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sequence classification
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The rapid spread of the COVID-19 pandemic has resulted in an unprecedented amount of sequence
data of the SARS-CoV-2 genome—millions of sequences and counting. This amount of data, while
being orders of magnitude beyond the capacity of traditional approaches to understanding the
diversity, dynamics, and evolution of viruses, is nonetheless a rich resource for machine learning (ML)
approaches as alternatives for extracting such important information from these data. It is of hence
utmost importance to design a framework for testing and benchmarking the robustness of these

ML models. This paper makes the first effort (to our knowledge) to benchmark the robustness of ML
models by simulating biological sequences with errors. In this paper, we introduce several ways to
perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms
such as lllumina and PacBio. We show from experiments on a wide array of ML models that some
simulation-based approaches with different perturbation budgets are more robust (and accurate)
than others for specific embedding methods to certain noise simulations on the input sequences. Our
benchmarking framework may assist researchers in properly assessing different ML models and help
them understand the behavior of the SARS-CoV-2 virus or avoid possible future pandemics.

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a ribonucleic acid (RNA) corona-
virus, was identified in January 2020', which began the COVID-19 pandemic that is still ongoing today. With
the help of sequencing technology and phylogenetic analysis, the scientific community disclosed that this novel
coronavirus has 50% similarity with the Middle-Eastern Respiratory Syndrome Coronavirus (MERS-CoV), 79%
sequencing similarity to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)—also known simply as
“SARS”—and more than 85% similarity with a coronavirus found in bats. Further studies confirmed that bats are
the likely reservoir of these coronaviruses; however, the ecological separation of bats from humans indicates that
some other organisms may have acted as intermediate hosts. Considering all scientific evidence, the International
Committee on Taxonomy of Viruses named the novel RNA virus SARS-CoV-2'-3,

RNA viruses generally introduce errors during replication, and the resulting mutations are incorporated into
the viral genome after repeated replication within a single host, generating a heterogeneous population of viral
quasi-species. However, SARS-CoV-2 has an excellent proofreading mechanism that encodes a nonstructural
protein 14 (nsp14) allowing it to have a 10-fold lower mutation rate than typical RNA viruses. Epidemiologists
estimate that SARS-CoV-2 undergoes 33 genomic mutations per year on average. Some of these mutations are
advantageous, leading to more infectious variants of SARS-CoV-2 that continue to emerge*. Moreover, each
major variant/lineage can be characterized or differentiated by a handful of mutations®. Hence, a sequencing
error in the SARS-CoV-2 genome (see Fig. 1) may lead to a false variant/lineage and influence the current study
of the SARS-CoV-2 virus>®.

The diminishing cost of next-generation sequencing (NGS) technology has aided scientists from different
parts of the world to generate large volumes of SARS-CoV-2 whole-genome sequencing (WGS) data. The Cent-
ers for Disease Control and Prevention (CDC) of the United States has also provided a wealth of information on
resources, tools, and protocols for SARS-CoV-2 WGS data from different sequencing platforms such as Illumina,
PacBio, and Ion Torrent. Finally, the Global Initiative on Sharing All Influenza Data (GISAID) hosts the largest
SARS-CoV-2 genome sequencing dataset to date—the largest of any virus in history, with millions of sequences.
This unprecedented amount of genomic data and easy availability allowed researchers to explore the molecular
mechanism, genetic variability, evolutionary progress, and capability of development and spread of novel variants
of the virus. On the other hand, this amount of data exceeds the capacity of the more traditional phylogenetic
methods, such as Nextstrain® or even the more recent IQTREE2' by several orders of magnitude—a Big Data

!Department of Computer Science, Georgia State University, Atlanta, GA, USA. 2IBMT. J. Watson Research Center,
Yorktown Heights, Yorktown, NY, USA. *email: sali85@student.gsu.edu

Scientific Reports | (2023) 13:4154 | https://doi.org/10.1038/s41598-023-31368-3 nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-31368-3&domain=pdf

www.nature.com/scientificreports/

Non-structural Proteins (ORF1ab) Structural Proteins (S, E, M, and N)

266 13,468 21,563 25,384 29,674

(o [ own 1'5 s

sequencing error

5‘[ ORFla [ ORF1b I* S I E,M, andN ]3'

SARS-CoV-2 genome with sequencing error

Figure 1. The SARS-CoV-2 genome codes for several proteins, including the surface, or spike (S) protein,
where mutations happen disproportionately often>®. Sequencing errors can bias the identification of a variant”®.
The above figure represents the incorporation of a sequencing error that appears as a mutation in the spike
region of the SARS-CoV-2 virus. While such a sequence is part of a lineage in the phylogenetic tree, now it will
be classed as being part of a different lineage because of the sequencing error. This figure is generated using “yEd
Graph Editor” tool with Version 3.20.1 (https://www.yworks.com/products/yed).

challenge. As a result, recent alternative approaches based on clustering and classification of sequences, e.g., to
identify major variants have appeared in the literature®!!~', with promising accuracy and scalability properties.

Many issues still remain, however, such as sequencing errors being mistaken for mutations in different analy-
ses when studying the evolutionary and transmission patterns of SARS-CoV-2%1, or other viruses. The incor-
poration of error in NGS sequences due to contamination in sample preparation, sequencing technology, or
genome assembly methodology is another confounding factor. Generally, computational biologists filter those
sequences with errors or mask those sequence fragments having errors. For example, each GISAID'® sequence
is a consensus sequence from the intra-host viral population sampled from the patient, averaging out the minor
variations which exist in this population. While such a consensus sequence is a good representative of this popu-
lation, i.e., it is still precise enough to capture the SARS-CoV-2 variant harbored by the infected individual, it
comes at the cost of losing this important information, such as these minor variations. Such minor variations,
when given enough time to evolve, e.g., within an immunocompromised individual can become dominant—one
of the theories behind the emergence of the Alpha variant'”.

Many machine learning approaches towards clustering and classification of sequences®!>!* have been operat-
ing under somewhat idealized conditions of virtually error-free consensus sequences, which may not be in certain
settings. Moreover, some of these methods rely on a k-mer based feature vector representation—an approach
that does not even rely on alignment of the sequences, which may not always be available in certain settings and
can also introduce bias'®. Such a framework should easily cope with errors as well—something machine learning
approaches can do very naturally’. There are other methods in the literature for SARS-CoV-2 subtyping, such
as Covidex® and Nextclade?!. Although these methods are proven to show higher predictive performance, it is
not clear if they can be generalized to noisy sequence data. Hence, there is a great need for some way to reliably
benchmark such methods for robustness to errors, which is what we carry out in this paper. Our main research
question is the following:

Given a perturbation budget, how robust are the existing classification models to noisy coronavirus inputs?

In this paper, we extend our error testing procedure as a framework for benchmarking the performance of
different ML methods in terms of classification accuracy and robustness to different types of simulated nucleo-
tide sequences with errors. This involves using PBSIM and InSilicoSeq tools for simulating long reads and short
reads-based nucleotide sequences with realistic error profiles. As the target label to perform classification, we
use different lineages of coronavirus e.g. AY.103, AY.44, etc. In total, we extracted data for 41 unique lineages
(class labels) from the GISAID database in January 2022.

We highlight the main contributions of this paper as follows:

® We propose several ways of introducing biologically meaningful errors into the SARS-CoV-2 genome
sequences, which reflect the error profiles of modern NGS technologies such as Illumina and PacBio.

e Using different embedding methods from the biology domain such as PSSM Vector (based on the concept
of position-specific scoring matrices) and Minimizer Vector (based on the concept of minimizers), we per-
form classification on original and errored sequences and report the performance using different evaluation
metrics.

® We show that the alignment-free method for feature embedding, called k-mers Vector, which is based on
the idea of k-mers, is better in terms of predictive performance when there is no error in the nucleotide
sequences. This is likely due to the fact that it preserves nucleotide order information in more detail than the
PSSM Vector or Minimizer Vector representations (at the expense of being less compact).

®  We demonstrate that for the PBSIM (long reads) based errored sequences, the PSSM Vector embedding is
more robust than the sliding window-based k-mers Vector or Minimizer Vector approaches, possibly because
it captures more long-range information.
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e We show that for the Illumina-based errored sequences, k-mers Vector and Minimizer Vector are able to
show better performance than PSSM Vector, again because they likely preserve order information in higher
detail.

The rest of the paper is organized as follows. In “Related work” section we discuss related work. The methods
to generate the noisy examples are described in “Noise simulations creation” section. In “Feature embeddings
generation” section, we discuss different embedding methods used to convert the sequences into fixed-length
numerical representations. “Experimental setup” section contains the details regarding the experimental setup,
dataset statistics, and data visualization. We report our results for accuracy and robustness in “Results and dis-
cussion” section. We described the limitations of our work in “Limitations” section. Finally, we conclude this
paper in “Conclusion” section.

Related work

Robustness for noisy data in different domains. Assessing and benchmarking the robustness of ML
or DL approaches by a series of noise simulations are popular in the image classification domain?, but there
are others that are closer to the domain of molecular data. In*?, the authors provide a series of realistic noise
simulations to benchmark methods that predict chemical properties from atomistic simulations e.g., molecular
conformation, reactions, and phase transitions. Even closer to the subject of our paper, the authors of?** show
that methods, such as AlphaFold*® and RoseTTAFold*®, which employs deep neural networks to predict protein
conformation may not be robust: producing drastically different protein structures as a result of very small
biologically meaningful perturbations in the protein sequence. Our approach is similar, albeit with a different
goal of classification: namely, to explore how a small number of mutations (simulating the error introduced in
certain types of NGS technologies) can affect the downstream classification of different machine learning and
deep learning approaches.

Kernel function based methods for sequence classification. Designing Kernel functions is a popu-
lar method for classification in the natural language processing (NLP) and bioinformatics domains for text and
sequence classification, respectively”’~*. These methods work by computing a kernel (distance) matrix based on
the matches and mismatches between k-mers within sequences. The kernel matrix is used as input to traditional
machine learning classifiers like support vector machine (SVM)?-? for supervised analysis. There are two main
problems in these methods, namely (1) kernel computation runtime and (2) storage of n x n dimensional matrix
in memory when n (number of sequences) is large. Authors in*® proposed an efficient way of dimensionality
reduction using information gain to speed up the kernel computation step. However, the space complexity issue
still remains.

Embedding generation methods for sequence classification. An alternative to kernel functions
is to design fixed-length numerical embeddings, that can be used as input to machine learning classifiers for
sequence classification. Authors in® propose an embedding method for the classification of spike sequence data.
However, their approach is not alignment-free nor scalable to larger datasets. Neural network-based methods,
such as Wasserstein Distance Guided Representation Learning (WDGRL)*! and AutoEncoder®? have been pro-
posed in the literature to obtain the embeddings for sequences given one-hot encoding-based vectors as input.
An end-to-end deep learning model is also proposed in* for genome data analysis. These neural network-based
methods, however, take a lot of time to train and usually generalize poorly on test data. Another embedding
generation method for gene sequences, called DMK, is proposed in**. However, the resultant embeddings are
specifically designed for the clustering task, hence not applicable in our case since we are performing sequence
classification.

Bioinformaticstools. Some bioinformatics tools have been proposed in the literature for SARS-CoV-2 sub-
typing, such as Covidex and Nextclade?'. These tools show higher predictive accuracy of biological sequences
in general. However, they are not designed to deal with noisy data, hence generalize poorly when given errored
sequences for testing, as we see in the results.

Noise simulations creation
We use two types of approaches to generate noisy examples so that we can test the robustness of different
machine-learning methods.

PBSIM simulated data generation. PBSIM is developed to simulate Pacific Biosciences (PacBio)
sequencing reads. Generally, the PacBio sequencer generates two types of reads: continuous long reads (CLR)
and circular consensus sequencing short reads (CCS). The CLR reads have a high error rate, and CCS reads have
a lower error rate. PBSIM can simulate both CLR and CCS reads with different approaches: sampling-based
simulation and model-based simulation. In the sampling-based simulation, PBSIM considers the length and
quality of a provided read set to simulate the reads. In the model-based simulation, PBSIM simulates the reads
on the basis of an error model®.

To generate a sequence with errors (perturbed sequences), we take an original SARS-CoV-2 genomic sequence
and simulate reads from it using the model-based approach with the default PacBio error model. These reads
(containing errors) are then aligned to the original sequence, mutations are called, and then consensus sequences
(with mutations, some of which are errors) are extracted. We control the amount of error (perturbation budget) in
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the reads by adjusting the depth of the reads (a parameter of PBSIM). More specifically, we generate a perturbed
sequence for each of the 8220 different SARS-CoV-2 sequences from GISAID for reading depths 5, 10, 15, and 20.

InSilicoSeq simulated data generation. The InSilicoSeq open-source tool simulates the reads from dif-
ferent short-read technologies such as Illumina. InSilicoSeq is a widely used tool, and several studies generate
more realistic NGS data using this tool for planning new experiments and benchmarking purposes**-*. The tool
can incorporate errors into the reads based on recent Illumina platform details (e.g., chemistry). InSilicoSeq
supports substitution, insertion, and deletion errors and can model the PHRED score. The current release of the
InSilicoSeq tool has a pre-built error model for HiSeq, MiSeq, and NovaSeq instruments. Moreover, InSilicoSeq
has the option to generate the number of reads according to the user’s requirement*.

We generate a sequence with errors analogously to the above, this time controlling the error (perturbation
budget) by adjusting this number of reads. We generate a sequence for the 8220 GISAID sequences mentioned
above, with a number of reads 50,00, 10,000, 15,000, and 20,000.

Remark 1 Note that we selected PBSIM and InSilicoSeq to generate noisy examples because they are well-known
methods from the literature. It is important to use these tools because the main challenge while generating noisy
examples for biological sequences is to introduce the error in “biologically meaningful way” so that the biologi-
cal structure of nucleotide sequences is not disturbed and the resulting sequences do not look synthetic (for
example, we cannot introduce some random error in the sequences as it will disturb the structure of nucleotide
sequences). This way, perturbed sequences highly resemble true biological sequences yet, at the same time, may
fool a classifier.

Feature embeddings generation
This section introduces different feature embedding methods used to convert the nucleotide sequence into a
fixed-length representation.

k-mers vector'. A popular approach to preserve the ordering of the sequential information, called
Spike2Vec', takes the sliding window-based substrings (called mers) of length k (also called n-gram). This
k-mers-based representation helps to preserve the order of characters within the sequences'? (see Fig. 2 for an
example of k-mers).

First, the k-mers are computed for each nucleotide sequence in this approach. Then a fixed length frequency
vector is generated corresponding to each sequence, which contains the count of each k-mer in that sequence.
One advantage of using k-mers based approach is that it is an “alignment-free” method unlike other popular
baselines (e.g., one-hot encoding “OHE”*!?), which requires the sequences to be aligned. In one-hot encoding,
each nucleotide is represented by a 0-1 binary vector of length 4 (because of 4 nucleotides in every sequence).
Since unaligned sequences can have a different number of nucleotides, hence the resultant one-hot representation
will also have variable length. Although we can use methods such as data padding to make these one-hot vectors
have similar lengths, the pairwise distance information, however, is lost to a certain extent. Due to these issues,
one-hot encoding requires aligned sequences as input. Note that sequence alignment is expensive and requires
a reference sequence (genome)*>**. It may also introduce bias into the result'®. The total number of k-mers in a
given nucleotide sequence is N — k + 1, where N is the length of the sequence. The variable k is the user-defined
parameter. In this paper, we take k = 3 (decided empirically using standard validation set approach**).

Frequency vector generation. ~ After generating the k-mers, the next step is to generate the fixed-length numeri-
cal representation (frequency vector) for the set of k-mers in a nucleotide sequence. Suppose the set of nucleo-
tides in the whole dataset is represented by the alphabet ¥ (A, C, G, and T). Now, the length of the frequency
vector will be |2 ¥ (all possible combinations of k-mers in X of length k). Note that this length is fixed for all
sequences regardless of their sequence length. Hence, no matter the number of k-mers extracted from a given
nucleotide sequence, since the length of the frequency vector is constant, this method can work on variable

Nucleotide sequence

(aflefclefc]afr[clafc]e]r
[ale]c[s]c]
[e[c]efc[a]
[c[e]c[a]r]
[efcfalr]c] Kemers
[cfalr]c]a]
T
T

[(afr]clalc]
[r]cfalc]e]
[c[afc]e]T]

Figure 2. Example of different k-mers in a nucleotide sequence. This figure is generated using “yEd Graph
Editor” tool with Version 3.20.1 (https://www.yworks.com/products/yed).
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length sequences (hence exhibits the alignment-free property). In our dataset, since we have 4 unique nucleo-
tides in any sequence, the length of the frequency vector in our case would be 43 = 64 (when we take k = 3).

After getting the k-mers frequency vectors, authors in Spike2Vec apply random Fourier feature** approach to
reduce the dimensionality of the data. Since our dataset is comparatively smaller, we did not apply that method,
hence we refer to this method as k-mers Vector rather than Spike2Vec in our paper.

PSSM vector. The PSSM Vector embedding is based on the idea of the position-specific scoring matrix
(PSSM), also called position weight matrix (PWM)**#’. For a given nucleotide sequence s, PSSM Vector designs
the PWM. The PWM generation starts by first computing the k-mers (where k = 3, which is decided using
standard validation set approach**) for s. For all the k-mers in s, a matrix of length |£| X k is generated, which
includes the count of nucleotides at different positions within the k-mers. This matrix is also called the position
frequency matrix (PFM). In the next step, column-wise probabilities are computed for PEM to get a new matrix
called the position probability matrix (PPM). More formally, the PPM is computed as follows:

Frequency of nucleotide

(1)

No. of nucleotides in the column "

To avoid having zero in the denominator, we add a small value of 0.01 (called Laplace value or pseudocount)
during the probability computation. Finally, the PWM is computed from the PPM by taking the log-likelihood
of each nucleotide ¢ € X at a position i. More formally:

p(c i)
p(o)

where p(c) = i, which corresponds to the equal probability of occurrence for each nucleotide in the sequence.
After generating the PWM, we flatten the matrix to generate a single vector, which we refer to as PSSM Vector.

Wi = log, 2

Minimizer vector. The Minimizer Vector feature embedding is based on the idea of minimizers*s. The mini-
mizer is a modified version of a k-mer and is used to represent a biological sequence in a more compact form.

Definition 1 (Minimizers) For a given k-mer, a minimizer (also called m-mer) is a substring of consecutive
nucleotides of length m from the k-mer, which is lexicographically smallest one in both forward and backward
order of the k-mer, where m < k and is fixed.

The pseudocode to compute the minimizers is given in Algorithm 1. For a better understanding of pseudoc-
ode, we use the syntax of python code. To compute the minimizers, we take k = 9 and m = 3, which is decided
empirically using standard validation set approach*!. After computing the minimizers for a given nucleotide
sequence, we follow the same method to generate the frequency vector-based representation as described in
“Frequency vector generation” section. For reference, we denote this method as Minimizer Vector.
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Algorithm 1 Minimizer Computation

1: Input: Sequence s and integer k and m
2: Output: Set of Minimizers
3: minimizers = 0
4: queue =[] > maintain queue of all m-mers
50 idx =0 > index of the current minimizer
6: fori—1tols|—k+1do
7: kmer = s[i : i+ k|
8: if idx > 1 then
9: queue.dequeue
10: mmer =s[i+k—m:i+k] > new m-mer
11: idx «— idx —1 > shift index of current minimizer
12: mmer = min(mmer, reverse(mmer)) > lexicographically smallest forw./rever.
13: queue.enqueue(mmer)
14: if mmer < queue[idx] then
15: idx=k—m > update minimizer with new m-mer
16: else
17: queue =[] > reset the queue
18: idx=0
19: for j«— 1tok—m+1do
20: mmer = kmer[j : j+m| > compute each m-mer
21: mmer = min(mmer, reverse(mmer))
22: queue.enqueue(mmer)
23: if mmer < queue[idx] then
24: idx=j > index of current minimizer
25 minimizers < minimizers U queue[idx] > add current minimizer

26: return(minimizers)

Remark 2 The goal of selecting these embedding methods is that they are alignment-free and also showed the
best results in terms of predictive performance. Moreover, the k-mers, minimizers, and position weight matrix
are one of the most common methods used in the bioinformatics domain for sequence analysis.

We also use the tools such as Covidex* and Nextclade?! for classifying the lineages. These tools simply take
the nucleotide sequences as input and give us the lineage name as the predicted value. No training is involved
for these methods as they are “pre-trained” on a set of biological sequences.

Experimental setup

All experiments are conducted using an Intel(R) Core i5 (11th generation) with a 2.40 GHz processor having
windows 10 (64 bit) OS and 32 GB memory. The simulated and pre-processed data is available online (https://
github.com/sarwanpasha/Adversarial_attack_on_biological_sequences). For classification purposes, we use the
Support Vector Machine (SVM), Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN),
Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT).

To measure the performance of ML models, we apply the following two different strategies.

Accuracy In this case, we compute the average accuracy, precision, recall, F1 (weighted), F1 (Macro), and
ROC-AUC for the whole (original) dataset (with respect to the lineages “class labels” reported in Table 1) without
any errored sequence.

Robustness An important characteristic of the robustness of models is their ability to provide sensible outputs
when input examples are not drawn from the training data***. Therefore, in this strategy, we only consider the
noisy examples (set of errored sequences) for the test set (and non-errored sequences for the training set) and
compute average accuracy, precision, recall, F1 (weighted), F1 (Macro), and ROC-AUC for the ML models.

Dataset statistics. We used the full-length nucleotide sequences of coronavirus from a popular and pub-
licly available database of SARS-CoV-2, GISAID (https://www.gisaid.org/). In order to collect the error-free
sequences, we selected specific parameters while downloading the data from GISAID, such as full-length SARS-
CoV-2 sequences, generated from high-coverage reads, ensuring that these sequences are virtually error-free. In
total, we extracted 10, 000 nucleotide sequences from GISAID. After preprocessing (removing those sequences
for which the lineage count was < 10) we came up with 8220 sequences. We selected these nucleotide sequences
along with their COVID-19 lineage information in January 2022.

The total number of unique lineages (class labels) in our dataset is 41. The dataset statistics for the prepos-
sessed data are given in Table 1 (the first and the third column show the class labels, which are the lineages of
SARS-CoV-2, while the second and fourth column shows the proportion of sequences corresponding to each
lineage). Given this set of nucleotide sequences, our problem is to classify the lineages (class labels), and we
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Lineage No. of seq es | Lineag No. of seq e
AY.103 2271 AY.121 40
AY.44 1416 AY.75 37
AY.100 717 AY.3.1 30
AY.3 710 AY.3.3 28
AY.25 585 AY.107 27
AY.25.1 382 AY.34.1 25
AY.39 248 AY.46.6 21
AY.119 242 AY.98.1 20
B.1.617.2 175 AY.13 19
AY.20 130 AY.116.1 |18
AY.26 107 AY.126 17
AY.4 100 AY.114 15
AY.117 94 AY.125 14
AY.113 94 AY.34 14
AY.118 86 AY.46.1 14
AY.43 85 AY.92 13
AY.122 84 AY.98 12
BA.1 79 AY.46.4 12
AY.119.2 74 AY.127 12
AY.47 73 AY.111 10
AY.39.1 70 _ _

Table 1. Dataset statistics for different SARS-CoV-2 lineages in our data. After preprocessing, the total
number of sequences (and corresponding lineages) is 8220.

do so by converting the sequences into fixed-length numerical vectors using different embedding methods.
Our simulated dataset is available online for reproducibility (https://drive.google.com/drive/folders/1adtr8FImI
YTqxM20wgInRqIZ8E]JY4HVS?usp=sharing).

Comparison with DL models. It is well known from the literature that deep learning (DL) methods (and
other ML classifiers) do not work efficiently as compared to simple tree-based methods in the case of tabular
data®'->°. However, to validate that concept, we use a pre-trained model called SeqVec®, and other DL methods
such as LSTM*, GRU®, and CNN* for sequence classification on original data. Following is the detail regarding
different DL models:

LSTM. The LSTM architecture consists of an embedding layer (of length 500), an LSTM layer with 200 mem-
ory units, a LeakyReLU layer with alpha = 0.05, an LSTM layer again with 200 memory units followed by another
LeakyReLU layer, a dropout with value 0.2, a Dense layer of dimensions 500 followed by LeakyReLU layer, and
finally an output layer and a sigmoid activation function. We use the ADAM optimizer in this architecture.

GRU. The GRU architecture consists of an embedding layer (size of embedding is 500), a GRU layer with 200
memory units, a LeakyReLU layer with alpha = 0.05 followed by a Dropout layer with value 0.2, and finally, a
dense output layer and a sigmoid activation function. We also use the ADAM optimizer in the GRU architecture.

CNN. Similarly, the CNN architecture comprises an embedding layer (size of embedding is 500), a 1-D con-
volution layer (ConvlD) with 128 filters and a kernel size of 5, a LeakyReLU layer with alpha = 0.05, a batch
normalization layer, a 1-D convolution layer (Conv1D) again with 128 filters and a kernel size of 5, a LeakyReLU
layer with alpha = 0.05 followed by batch normalization, a max pooling layer with pool size equals 2, a dense
layer of 500 dimensions followed by a LeakyReLU layer with alpha = 0.05, and finally an output dense layer with
a sigmoid activation function. For optimization, we use the ADAM optimizer.

SeqVec®. 'The SeqVec is a pre-trained language model for biological sequences that use Embeddings from
Language Models (ELMO) for its training. Given biological sequences as input, we fine-tune the model based
on our input data and it outputs the embeddings for the sequences. The resultant embeddings are context-based
and used as input to classical machine learning classifiers for supervised analysis.

Data visualization. To visualize if there is any (natural) clustering in our data, we generated a 2D represen-
tation of the feature embeddings using the t-distributed stochastic neighbor embedding (t-SNE) approach®. The
main advantage of t-SNE is that it preserves the pair-wise distance between vectors in 2 dimensions. The t-SNE
plot for different coronavirus variants is given in Fig. 3a-c for k-mers Vector, PSSM Vector, and Minimizer Vec-
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Figure 3. t-SNE plot for different embedding methods. This figure is generated using “Matplotlib” library in
python with version 3.3.2 (https://matplotlib.org/).

tor, respectively. For the k-mers Vector-based t-SNE plot, we can observe that some of the variants (e.g., AY.103)
are grouped more clearly than the other variants. PSSM Vector, however, maintains smaller groups of variants
as compared to k-mers Vector. The structure of Minimizer Vector-based t-SNE is more similar to k-mers Vector.
However, it grouped some other variants (e.g., AY.96.1) more clearly as compared to k-mers Vector. In general,
we can observe that all embedding methods preserve the overall structure of the data.

Results and discussion

In this section, we report the performance of ML models using two metrics, namely accuracy and robustness.
For the accuracy metric, we report classification results for different ML models on the original data (without
noisy examples). For the robustness results, we trained the classifiers on the original sequences (without any
error) and tested their performance on the errored sequences.

Accuracy results.  To evaluate the performance of original nucleotide sequences (non-errored sequences),
we split the sequences into (random) 70-30% training and testing set and perform classification on different
embedding methods. To demonstrate that our results are not dependent on the specific random splits of data,
we ran the experiments 5 times and reported average results.

Remark 3 Note that we also performed a 5 fold cross-validation, and the results were not very different from the
average results of 5 random runs.

The accuracy results for different embeddings and ML models are shown in Table 2. We can observe that
the SVM classifiers with k-mers Vector-based embedding outperform other embeddings and ML models for
all but one evaluation metric. In terms of runtime, since the length of vectors for PSSM Vector is smaller than
the other embedding methods, its training runtime for the NB classifier is the smallest. The predictive results of
Covidex and Nextclade are reported in Table 3 for the original data. Overall, we can observe that the predictive
performance for both of these methods is higher that the embedding methods we used including k-mers Vector,
PSSM Vector, and Minimizer Vector. This is because both of these methods are already pre-trained on larger
datasets and did not go through the typical training process that we used for the embedding methods, hence we
reported their results separately.

The standard deviation of 5 runs for the original data (without any errored sequences) is given in Table 4.
Note that the accuracies (average values of 5 runs) for the same data are reported in Table 2 in the main paper.

The results comparisons for DL-vs-Non DL methods are shown in Table 5. Since the DL methods show lower
results than simple ML models, we only report the robustness results (in the next section) for ML models in
this paper.

Robustness results.  For the robustness results, we show the predictive performance of different ML mod-
els by first using the PBSIM-based noisy sequences and then show the performance of ML models for Illumina-
based noisy examples.

For the PBSIM-based sequences, we take the original 8220 (non-errored) sequence data for training the ML
models and use the PBSIM-based (8220) errored sequences as the test set. The purpose of this experimental set-
ting is to evaluate the performance of ML models on the errored sequences, which were unavailable during the
training process. In this experimental setting, we show the results for depth 5 and depth 10 (i.e., perturbation
budgets) based errored sequences (in the test set) in Table 6. The robustness results for Covidex and Nextclade
are reported in Table 7. Here, we can observe that although Covidex achieves higher predictive performance
for noise data with depth 5, it completely fails to predict even a single sequence’s lineage correctly for depth 10
data. Moreover, Nextclade failed for both depth 5 and depth 10 data completely. This could happen due to the
fact that these methods considered the errored mutations as some original mutations which were not present
during their training process, hence they simply predicted lineage “B” for all of the noisy sequences (where the
accuracy is 0), which means that these sequences could be any sub-category of a more generic “B” lineage. This
behavior shows that these two methods do not generalize well to noisy sequences. Similarly, the robustness
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Embed. method MLalgo. | Acc. | Prec. |Recall | F1weigh. | Fl macro | ROC-AUC | Train. runtime (s)
SVM 0.87 |0.87 0.87 0.86 0.76 0.87 7.43
NB 0.03 | 0.05 0.03 0.02 0.05 0.55 0.09
MLP 0.75 |0.74 0.75 0.74 0.36 0.68 18.42
k-mers vector KNN 0.73 |0.73 0.73 0.71 0.48 0.71 2.04
RF 0.82 |0.85 0.82 0.80 0.67 0.78 2.17
LR 0.86 |0.85 0.86 0.85 0.70 0.84 8.67
DT 0.67 |0.67 0.67 0.66 0.42 0.71 0.27
SVM 0.28 |0.08 0.28 0.12 0.01 0.50 3.14
NB 0.01 |0.01 0.01 0.00 0.01 0.52 0.03
MLP 0.34 |0.27 0.34 0.26 0.06 0.53 17.31
PSSM vector KNN 0.32 |0.28 0.32 0.28 0.13 0.55 0.33
RF 0.33 |0.30 0.33 0.31 0.16 0.57 1.60
LR 0.28 |0.08 0.28 0.12 0.01 0.50 0.68
DT 0.29 |0.28 0.29 0.28 0.13 0.56 0.06
SVM 0.60 |0.58 0.60 0.56 0.48 0.72 15.19
NB 0.05 |0.12 0.05 0.04 0.12 0.59 0.08
MLP 0.57 ]0.52 0.57 0.53 0.30 0.64 26.32
Minimizer vector KNN 0.55 ]0.56 0.55 0.53 0.37 0.66 1.51
RF 0.75 ]0.79 0.75 0.74 0.61 0.76 1.72
LR 0.58 ]0.55 0.58 0.54 0.40 0.68 6.36
DT 0.64 |0.64 0.64 0.64 0.48 0.74 0.14

Table 2. Accuracy results on 8220 (original) nucleotide sequences (without any error). The best values are
shown in bold.

Method Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC
Covidex 0.94 0.95 0.94 0.94 0.60 0.94
Nextclade 0.94 0.95 0.94 0.94 0.62 0.92

Table 3. Accuracy results on 8220 (original) nucleotide sequences (without any error) using Covidex and
Nextclade.

results of PBSIM-based errored sequences (with depth 15 and 20) are shown in Table 8. The robustness results of
Covidex and Nextclade for depth 15 and 20 datasets are reported in Table 9. We can again observe that these two
methods failed completely and only gave “B” as the predicted label. Hence, we can conclude that these methods
cannot generalize well to the noisy data generated using the PBSIM simulator.

For the Illumina-based sequences, we take the original 8220 (non-errored) sequence data for training the ML
models and use the Illumina-based errored 8220 sequences as the test set. In this experimental setting, we show
the results for sequences simulated using a different number of short reads (in the test set). The results for 5000
short reads and 10, 000 short reads (i.e., perturbation budget) based errored sequences are shown in Table 10.
The robustness results for the same data using Covidex and Nextclade are reported in Table 11. Opposite to the
results for the PBSIM simulator, we can observe that both Covidex and Nextclade show higher robustness results
compared to the embedding methods. Similarly, the robustness results with Illumina-based errored sequences
having the number of short reads as 15, 000 and 20, 000 are shown in Table 12. Moreover, the robustness results
using Covidex and Nextclade on the same datasets are reported in Table 13. Other than Macro F1, both Covi-
dex and Nextclade outperforms the embedding methods for all other evaluation metrics, hence showing better
generalizability over the noisy sequences.

PBSIM versus illumina results discussion. Third-generation sequencing technologies such as PacBio
and Oxford Nanopore Technologies (ONT), being newer than traditional high-throughput NGS technologies
(e.g., lllumina), offer longer reads, which are useful to efforts such as haplotype assembly***!. The drawback with
these technologies is that they have lower coverage and contain more errors—up to 15% error rate as compared
to the less than 1% with state-of-the-art Illumina®-%°. Therefore, it is not surprising that perturbing the coverage
in the case of Pacbio (PBSIM) based experiment had a larger effect (see Table 6) on the predictive performance of
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Embed. method ML algo. | Acc. Prec. Recall F1 weigh. | Fl macro | ROC-AUC | Train. runtime (s)
SVM 0.009337 | 0.008654 | 0.009337 | 0.009122 0.011612 0.011101 0.300614
NB 0.003307 | 0.059135 | 0.003307 | 0.003323 0.002726 | 0.007099 0.017888
MLP 0.012523 | 0.015917 | 0.012523 | 0.015363 0.028586 | 0.017015 3.836258
k-mers vector KNN 0.009530 | 0.011883 | 0.009530 |0.010848 0.022703 0.011329 0.036290
RF 0.005541 | 0.006865 | 0.005541 | 0.006641 0.028757 0.014456 0.263474
LR 0.005504 | 0.004573 | 0.005504 | 0.005868 0.017053 0.012580 0.867295
DT 0.004102 | 0.002976 | 0.004102 | 0.003101 0.013446 0.010527 0.032883
SVM 0.007223 | 0.003972 | 0.007223 | 0.005558 0.000217 | 0.000000 0.118888
NB 0.002015 | 0.007148 | 0.002015 | 0.000983 0.004011 0.006194 0.008142
MLP 0.005716 | 0.015879 | 0.005716 | 0.006257 0.009698 | 0.005917 2.603367
PSSM vector KNN 0.009810 | 0.013064 | 0.009810 |0.010757 0.023313 0.010837 0.028786
RF 0.006478 | 0.008212 | 0.006478 | 0.007973 0.017069 0.007942 0.052490
LR 0.007223 | 0.003972 | 0.007223 | 0.005558 0.000217 | 0.000000 0.025634
DT 0.006273 | 0.009446 | 0.006273 | 0.007321 0.013302 0.007477 0.009866
SVM 0.008510 | 0.008449 | 0.009629 | 0.008932 0.015522 0.010247 0.281588
NB 0.004464 | 0.060411 | 0.004464 | 0.006046 0.02021 0.007911 0.016351
MLP 0.011599 | 0.007398 |0.011599 | 0.009882 0.028691 0.015814 1.480781
Minimizer vector KNN 0.006601 | 0.009581 |0.006601 |0.007661 0.014181 0.005275 0.014744
RF 0.004837 | 0.004967 |0.004837 |0.006467 0.034441 0.017324 0.044175
LR 0.001902 | 0.005262 |0.001902 | 0.002995 0.014008 | 0.004733 0.261828
DT 0.010011 |0.011210 |0.010011 |0.010262 0.024173 0.014445 0.011970

Table 4. Standard deviation results on 8220 (original) nucleotide sequences (without any error).

ML models as compared to the Illumina (InSilicoSeq) based experiment (see Table 10). The sequences submit-
ted to GISAID (https://www.gisaid.org/) database are almost exclusively from high-throughput technologies'®.
Hence we got more stable results on the original sequences (without adding any additional error) extracted from
GISAID (see Table 2).

For the PBSIM-based errored sequences, we can observe that PSSM Vector outperforms the other two embed-
ding methods (see Table 6), which means that a sliding window-based approach (using k-mers or m-mers) is not
desirable while dealing with Pacbio errors. This could be due to the fact that the PSSM Vector representation cap-
tures more long-range information than the shorter (length k) sliding window. Similarly, for the Illumina-based
sequences, we can observe the opposite behavior (see Table 10), where the sliding window-based approaches
are better than the position weight matrix-based embedding. This could be because, in PSSM Vector, the order
of nucleotides is not preserved in as much detail (because we just take the position weight matrix and make it a
1-D vector by flattening it). In the sliding window-based approach, we are able to preserve the order information,
which results in better predictive performance (because of less loss of information in generating the numerical
embedding). This comes at the cost of it being a higher dimensional representation, of course.

Limitations

We used feature engineering-based embeddings along with some typical neural network models for the experi-
ments in this paper. Using an exhaustive list of end-to-end neural network models (such as one proposed in* for
microRNA prediction) could improve the benchmark dataset’s accuracy and/or robustness. These models could
also help us to understand the behavior of noisy simulations in more detail. Moreover, we use the Illumina-based
data with 5000, 10, 000, 15, 000, and 20, 000 short reads only—we believe that using a larger number of reads
may improve the performance of the underlying classifier. The same is true for PBSIM data, where we use only
5and 10 as read depth.

Conclusion

In this paper, we use two different ways to test the robustness of ML models in terms of sequence classification.
We test the accuracy and robustness of ML models using different embedding methods and concluded that for
different simulation tools, different embedding methods perform better than others, and there is no clear win-
ner that consistently outperforms in all scenarios. One interesting future extension is to use other embedding
methods from the literature and also apply deep learning models for the classification of sequences. Studying
noise simulations on other viruses (e.g., Zika) is also an interesting future extension. We would also like to explore
some advanced deep learning methods, such as transformers, to study the robustness in the future.
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Method Embed. method | MLalgo. | Acc. |Prec. |Recall | F1weigh. | F1 macro | ROC- AUC | Train. runtime (s)
SVM 0.87 | 0.87 0.87 0.86 0.76 0.87 7.43
NB 0.03 |0.05 0.03 0.02 0.05 0.55 0.09
MLP 0.75 |0.74 0.75 0.74 0.36 0.68 18.4
KNN 0.73 073 0.73 0.71 0.48 0.71 2.04
k-mers vector RF 0.82 |0.85 0.82 0.8 0.67 0.78 2.17
LR 0.86 | 0.85 0.86 0.85 0.70 0.84 8.67
DT 0.67 | 0.67 0.67 0.66 0.42 0.71 0.27
SVM 0.28 | 0.08 0.28 0.12 0.01 0.5 3.14
NB 0.01 |0.01 0.01 0.01 0.01 0.52 0.03
MLP 0.34 | 0.27 0.34 0.26 0.06 0.53 17.3
Non-DL methods KNN 0.32 |0.28 0.32 0.28 0.13 0.55 0.33
RF 033 |03 0.33 0.31 0.16 0.57 1.6
LR 0.28 | 0.08 0.28 0.12 0.01 0.5 0.68
PSSM vector DT 0.29 |0.28 0.29 0.28 0.13 0.56 0.06
SVM 0.60 | 0.58 0.6 0.56 0.48 0.72 15.1
NB 0.05 |0.12 0.05 0.04 0.12 0.59 0.08
MLP 0.57 10.52 0.57 0.53 0.3 0.64 26.3
KNN 0.55 | 0.56 0.55 0.53 0.37 0.66 1.51
RF 0.75 | 0.79 0.75 0.74 0.61 0.76 1.72
Minimizer vector
LR 0.58 |0.55 0.58 0.54 0.4 0.68 6.36
DT 0.64 | 0.64 0.64 0.64 0.48 0.74 0.14
LSTM - 0.31 |0.08 0.31 0.15 0.04 0.52 14894.06
DL methods GRU - 029 |0.11 0.29 0.14 0.05 0.53 45890.74
CNN - 0.25 |0.12 0.25 0.16 0.1 0.54 394775.6
SVM 0.74 | 0.72 0.74 0.71 0.46 0.68 10.5
NB 0.63 | 0.66 0.63 0.64 0.35 0.67 0.07
MLP 0.75 ] 0.72 0.75 0.72 0.44 0.70 19.7
Pre-trained SeqVec KNN 0.58 | 0.61 0.58 0.57 0.18 0.55 1.74
RF 0.75 | 0.74 0.75 0.74 0.50 0.71 1.45
LR 0.73 | 0.71 0.73 0.72 0.42 0.69 8.79
DT 0.71 | 0.70 0.71 0.72 0.47 0.70 0.76

Table 5. Comparison of simple ML models with different DL methods on 8220 (original) nucleotide
sequences (without any error). The best values are shown in bold.
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SVM 001 |0.00 |001 |0.00 0.00 0.502 16.48 001 [000 |001 |0.00 0.00 0.500 16.88
NB 0.00 [0.00 |0.00 |0.00 0.00 0.501 0.68 0.00 [0.00 |0.00 |0.00 0.00 0.501 0.71
MLP 0282 |0.083 |0285 |0.123 0.01 0.505 23.65 002 [000 [002 |0.00 0.00 0.507 16.86
’\feﬁgi s KNN 0285 [0.081 0283 |o0.121 0.01 0.504 1.68 028 008 [028 012 0.01 0.505 1.78
RF 0.289 |0.085 |0.289 |0.124 0.01 0.509 1.78 028 |008 |028 0.2 0.01 0.502 2.88
LR 001 [000 [001 |0.00 0.00 0501 11.30 001 [000 |001 |0.00 0.00 0.501 12.04
DT 001|000 [001 |0.00 0.00 0503 0.34 001 [000 |001 |0.00 0.00 0505 0.36
SVM 027 [007 [027 |om 0.01 0.504 8.14 030 [009 |030 0.3 0.01 0.506 8.32
NB 027 [007 [027 |oa1 0.01 0.501 0.34 030 [009 |030 0.3 0.01 0.508 0.36
MLP 027 [007 [o27 |oa1 0.01 0.506 7.47 030 |009 |030 013 0.01 0503 7.90
sescstl(\)’[r KNN 027 007 [027 |om 0.01 0.502 0.51 001 |005 |001 |0.00 0.00 0502 0.52
RF 027 [007 [027 |oa1 0.01 0.507 117 0302 |0.096 [0302 [0.130 0.012 0.505 0.98
LR 027 [007 [o27 [oa1 0.01 0.503 376 0301 [0.095 [0.301 |0.131 0.016 0.501 3.62
DT 027 |007 Jo027 |om 0.01 0.501 0.02 0.304 |0.099 |0.304 |0.136 0.017 0.509 0.02
SVM 027 007 |026 |01 0.01 0.506 522 027 [008 [027 [0a2 0.01 0.501 491
NB 026 |007 [027 |oa1 0.265 0.502 0.43 027 [008 [027 [0.a2 0.01 0.504 0.34
MLP 026 007 |026 |o011 0.261 0.504 1.63 027 |008 [027 |02 0.01 0.506 1.92
xic‘t‘;‘)‘r“izer KNN 026 [0.07 [026 |o0.11 0.263 0.506 0.62 008 [0.01 [008 |o0.01 0.00 0.503 0.69
RF 026 |007 |026 |01 0.268 0.501 0.67 027 [008 [027 [0.a2 0.01 0.502 0.77
LR 026 [007 [o026 [o.11 0.267 0.502 0.69 027 |008 [027 o012 0.01 0.504 0.67
DT 026 007 [026 011 0.266 0.505 0.17 027 [008 [027 |02 0.01 0.501 0.26

Table 6. Robustness results on PBSIM data with 5 and 10 as read depth. The best values are shown in bold.

Covidex 0.78 0.80 0.78 0.77 0.38 0.84 0.0 0.0 0.0 0.0 0.0 0.5
Nextclade 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5

Table 7. Robustness results on PBSIM data with 5 and 10 as read depth using Covidex and Nextclade.

Scientific Reports | (2023) 13:4154 | https://doi.org/10.1038/s41598-023-31368-3 nature portfolio



www.nature.com/scientificreports/

SVM 001 |000 [001 |0.00 0.00 0.50 1119 001 |000 [001 |0.00 0.00 0.50 11.17
NB 0.00 000 [0.00 |0.00 0.00 0.50 0.81 0.00 |0.00 [000 [0.00 0.00 0.50 0.70
MLP 0.00 000 [000 |0.00 0.00 0.50 21.66 001 |000 |001 [0.00 0.00 0.50 20.82
’v‘e‘;:zi s KNN 028 |008 [028 [o0.12 0.01 0.50 2.32 028 |008 [028 012 0.01 0.50 224
RF 028 008 [028 0.2 0.01 0.50 2.48 028 |008 [028 [0.12 0.01 0.50 242
LR 001 |000 [001 |0.00 0.00 0.50 11.89 001 [0.00 [001 |0.00 0.00 0.50 11.77
DT 001 |000 [001 |0.00 0.00 0.50 031 001 |000 |001 |0.00 0.00 0.50 031
SVM 028 |008 [028 |02 0.01 0.50 9.97 028 008 [028 [0.12 0.01 0.50 9.54
NB 001 |000 [001 |0.00 0.00 0.50 0.15 001 |0.00 [001 |0.00 0.00 0.50 0.16
MLP 001 |000 [001 |0.00 0.00 0.50 15.63 001 |000 |001 |0.00 0.00 0.50 19.20
Eescstlz[r KNN 001 |000 [001 |0.00 0.00 0.50 221 001 |000 |001 |0.00 0.00 0.50 218
RF 0.00 |0.00 [000 |0.00 0.00 0.50 2.03 0.00 |0.00 [000 |0.00 0.00 0.50 1.94
LR 028 |008 |028 012 0.01 0.50 1.13 028 008 |028 |012 0.01 0.50 111
DT 0.00 |0.00 [000 |0.00 0.00 0.50 0.09 000 |0.00 |000 |0.00 0.00 0.50 0.08
SVM 001 |001 [001 |0.00 0.01 0.50 15.47 001 |001 |001 |0.00 0.01 0.50 17.54
NB 0.00 |0.00 [000 |0.00 0.00 0.50 0.77 0.00 |0.00 |000 |0.00 0.00 0.50 0.84
MLP 005 |000 |005 |0.00 0.00 0.50 24.19 0.05 |0.00 |005 |0.00 0.00 050 34.86
xic‘t‘io':‘izer KNN 005 [0.00 [0.05 |0.00 0.00 0.50 250 0.05 |0.00 |0.05 |0.00 0.00 0.50 1.93
RF 009 001 [009 001 0.00 0.50 239 028 008 |028 012 0.01 0.50 225
LR 000 |000 [000 |0.00 0.00 0.50 9.45 0.00 |0.00 |000 |0.00 0.00 0.50 10.11
DT 007 001 [007 001 0.00 0.50 0.20 007 001 [007 |o0.01 0.00 0.50 0.19

Table 8. Robustness results on PBSIM data with 15 and 20 as read depth.

Covidex 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5
Nextclade 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5

Table 9. Robustness results on PBSIM data with 15 and 20 as read depth using Covidex and Nextclade.
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SVM 068 |066 |068 |0.66 0.49 0.73 6.75 0732 072 |o71 |o0722 0.55 0.76 10.76
NB 069 073 [069 |0.71 0571 0.80 031 072|072 |o72  [o721 0.53 0.77 0.32
MLP 068 |065 |068 |0.66 0.34 0.66 75.93 068 |065 |068 |0.66 032 0.65 27.84
’v‘e‘C‘:z; s KNN 073 073 [073 |0.72 0.574 0.76 0.75 0731 072 [0.733 |0.727 0.56 0.76 0.68
RF 072 072 072 |0.70 051 0.72 244 0738 073 |0731 |o0.71 0.55 0.74 243
LR 072 (070 |072 |0.70 0.52 0.74 6.71 072 |o71 |o72 |o71 0.54 0.75 6.69
DT 051 053 |051 |052 032 0.66 0.24 056 |056 |056 |0.56 0.41 0.70 021
SVM 027 [007 |027 |012 0.01 0.50 8.20 028 [008 |028 [o0.12 0.01 0.50 9.64
NB 001 [0.00 |001 |0.00 0.01 0.51 0.39 002 [001 |002 o001 0.03 0.52 025
MLP 032 022 |032 |024 0.06 0.52 10.30 034 |025 |034 |o026 0.08 053 12.72
Eescstlz[r KNN 026 |021 |026 |022 0.06 0.52 1.10 029 [026 |029 [0.25 0.09 0.54 0.70
RF 030 024 |030 |025 0.08 0.52 217 032 [025 |032 [o027 0.08 0.53 1.92
LR 027 007 |027 o012 0.01 0.50 3.92 028 [008 |028 [o012 0.01 0.50 326
DT 030 024 |030 |025 0.07 0.52 0.121 032 |025 |032 |o026 0.08 0.53 0.07
SVM 052 047 |052 |046 0.30 0.64 11.75 054 |050 |054 |049 034 0.66 7.45
NB 005 027 [005 |0.04 0.09 0.63 0.20 007 [037 |007 [o0.08 0.14 0.64 0.19
MLP 052 |046 |052 | 046 0.26 0.62 25.0 052 |046 |052 |048 025 0.62 28.70
xic‘t‘io':‘izer KNN 055 |0.55 |055 053 0.39 0.67 0.52 057 [057 [057 |0.56 0.47 0.70 0.56
RF 065 067 |065 |063 0.46 0.70 1.75 068 |069 |068 |0.66 0.56 0.74 1.60
LR 051 |046 |051 |046 028 0.63 291 053 [049 |053 |o048 0.34 0.65 2.90
DT 047 |047 |047 |047 031 0.65 0.128 054 |054 |054 |o054 0.42 0.70 0.10

Table 10. Robustness results on illumina-based errored sequences with 5000 and 10, 000 short reads used in
the simulation process. The best values are shown in bold.

Covidex 0.94 0.95 0.94 0.94 0.60 0.94 0.78 0.80 0.78 0.78 0.38 0.84
Nextclade 0.76 0.78 0.76 0.77 0.35 0.81 0.77 0.79 0.77 0.78 0.36 0.82

Table 11. Robustness results on Covidex and Nextclade using illumina-based errored sequences with 5000
and 10, 000 short reads used in the simulation process.
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# of short reads: 15,000 # of short reads: 20,000
Train. Train.
Embed. runtime runtime
method ML algo. | Acc. |Prec. | Recall | F1weigh. | Fl macro | ROC-AUC| (s) Acc. | Prec. | Recall | F1weigh. | F1 macro | ROC-AUC| (s)
SVM 068 [069 |0.68 |0.67 0.4 0.72 12.41 0.68 [0.69 |068 |0.67 0.44 0.72 11.60
NB 0.00 [0.00 |0.00 |0.00 0.03 0.52 0.95 0.00 [0.00 |0.00 |0.00 0.03 0.52 0.65
MLP 063 [0.64 |0.63 |0.62 0.32 0.67 26.30 0.63 [0.65 |0.63 0.63 0.31 0.66 20.25
55‘32? KNN 051 050 [051 045 0.13 0.56 2.50 051 050 [051 [045 0.13 0.56 229
RE 071 (073 |0.71 | 0.68 0.51 0.71 3.17 071 [0.72 |0.71 | 0.68 0.49 0.71 2.64
LR 071 (070 |0.71 | 0.69 0.47 0.73 1222 071 (070 |0.71 | 0.69 0.47 0.73 12.22
DT 053 [0.55 |0.53 |0.53 035 0.68 033 052 [0.54 |052 |052 0.31 0.66 0.32
SVM 028 [0.08 |028 |0.12 0.01 0.50 9.79 0.28 [0.08 |028 |0.12 0.01 0.50 9.59
NB 0.00 [0.00 |0.00 |0.00 0.00 0.50 0.18 0.00 |0.00 |0.00 |0.00 0.00 0.50 0.22
MLP 022 [020 |022 |0.14 0.03 0.51 15.89 018 |0.18 |0.18 |0.14 0.02 0.51 19.92
Eescstl;/lr KNN 017 [022 |017 |0.14 0.02 0.51 1.98 017 |022 |0.17 |0.14 0.02 0.51 2.28
RF 012 017 |012 |o0.12 0.03 0.51 1.76 013 |018 |013 |0.13 0.03 0.51 2.00
LR 028 [0.08 |028 |0.12 0.01 0.50 1.01 028 |0.08 |028 |02 0.01 0.50 1.03
DT 013 [019 [013 |0.13 0.03 0.51 0.09 012 |018 |012 |0.12 0.03 0.51 0.08
SVM 052 [0.53 |052 |0.48 0.31 0.65 19.16 052 |0.54 |052 |048 0.32 0.65 18.63
NB 0.02 [0.07 |002 |0.01 0.06 0.55 0.95 002 |007 |002 |0.01 0.06 0.55 0.77
MLP 0.50 [045 |050 | 0.45 0.22 0.59 33.36 052 |048 |052 |048 0.29 0.63 37.64
xi;:(i::nzer KNN 037 035 [037 031 0.10 0.55 242 037 035 [037 |03l 0.10 0.55 2.34
RF 0.64 |0.68 |0.64 |0.60 0.46 0.69 221 064 |0.67 |0.64 |0.60 0.45 0.69 2.44
LR 051 [0.53 |0.51 0.46 0.30 0.64 9.14 051 |0.53 |051 0.46 0.30 0.64 9.38
DT 0.51 [0.53 |0.51 0.51 0.35 0.68 0.19 051 |0.53 |0.51 0.51 0.36 0.68 0.19
Table 12. Robustness results on illumina-based errored sequences with 15,000 and 20,000 short reads used in
the simulation process. The best values are shown in bold.
# of short reads: 15,000 # of short reads: 20,000
Method Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC
Covidex 0.78 0.80 0.78 0.78 0.38 0.84 0.78 0.80 0.78 0.78 0.38 0.84
Nextclade 0.77 0.79 0.77 0.78 0.36 0.82 0.77 0.79 0.77 0.78 0.36 0.82

Table 13. Robustness results on Covidex and Nextclade using illumina-based errored sequences with 15,000
and 20,000 short reads used in the simulation process.

Data availability
All data generated or analyzed during this study are included in this published article (and its supplementary
information files).
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