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meliorated through a declarative programming style in which programmers directly express the independence
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In our proposed paradigm, programmers write programs in a familiar, sequential manner, with the added
ability to explicitly express the conditions under which code fragments sequentially commute. Putting such
commutativity conditions into source code offers a new entry point for a compiler to exploit the known
connection between commutativity and parallelism. We give a semantics for the programmer’s sequential
perspective and, under a correctness condition, find that a compiler-transformed parallel execution is equivalent
to the sequential semantics. Serializability/linearizability are not the right fit for this condition, so we introduce
scoped serializability and show how it can be enforced with lock synthesis techniques.

We next describe a technique for automatically verifying and synthesizing commute conditions via a new
reduction from our commute blocks to logical specifications, upon which symbolic commutativity reasoning
can be performed. We implemented our work in a new language called Veracity, implemented in Multicore
OCaml. We show that commutativity conditions can be automatically generated across a variety of new
benchmark programs, confirm the expectation that concurrency speedups can be seen as the computation
increases, and apply our work to a small in-memory filesystem and an adaptation of a crowdfund blockchain
smart contract.
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1 INTRODUCTION

Writing concurrent programs is difficult. Researchers and practitioners, seeking to make life easier,
have developed better paradigms for concurrent programming, such as concurrent objects [Herlihy
and Wing 1990], transactional memory [Harris and Fraser 2003; Herlihy et al. 2003; Herlihy and Moss
1993; Saha et al. 2006], actors [Armstrong 1997], parallel for [Allen et al. 2005], goroutines [Prabhakar
and Kumar 2011], ownership [Matsakis and Klock 2014], composable atomicity [Golan-Gueta et al.
2015] and others. As another strategy, compiler designers have instead sought to automatically
parallelize programmers’ sequential programs (see, e.g. [Blume et al. 1994; Blume and Eigenmann
1992; Li et al. 1990]). Others have devised more declarative and/or domain-specific programming
models such as Fortress [Steele Jr. 2005]. Some have extended concurrent collection programming
with graph-based languages for GPUs [Grossman et al. 2010]; some have introduced DSLs for
grid computing [Orchard et al. 2010]; some delay side effects in blocks [Lindley 2007]; others
aim to further separate high-level programming from low-level concurrent programming (e.g. the
Habanero project [Barik et al. 2009]). (See also the DAMP Workshop [Various 2012].) Still others
aim to improve proof techniques (e.g. [Brookes and O'Hearn 2016; Elmas 2010; Jones 1983; Owicki
and Gries 1976; Vafeiadis 2010]) so that verification tools can complement the error-prone task of
concurrent programming.

Meanwhile, it has been long known that commutativity can be used for scalability in concurrent
programming, dating back to the database community [Bernstein 1966; Korth 1983; Weihl 1988,
1983] and, more recently, for system building [Clements et al. 2015]. There have thus been a
growing collection of works aimed at exploiting commutativity [Dickerson et al. 2017, 2019;
Hassan et al. 2014; Herlihy and Koskinen 2008; Kulkarni et al. 2011, 2008, 2007; Ni et al. 2007],
synthesizing/verifying commutativity [Aleen and Clark 2009; Bansal et al. 2018; Gehr et al. 2015; Kim
and Rinard 2011; Koskinen and Bansal 2021], and using commutativity analysis for parallelization in
compilers [Rinard and Diniz 1997] and blockchain smart contracts [Pirlea et al. 2021]. Despite works
on declarative programming models for concurrency and separate works that exploit commutativity,
to our knowledge none have yet sought to combine the two by giving the programmer (or automated
analysis) agency in specifying commutativity directly in the programming language.

Programming with commutativity. In this paper, we introduce a new sequential programming
paradigm in which explicit commutativity conditions are expressions that are part of the program-
ming language, to be exploited by the compiler for concurrent execution. Specifically, we introduce
commute statements of the form:

commute (expr) {{ stmt; } { stmt, }}

The idea is to allow programmers to continue to write programs using sequential reasoning and,
still from that sequential perspective, express the conditions under which statements commute. For
example, a programmer may specify that statements incrementing and decrementing a counter ¢
commute when the counter’s value is above 0. Putting commutativity directly into the programming
language has three key benefits:

(1) Sequential programming: Programmers need only reason sequentially, which is far more
approachable than concurrent reasoning. The semantics are simply that non-deterministic
behavior is permitted when commute conditions hold and, otherwise, resort to sequencing in
the order written.

(2) Sequential verification/inference: These commutativity conditions can be automatically verified
or even synthesized without the need to consider all interleavings.
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(3) Parallel execution: Once commutativity conditions are available, they can be used within the
compiler and combined with lock synthesis (existing techniques,e.g. [Cherem et al. 2008;
Vechev et al. 2010] or new, more targeted techniques) to generate parallel compiled programs.

Since programmers write with the sequential semantics in mind, we naturally would like to
ensure a concurrent semantics that is equivalent to the sequential semantics, but interestingly, the
de facto standards of serializability [Papadimitriou 1979] and linearizability [Herlihy and Wing 1990]
do not quite fit the bill. Parallelizing programs with arbitrarily nested (and sequentially composed)
commute blocks, involves a recursive sub-threading shape. We introduce scoped serializability to
describe a sufficient condition under which the concurrent semantics is equivalent to the sequential
semantics when used with valid commutativity conditions. Scoped serializability is stronger than
serializability; though that may at first seem distasteful, it is necessary to capture the structure of
nested commute blocks, and it is not bad given that the program can be written by only thinking
of its sequential semantics in contrast to, say, transactional memory where the programmer must
decide how to organize their program into threads and atomic sections. Scoped serializability can
then be enforced through lock synthesis techniques, another area of ongoing research (e.g. [Cherem
et al. 2008; Flanagan and Qadeer 2003; Golan-Gueta et al. 2015; Vechev et al. 2010]). While such
existing techniques can be applied here, they are geared to a more general setting. We describe
alternative locking and re-write strategies that incur less mutual exclusion and are more geared
toward scoped serializability.

Although commute conditions can be written by programmers, we next focus on correctness and
describe how such conditions can be automatically verified and even inferred. We describe a novel
translation from commute programs to an embedding as a logical specification, for which recent
techniques [Bansal et al. 2018] and tools [Servois 2018] can verify or synthesize commutativity
conditions. The pieces do not immediately align: commute blocks occur in program contexts (with
local/global variables) and our language provides support for nested commute blocks as well as
builtin primitives such as dictionaries. We show that, nonetheless, these program pieces can be
translated to logical specifications and those specifications can then be used to synthesize commute
conditions via abstraction-refinement [Bansal et al. 2018]. Synthesized conditions can sometimes
be overly complex and/or describe only trivial cases (due to incompleteness in those algorithms) so
a programmer may instead wish to manually-provide a commute condition and, in such cases, we
verify the provided condition.

We implement our work in a front-end compiler/interpreter for a new language called Veracity’,
built on top of Multicore OCaml [mul 2014] 4.12.0, and a new commutativity condition verifier/syn-
thesizer [Servois2 2022], using a variety of underlying SMT solvers. Veracity uses the recent highly
concurrent hashtable implementation 1ibcuckoo [libcuckoo 2013]. We publicly released Veracity,
as well as 30 benchmark programs which are, as far as we know, the first to include commute state-
ments directly in the programming language. We provide a preliminary experimental evaluation,
offering promising evidence that (i) commute conditions can be automatically verified/inferred, (ii)
as expected, speedups can be seen as the computation size grows, and (iii) commute blocks could be
used in applications such as in-memory file systems and blockchain smart contracts.

Contributions. In summary, our contributions are:

e commute statements, a new sequential language statement that weakens sequential composi-
tion, to explicitly express commutativity conditions, which are then used for parallelization.
e (Sec. 4) Sequential and concurrent semantics for the language.

1A portmanteau of “verified” and “commutativity.”
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e (Sec. 5) A correctness condition for parallelization called scoped serializability that, with
commutativity, implies that the concurrent semantics are equal to the sequential semantics.
We also present methods for automatically enforcing scoped serializability.

e (Sec. 6) A method for automatic verification and synthesis of commute conditions, via an
embedding into ADT specifications.

o (Sec. 7) A frontend compiler/interpreter for a new language Veracity, built in Multicore OCaml
with libcuckoo and a new implementation of Servois [Servois2 2022].

e (Sec. 8) A preliminary evaluation demonstrating synthesized commute conditions, scaling
speedups, and relevant applications.

As indicated throughout this paper, some formal detail is deferred to our technical report [Chen
et al. 2022a].

Limitations. While we have implemented a multicore interpreter, we reserve back-end compilation
questions for future research: there is much to be explored there, particularly with respect to
optimization. When commute blocks contain loops, we infer/verify commute conditions by first
instrumenting loop summaries [Ernst 2020, 2022; Kroening et al. 2008; Silverman and Kincaid
2019; Xie et al. 2017] with havoc/assume. We used Korn? [Ernst 2022] and some manual reasoning
to increase Korn’s precision, but we plan to fully automate loop support in the future. Scoped
serializability is formalized in Sec. 5.5, and we argue that it can be automatically enforced. Because
automated lock synthesis is a research area largely orthogonal to our work, and would involve
implementing other orthogonal components (such as alias analysis), our prototype implementation
does not perform lock synthesis automatically. Rather, we manually applied the procedure of
Sec. 5.5 and detail how it applied to our benchmarks in Sec. 8.

2 OVERVIEW

We begin with some simple examples to illustrate how a programmer may use commute statements
and, from these examples, outline the challenges addressed in this paper. The following is perhaps
the most trivial example: commuting blocks that increment and decrement a value.

commute(true) { { ¢ = c-x; } { c = c+y; } }

These two operations clearly commute: the final value of c is the same regardless of the order in
which the blocks are executed, due to the natural commutativity of integer arithmetic. Moreover,
this holds for any initial value of c, justifying the trivial commutativity condition of true. Compiler
optimizations can exploit simple situations like this where commutativity always holds and paral-
lelize with a lock to protect the data race [Rinard and Diniz 1997]. In this example, the overhead of
parallelization is not worth it, so let us move to more examples. Now consider a case where the
condition is not simply true, and must be specified.

Example 2.1 (Conditional commutativity - simple.vcy).

commute (c>a) {
fi: { t = foo(c>b); a
fo: { u = bar(c>a); }
3

=a - |t]; 3

Above we refer to the two blocks labeled f; and f, as the two “fragments” (or co-fragments) of
the commute statement®. We assume that foo and bar are pure but costly computations. In this
case, the programmer has written the commutativity condition c>a. Although f, reads the variable
a which is written by fy, it only observes whether or not c>a. Moreover, {; may modify a, but will

Zhttps://github.com/gernst/korn
3The terminology is chosen to avoid nebulous words like “blocks;” “statements,” and “nested”
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only decrease its value, which does not impact the boolean observation c>a made by f,. Hence,
the fragments commute whenever c>a initially. It is necessary to include a condition because
when the condition does not hold, the operations may not always commute (they only commute if
foo returns a value with magnitude greater than a-c, which may be computationally difficult to
determine a priori) and we must resort to sequential execution. Note that, throughout this paper, we
mostly use commute statements with only two fragments, although our implementation supports
N-ary commute statements.

We emphasize that a programmer needs to reason only in the sequential setting. However, as
detailed below, our compiler can transform the above program into a concurrent one, permitting foo
and bar to execute in parallel when c>a and resort to sequential execution otherwise. Note that it is
not possible to parallelize these computations with a simple dataflow analysis. The challenge is that
bar(c>a) cannot be moved above a = a - [t| in the absence of protection from the commutativity
condition. More generally, the intuition is that each fragment may make observations about the
state, and also perform mutations to the state. These fragments can be parallelized if the mutations
made by one do not change the observations made by the other, which is captured by the notion of
commutativity and specified in the commute expression. Furthermore, the compiler does not need
to introduce any locks because there is a read-write in one fragment, but only a single read in the
other, and the commute condition ensures that reading before or after the write does not matter.

Example 2.2 (Counter control flow - calc.vcy).

commute (c>0) {
fi: { x = calc1(a); ¢ = ¢ + (x*x); }
fo: { if (c>0 && y<0)
{ ¢c =c-1; z = calc2(y);
else
{ z = cale3(y); } }

Example 2.2 considers commute blocks with fragments that have control flow. calc1/calc2/calc3
are again pure calculations. Here, again using only sequential reasoning, the programmer has
provided the commute condition c¢>0. This is necessary because, e.g., if c is 0 initially, then in one
order ¢ will be x*x and in the other order, ¢ will be (x*x)-1. A compiler can use this sequential
commutativity condition to parallelize these operations, provided that it also ensures a new form
of serializability (detailed in the next subsection) through lock synthesis techniques. In this case, a
single lock must be synthesized to protect access to c, yet allow parallel execution of calcl with
calc2/calce3 (i.e, f; holds the lock only during the c read/write, and f; holds the lock from the
beginning until before the call to calc2/calc3). This enforces serializability of the fragments, so
we may treat them as atomic points in the execution, and then, due to the commutativity condition,
it does not matter which point occurs first.

This example also shows that other orthogonal strategies such as future/promises [Chatterjee
1989; Liskov and Shrira 1988] do not subsume commute blocks. A promise for the value of x must
be evaluated at the end of f; before beginning f, because x is used in f;. Promises cannot avoid the
data-flow dependency across {; into f;. By contrast, commutativity allows a compiler to execute
the fragments out of order, effectively relaxing the data dependency (e.g. although ¢ may change,
¢>0 will not). (In future work one could combine promises with commute blocks.)

Commutative computation appears in many contexts beyond counters, e.g., vector or matrix
multiplication:

Example 2.3 (Multiplication - matrix.vcy).

commute (y == @) {
{ int sc = scale(y); int yo = vy;
X = X*sc; y = 3*%y; z = z - 2%yg; }
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{ int yo = y;
X = 5%x; y = 4xy; z = 3%z - yo;
out = summarize(z); }}

Here the resulting vector (x,y,z) can be the same in either order of the blocks, but only in certain
cases. This is nearly a trivial diagonal matrix multiplication, except for a non-diagonal contribution
to z. Under the condition that y=0 initially, however, the contribution vanishes. Our compiler can
exploit this commutativity and execute these fragments in parallel, synthesizing a lock for the
read/writes to x/y/z. If the scale and summarize computations are time-consuming, then there is
a large payoff for parallelizing: locks are held for only small windows, and execution of the costly
scale and summarize can overlap.

It is increasingly common for programming languages to have builtin abstract datatypes (ADTs),
such as dictionaries/hashtables, queues, stacks, etc. These present further opportunities for sequen-
tial commutativity-based programming and automatic parallelization through highly concurrent
implementations of those ADTs. Consider the following example:

Example 2.4 (Builtin dictionaries - dict.vcy).
commute (res # input) {

fi: { t = calc(x); stats[res] =

fo: { y = stats[inputl; y =y +
3}

t; 3
X; }

’

Above, stats is a dictionary/hashtable, with a put operation in fragment f;, and a get in f;. The
programmer (or our analysis) has provided a commutativity condition that the keys are distinct,
using sequential reasoning.

Hashtables have appealing commutativity properties [Bronson et al. 2010; Herlihy and Koskinen
2008; Ni et al. 2007], well understood sequential semantics and recent high-performance concurrent
implementations [Li et al. 2014; Liu et al. 2014] such as 1ibcuckoo [libcuckoo 2013]. For this example,
the memory accesses do not conflict except on the hashtable. Thus, the compiler can translate
the commute block to be executed concurrently simply by using a hashtable with a concurrent
implementation like 1ibcuckoo, with no other locking needed. That linearizable implementation
ensures the atomicity of the operations on stats and the commutativity condition (res # input)
ensure that f; will commute with f, regardless of the interleaving. commute blocks that use other
builtin ADTs such as Sets, Stacks or Queues can similarly benefit from this strategy (locking may
be necessary when there are multiple such operations in each fragment).

As seen in the examples above, our work is particularly suited to settings with long pure
computations mixed with commutative updates to shared memory. Examples might include in-
memory filesystems, machine learning, and smart contracts. In this paper we focus on the theoretical
foundations, algorithms, and verification/synthesis with some predictable empirical results. We
defer real-world applications and integration to future work.

2.1 Semantics of commute

As our proposed language has no explicit fork or clone command, a user cannot explicitly ex-
press concurrency. Instead, a user (and, later, our automated techniques) can express sequential
nondeterminism of code fragments through commute statements. Parallelism is only introduced by
our compiler, which exploits the commute-specified allowance of nondeterminism. Incorporating
such commute statements into a programming language has semantic implications. A natural goal
is to provide a concurrent semantics that somehow corresponds to a sequential semantics, e.g.
trace inclusion, simulation, etc. However, the programming model is also distinct from many
prior models that involve explicit fork/clone, like transactional memory or concurrent objects
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and their respective correctness conditions: serializability/opacity [Guerraoui and Kapalka 2008;
Papadimitriou 1979] or linearizability [Herlihy and Wing 1990].

Because of this, there is also a distinction in what correctness condition is appropriate. To see the
distinction from transactional memory and serializability, consider the following commute blocks:

Example 2.5 (Nested commute blocks — nested.vcy).
y = 0; x = 1;
commute (true) {
{ commute(true)
fir { x :=0; %
fo: { x 1= x % 2;
= 1:

3}
fs:{ if (x>=2) y : .

A notion of serializability adapted for this setting might require that any execution be equivalent
to some serial order of fi, f,, and fs. This would permit the interleaved execution:

y:=0, x:=1, frix:=x*2, fs:y:=1, f;:x:=0

ending in a final state where x=0 and y=1. However, the semantics of commute in our language do
not permit a serial order where f; occurs between (f;;f,) nor between (f2;f1).

In Section 4 we introduce sequential and concurrent semantics for a simple language augmented
with commute statements. From the programmer’s perspective, the semantics of commute statements
are naturally captured through nondeterminism. At runtime however, our interpreter uses a parallel
execution semantics through recursively nested threading. We define a correctness condition called
scoped serializability which is stronger than serializability, yet ensures an equivalence between the
concurrent semantics and the sequential semantics. This equivalence means that the program can
be automatically parallelized. We then give some techniques for enforcing scoped serializability.
One can naively use mutual exclusion or existing lock synthesis techniques (which were designed
for programs with explicit forking). We then discuss improved locking techniques that are more
geared to this nested, pair-wise setting. We show that in certain cases, some sound reordering of
fragments can minimize or even eliminate the need for locking.

2.2 Automated Verification and Inference of commute Conditions

A key benefit of commute statements is that we can use sequential reasoning to discover commutativ-
ity conditions (i.e. we do not have to consider interleavings). Commute conditions are often simple
enough for programmers to write, though they must be correct in order for parallel execution to be
safe. In Sec. 6 we turn to this correctness issue and discuss how to automatically verify or even
infer these conditions.

A collection of recent techniques and tools have emerged pertaining to commutativity reasoning.
Bansal et al. [2018] used a counterexample-guided abstraction refinement (CEGAR) strategy in the
Servois tool [Servois 2018] to synthesize commutativity conditions of object methods’ pre/post
specifications, but not the ad hoc code that appears in our commute blocks. Koskinen and Bansal
[2021] verified commutativity conditions of source code through reachability. We found that in this
setting, the reachability approach introduced many unnecessary, extraneous paths and variables
(reducing performance and complicating conditions), and that SMT solvers struggled in many
cases. Finally, Pirlea et al. [2021] described an abstract interpretation that tracks the linearity
of assignments to determine when operations always commute. Yet our commute blocks need
conditions for commutativity, and also have non-linear behaviors such as matrix multiplication,
modulus, calls to builtin ADTs, etc.

We enable automated verification or inference of commute conditions through a novel embedding
of commute block fragments into logical specifications, fit for verification with SMT or inference
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with the abstraction-refinement of Bansal et al. [2018]. The translation is not immediate: commute
statements occur within the context of a program, mutate global/local variables, invoke builtin ADTs
such as dictionaries, and may involve nested commute statements. The idea is thus to capture the
program context for the given commute block as the pre-state, then translate each fragment’s code
into a logical postcondition, describing how the fragment mutates the context. Builtin operations
are treated by “inlining” their specification, and nested commute blocks can be treated as sequential
composition, thanks to their sequential semantics. Synthesized commute conditions can then be
reverse translated back into the source language. Sometimes these conditions may be overly complex
or too trivial; thus, a programmer still may wish to provide their own condition, which can be
verified via the same embedding.

2.3 The Veracity Programming Language

We implemented our work in a prototype front-end compiler and interpreter for a new language
called Veracity*, built on top of Multicore OCaml [mul 2014] and Servois2 [Servois2 2022], a new
implementation of the Bansal et al. [2018] algorithm®. Our interpreter performs the embedding
to verify and synthesize commute conditions, and uses Multicore OCaml domains and a foreign
function interface to 1libcuckoo [libcuckoo 2013] for concurrent execution of commute statements.

We created a suite of 30 benchmark programs featuring commute blocks, which are available in
the benchmarks directory of the Veracity repository®. We first show that Veracity can synthesize
commutativity conditions for most of these programs, which include a variety of program features:
linear expressions, non-linear expressions, vector multiplication, builtin ADTs, modulus, nesting,
arrays, and loops. When these synthesized conditions are too complex, we show that better manual
ones can be verified.

We next confirm the expectation that concurrent execution offers a speedup over sequential
execution, and that speedup increases as non-conflicting computations increases. Although no
existing programs are written with commute statements, we examine two case studies in which
we adapted programs to use commute statements, including an Algorand smart contract and an
in-memory file system.

3 PRELIMINARIES

We provide some basic background and definitions used throughout this paper.

States. A state o € ¥ is a partial mapping Varnames Ll MemLocs — V, i.e. the disjoint union of
variable names and memory locations, to program values. We assume a notion of scope, and that
each program variable statically refers to a unique element of the state. We assume that states can
be composed and decomposed by scope, i.e., o = 0y ® oy, and that relations on ¥ are also relations
over the decomposed states. We work with equality on states =~ in the usual way (e.g., equivalence
of valuation of accessible, primitive variables).

Syntax. We begin with syntax and contextual semantics for a standard programming language.
The language involves constants ¢, references, mutable variables and declarations. Here, we use t to
refer to the language of types, v to refer to the language of variables, and e to refer to the language
of expressions. We omit them here for brevity as we assume a standard definition for them.

c
lval

int | string | bool | () | ref v-decls € | v-decls’

varname | ref v-decls’ == tv=e|to=ev-decls

4 Available at https://github.com/veracity-lang/veracity.
5 Available at https://github.com/veracity-lang/servois2.
®https://github.com/veracity-lang/veracity/tree/main/benchmarks
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(v,0) ~ (o(v),0)
(colerl,o)  ~ ([eoler] : ref]o, o)
(new t[cl,o) ~ (p,o[p— new t[c] :ref])
(new hashtable[ty, t;],0) ~> (p,o[p > new hashtable[t, ;] : ref])
(cobop c1,0) ~  {[eo bop ¢1]o, o)
(lval = c,0) ~» (skip,o[lval — c])
(while(e){s},o) ~ (if(e){s;while(e){s}}else{skip},o)
(skip;s,0) ~ (s,0)
(if(true){sotelse{s;},0) ~> (sp,0)
(commute(false){{so}{s1}},0) ~ {so;$1,0)

Fig. 1. Selection of reduction rules for the grammar.

We next define redexes in the usual way, with added redexes for our commute statements. We have
included a selection of the redexes.

r == v]cler] | new t[c] | new hashtable[ty, t] | co bop ¢
| lval = ¢ | while(e){s} | skip;s | if (true){so}else{s;:}
| ‘ | commute (false){{so}{si}} | commute(true){{sl}{sz}}‘

Our language includes typical constructors, arrays, structures, as well as “builtin” ADTs. (Our
theory applies to general ADTs, but for illustration here we use hashtables.) The new feature of the
language is the commute statement, which we discuss in the next section. We next define contexts in
the usual way, with contexts allowing for reductions inside commutativity conditions. The notation
H|[r] means “H with the e replaced by r”.

H == eo|H;s|uopH|cbopH|Hbope|H?e,:e
| Hle] | c[H] | H.fieldname | lval =H | tv=H
| if (H){so}else{s;} | | commute(H){{so}{s1}} |

The language of programs is that of all such H{[r], with the trivial program skip.

Small step semantics. Redex reduction rules are denoted (r, o) ~> (r’, ¢’) and several are given
in Fig. 1 to give an idea of how they operate. Most of the reductions are straight-forward. The first
two reductions merely look up the requested variable or memory in the state. The next two create
a new data structure within the state. A boolean operation between constants gets reduced to the
result of that operation on the constants. An assignment statement updates the state so that the
value assigned to now refers to the constant being assigned. A while loop unrolls one iteration.
Sequential composition with skip reduces to the next statement. An if statement predicated on a
constant true reduces to the then branch (likewise, a constant false reduces to the else branch).
Finally, a commute statement on a constant false reduces to a sequential composition. We defer
the interesting case of a commute block on a constant true to Sec. 4. The full list of redexes and
redex reductions can be found in our technical report [Chen et al. 2022a].

For simplicity, these are all atomically reducible expressions. Note that memory cannot be read
and written in one atomic step. Intuitively, one can think of a redex as a simplest possible program,
and the above reductions define the simplest possible steps that such a program can take. However,
not all programs are redexes, so for each redex reduction Redex, we use the SS rule below:

(r,o) ~ (r',o’)

oy~ (o) R THL Loy~ (HI L) O
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For a program s = H|[r], a small step reduction is an application of the SS rule above. We shall show
later that every valid program may be decomposed into a unique redex and context, thus the redex
reductions generalize into a small step semantics for the whole language. Note if s is a redex, we
recover the redex rule by taking H = e.

Suppose we are given program statements sy and s;, and a predicate on states (pﬁf : 2 — B.

Definition 3.1 (Sufficient Commutativity Condition). ¢’ is a sufficient commutativity condition
for so and s; when

Yoo, 0%, 0% (S0 51, 00) ~* (skip, o)A
(81580, 00) ~" (skip,05) =
@5 (0p) = true = oy, =0y

That is ¢ tells when the order of execution has no effect on the final state.

4 SEMANTICS OF COMMUTE BLOCKS

In this section we define semantics for the language, which has been extended with the addition of
commute statements. The full formalization of the semantics is given in Chen et al. [2022a], but we
here summarize the key rules. We define three semantics, denoted sem ::= seq | nd | par which
represent (resp.) sequential, nondeterministic, and parallel semantics.

Sequential semantics. For sequential semantics ~».4 in the language extended with commute
blocks, we add a simple reduction that treats commute as sequential composition:

(commute(true){{so}, {s1}},0) ~>seq (S0;51,0)

Nondeterministic semantics. We next provide another form of sequential (non-interleaved) se-
mantics. The nondeterministic semantics ~»,4 has two possible reductions that could take place
when a commutativity condition has been reduced to true:

(commute (true){{so}, {s1}},0) ~>na (s0;s1,0)
(commute(true){{so}, {s1}},0) ~>na {s1;50,0)

The two rules for commute (true) apply to the same syntax. This allows for non-determinism when
reducing this redex.

Concurrent semantics. The next semantics permits the bodies of (possibly nested) commute blocks
to execute concurrently. To this end, we define a configuration € that expresses the nested threading
nature of the semantics. Formally, there are two constructors of a configuration:

€ == (s,0) | ((€,Cy),s,0)

Configurations are either a top-most configuration (code and state), or a nested configuration,
executing in the context of an outer remaining code s and outer state o. For convenience, we also
define €.st, the state of a configuration, by: (s, o).st = o and ((€y, €), s, 0).st = 0. The statements
of a commute, which we will call fragments, execute code that naturally has access to variables
defined in outer scopes. Thus when fragments step, they need to access to outer scopes. To allow
for this, we define appending a state to a configuration (€ @ o) as performing the & operation on
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the outermost state in the configuration. Nested configurations arise when reaching a commute
block. That is, start with the following redex and corresponding reduction:

<CommUte(true) {{50}’ {51}}, O-> “”par <(<505 0>’ (Sl’ 0>)’ Skip’ G)

where 0 represents new local (and empty) scopes of variables for each fragment. This is then
included in the par semantics with the following rule:

(r, 0) ~par <(<SO> 00>s (51, Gl))s r,! 0)
(H[r], o) ~par (({s0, 00), (51, 01)), H[r'], o)
Execution in the concurrent semantics involves (possibly recursively) descending into sub-

components to find a leaf fragment that can take a step. This is done using the following left (or,
similarly, right) projection rule:

Fork-Step

Co®o~par €0 ) C@o~pu Cl oo
- —~ Left-Proj - S
((€y, €y), s, 0) 2 par <(60,€1),3,0> (€, €y),s,0) ~par ((C,, (51),5,0'>

When the two fragments of a commute have both reduced their statements to skip, the Join rule
can be used. Updates to the inner scope are lost, but updates to the outer scope o are preserved:

Right-Proj

(((sKip. o), (SKip, 01),502) ~rpar (s.02) 1"

Note that join is blocking; both threads must reach skip before s begins to reduce.

Labels. As we detail below, concurrent executions involve nested commute blocks’ threads taking
interleaved steps together. These steps will involve multiple occurrences of the Left-Proj and
Right-Proj rules, used to drill down to specific nested commute block fragments, to allow them
to take a step, and we now define labels to uniquely refer to these fragments. This will later be
used in our correctness condition. A label Lab : {L,,R, | n € N}* is a sequence of choices to be
made (corresponding to Left- or Right-Proj) to access the sub-configuration of a given commute
block’s transitions. Ignoring the subscripts, L indicates a Left-Proj and R indicates a Right-Proj. As
an example, if there are no sequentially composed commute blocks, applying Proj-Left twice then
Proj-Right once may yield a fragment label of LyLyRy. Subscripts are then needed to cope with the
fact that commute blocks may be sequentially composed, which naturally creates a forced order on
the execution. Consider the labels given for the program below:

Example 4.1 (Fragment labels).

commute (...) {
Ly: {
commute (...) {
L()L(): { }
LoRo: { ... } }
commute (...) {
LoLi: { ... }
LoRi: { ... 1} 3}
}
Ro: { . 3
}

The first subscripts on Ly and Ry are simply 0 because the outer commute block is not sequentially
composed. However, within Loy, there are sequentially composed commute blocks. Each one’s
fragments begin with the prefix Ly, but then the first commute block’s fragments use subscripts
0, while the second commute block’s fragments use subscripts 1. These labels uniquely identify
fragments and we next use these labels in the definition of execution to identify the transitions
associated with each fragment’s statement.
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Executions. An execution o (w.r.t. a semantics sem) is a sequence of configurations with labeled
transitions. That is, let € be the set of configurations and T be the set of transitions. Then an
execution g is an element of the set € x (T x €)*, such that every transition is valid (c, ~>2% cp41).
We assume all executions terminate and reach a final configuration (skip, of) for some of. A
transition label ¢ has two parts: Lab x ({e} U (Var x Val)).

The first component is the fragment label, which as previously described, uniquely identifies
some commute block’s fragment. For example, during an execution of Ex. 4.1, the transitions that
happen within each of the fragments would have the corresponding fragment label. The second
part of an execution’s transition label is either € or v + c. The small steps only at most modify the
value of one state element at a time, so this is sufficient to capture all effects. We write € |Jser, o if
the initial configuration of ¢ is €, and let o notate the final configuration of the execution .

Execution Trees. As we will discuss in detail later, it is natural to think of executions as being
sequences of transitions made on nodes of a (labeled) tree, where branching arises due to the
nesting and composition of commute blocks. Fragment labels may be associated with a path in such
trees, with each element of the label, directing the path’s choices at branches down the tree. For
the above example, the tree might pictorially be represented as follows:

0 commute

seq

commute

commute

Above seq is used for sequential composition, with branches labeled 0 and 1, referring to the
composition sequence. commute block fragments are identified by their label. Each execution step
of this example can be thought of as addressing a specific node (e.g. LyL;) and having that node
take a step.

5 A CONDITION FOR SAFE PARALLELIZATION

As discussed in Sec. 2.1, our programming model is distinct from, say, transactional memory in
which users explicitly fork threads. Our goal is instead to safely interchange the parallel semantics
for the sequential semantics, ie., show that [s]per = [s]seq- We now define this notion of safe
parallelization and then introduce a new correctness condition—scoped serializability—which is
distinct and slightly stronger than serializability. Intuitively this new correctness condition is still a
relationship between interleaved executions and serial executions, however there are restrictions
on which serial executions are permitted, based on the nested structure of commute blocks. We then
show that, when combined with valid commutativity conditions, scoped-serializability achieves
the goal.

5.1 Definitions and Properties

We work with a semantics based on post state equivalence rather than traces (projecting actions out
of executions) because, although the latter works well for serializability, the former is simpler in
our setting. Our notion of post-state equivalence also permits weaker notions of state equivalence
(i.e. observational equivalence), and corresponds more closely to standard definitions of commu-
tativity [Bansal et al. 2018; Dimitrov et al. 2014; Kim and Rinard 2011; Pirlea et al. 2021]. Toward
defining the goal, we begin with some definitions:
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Definition 5.1 (Big-Step Semantics). For program s, let [s]sem : = — P(Z) be defined as:

[[s]]sem = Aoy. {O-f | 3o : (s, 00) Jsem o Nor.st= O-f}

Intuitively, the semantics [[s]sem is the set of final states of executions. Naturally, [so]|sem, (00,) =
[s1]sem, (00,) when they are equal as sets, and we say that [so]sem, is equivalent to [[s1]sem, When,
Vo, [s0]semy (0) = [$1]sem, (o). A statement s is deterministic in sem when Vo : [[s]sem (o) is singleton.
Finally, we say that s is parallelizable if [s]seq = [s]par, i.e., defined in terms of end states of a
program under different semantics. In the next subsection we will discuss a condition that ensures
this goal.

There are a few key properties of the semantics, given below, that are later used in proving other
lemmas or the main theorem. These properties are formalized and proved in [Chen et al. 2022a].

(1) Redex Uniqueness: Every nontrivial program has a unique redex and context. We use this
property to be able to show that, in every non-final execution step of the program, there is
always a unique successor (determinism of the sequential semantics).

(2) Conditional Determinism: If the redex is not a commute (true), then the next step is unique.
In other words, the only source of nondeterminism is from commute statements.

(3) Commutativity Correctness: If every commute block guard in s is a sufficient commutativity
condition then s is deterministic in nd. This draws a connection between commutativity
ensuring determinism.

(4) Inclusion: End states obtained through the seq semantics are a subset of those of nd are a
subset of those of par. Due to this property, proving correctness of parallelization later will
only require the opposite direction.

5.2 Serializability

Before we introduce our correctness condition, we would like to show that a traditional notion of
serializability is insufficient for parallelization. Recall that a serializable execution is one for which
there exists a semantically equivalent execution that has no interleaving of threads [Papadimitriou
1979]. For a definition of serializability in our notation, see our technical report [Chen et al. 2022al].

To see that serializability is insufficient, consider Ex. 2.5 from Sec. 2. Suppose that the sub-
statement x = x * 2 locks x so that it appears to execute atomically (we defer formalization of
locks). An acceptable serial execution (omitting the interleaved configurations) of this program is:

(e,y — 0),

(6, x> 1),

(LoRg, x > x % 2), «—— Here,x*2=2

(Ro, €), «— Reads x’s value as 2
(Ro,y ¥ 1),

(L()L(),X — 0)

After this execution we have o = {x — 0,y — 1}. However, no pairwise re-ordering of the
commutative blocks can result in such a state; if statement if (x>=2) { y=1; } executes first
then y will be 0, and if it executes second, then y will still be 0.

In other words, serializability permits interleavings of outer, sibling commute statements with
inner, nested commute statements. We thus seek a stronger correctness condition that constrains
which serializations are permissible, with order requirements that account for which pairs of
(nested, composed) fragments can be permuted.
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0 commute

commute

commute

Fig. 2. Diagram showing the structure of Ex. 4.1. Dotted lines indicate which nodes can be re-ordered to obtain
possible serialization orders. For example, a serial order with Ry between LoL; and LoR; is not permitted.

5.3 Scoped Serializability

We now define scoped serializability, which restricts interleavings so that every execution in par is
semantically equivalent to one in nd. Scoped serializability is still, like serializability, a property
specifying that interleaved traces must be equivalent to some serial traces, but that set of possible
serial traces is restricted by the nesting/composition of commute block pairs. For the aforementioned
Ex. 2.5, we will only allow interleavings that are equivalent to one of the following cases:

(fisT2)s s, (Fosfi)sfs, Fas (fisfe), and T35 (fa; To)-

In the first two cases, the nested first pair of fragments proceed in one or the other order and
complete before the outer second fragment f; whereas, in the second two cases, f; occurs first.

We will refer to these possible serialization orders in terms of “swapping” fragments in the
definitions below. To intuit the structure of permissible swaps in serial executions, it is helpful to
use a tree, whose shape is determined by the nesting/composition of commute statements. Consider
Fig. 2, showing the structure of the fragment nesting in Ex. 4.1. There is a node for every commute
block in the program. The permissible serial orders are those obtained by swapping siblings (i.e. we
may change the order of children of any commute node). Then, the set of permissible serial orders
are those obtained from an in-order walk of a tree in which children have been swapped arbitrarily.

We formalize this by using fragment labels to track our current path in the tree. We begin with a
single execution:

Definition 5.2 (Scoped serial execution). Execution p is scoped serial if:

Vp e {L,, Ry | n e N}*:
((V¢,¢' € o: t.frhasprefix p- L A ¢ .frhas prefix p- Ry = { precedes ¢’ in p)
V(VE, ¢ €p: (C.frhasprefix p-Li A .frhasprefix p- R, = ¢’ precedes ?in p))

Above, ¢.fr is the fragment label of ¢. The key idea here is to identify the scope of commute
fragments through labels, and then require a serializability condition for the L/R pair of the given
scope. Consider, e.g., a single commute block, possibly with children. For an execution to be scoped-
serial, we require all of the transitions from one of the fragments to execute prior to all the transitions
from its co-fragment (the other statement in the commute). Next, when there are nested commute
blocks, the quantification over prefixes requires that we expect this same property to hold locally
for all nested commute blocks. Without nesting, we recover the standard notion of serial.

The permissible scoped serial execution trees are defined by letting the fragment labels describe
the path from the root to the given fragment. If two fragments have matching prefixes, then that
prefix defines a common ancestor of the fragments. Since the ordering is decided prior to the
quantification of transitions, we avoid the interleaving of nested fragments, as all nested fragments
must adhere to the same ordering relative to an ancestor’s sibling. Unsurprisingly, if an execution
is scoped-serializable, then it is also serializable.
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As a reminder, we do not restrict every execution to be non-interleaved. Rather, we only require
that interleaved executions must be equivalent to some such (scoped) serial alternative. We define
scoped serializability as such a weakening of scoped serial:

Definition 5.3 (Scoped Serializability). For execution ¢ such that € ||, 0, 0 is scoped serializable,
wrt € if and only if

30" : € [par o' A Q' is scoped serial A of.st = Q'f.st.

A program s is scoped serializable (or s-serializable) if every execution of s is scoped serializable.

5.4 Parallelizability

As our setting allows for a nested structure of commute statements, and also sequentially composed
commute statements, these must be reflected in the parallel semantics. To ensure parallelizability, this
structure must be preserved. While serializability is insufficient, we prove that scoped serializability
is a sufficient condition.

LEMMA 5.4. S-Serializable(s) = [s]na = [s]par
By adding commutativity correctness, we conclude our main theorem:

THEOREM 5.5 (SUFFICIENT CONDITION FOR PARALLELIZABILITY). If every commutativity condition
in s is valid and S-Serializable(s), then s is parallelizable.

Proor. By induction on maximum fragment label length of transitions in par executions of s.
Full proof in Chen et al. [2022a]. o

5.5 Enforcing Scoped Serializability

Note that any sufficient condition for pairwise serializability admits a condition for s-serializability
by inductively applying it on each commute statement. Imagine that we have first enforced s-
serializability for a sub-configuration. Then we can use a strategy for enforcing pairwise serial-
izability as an inductive step for enforcing s-serializability in outer scopes. We thus now discuss
techniques for enforcing pairwise serializability (and thus s-serializability).

Pattern 0: Naive Locking. To our knowledge, prior works have not focused on pairwise serializ-
ability, perhaps because it has not been useful in other settings (e.g., parallel composition). However,
we may still take the naive approach of locking from the first read/write on a common variable to
the last. For only two blocks, this likely would not yield performance gains, as it leads to mutual
exclusion, but in our nested commute setting, we can still aim for above 2Xx speedup due to the
nesting of commute statements.

Indeed because of the structure of our setting we can use and improve the possible gains from
pairwise serializability.

Pattern 1: Write/ReadOnly Intersection. In some cases, although both threads are reading/writing
multiple variables, it may be that, among the commonly accessed variables, one thread is only
reading from that set.

Let wr(s) be the set of variables that s writes to, and rd(s) be the set of variables that s reads from.
For each instance of a builtin ADT, we include that builtin’s variable name (accounting for aliasing)
in both wr(s) and rd(s) if a method is invoked on it. Then let the set of conflicting variables be as
follows:

con(sg,s1) = [wr(sg) Nwr(s))] U [wr(so) Nrd(s;)] U [rd(sy) Nwr(s;)]

Now let us consider the case where that (wr(sg) U rd(so)) N wr(s;) = 0. Then con(sg,s;) =
wr(sg) N rd(s;). We may consider the symmetrical case (with sy and s; swapped) as well. We
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propose a simple program transformation can be used to enforce s-serializability in cases where
this pattern holds. Suppose we are in the case where the commutativity condition holds (it may be
necessary, e.g., to copy the original code for when the condition does not hold). For each (conflicting)
variable v € con(sg, s1),

(1) Replace all reads of v in s; to that of a new var v,.
(2) Before execution of the commute block, add a statement vy = v.

Then all of s;’s reads will refer to the state prior to execution of s, regardless of whether s, executes
first or not. So every interleaving will be as if it were the case s1; 9. One can think of the above
process as snapshotting the state prior to potential modifications that may cause issues when
interleaved.

Pattern 2: Narrowing mutual exclusion. Now we consider the more general case, when there are
variables written by both threads. We can still use a single lock to enforce scoped serializability.
(For a formal treatment of locking in our semantics, refer to Chen et al. [2022a].) If the threads
lock on a common lock, they necessarily mutually exclude each other (and thus have no gains
from parallelization), so the goal is to merely minimize the amount of time that the lock is held.
Intuitively, this means we want all of the operations on conflicting variables as temporally close
as possible in each thread. As is done elsewhere [Cerny et al. 2013], this can be done via program
transformations.

We describe a method for reordering statements in commutative blocks so that each block may
be treated as an atomic point with respect to one another, i.e. the point when it acquires the singular
lock. Once again, this is for the case where the commutativity condition holds. Suppose we are
provided a data-flow graph for sy and s;. Identify all instructions (nodes) that refer to the set of
conflicting variables con(s, s;). Call this set C I, (resp. CIs,). Next, reorder instructions to be in
the following form:

(1) Instructions that are only ancestors of nodes in C7 g, (i.e., instructions whose data only flows
into the conflicting variables);

(2) lock();

(3) Instructions that are in, or that are both ancestors and descendants of (possibly distinct)
nodes in, CJ .

(4) Snapshot con(s, s1);

(5) unlock();

(6) Instructions that are only descendants of nodes in CJ, (i.e., instructions that are only
dependent on the conflicting variables).

(7) Instructions that are neither ancestors nor descendants of nodes in CZ,.

We use the same notion of snapshotting as in Pattern 1. This transformation is correct (assuming
proper instruction ordering within each of the four groups), as it preserves all data dependencies,
and it enforces pairwise serializability, as we may treat the fragments as executing sequentially in
the order of reaching the lock. Indeed, we can re-order most transitions in an execution, as:

e The statements in (1) for sy cannot have a dependency to the statements in (3) for s, as
otherwise they would cause writes in s, that are read in sy, a contradiction as then they would
be in CJ ,, and thus in (3).

e The statements in (6) for sy cannot have dependencies from the statements in (3) for s;, as
they have been modified to refer only to the local snapshot.

o All data dependencies across the blocks must involve a statement from (3). So, for example,
(1) for s; does not depend on (6) for s.
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Thus, we can reorder all transitions in (1) in the second thread to after (3) of the first, and all
statements in (6) and (7) of the first thread to before the (3) of the second, obtaining a serial
execution. In other words, the blocks may have some instructions that have read/write conflicts.
We first perform non-conflicting dependencies in parallel, so that we can minimize the time where
the conflict is locked. Then we synchronously perform the critical section, and finally we perform
any remaining actions in parallel. Thus we effectively minimize, as far as practical, the length of
the critical section, without violating any dataflow constraints.

For load balancing reasons, it may be practical to put (7) at the beginning of the block when
reordering s;. If fact, even when locking is non-trivial, using this technique can ensure correctness
at minimal performance cost with proper load balancing.

Toward implementing enforcement. As noted above, enforcement can be implemented using
existing techniques for lock synthesis. To implement pattern 0, one must employ a static analysis
to determine (perhaps an over-approximation of) the read and write sets of each fragment, and
introduce lock acquisition before each access of a common variable, as well as lock release at the
end of the fragment. To implement pattern 1, one must once again determine the read and write
sets of each fragment, in order to see if the transformation may be applied. Then, the snapshotting
may be implemented as a syntactic rewrite rule. Pattern 2 requires—in addition to the read/write
sets—a dataflow analysis, perhaps with an alias analysis for references. Then one must reorder
instructions and introduce locks appropriately.

Much of the above analyses are commonplace within compilers. As discussed in Sec. 7, Veracity is
currently implemented as an interpreter and we defer challenges involved in back-end compilation
of commute blocks to future work. We believe that the back-end stage of a compiler— where
such static analyses are widespread—is a better setting for implementing enforcement. Enforcing
serializability involves small-step atomic steps (e.g., lock acquisition, memory read/write, etc) and
thus in the back-end, where each IR instruction represents fewer steps than an original program
statement, it may be more effective and easier to perform the instruction reordering of pattern 2.

6 VERIFICATION AND INFERENCE OF COMMUTATIVITY CONDITIONS

For the parallelized version of the program to be correct, the commutativity conditions must
be sound. Although there are some recent techniques for verifying or inferring commutativity
conditions, these techniques do not quite fit our setting, as discussed in Sec. 9. For example, the
abstraction-refinement technique of Bansal et al. [2018] applies to logically specified abstract data-
types (ADTs) and not directly to code. In this section we will describe an embedding of programs
with commute statements (which may program context, involve nested commute statements, builtin
hashtables, loops, etc.) into such logical specifications, thus enabling us to use such abstraction-
refinement to synthesize conditions that can be used in our commute blocks, or to verify manually
provided conditions.

Since we target the abstraction-refinement synthesis algorithm of Bansal et al. [2018], we briefly
recall the input to this algorithm, which is a logically specified ADT O, defined as:

Definition 6.1 (Logical ADT specification).

0 = state : (Var, Type)list; methods : Meth list;
- eq . state X state; spec : Meth — (P,Q)

These objects include state defined as a list of variables, an equality relation on states, a finite list
of method signatures (without implementations), and logical specifications for each method. The
commutativity condition synthesis problem is then, for a given pair of method signatures m(x) : Meth
and n(7) : Meth, to find a logical condition ¢ in terms of the object’s state, and the arguments x and
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i, such that m and n commute according to the method specifications from every state satisfying ¢.
Bansal et al. [2018] give a method for doing so based on abstraction-refinement.

6.1 Embedding commute Blocks as Logical ADT Specifications

The challenge we now address is how to translate programs with commute blocks into logical object
specifications. For a given commute block with statements s; and s, and their program context E,
our translation Tr is defined below and yields an object O with two methods ms, and ms,.

Definition 6.2 (Embedding Tr). For commute fragment statements s; and s, in program context E,
Tr(E, commute s; sp) = O where

e O.state: We create an object variable for every global or local variable in environment E (that
is visible to the scope containing s; and s;).
e O.eq: o0 is equal to 0, provided that they agree on the values of all the variables in O.state.

e O.methods: Nullary methods ms, and ms,.
o O.spec: Associating these nullary methods with true preconditions and post-conditions given

by specOf in Fig. 3, i.e., [ms, > (true, specOf(s1)), ms, — (true, specOf(sz))]

Intuitively, the idea is to embed the current program context (including variables in scope
and builtins) as O’s state, and ms, () and ms,() as nullary methods corresponding to s; and sy,
respectively, whose pre/post specifications describe the changes to that context.

The last spec component translates commute fragment source code to a logical method specifica-
tion. The overall shape of the translation is akin to verification condition generation, introducing
indexed let-binding v; each time program variable v is mutated and, ultimately, constraining the
value of v in the postcondition (with respect to the Oth bindings) in terms of the most recent
let-binding. (Programs in our language are total and thus, preconditions are simply true.) The
output of our translation is a logical formula, written in SMTLIBv2 [Barrett et al. 2010]:

¢ == oVol|-glitopo|follevping|existsving|o®¢| true

Greek letters are used for logical terms. ® will be used for the type of terms. A formula ¢ is a well-
sorted term with sort boolean. The terms we use include let, ite, and exists, underlining formulae
constructors to distinguish from our language and algorithm.

The translation algorithm specOf is given in Fig. 3. First we convert any sequential composition
of statements into a list of statements (sf;.;), Where skip is the empty list. We proceed in an
SSA-like manner, creating an initial mapping id0 of indices for each variable and construct a let
term binding vy with v for each variable that is defined in the context E and accessed in the body
of the commute fragment. This binding will let us ultimately define the final value of v, denoted
Unews in terms of its initial value v. We then begin with translation Trs on s¢j,s. A call to (Trs s id)
recursively constructs the translation to a logical expression representing the postcondition of the
block. Within a given call to (Trs s id), if s is a final skip statement (i.e., if s is the empty list), then
an innermost formula is constructed that relates each vy, to the most recent binding for v in the
ID map. In the assignment case, e is first translated, which may accumulate additional variable
bindings, namely when e contains a call to a builtin ADT. Then a fresh binding for variable v is
created with the new value. In the if/else case, we recursively translate the condition expression
e to obtain a logical condition ¢.. We then represent branching via ite, with condition ¢, and the
remainder of the block tl appended to both the branches, recursively translated. In the case of a
nested commute block with fragments s and s}, our semantics permits a sequential interpretation
of commute, so we arbitrarily choose s{;s; and recursively translate this sequential composition.
Loops are supported by instrumenting loop summaries with havoc and assume, as detailed at the
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type idmap = Var - N

let rec Trg (e : expr) (id : idmap) :
idmap X @ x (id X @) list =

match e with

|0 — (id, v(d o)> [])

|e’®e” —
let (id’, ¢r, bindsy) = Trg e’ id in
let (id”, g, bindsg) = Trg ¢’ id” in
(id”, ¢ ® g, bindsy + bindsg)

| builtin adt 049, m é —
let (id_ret :: @args, binds) =
map (Trg e id) € in
let adt_id = id v,y in
let (¢, spec_binds) =

spec adt 054, M Qgrgs adt_id | in
(id[idyet + id[idret] +1],
¢, binds + spec_binds)

let specOf (s : stmt) : & =

let rec Trs (stmts : stmt list)
(id : idmap) : & =
match stmits with
I l1 = Av € dom(id) Vnew = (id o)
| (v=¢e) :tl—>
let (id’, @e, bindings) = Trg e id in
let bindings, v(iq’ 441) Qe in
Trg tl (id [0 — (id" 0) +1])
| (if e then s; else sp) = tl —
let (id’, @e, bindings) = Trg e id in
let bindings in
(ite e (Trs (s1 + ) id)
(Trg (so +tl) id"))
| (commute e s; sp) = tl —
‘ Trs id (sq + s3 + tl) ‘
| (assumee) :: tl —
let (, ¢, )=Trgeidin
o A Trs tlid
| (havoc hid) :: tl —
let hidpayoc = freshvar() in
exists hidnavoc in
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let hid(id hia+1) hidhavoc In

let spiq; = flatten s in
Trs tlid[hid — (id hid) + 1]

let s’ = summarizeLoops(sfiq;) in
letido=[v+> 0|0 € Vars(s')] in
let inits = {(vé o') | o' € Var(s))} in
let inits in Trs sfiqr idO

Fig. 3. Reducing a commute fragment’s statement s to a logical method specification.

end of this subsection. As usual, havoc existentially quantifies a new value and assume introduces
a new specified constraint, both with respect to the current binding IDs.

The translation of an expression Tr e id returns a triple (an updated id map, a translation of e
into logic, and possibly new variable bindings), and is mostly straightforward, except in the case of
a builtin ADT. This case requires us to instantiate the ADT’s logical specification for the current
calling context, so we first recursively translate each of the arguments in €, obtaining a set of local
bindings binds. We then use a helper method spec (omitted) to instantiate the arguments into the
ADT’s postcondition, and construct an SMT expression ¢ describing the return value and additional
bindings for the return value(s) (on a logical level, we may consider the ADT’s updated state to
be a return value, e.g. a hashtable has a set of keys, an integer size, and a finite map of keys to
values). In this way, the specification internals are “ferried” through the nested let statements and
constraints in the final embedding. The translation of builtins is illustrated (among other things) in
the following example:

Example 6.3 (Illustrating the embedding).

commute (c>0) {
s;: { ¢ = c+1; 3}
so: { if (c>0) { tbl[c] = 5;
3

c=c-1; } 3}
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We label the fragments above by their statements. We describe how specOf converts s, to a formula.
A map id0=[c — 0,tbl — 0] is created, as well as let-bindings ((co ¢) (¢bly tbl)). The first Trg
call is for the if-then-else, and it recursively translates the condition: Trg (c>0) id0, which takes
the ¢ ® 0 case, recursively translates c to cido ¢, and returns (id0, (gt ¢ 0), []). Now in the then
branch, Trs recursively translates the sequential composition. The assignment is syntactic sugar
for ht_put(tbl, c, 5).Here the recursive translation of the first argument translates argument c
to cp, and then a call is made to spec ht tbl put ¢y 5 (id tbl). This helper function instantiates
the specification to put as follows:
@put = (ite (mem co thlKy) (# 5 (select tblMy o)) true)
(tbIK1(ite  (mem co tblKy) tblKy (ins ¢y tblKp))
(tlb51 (ie (mem Co tblK()) tleO (tleO + 1))
binds = (tbIM; (ite  (mem cy tblKy)
(ite ((select tbiMy co) =5) tbIMy (store thlMy co 5))
(store tblMy ¢y 5)))

The above bindings involve three variables tblKj, tblS;, tblM; representing, resp., the set of keys, the
size, and the finite map of the hashtable after the get operation, with respect to the corresponding
previous variables tbIKy, tblSy, tbIMy. These variables model the standard hashtable semantics.
Returning to the Trs of the assignment statement, the new value of the state is bound to, then the
increment of c is translated to A k.let (c1(co — 1)) in k by a recursive call. After the assignment a
skip will be introduced, so an innermost constraint of the form (cjeqy = €1 A thlKyeyy = thlIKy A ...) is
constructed. Returning to the original Tr call on the if-then-else, the full translation is assembled:

let ((co ¢)...(tbIKy tbIK) ...)in true A
(ite (co > 0)
(let binds in (let (by @pur) in
(let (c1(co = 1)) in
(Chew = €1 A tblKyey, = thIK| A .. .))

Loop summaries. Loops are supported through summaries that can be computed by other tech-
niques (e.g. [Ernst 2020, 2022; Kroening et al. 2008; Silverman and Kincaid 2019; Xie et al. 2017]). We
calculated loop summaries using the Korn tool [Ernst 2022]. Details can be found in the appendix
of Chen et al. [2022a]. In some cases, Korn was not precise enough, so we manually strengthened
the summaries, but we believe this work could be fully automated, and that it is orthogonal to our
main contributions. We then replace loops in commute blocks with their summaries using havoc
and assume statements. Note that in general, approximation of loops may not be precise enough to
ensure commutativity [Koskinen and Bansal 2021], however, this is not a problem in our setting
because our commute conditions are verified/inferred with the requirement that post-states be
exactly equal. Thus, we would fail to verify/infer any conditions in the presence of insufficiently
precise loop summaries.

6.2 Verifying and Inferring Commutativity Conditions

Our embedding allows us to use SMT tools to verify commutativity conditions and the abstraction-
refinement algorithm of Bansal et al. [2018] to synthesize them.

Verification. To verify a provided commutativity condition ¢, we construct a series of constraints,
modeling the execution of 0.m;s, and o.ms, in either order denoted o.mjs, > 0.m;, and assert the
negation of ¢ = o0.mg, > 0.ms,. The correctness of our technique is based on the soundness of
our embedding, as described in the following theorem:

THEOREM 6.4 (EMBEDDING SOUNDNESS). For every commute s; sy, let o = Tr(E, commute s; 7).
Then if valid(p = o.ms, > 0.my,), then ¢ is a valid commutativity condition for commute s; 3.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 186. Publication date: October 2022.



Veracity: Declarative Multicore Programming with Commutativity 186:21

PrOOF SKETCH. We first assume a standard semantics [¢]*™ for SMT expressions. The crux of
the proof'is to correlate the ADT state o.state and transition functions o0.m;, 0.m; on o.state with
the Veracity statements s; , sz as functions on Veracity state o. Thus, if the SMT transition functions
commute, then we can conclude that the Veracity statements commute (Def. 3.1). Statements
in the Veracity semantics, e.g., (x:=x+1,0) ~q (skip,o[x + o(x) + 1]) are transitions and
translated to SMT formulae of the form x,.,, = x + 1, necessitating a relational SMT semantics
[@]3™ over two vocabularies of variables: the original and those subscripted with new. For example,
[Xnew = x + 1]3™ represents a pair of states (encoded as a single state) where x in the second state
is one greater than x in the first state.

We use structural induction on the expressions/statements, correlating SMTLIB semantics with
Veracity semantics. As part of the induction, we maintain the invariant that the value of each
Veracity variable is equivalent to the value of a corresponding SSA-style indexed SMTLIB variable,
according to an accumulated “id-map” between variables and index numbers.

For expressions, we show that if a Veracity variable is equal to its corresponding SMT indexed
variable, then the Veracity expression’s evaluation is equivalent to the corresponding SMT ex-
pression’s evaluation. This holds because of the similarity between Veracity semantics and SMT
semantics. For statements, the id-map could be updated. We show that, if all Veracity variables in a
state are equal to their corresponding SMT indexed variables before the statement, then after the
statement, Veracity variables are equivalent to corresponding SMT indexed variables in a possibly
updated id-map. For example, with an assignment statement, the update id-map will have a fresh
indexed variable for the lvalue. We proceed by structural induction.

Since the Veracity-SMT equivalence is maintained, the final indexed variables in the innermost
SMT constraints for 0.m; and 0.m; correspond to relationships between the initial and final values
of the variables in the Veracity statements s; and s, (resp.). Thus, validity of ADT commutativity
(0.my > 0.my) is equivalent to commutativity of Veracity statements. We also rely on the soundness
of specifications provided for built-in data types. O

Inference. Often it is even more convenient for commute conditions to be automatically syn-
thesized. To this end our embedding also allows us to use abstraction-refinement [Bansal et al.
2018], which takes as input the kinds of objects that we construct. As discussed in Sec. 7 we
re-implemented this algorithm, adding some improvements to that algorithm (e.g. in the predicate
selection process) that are beyond the scope of this paper. The resulting commutativity conditions
we infer are sound, again due to the soundness of our embedding (Thm. 6.4).

Completeness. Commute conditions are akin to Hoare logic preconditions and, as such, they are
subject to expressibility concerns of the assertion language. However, commute conditions need
not be complete for two reasons: (i) as opposed to preconditions, when commute conditions do not
hold we default to sequential execution, rather than undefined behavior and (ii) consequently, it is
always fine to over-approximate commute conditions by assuming that fragments only commute
in cases where they have been proved to commute. As we show in Sec. 8, in our 30 benchmarks, in
every case either a precise commute condition or a sensible sound approximation could be used.

7 IMPLEMENTATION: VERACITY

Our implementation comprises an interpreter capable of parallel execution (and sequential execution
for testing), as well as analyses for verification and synthesis of commute conditions (Sec 6). For
simplicity we focused on building a concurrent interpreter, deferring backend compilation matters
to future work. The source code for our implementation is publicly available?.

Interpreter. Threads are implemented with Multicore OCaml, as OCaml does not natively support
true multi-threading. Considerations are made in the interpreter to minimize shared memory
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between threads. When a commute statement is reached and its guard evaluates to true, threads
are spawned for each parallel block. Using thread pools did not substantially improve performance
over spawning as needed. Each thread is given a copy of the global environment and call stack,
permitting thread-local method calls. Sibling threads’ environments will only share references to
variables in shared scope, namely global variables, arguments of the current method, and variables
defined within the method in scope of the current block. When a commute statement’s guard
evaluates to false, the blocks are executed in sequence. The Veracity executable includes a flag
to force all commute guards to evaluate to false, allowing us to compare parallel-vs-sequential
execution times.

A key benefit of commute blocks is that hashtable operations can be implemented with a lineariz-
able hashtable (e.g. [Liu et al. 2014; Purcell and Harris 2005]) in the concurrent semantics. To confirm
the benefit, we built a foreign function interface to the high-performance NSDI’13/EuroSys’14
concurrent hashtable [Fan et al. 2013; Li et al. 2014] called 1ibcuckoo [libcuckoo 2013].

There are minor differences and syntactic sugar between the formal semantics and the imple-
mented Veracity language. (See our technical report [Chen et al. 2022a] for details.)

Verifying and inferring commutativity conditions. We implemented the embedding described
in Sec. 6. This translation then generates a specification for an object O, with commute blocks
embedded as logical specifications, given as OCaml SMTLIBv2 expressions. For verification and
abstraction-refinement inference, we implemented Servois2 [Servois2 2022] a new version of Servois
[Servois 2018] as an OCaml library/module for a few reasons:

o Improve performance and closer integration. O is now an OCaml type, constructed by
Veracity’s compiler and passed to our new abstraction-refinement library.

e Support more/other SMT solvers. We used CVC5 [Barbosa et al. 2022] for all of our experi-
ments, but can also use CVC4, Z3, and plug in other solvers.

e Improve/tune the predicate generation and predicate choice techniques.

o Add support for verifying user-provided commutativity conditions.

To improve abstraction-refinement we also provide possible terms from which candidate predicates
are constructed. We extract these terms from the syntax of the Veracity program, as well as
practically selected constants which helped reduce the size of the synthesized conditions. We
also extract terms from the builtin ADT specifications. Finally, after commutativity conditions are
synthesized, we then reverse translate back to Veracity expressions.

8 EVALUATION
We evaluated our work against four goals:

(1) Determine whether commute conditions could be automatically generated (Sec. 6);

(2) Determine whether scoped serializability can be enforced using our locking patterns (Sec. 5.5);

(3) Confirm that speedups can be seen when the duration of sufficiently independent commute
fragments increase; and

(4) Whether, despite introducing a new programming paradigm, existing applications could be
adapted and exploit commute statements.

Experimental setup. All experiments below were run on a machine with a machine with an AMD
EPYC 7452 32-Core CPU, 125GB RAM, Ubuntu 20.04, and Multicore OCaml 4.12.0.

Benchmarks. We created a total of 30 example programs with commute blocks that use a variety
of program features including linear arithmetic, nonlinear arithmetic, arrays, builtin hashtables,
nested commute blocks, loops and some procedures. The complete set of benchmarks are available
in the benchmarks directory of the Veracity repository®.
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Table 1. Inference and/or verification of commute conditions. Group 1 contains benchmarks with inferable
conditions. Group 2 is a subset of cases from Group 1 where manually providing a condition was desirable.
Group 3 contains programs with structures that we could not translate into logic.

Correctness of Commute Conditions

Group 1: Automatically Inferred Commute Conditions. All benchmarks, except those below in group (3).
Program | Time (s) | Inferred Conditions

array-disjoint 063(i 1= j8&& x =y || x ==
arrayl 0751 != r[0] && r[@] + 1 !=y & r[@] <=1 || r[@] + 1 ==y && r[0] <=1
array?2 1.11|0 > a[0] && 1 != x || 1 == x
array3 1.13|d '=e & a !=b || a ==
calc X1 ==y & 0 !=y &8 1>c& 1 !=c || ... || 1=c¢
conditional 0.18|x > @
counter 020(|0 !=c
dict 382|i!l=r& c+x!=y || c+x==y
dot-product 0.24 | true
even-odd 1.18|x % 2 ==x +y & 0 !=y || 0 ==y
ht-add-put 224 |tbl[z] == u +1 & u+1!=2z
ht-cond-mem-get 1.54 | tb1[x] == tbl[z] && x != z || x ==
ht-cond-size-get 0.83 | ht_size(tbl) <=0 & 0 !=z || 0 == 2
ht-simple 30.64|x + a !=z & 3 == tbl[z] && y !=z
linear-bool 362(0 <=y 8& 3 == x && 2 1= x & 1 = x & x > 0 & @ != x || 0 >y + 3 * X
8% 2 == x && 1 != x && x > 0 && 0 != x
linear-cond 2652 <=y & 2 1=y & 1 !=y || ... || 1=y
linear 0.25| true
loop-amt X0 ==1 8&& amt == i_pre & ctr - 1 > i_pre && i_pre <= amt & 0 != i_pre &&
i_pre <= ctr & amt != amt_pre && ctr - 1 > amt_pre && amt_pre <= amt && @
I= amt_pre && amt_pre <= ctr & ctr - 1 !=1 && 1 !=ctr && 1 != amt && 1
== ctr +amt || ... || amt == 1 & 1 == ctr & 1 != amt && 1 == ctr + amt
loop-disjoint 0.02 | true
loop-inter 463/0 == x 8 0 !=y || 0 ==y
loop-simple 0.06 | true
matrix 0.71|0 ==y
nested-counter 6250 '=c& cl!l=t || c==t; c!l=x8 c<=x8& 1 !=x8& t==x || ... ||
1 ==x && t == x
nested 0.25 | true; @ == x
nonlinear 14210 ==y
simple 349la<=c & a!=b & al!=c || a==Db&al=c
Group 2: Automatically Verified Commute Conditions. Manually provided conditions for verification.
Program | Time (s) | Verified? | Complete? | Provided Condition
arrayl 0.02 v Vir[el <=0 || r[0] == 18 y == 2
calc 0.07 v ?2lc>0
counter 0.02 X — | true
even-odd 0.04 v Iy %2 ==
linear-bool 0.02 v VIy<0-3*x8 x==2]|y>0 & x ==
linear-cond 0.02 v VIiy>0 || 0==y8& x+2==12
loop-amt 0.04 v X|i%2==20 &% (ctr > @ & amt > @ || ctr <= @ && amt <
-ctr)
nested-counter 0.05 v v | First commute block: @ != c && c !=t || c ==t
(cont.) v X | Second commute block: x == t & (x > ¢ || x == c && x > 1)
simple 0.04 v X|lc>a
Group 3: Unverified Examples. Including case studies.
Program ‘ Manual commute condition
crowdfund true
dihedral (!s1T && !s2) || (s1 && !s2 & (r2 ==0 || (n % 2==08 & r2 ==n/ 2))) || (!s1 & s2
&& (r1 ==0 || (n%2==08&& r1 ==n/ 2))) || (s1 && s2 && r1 == r2)
filesystem fnamel != fname2

ht-fizz-buzz | true; true

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 186. Publication date: October 2022.



186:24 Adam Chen, Parisa Fathololumi, Eric Koskinen, and Jared Pincus

Inferring/verifying commute conditions. Table 1 shows the results of inference/verification among
the benchmarks, classified into 3 groups. We first applied our procedure to infer commute conditions
for all benchmarks. Benchmarks for which inference succeeded are given in Group 1. A few
benchmarks featured complicated loops or interprocedural calls that we could not translate into
logic. For these cases, we manually provide conditions, as listed in Group 3.

For those benchmarks in Group 1, we list the inference computation time and the generated
condition. Cases for which inference timed out (at 120 seconds) are marked with X. Cases featuring
multiple commute blocks list the conditions generated for each block. In most benchmarks, we
successfully inferred concise and useful commute conditions within a few seconds. Very long
generated conditions are abridged; the unabridged results are provided in [Chen et al. 2022a].

After inferring conditions for the Group 1 benchmarks, we performed condition verification
for a subset of these cases, applying our Sec. 6 embedding to manually provided commutativity
conditions. These benchmarks were selected in order to (i) manually simplify a needlessly large
generated condition containing redundant terms; (ii) manually adjust a correct, but obviously
incomplete, generated condition to become complete; or (iii) demonstrate the result of attempting
to verify an intentionally false condition. These cases are reported in Group 2 of Table 1, along
with the time, verification result, and completeness result. Verification or rejection took fractions
of a second in all cases, and (in)completeness was reported in all but one case.

Enforcing scoped serializability. In Sec. 5.5 we describe how to enforce scoped serializability. We
applied these methodologies to the benchmarks, and believe it could be automated in the future.
As discussed in Sec. 5.5, enforcement is likely better implemented as part of the back-end IR of a
compiler for commute blocks, which we defer to future work. For many benchmarks (e.g. counter),
a single lock could be naively synthesized to protect against updates to a shared set of variables
(Pattern 0). We used our snapshot approach (Pattern 1) on array3 and simple to avoid the need
for locks at all. Other programs (conditional, matrix, and loop-disjoint) did not need any
locks. For dict, the only conflict is a single access to an already linearizable concurrent hashtable.
dihedral and ht-fizz-buzz are serializable due to loop disjointness. All other benchmarks had
manual locks added naively around the critical sections.

Speedup. We next sought to confirm that, depending on the size of the computation, parallelization
offers a speedup over sequential execution. We executed the programs and collected execution
time measurements. Our benchmarks all involve some pure computation(s) of parametric size N.
We varied this problem size, and recorded the speedup ratio (sequential execution time divided by
parallel execution time).

We took the geometric mean of the speedup ratios across 4 trials and plotted it against problem
size. The graph is shown in Fig. 4. On the x-axis we increased the problem size N exponentially.
Many benchmarks had very similar performance. For legibility of the overall plot, we grouped
and colored those with similar performance characteristics. (The group labels do not imply any
particular semantic connection between the benchmarks.) In most of the benchmarks, speedups
were observed and asymptotically approached the expected 2x mark. Most of the payoff occurred
when the problem size was above 1,000,000, with some payoff occurring when the problem size
was above 1,000. In dihedral, the two threads can have differently sized workloads.

For the four benchmarks involving loops, we initially found no speedup. While this is expected
for loop-inter (because it only commutes in trivial cases) and for loop-simple (because threads
had to hold the lock for the entire loop), we discovered that the interpreter exhibited contention
when concurrently accessing the shared (and pure) context. Consequently, the loop-disjoint and
loop-amt examples also had no speedup. This could be a subtle bug in Multicore OCaml. To confirm
that this is merely a bug and that our approach should yield speedup, we edited loop-disjoint
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Fig. 4. Parallel-to-sequential speedup for benchmark programs versus computation size. The computation
size x-axis is logarithmically scaled. Each trendline is for a different program. Many benchmarks had similar
performance characteristics. For legibility of the overall plot, we color them all (Group D) in medium gray.
The other group labels also indicate similar performance characteristics.

so that the fragments only accessed local variables (we do not do this in the original benchmark
because the translation does not translate scope), and indeed we observed speedup with increasing
problem size, as plotted in Fig. 4.

Case studies. As commute blocks are novel, there are no existing programs with them. Thus, we
explored two case studies whose concurrent properties could be reformulated as Veracity programs
with commute statements.

Crowdfund Smart Contract. Min-

ers and validators in blockchain 4.0

systems repeatedly execute enor- s
mous workloads of smart contract 3.0 '
transactions. These transactions

are currently executing sequen- 2.0

tially, and recent proposals have /

1.0
been made to leverage multicore —/ 10 \[/
architectures through paralleliza-

0.0 0.5
tion [Dickerson et al. 2017; Saraph 10’ 10° 10° 107

10! 10° 10° 107

and Herlihy 2019; Tran et al. 2021] (a) Crowdfund (b) Filesystem
or through sharding [Pirlea et al.
2021]. We modeled parts of an Al- Fig. 5. Benchmark results for case studies.

gorand crowdfund smart contract’

https://developer.algorand.org/solutions/example-crowdfunding-stateful-smart-contract-application/
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as a case study. For performance, we tested four donate operations in parallel. Busy waits were
added at the end of each donate. As expected, we saw significant speedups; the plot of speedup
against problem size can be found in Fig. 5a. This example also illustrates that even better speedups
can be achieved using commute blocks with more than 2 fragments.

Filesystem operations. A common low-conflict use case of hashtables is mapping directories to
files. This could be in a user application, but also potentially in the implementation of a filesystem
(e.g. ScaleFS [Clements et al. 2015; Egbal 2014]). We modeled filesystem operations as veracity
programs. Writing to files commutes when different files are being written to. The results are
shown in Fig. 5b. When writing sufficiently large files, we achieved large speedups (approaching
about 1.85X).

9 RELATED WORK

To our knowledge no prior works have explored bringing commutativity conditions into the
programming language syntax, and the ramifications thereof. We now survey other related works.
It is long known that there is a fundamental connection between commutativity and concur-
rency, dating back to work from the database communities describing how to ensure atomicity in
concurrent executions with locking protocols based on commutativity (e.g. [Bernstein 1966; Korth
1983; Weihl 1988]). Compiler-based parallelization of such arithmetic operations was introduced
by Rinard and Diniz [1997]. Later commutativity conditions have been used in many concurrent
programming contexts such as optimistic parallelism in graph algorithms [Kulkarni et al. 2008],
transactional memory [Dickerson et al. 2019; Herlihy and Koskinen 2008; Ni et al. 2007], dynamic
analysis [Dimitrov et al. 2014], and blockchain smart contracts [Bansal et al. 2020; Dickerson et al.
2017; Pirlea et al. 2021]. Closed or open nested transactions [Ni et al. 2007] permit syntactically
nested transactions. Although nested transactions (NT) might seem akin to nested commute state-
ments, NTs still fall within the realm of a programming model in which users write a concurrent
program (explicitly forking and so on), as opposed to our sequential commute statements.

In more recent years several works have focused on reasoning about commutativity. Gehr et al.
[2015] describe a method based on black-box sampling. Aleen and Clark [2009] and Tripp et al.
[2011] identify sequences of actions that commute (via random interpretation and dynamic analysis,
resp.). Kim and Rinard [2011] verify commutativity conditions from specifications. Bansal et al.
[2018] synthesize commutativity conditions from ADT specifications in the tool Servois [Servois
2018] (which we build on top of in Sec. 6). Koskinen and Bansal [2021] verify commutativity
conditions from source code. Pirlea et al. [2021] discover commutativity through a static analysis
based on linear types and cardinality constraints. Najafzadeh et al. [2016] describe a tool for
weak consistency that checks commutativity formulae. Houshmand and Lesani [2019] describe
commutativity checking for replicated data types.

Numerous works are focused on synthesizing locks. Flanagan and Qadeer [2003] described a
type-based approach, and Vechev et al. [2010] used abstraction-refinement. Cherem et al. [2008]
and Golan-Gueta et al. [2015] describe automatic locking techniques for ensuring atomicity of,
respectively, transactions and multi-object atomic sections.

Others such as Vakilian et al. [2009] and Bocchino et al. [2009] have worked on type-and-
effect systems for parallelization, employing some commutativity, in Deterministic Parallel Java.
Bocchino et al. [2009] describe a “commuteswith” annotation to inform their compiler that certain
collection class operations (always) commute, despite there being read/write conflicts. These
annotations do not involve commute conditions, nor do they use scoped serializability or our
synthesis reduction. Outside of the formal setting, Prabhu et al. [2011] describe compiler pragmas
that allow a programmer to define groups of operations in disparate regions of the code, and write
commute conditions for members of those groups. The authors use this information as part of
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the program dependence graph to obtain speedups, but do not provide a formal semantics, nor
verification/synthesis for commute conditions.

10 DISCUSSION AND FUTURE WORK

To our knowledge we have presented the first work on introducing commute statements into the
programming language. We have given a formal semantics, a correctness condition, methods for
ensuring parallelizability, and techniques for inferring/verifying commute conditions. This work is
embodied in the new Veracity language and front-end compiler.

Future Work. On the practical side, top priorities for future work are to explore back-end compila-
tion strategies to emit, e.g., concurrent IR. Our work can also be combined with other parallelization
strategies such as promises/futures [Chatterjee 1989; Liskov and Shrira 1988]. In our ongoing
implementation we seek to integrate existing data flow analyses to reduce locking while enforcing
scoped serializability. On the theoretical side we could generalize to N-way commute statements
and some notion of object-oriented encapsulation, i.e., arbitrary concurrent objects. With more
encapsulated expert-written concurrent objects, more sequential commute programs can be written
to exploit them.

Our work can also be combined with invariant generation, which can inform commutativity
inference, as seen in the following example:

Example 10.1 (Combine with static analysis).

{y<®o} /x Example invariant =x/
commute _ {
{y=y+ 3xx; } /* if x is negative, this will
reduce y */
{ if (y<@) { x=2; } else { x=3; } } /* sensitive to
whether y went below @ */

Without the static knowledge of the invariant y < @ before the commute condition, an excessively
complex commute condition would be inferred. However, if we first perform a static analysis, there
are fewer choices to be made during abstraction-refinement, quickly leading to a simpler and more
context-sensitive commute condition (in this case: @ > y + 3*x && 2 == x). Our embedding
already supports such context information so in the future we aim to integrate Veracity with an
abstract interpreter.
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