearest Neighbors (KNN), Random Forest (RF), Logistic Regression (LR), and Decision
Tree (DT). Our objective is to evaluate the performance of these algorithms by employing
two different approaches.

2.3.1. Approach 1: Accuracy
Here, we compute the average accuracy, precision, recall, F1 (weighted), F1 (Macro),

and ROC-AUC for the entire dataset, including all the class labels mentioned in Table 1.
We exclude error sequences from the dataset.

2.3.2. Approach 2: Robustness
Robustness is crucial to machine learning models. It represents their ability to generate

reasonable outputs for input examples not included in the training data. As our test
set, we consider only PacBio, ONT, and random protocol-specific errors incorporating
noisy examples, whereas the training set uses non-errored sequences. We then calculate
the average accuracy, precision, recall, F1 (weighted), F1 (Macro), and ROC-AUC for the
ML models based on the test set. Overall, these two strategies provide comprehensive
evaluations of machine learning algorithms’ performance. This allows us to compare and
identify the most-suitable algorithm for our classification task.

2.4. Data Visualization

In order to ascertain if there exists any inherent clustering in our dataset, we em-
ploy the t-distributed stochastic neighbor embedding (t-SNE) approach to produce a two-
dimensional representation of the feature embeddings [28].

3. Results and Discussion

This section provides an overview of the outcomes achieved by our methods on the
datasets employed in this study. The first subsection, labeled Section 3.1, discusses the
accuracy evaluation of machine learning classification algorithms that utilized various
embedding methods. The second subsection, labeled Section 3.2, covers the robustness
evaluation of machine learning classification algorithms that used different embedding
methods. The third subsection, labeled Section 3.3, focuses on the comparison of pre-
dictive performance of machine learning models on SARS-CoV-2 sequences with errors
obtained from PacBio and ONT sequencers. Lastly, Section 3.4 explores the analysis of
coronavirus variants using various embedding vector generation methods with the aid of
t-SNE visualization.

3.1. Accuracy Evaluation of Machine Learning Classification Algorithms Using Different

Embedding Methods

We considered 8172 clean (error-free) full-length SARS-CoV-2 nucleotide sequences
from the GISAID database. These sequences were used to evaluate the machine learning
models with embedding methods. In order to do that, we split the sequences into training
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and test sets with a 70/30% ratio. After that, we executed each analysis five times and
considered the average results, reported in Table 2 and Figure 2. The results show that the
machine learning classification algorithms’ performance significantly varies depending
on the embedding method employed. Specifically, the one-hot embedding method leads
to an accuracy of 0.773 for the SVM algorithm, whereas the WDGRL embedding method
only results in an accuracy of 0.327. The spaced k-mers embedding method with the SVM,
RF, LR, and DT classification algorithms achieves an accuracy of up to 0.956. This method
employs g-mers and k-mers to decrease the sparsity and size of k-mers in the genome
sequence. As a result, it generates fixed-length vectors that capture the occurrences of
all possible k-mers, which are then used to construct frequency vectors representing the
frequency of each k-mer in the sequence. This method performs well with the error-free set
of SARS-CoV-2 genome sequences. However, the NB algorithm yields the worst results,
with an accuracy of only 0.017 when the weighted k-mers embedding method is used.
Additionally, some algorithms, such as SVM and LR, have significantly longer training
times compared to others. Thus, while selecting an algorithm and embedding method, one
should consider both performance and training time.

Table 2. Accuracy results obtained from an error-free set of 8172 SARS-CoV-2 genome sequences.
The optimal values are highlighted in bold for ease of interpretation.

Embed. Method ML Algo. Acc. Prec. Recall F1 Weigh. F1 Macro ROC-AUC Train. Runtime (s)

OHE

SVM 0.773 0.772 0.773 0.766 0.571 0.760 19,231.462
NB 0.086 0.192 0.086 0.091 0.194 0.595 615.813

MLP 0.360 0.344 0.360 0.252 0.043 0.514 1222.237
KNN 0.669 0.689 0.669 0.649 0.409 0.666 38.431

RF 0.774 0.774 0.774 0.765 0.574 0.758 224.910
LR 0.721 0.741 0.721 0.707 0.555 0.741 37,539.362
DT 0.844 0.845 0.844 0.842 0.610 0.796 219.236

WDGRL

SVM 0.327 0.159 0.327 0.203 0.036 0.511 2.789
NB 0.166 0.169 0.166 0.167 0.018 0.510 0.028

MLP 0.413 0.318 0.413 0.327 0.077 0.530 21.971
KNN 0.463 0.431 0.463 0.437 0.192 0.581 0.118

RF 0.449 0.446 0.449 0.445 0.207 0.601 1.671
LR 0.323 0.261 0.323 0.201 0.036 0.510 0.752
DT 0.440 0.441 0.440 0.438 0.195 0.596 0.028

String Kernel

SVM 0.881 0.880 0.881 0.878 0.776 0.880 7.200
NB 0.033 0.309 0.033 0.032 0.048 0.531 0.556

MLP 0.715 0.700 0.715 0.704 0.369 0.690 34.899
KNN 0.749 0.757 0.749 0.735 0.544 0.738 0.648

RF 0.672 0.750 0.672 0.634 0.395 0.652 10.258
LR 0.864 0.858 0.864 0.854 0.675 0.817 50.100
DT 0.572 0.578 0.572 0.573 0.337 0.669 3.636

Spaced k-mers

SVM 0.956 0.956 0.956 0.955 0.890 0.933 8.761

NB 0.068 0.305 0.068 0.059 0.184 0.606 0.553
MLP 0.825 0.832 0.825 0.826 0.539 0.771 14.855
KNN 0.796 0.808 0.796 0.784 0.611 0.776 0.754

RF 0.915 0.920 0.915 0.908 0.749 0.835 2.107
LR 0.956 0.956 0.956 0.954 0.881 0.921 19.964
DT 0.834 0.836 0.834 0.832 0.647 0.816 0.739

Weighted k-mers

SVM 0.293 0.201 0.293 0.158 0.037 0.510 30.304
NB 0.017 0.014 0.017 0.014 0.027 0.523 0.088

MLP 0.275 0.168 0.275 0.159 0.037 0.511 16.368
KNN 0.193 0.186 0.193 0.159 0.052 0.516 0.661

RF 0.278 0.198 0.278 0.180 0.061 0.519 1.066
LR 0.285 0.178 0.285 0.164 0.043 0.513 1.648
DT 0.265 0.174 0.265 0.174 0.055 0.517 0.064

Weighted PWM

SVM 0.852 0.850 0.852 0.849 0.741 0.863 3.257
NB 0.028 0.015 0.028 0.018 0.048 0.553 0.093

MLP 0.760 0.740 0.760 0.748 0.393 0.695 28.944
KNN 0.751 0.755 0.751 0.738 0.555 0.743 0.635

RF 0.801 0.830 0.801 0.783 0.622 0.759 3.285
LR 0.861 0.859 0.861 0.856 0.755 0.882 8.702
DT 0.651 0.662 0.651 0.653 0.391 0.706 0.450
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Figure 2. Represents the accuracies of machine learning classification algorithms obtained from an
error-free set of 8172 SARS-CoV-2 genome sequences with different embedding generation methods

3.2. Robustness Evaluation of Machine Learning Classification Algorithms Using Different

Embedding Methods

We considered 8172 clean SARS-CoV-2 sequences and incorporated errors specific
to PacBio, ONT, and the random protocol, as described in the methods section. This
approach helped to generate three different types of datasets: genome sequences with
typical PacBio sequencing errors, ONT sequencing errors, and random errors. To evaluate
the robustness of the machine learning models with embedding methods on the three
different datasets, we train the models with clean SARS-CoV-2 sequences and test them on
error-incorporated sequences.

3.2.1. The Robustness Results for PacBio Sequencing Error-Incorporated Datasets
Table 3 displays the accuracy values of various machine learning classification algo-

rithms that used different embedding methods on SARS-CoV-2 genome sequence datasets
simulated at two different depths, 5 and 10, with PacBio sequencer-specific errors incor-
porated. Furthermore, Figure 3 reveals that the accuracy values for machine learning
algorithms ranged from 0.001 to 0.276 across all embedding methods. The spaced k-mers
embedding method, in general, performed better than other embedding methods, achiev-
ing the highest accuracy value of 0.276 for the maximum number of algorithms for the
depth-5 sequencing dataset, and a similar trend was observed for the depth-10 dataset.
The reason for this is that the spaced k-mers method employs g-mers and k-mers to decrease
the sparsity and size of k-mers in the genome sequence. As a result, it generates fixed-length
vectors that capture the occurrences of all possible k-mers, which are then used to construct
frequency vectors representing the frequency of each k-mer in the sequence. The accuracy
results confirm that as the depth decreases, the error rate increases, resulting in a decrease
in the performance of machine learning models. The model’s performance did not improve
significantly by increasing sequencing depth from 5 between the two SARS-CoV-2 genome
sequence datasets.
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Table 3. Provides a comprehensive analysis of the robustness of 8172 SARS-CoV-2 genome sequences
under two different sequencing depths (5 and 10) and specific errors associated with the PacBio
sequencer. The results of this analysis, which are based on the identification of optimal values, have
been highlighted in bold for ease of interpretation.

Embed. Method ML Algo.

Depth-5 Simulated Error Depth-10 Simulated Error

Acc. Prec. Recall
F1

Weigh.

F1

Macro

ROC-

AUC
Train. Runtime (s) Acc. Prec. Recall

F1

Weigh.

F1

Macro

ROC-

AUC
Train. Runtime (s)

OHE

SVM 0.276 0.076 0.276 0.119 0.011 0.500 181,443.9 0.276 0.076 0.276 0.119 0.011 0.500 188,143.3
NB 0.276 0.076 0.276 0.119 0.011 0.500 1452.37 0.276 0.076 0.276 0.119 0.011 0.500 1450.059

MLP 0.087 0.008 0.087 0.014 0.004 0.500 2833.82 0.172 0.030 0.172 0.051 0.007 0.500 1763.060
KNN 0.276 0.076 0.276 0.119 0.011 0.500 126.632 0.276 0.076 0.276 0.119 0.011 0.500 119.041

RF 0.172 0.030 0.172 0.051 0.007 0.500 300.639 0.276 0.220 0.276 0.120 0.011 0.500 306.980
LR 0.021 0.000 0.021 0.001 0.001 0.500 77099.6 0.021 0.000 0.021 0.001 0.001 0.500 71666.1
DT 0.172 0.030 0.172 0.051 0.007 0.500 890.873 0.030 0.087 0.030 0.002 0.001 0.500 441.523

WDGRL

SVM 0.276 0.076 0.276 0.119 0.011 0.500 8.056 0.276 0.076 0.276 0.119 0.011 0.500 8.117
NB 0.001 0.000 0.001 0.000 0.000 0.500 0.053 0.001 0.000 0.001 0.000 0.000 0.500 0.052

MLP 0.276 0.076 0.276 0.119 0.011 0.500 9.374 0.276 0.076 0.276 0.119 0.011 0.500 16.305
KNN 0.172 0.030 0.172 0.051 0.007 0.500 1.724 0.172 0.030 0.172 0.051 0.007 0.500 1.936

RF 0.276 0.076 0.276 0.119 0.011 0.500 0.711 0.276 0.076 0.276 0.119 0.011 0.500 0.552
LR 0.172 0.030 0.172 0.051 0.007 0.500 0.500 0.172 0.030 0.172 0.051 0.007 0.500 0.574
DT 0.276 0.076 0.276 0.119 0.011 0.500 0.006 0.276 0.076 0.276 0.119 0.011 0.500 0.006

String Kernel

SVM 0.276 0.076 0.276 0.119 0.011 0.500 19.994 0.276 0.076 0.276 0.119 0.011 0.500 18.068
NB 0.001 0.000 0.001 0.000 0.000 0.500 1.873 0.001 0.000 0.001 0.000 0.000 0.500 1.957

MLP 0.276 0.076 0.276 0.119 0.011 0.500 71.414 0.276 0.076 0.276 0.119 0.011 0.500 59.946
KNN 0.276 0.076 0.276 0.119 0.011 0.500 2.390 0.276 0.076 0.276 0.119 0.011 0.500 2.409

RF 0.276 0.076 0.276 0.119 0.011 0.500 14.867 0.276 0.076 0.276 0.119 0.011 0.500 16.127
LR 0.276 0.076 0.276 0.119 0.011 0.500 75.829 0.276 0.076 0.276 0.119 0.011 0.500 75.556
DT 0.087 0.008 0.087 0.014 0.004 0.500 6.013 0.029 0.001 0.029 0.002 0.001 0.500 5.979

Spaced k-mers

SVM 0.276 0.076 0.276 0.119 0.011 0.500 73.149 0.276 0.076 0.276 0.119 0.011 0.500 60.317

NB 0.276 0.076 0.276 0.119 0.011 0.500 6.302 0.276 0.076 0.276 0.119 0.011 0.500 4.487

MLP 0.276 0.076 0.276 0.119 0.011 0.500 126.596 0.016 0.000 0.016 0.000 0.001 0.500 101.059
KNN 0.276 0.076 0.276 0.119 0.011 0.500 1.945 0.276 0.076 0.276 0.119 0.011 0.500 2.076

RF 0.276 0.076 0.276 0.119 0.011 0.500 8.278 0.276 0.076 0.276 0.119 0.011 0.500 3.487

LR 0.276 0.076 0.276 0.119 0.011 0.500 23.153 0.276 0.076 0.276 0.119 0.011 0.500 19.397

DT 0.086 0.007 0.086 0.014 0.004 0.500 1.455 0.172 0.030 0.172 0.051 0.007 0.500 0.433

Weighted k-mers

SVM 0.276 0.076 0.276 0.120 0.011 0.500 63.260 0.276 0.076 0.276 0.120 0.011 0.500 62.970
NB 0.001 0.000 0.001 0.000 0.000 0.500 0.870 0.001 0.000 0.001 0.000 0.000 0.500 0.697

MLP 0.276 0.076 0.276 0.120 0.011 0.500 29.469 0.276 0.076 0.276 0.120 0.011 0.500 25.876
KNN 0.071 0.005 0.071 0.009 0.003 0.500 1.970 0.071 0.005 0.071 0.009 0.003 0.500 1.979

RF 0.276 0.076 0.276 0.120 0.011 0.500 1.683 0.276 0.076 0.276 0.120 0.011 0.500 1.640
LR 0.276 0.076 0.276 0.120 0.011 0.500 2.404 0.276 0.076 0.276 0.120 0.011 0.500 2.378
DT 0.276 0.076 0.276 0.120 0.011 0.500 0.098 0.276 0.076 0.276 0.120 0.011 0.500 0.097

Weighted PWM

SVM 0.276 0.079 0.276 0.120 0.013 0.501 8.651 0.276 0.076 0.276 0.120 0.011 0.500 10.205
NB 0.002 0.000 0.002 0.000 0.000 0.500 0.787 0.002 0.000 0.002 0.000 0.000 0.500 0.622

MLP 0.005 0.000 0.005 0.000 0.000 0.500 24.250 0.005 0.000 0.005 0.000 0.000 0.500 31.357
KNN 0.276 0.076 0.276 0.120 0.011 0.500 2.358 0.276 0.076 0.276 0.120 0.011 0.500 2.828

RF 0.172 0.030 0.172 0.051 0.007 0.500 4.826 0.276 0.076 0.276 0.120 0.011 0.500 6.342
LR 0.013 0.000 0.013 0.000 0.001 0.500 13.294 0.013 0.000 0.013 0.000 0.001 0.500 17.801
DT 0.071 0.005 0.071 0.009 0.003 0.500 0.694 0.046 0.002 0.046 0.004 0.002 0.500 0.793

Figure 3. Cont.
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Figure 3. Represents the robustness of machine learning classification algorithms with respect to
specific errors related to the PacBio sequencer on a set of 8172 SARS-CoV-2 genome sequences.
The analysis was carried out using various embedding generation techniques, and the results were
obtained separately for two different sequencing depths: 5 and 10. The presentation of results is
segregated into two sections, with the top section representing the outcomes for a depth of 5 and the
bottom section representing the findings for a depth of 10.

3.2.2. The Robustness Results for Oxford Nanopore Technologies (ONT) Sequencing
Error-Incorporated Datasets

Table 4 displays the accuracy values obtained from different machine learning algo-
rithms using various embedding methods on two SARS-CoV-2 genome sequence datasets
with depths of 5 and 10, respectively, which were generated from long-reads contain-
ing Oxford Nanopore Technology (ONT) sequencer-specific errors. Moreover, Figure 4
presents a heatmap that visualizes the accuracy values, which ranged from 0.001 to 0.276.
The weighted k-mers embedding method resulted in the highest accuracy values for the
majority of the machine learning algorithms on both datasets, i.e., depths of 5 and 10.
Because each k-mer is given a weight depending on its inverse document frequency under
the weighted k-mers technique, this method generates fixed-length vectors that capture the
existence of all potential k-mers. These vectors are then used to create frequency vectors
that indicate the frequency of each k-mer in the sequence. However, due to the lower
sequencing depth with ONT sequencer-specific errors, poor-quality SARS-CoV-2 genome
sequences were generated, leading to a significant decrease in the predictive performance
of machine learning algorithms.
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Table 4. Provides a comprehensive analysis of the robustness of 8172 SARS-CoV-2 genome se-
quences under two different sequencing depths (5 and 10) and specific errors associated with the
Oxford Nanopore Technology (ONT) sequencer. The results of this analysis, which are based on the
identification of optimal values, have been highlighted in bold for ease of interpretation.

Embed. Method ML Algo.

n2020 5⇥ Simulated Error n2020 10⇥ Simulated Error

Acc. Prec. Recall
F1

Weigh.

F1

Macro

ROC-

AUC
Train. Runtime (s) Acc. Prec. Recall

F1

Weigh.

F1

Macro

ROC-

AUC
Train. Runtime (s)

OHE

SVM 0.122 0.133 0.122 0.112 0.022 0.501 70,679.0 0.106 0.127 0.106 0.094 0.018 0.500 103,909.2
NB 0.276 0.076 0.276 0.119 0.011 0.500 1075.20 0.276 0.076 0.276 0.119 0.011 0.500 833.594

MLP 0.071 0.097 0.071 0.010 0.003 0.500 3906.45 0.276 0.076 0.276 0.119 0.011 0.500 1539.707
KNN 0.189 0.130 0.189 0.134 0.019 0.501 82.195 0.189 0.133 0.189 0.134 0.017 0.500 108.649

RF 0.072 0.141 0.072 0.076 0.008 0.500 276.773 0.241 0.116 0.241 0.147 0.016 0.500 319.020
LR 0.272 0.108 0.272 0.122 0.011 0.500 67103.9 0.270 0.130 0.270 0.124 0.012 0.500 68286.4
DT 0.166 0.134 0.166 0.103 0.017 0.501 460.552 0.163 0.127 0.163 0.087 0.013 0.500 411.342

WDGRL

SVM 0.244 0.108 0.244 0.147 0.015 0.501 8.906 0.214 0.119 0.214 0.138 0.016 0.502 8.812
NB 0.011 0.094 0.011 0.019 0.002 0.496 0.063 0.184 0.129 0.184 0.089 0.011 0.501 0.060

MLP 0.268 0.085 0.268 0.122 0.012 0.500 30.652 0.192 0.137 0.192 0.116 0.013 0.502 28.833
KNN 0.261 0.150 0.261 0.127 0.013 0.500 0.382 0.185 0.145 0.185 0.120 0.018 0.502 0.374

RF 0.109 0.147 0.109 0.080 0.012 0.499 2.572 0.153 0.151 0.153 0.090 0.014 0.500 2.383
LR 0.125 0.073 0.125 0.074 0.009 0.500 1.088 0.191 0.167 0.191 0.088 0.011 0.501 1.058
DT 0.103 0.148 0.103 0.074 0.012 0.499 0.048 0.166 0.157 0.166 0.093 0.014 0.501 0.047

String Kernel

SVM 0.144 0.134 0.144 0.137 0.024 0.500 20.179 0.154 0.142 0.154 0.147 0.025 0.501 18.168
NB 0.004 0.000 0.004 0.000 0.001 0.503 2.019 0.004 0.000 0.004 0.000 0.001 0.499 1.803

MLP 0.137 0.135 0.137 0.135 0.026 0.501 59.144 0.132 0.139 0.132 0.134 0.028 0.502 49.297
KNN 0.195 0.123 0.195 0.132 0.020 0.500 2.877 0.189 0.137 0.189 0.147 0.022 0.500 2.807

RF 0.249 0.116 0.249 0.144 0.015 0.500 15.951 0.263 0.157 0.263 0.153 0.016 0.501 15.812
LR 0.157 0.130 0.157 0.141 0.023 0.500 78.382 0.171 0.140 0.171 0.153 0.024 0.500 76.744
DT 0.130 0.129 0.130 0.129 0.023 0.500 5.910 0.137 0.140 0.137 0.137 0.026 0.501 5.969

Spaced k-mers

SVM 0.132 0.147 0.132 0.133 0.039 0.508 23.890 0.193 0.208 0.193 0.198 0.092 0.535 20.470
NB 0.004 0.000 0.004 0.000 0.002 0.503 3.843 0.006 0.003 0.006 0.001 0.004 0.502 4.476

MLP 0.112 0.142 0.112 0.118 0.025 0.502 58.597 0.176 0.192 0.176 0.178 0.051 0.514 44.872
KNN 0.225 0.150 0.225 0.146 0.018 0.500 3.024 0.222 0.177 0.222 0.181 0.035 0.508 2.920

RF 0.206 0.148 0.206 0.162 0.033 0.506 4.026 0.232 0.196 0.232 0.207 0.062 0.519 4.038
LR 0.135 0.151 0.135 0.137 0.040 0.509 70.516 0.198 0.211 0.198 0.202 0.097 0.538 57.721
DT 0.131 0.140 0.131 0.128 0.028 0.502 1.050 0.145 0.176 0.145 0.157 0.050 0.516 1.011

Weighted k-mers

SVM 0.276 0.076 0.276 0.119 0.011 0.500 73.858 0.276 0.076 0.276 0.119 0.011 0.500 74.108

NB 0.001 0.000 0.001 0.000 0.000 0.500 0.778 0.001 0.000 0.001 0.000 0.000 0.500 0.805
MLP 0.276 0.076 0.276 0.119 0.011 0.500 30.145 0.276 0.076 0.276 0.119 0.011 0.500 31.810

KNN 0.172 0.030 0.172 0.051 0.007 0.500 2.079 0.172 0.030 0.172 0.051 0.007 0.500 1.937
RF 0.276 0.076 0.276 0.119 0.011 0.500 1.763 0.276 0.076 0.276 0.119 0.011 0.500 1.645

LR 0.276 0.076 0.276 0.119 0.011 0.500 2.557 0.276 0.076 0.276 0.119 0.011 0.500 2.473

DT 0.276 0.076 0.276 0.119 0.011 0.500 0.116 0.276 0.076 0.276 0.119 0.011 0.500 0.116

Weighted PWM

SVM 0.203 0.141 0.203 0.157 0.023 0.501 11.123 0.240 0.170 0.240 0.177 0.028 0.504 9.825
NB 0.002 0.000 0.002 0.000 0.000 0.498 0.808 0.003 0.000 0.003 0.000 0.000 0.500 0.814

MLP 0.086 0.141 0.086 0.091 0.022 0.501 36.325 0.119 0.180 0.119 0.132 0.035 0.513 27.304
KNN 0.193 0.127 0.193 0.129 0.017 0.501 2.745 0.188 0.148 0.188 0.151 0.025 0.503 2.475

RF 0.175 0.141 0.175 0.151 0.031 0.505 5.887 0.203 0.175 0.203 0.181 0.042 0.510 4.699
LR 0.084 0.152 0.084 0.093 0.026 0.505 16.420 0.143 0.194 0.143 0.155 0.051 0.519 12.654
DT 0.069 0.128 0.069 0.077 0.021 0.501 0.830 0.101 0.152 0.101 0.115 0.030 0.504 0.670

Figure 4. Cont.
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Figure 4. Represents the robustness of machine learning classification algorithms with respect to
specific errors related to the Oxford Nanopore sequencer on a set of 8172 SARS-CoV-2 genome
sequences. The analysis was carried out using various embedding generation techniques, and the
results were obtained separately for two different sequencing depths: 5 and 10. The presentation of
results is segregated into two sections, with the top section representing the outcomes for a depth of
5 and the bottom section representing the findings for a depth of 10.

3.2.3. The Robustness Results for Random-Error-Incorporated Datasets
In this section, we evaluated the accuracy of various machine learning algorithms

using different embedding methods on two SARS-CoV-2 genome sequence datasets. These
datasets were generated by incorporating random errors into long-reads at depths of 5 and
10. The results, presented in Table 5 and Figure 5, indicate that the weighted k-mers method
achieved the highest accuracy of 0.276 across the majority of machine learning classification
algorithms for both datasets. The main objective of incorporating random errors into the
SARS-CoV-2 datasets was to compare the performance of machine learning models on
datasets generated by different types of errors, including sequencer-specific errors and
random errors. Interestingly, we found that there was not much difference in accuracy
between these two types of errors.

Figure 5. Cont.
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Figure 5. Represents the robustness of machine learning classification algorithms with respect to
random errors incorporated into a set of 8172 SARS-CoV-2 genome sequences. The analysis was
carried out using various embedding generation techniques, and the results were obtained separately
for two different sequencing depths: 5 and 10. The presentation of results is segregated into two
sections, with the top section representing the outcomes for a depth of 5 and the bottom section
representing the findings for a depth of 10.

Table 5. Provides a comprehensive analysis of the robustness of 8172 SARS-CoV-2 genome sequences
under two different sequencing depths (5 and 10) and incorporated with random errors. The results
of this analysis, which are based on the identification of optimal values, have been highlighted in
bold for ease of interpretation.

Embed. Method ML Algo.

Random 5⇥ Simulated Error Random 10⇥ Simulated Error

Acc. Prec. Recall
F1

Weigh.

F1

Macro

ROC-

AUC
Train. Runtime (s) Acc. Prec. Recall

F1

Weigh.

F1

Macro

ROC-

AUC
Train. Runtime (s)

OHE

SVM 0.101 0.138 0.101 0.078 0.016 0.500 157054.2 0.107 0.145 0.107 0.093 0.019 0.501 74,697.7
NB 0.276 0.076 0.276 0.119 0.011 0.500 1113.271 0.276 0.076 0.276 0.119 0.011 0.500 1119.210

MLP 0.013 0.000 0.013 0.000 0.002 0.500 1503.268 0.267 0.085 0.267 0.125 0.012 0.500 1625.962
KNN 0.223 0.131 0.223 0.136 0.018 0.500 91.708 0.204 0.135 0.204 0.139 0.018 0.501 100.443

RF 0.202 0.112 0.202 0.126 0.014 0.500 259.562 0.186 0.114 0.186 0.112 0.013 0.500 405.555
LR 0.271 0.109 0.271 0.122 0.011 0.500 70035.07 0.272 0.123 0.272 0.122 0.012 0.500 83434.3
DT 0.157 0.126 0.157 0.075 0.012 0.500 776.263 0.164 0.136 0.164 0.086 0.014 0.500 943.475

WDGRL

SVM 0.276 0.076 0.276 0.119 0.011 0.500 8.776 0.275 0.118 0.275 0.158 0.017 0.502 8.842
NB 0.001 0.000 0.001 0.000 0.000 0.500 0.068 0.005 0.105 0.005 0.007 0.001 0.500 0.051

MLP 0.276 0.076 0.276 0.119 0.011 0.500 31.487 0.272 0.129 0.272 0.125 0.012 0.500 21.765
KNN 0.276 0.076 0.276 0.119 0.011 0.500 0.348 0.169 0.142 0.169 0.119 0.016 0.500 0.383

RF 0.087 0.008 0.087 0.014 0.004 0.500 2.488 0.072 0.138 0.072 0.086 0.015 0.499 2.510
LR 0.087 0.008 0.087 0.014 0.004 0.500 1.069 0.267 0.115 0.267 0.127 0.012 0.500 1.059
DT 0.001 0.000 0.001 0.000 0.000 0.500 0.046 0.068 0.135 0.068 0.083 0.015 0.499 0.046

String Kernel

SVM 0.169 0.132 0.169 0.142 0.024 0.501 19.308 0.140 0.128 0.140 0.133 0.023 0.500 18.115
NB 0.003 0.004 0.003 0.001 0.002 0.501 1.894 0.004 0.000 0.004 0.000 0.001 0.500 1.811

MLP 0.138 0.135 0.138 0.134 0.023 0.500 83.035 0.124 0.130 0.124 0.127 0.024 0.500 60.808
KNN 0.213 0.128 0.213 0.130 0.017 0.500 2.773 0.211 0.136 0.211 0.142 0.020 0.501 2.816

RF 0.263 0.140 0.263 0.140 0.014 0.500 15.649 0.257 0.122 0.257 0.146 0.015 0.500 15.715
LR 0.180 0.132 0.180 0.148 0.022 0.500 79.243 0.158 0.129 0.158 0.141 0.022 0.500 76.412
DT 0.134 0.129 0.134 0.129 0.023 0.500 6.318 0.125 0.130 0.125 0.127 0.022 0.499 5.773

Spaced k-mers

SVM 0.080 0.139 0.080 0.080 0.012 0.501 17.010 0.124 0.155 0.124 0.118 0.022 0.501 22.282
NB 0.005 0.004 0.005 0.001 0.002 0.502 3.879 0.006 0.000 0.006 0.001 0.002 0.500 4.803

MLP 0.133 0.111 0.133 0.060 0.011 0.500 41.950 0.116 0.163 0.116 0.107 0.019 0.502 47.611
KNN 0.263 0.092 0.263 0.121 0.012 0.500 2.763 0.246 0.143 0.246 0.125 0.014 0.500 2.646

RF 0.210 0.128 0.210 0.148 0.019 0.501 3.921 0.233 0.139 0.233 0.159 0.023 0.502 3.587
LR 0.147 0.144 0.147 0.116 0.018 0.501 64.852 0.135 0.171 0.135 0.128 0.027 0.505 60.750
DT 0.156 0.128 0.156 0.088 0.015 0.501 0.952 0.127 0.135 0.127 0.096 0.020 0.501 1.006

Weighted k-mers

SVM 0.276 0.076 0.276 0.119 0.011 0.500 76.220 0.276 0.076 0.276 0.119 0.011 0.500 78.497

NB 0.001 0.000 0.001 0.000 0.000 0.500 0.774 0.001 0.000 0.001 0.000 0.000 0.500 0.749
MLP 0.276 0.076 0.276 0.119 0.011 0.500 23.639 0.276 0.076 0.276 0.119 0.011 0.500 34.219

KNN 0.172 0.030 0.172 0.051 0.007 0.500 1.932 0.172 0.030 0.172 0.051 0.007 0.500 1.915
RF 0.276 0.076 0.276 0.119 0.011 0.500 1.851 0.276 0.076 0.276 0.119 0.011 0.500 1.749

LR 0.276 0.076 0.276 0.119 0.011 0.500 2.706 0.276 0.076 0.276 0.119 0.011 0.500 2.626

DT 0.276 0.076 0.276 0.119 0.011 0.500 0.100 0.276 0.076 0.276 0.119 0.011 0.500 0.102

Weighted PWM

SVM 0.203 0.133 0.203 0.145 0.020 0.500 11.330 0.196 0.143 0.196 0.151 0.024 0.501 8.605
NB 0.002 0.000 0.002 0.000 0.000 0.500 0.594 0.002 0.000 0.002 0.000 0.000 0.500 0.766

MLP 0.016 0.087 0.016 0.015 0.004 0.499 43.680 0.037 0.110 0.037 0.036 0.012 0.501 29.312
KNN 0.214 0.108 0.214 0.122 0.015 0.500 2.758 0.201 0.143 0.201 0.130 0.017 0.500 2.618

RF 0.163 0.122 0.163 0.129 0.017 0.501 5.649 0.181 0.134 0.181 0.136 0.019 0.501 4.915
LR 0.061 0.104 0.061 0.058 0.010 0.499 16.697 0.070 0.131 0.070 0.074 0.014 0.502 12.835
DT 0.061 0.138 0.061 0.058 0.015 0.500 0.875 0.073 0.136 0.073 0.070 0.018 0.500 0.673
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3.3. Comparison of Predictive Performance of Machine Learning Models on SARS-CoV-2

Sequences with Errors from PacBio and ONT Sequencers

Third-generation sequencing (TGS) technologies such as PacBio and Oxford Nanopore
Technology (ONT) are widely used for generating long reads with high error rates. How-
ever, PacBio technology sequences a DNA molecule multiple times, whereas ONT se-
quences it only twice, making PacBio generate higher-quality data with lower error rates
compared to ONT. Through our analysis, we discovered that the errors specific to the
PacBio sequencer have a more significant impact on the predictive performance of machine
learning (ML) models on SARS-CoV-2 sequences than errors specific to ONT. Our ML
model’s predictive performance indicated that PacBio sequences have a lower error rate
than ONT, but the low predictive power was due to low coverage. We also compared the
predictive performance of ML models on SARS-CoV-2 sequences incorporated with random
errors with other datasets and observed that the results were similar to the ONT scenario.

3.4. Analysis of Coronavirus Variants Based on Different Embedding Vector Generation Methods

Using t-SNE Visualization

The t-distributed stochastic neighbor embedding (t-SNE) method is a widely used data
visualization technique that preserves the pairwise distances between high-dimensional
vectors in a lower-dimensional space. In this study, we employed t-SNE to visualize
the clustering patterns of different coronavirus variants using various embedding vector
generation methods, including one-hot encoding (OHE), Wasserstein-distance-guided rep-
resentation learning (WDGRL), string kernel, spaced k-mer, weighted k-mer, and weighted
position weight matrix (PWM). Our analysis, as depicted in Figure 6, reveals the remarkable
effectiveness of t-SNE in capturing the pairwise distance information and unveiling the
distinct grouping patterns of coronavirus variants in a two-dimensional space. Specifically,
the t-SNE plot based on the OHE vector demonstrated that AY.44 variants were more
clearly grouped than the other variants, while the WDGRL vector maintained a smaller
group of variants than OHE vector. Furthermore, the string-kernel-vector-based t-SNE
plot exhibited clearer grouping patterns of AY.44 and other variants than the OHE vector.
Additionally, the spaced k-mer vector method showed a more distinct grouping of variants
compared to other embedding vector generation methods. The weighted k-mer vector
exhibited grouping of the variants similar to the WDGRL vector, whereas the weighted
PWM vector showed grouping patterns more similar to the string kernel vector.
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(a) OHE (b) WDGRL

(c) String Kernel (d) Spaced k-mers

(e) Weighted k-mers (f) Weighted PWM

Figure 6. The t-SNE visualizations of the original set of 8172 error-free SARS-CoV-2 sequences
employing different embedding techniques, including OHE, WDGRL, string kernel, spaced k-mers,
weighted k-mers, and weighted PWM. The visualizations offer a comparative analysis of the effec-
tiveness of each embedding method, with notable prominence observed for AY.44 variants in the
t-SNE plot based on the string kernel vector. For optimal viewing experience, it is advised to refer to
the figure in color.
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4. Conclusions

In summary, the COVID-19 pandemic has emphasized the importance of transitioning
from second-generation to third-generation sequencing technology. Long-read sequencing
has emerged as a critical tool for unraveling various genomic features of the SARS-CoV-2
virus. With the ability to read longer DNA fragments, ranging from 5000 to 30,000 base pairs,
long-read sequencing addresses a major challenge faced by short-read sequencing methods.
This extended read length has enabled researchers to detect complex structural variations,
including large insertions/deletions, inversions, repeats, duplications, and translocations.
Additionally, long-read sequencing has facilitated the phasing of SNPs into haplotypes
and facilitated de novo genome assembly. However, it is important to acknowledge that
the high error rate associated with long-read sequencing may impact the interpretation of
SARS-CoV-2’s biology.

In this study, we have demonstrated that the accuracy of machine learning classifi-
cation algorithms in analyzing SARS-CoV-2 genome sequences greatly depends on the
selection of appropriate embedding methods. Our analysis of simulated SARS-CoV-2 viral
sequences underscores the value of employing robust embedding techniques capable of ef-
fectively managing errors and accurately categorizing genome sequences considering both
long-read sequencer-specific errors and random error types. Specifically, we have identified
certain embedding methods, such as WDGRL and weighted PWM, as superior in detecting
errors and classifying sequences. These findings highlight the potential of machine learning
in analyzing SARS-CoV-2 genomic data, contributing to a deeper understanding of the
virus’s evolution and spread.

In the future, we want to explore more sequence embedding and advanced deep
learning methods on SARS-CoV-2 genomic sequences generated at different long-read
sequencing depths with third-generation sequence-specific errors. These experiments
will help us develop robust models to improve our ability to adapt long-read sequencing
technology (PacBio and ONT) to produce error-free SARS-CoV-2 genome sequences to
understand and answer critical biological questions.
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Abbreviations

The following abbreviations are used in this manuscript:

WGS Whole Genome Sequencing
TGS Third-Generation Sequencing
GISAID Global Initiative on Sharing All Influenza Data
ML Machine Learning
DL Deep Learning

WDGRL
Wasserstein Distance-based Generative Adversarial Network for Representa-
tion Learning

PacBio Pacific Biosciences
ONT Oxford Nanopore Technologies
OHE One-Hot Encoding
PWM Position Weight Matrix
SVM Support Vector Machine
NB Naïve Bayes
MLP Multi-Layer Perceptron
KNN K-Nearest Neighbors
RF Random Forest
LR Logistic Regression
DT Decision Tree
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