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Benchmarking machine learning 
robustness in Covid‑19 genome 
sequence classification
Sarwan Ali 1*, Bikram Sahoo 1, Alexander Zelikovsky 1, Pin‑Yu Chen 2 & Murray Patterson 1

The rapid spread of the COVID‑19 pandemic has resulted in an unprecedented amount of sequence 
data of the SARS‑CoV‑2 genome—millions of sequences and counting. This amount of data, while 
being orders of magnitude beyond the capacity of traditional approaches to understanding the 
diversity, dynamics, and evolution of viruses, is nonetheless a rich resource for machine learning (ML) 
approaches as alternatives for extracting such important information from these data. It is of hence 
utmost importance to design a framework for testing and benchmarking the robustness of these 
ML models. This paper makes the first effort (to our knowledge) to benchmark the robustness of ML 
models by simulating biological sequences with errors. In this paper, we introduce several ways to 
perturb SARS‑CoV‑2 genome sequences to mimic the error profiles of common sequencing platforms 
such as Illumina and PacBio. We show from experiments on a wide array of ML models that some 
simulation‑based approaches with different perturbation budgets are more robust (and accurate) 
than others for specific embedding methods to certain noise simulations on the input sequences. Our 
benchmarking framework may assist researchers in properly assessing different ML models and help 
them understand the behavior of the SARS‑CoV‑2 virus or avoid possible future pandemics.

!e novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a ribonucleic acid (RNA) corona-
virus, was identi"ed in January  20201, which began the COVID-19 pandemic that is still ongoing today. With 
the help of sequencing technology and phylogenetic analysis, the scienti"c community disclosed that this novel 
coronavirus has 50% similarity with the Middle-Eastern Respiratory Syndrome Coronavirus (MERS-CoV), 79% 
sequencing similarity to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)—also known simply as 
“SARS”—and more than 85% similarity with a coronavirus found in bats. Further studies con"rmed that bats are 
the likely reservoir of these coronaviruses; however, the ecological separation of bats from humans indicates that 
some other organisms may have acted as intermediate hosts. Considering all scienti"c evidence, the International 
Committee on Taxonomy of Viruses named the novel RNA virus SARS-CoV-21–3.

RNA viruses generally introduce errors during replication, and the resulting mutations are incorporated into 
the viral genome a#er repeated replication within a single host, generating a heterogeneous population of viral 
quasi-species. However, SARS-CoV-2 has an excellent proofreading mechanism that encodes a nonstructural 
protein 14 (nsp14) allowing it to have a 10-fold lower mutation rate than typical RNA viruses. Epidemiologists 
estimate that SARS-CoV-2 undergoes 33 genomic mutations per year on average. Some of these mutations are 
advantageous, leading to more infectious variants of SARS-CoV-2 that continue to  emerge4. Moreover, each 
major variant/lineage can be characterized or di$erentiated by a handful of  mutations5. Hence, a sequencing 
error in the SARS-CoV-2 genome (see Fig. 1) may lead to a false variant/lineage and in&uence the current study 
of the SARS-CoV-2  virus5,6.

!e diminishing cost of next-generation sequencing (NGS) technology has aided scientists from di$erent 
parts of the world to generate large volumes of SARS-CoV-2 whole-genome sequencing (WGS) data. !e Cent-
ers for Disease Control and Prevention (CDC) of the United States has also provided a wealth of information on 
resources, tools, and protocols for SARS-CoV-2 WGS data from di$erent sequencing platforms such as Illumina, 
PacBio, and Ion Torrent. Finally, the Global Initiative on Sharing All In&uenza Data (GISAID) hosts the largest 
SARS-CoV-2 genome sequencing dataset to date—the largest of any virus in history, with millions of sequences. 
!is unprecedented amount of genomic data and easy availability allowed researchers to explore the molecular 
mechanism, genetic variability, evolutionary progress, and capability of development and spread of novel variants 
of the virus. On the other hand, this amount of data exceeds the capacity of the more traditional phylogenetic 
methods, such as  Nextstrain9 or even the more recent  IQTREE210 by several orders of magnitude—a Big Data 
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challenge. As a result, recent alternative approaches based on clustering and classi"cation of sequences, e.g., to 
identify major variants have appeared in the  literature6,11–14, with promising accuracy and scalability properties.

Many issues still remain, however, such as sequencing errors being mistaken for mutations in di$erent analy-
ses when studying the evolutionary and transmission patterns of SARS-CoV-28,15, or other viruses. !e incor-
poration of error in NGS sequences due to contamination in sample preparation, sequencing technology, or 
genome assembly methodology is another confounding factor. Generally, computational biologists "lter those 
sequences with errors or mask those sequence fragments having errors. For example, each  GISAID16 sequence 
is a consensus sequence from the intra-host viral population sampled from the patient, averaging out the minor 
variations which exist in this population. While such a consensus sequence is a good representative of this popu-
lation, i.e., it is still precise enough to capture the SARS-CoV-2 variant harbored by the infected individual, it 
comes at the cost of losing this important information, such as these minor variations. Such minor variations, 
when given enough time to evolve, e.g., within an immunocompromised individual can become dominant—one 
of the theories behind the emergence of the Alpha  variant17.

Many machine learning approaches towards clustering and classi"cation of  sequences6,12,13 have been operat-
ing under somewhat idealized conditions of virtually error-free consensus sequences, which may not be in certain 
settings. Moreover, some of these methods rely on a k-mer based feature vector representation—an approach 
that does not even rely on alignment of the sequences, which may not always be available in certain settings and 
can also introduce  bias18. Such a framework should easily cope with errors as well—something machine learning 
approaches can do very  naturally19. !ere are other methods in the literature for SARS-CoV-2 subtyping, such 
as  Covidex20 and  Nextclade21. Although these methods are proven to show higher predictive performance, it is 
not clear if they can be generalized to noisy sequence data. Hence, there is a great need for some way to reliably 
benchmark such methods for robustness to errors, which is what we carry out in this paper. Our main research 
question is the following:

Given a perturbation budget, how robust are the existing classi!cation models to noisy coronavirus inputs?
In this paper, we extend our error testing procedure as a framework for benchmarking the performance of 

di$erent ML methods in terms of classi"cation accuracy and robustness to di$erent types of simulated nucleo-
tide sequences with errors. !is involves using PBSIM and InSilicoSeq tools for simulating long reads and short 
reads-based nucleotide sequences with realistic error pro"les. As the target label to perform classi"cation, we 
use di$erent lineages of coronavirus e.g. AY.103, AY.44, etc. In total, we extracted data for 41 unique lineages 
(class labels) from the GISAID database in January 2022.

We highlight the main contributions of this paper as follows:

• We propose several ways of introducing biologically meaningful errors into the SARS-CoV-2 genome 
sequences, which re&ect the error pro"les of modern NGS technologies such as Illumina and PacBio.

• Using di$erent embedding methods from the biology domain such as PSSM Vector (based on the concept 
of position-speci"c scoring matrices) and Minimizer Vector (based on the concept of minimizers), we per-
form classi"cation on original and errored sequences and report the performance using di$erent evaluation 
metrics.

• We show that the alignment-free method for feature embedding, called k-mers Vector, which is based on 
the idea of k-mers, is better in terms of predictive performance when there is no error in the nucleotide 
sequences. !is is likely due to the fact that it preserves nucleotide order information in more detail than the 
PSSM Vector or Minimizer Vector representations (at the expense of being less compact).

• We demonstrate that for the PBSIM (long reads) based errored sequences, the PSSM Vector embedding is 
more robust than the sliding window-based k-mers Vector or Minimizer Vector approaches, possibly because 
it captures more long-range information.

Figure 1.  !e SARS-CoV-2 genome codes for several proteins, including the surface, or spike (S) protein, 
where mutations happen disproportionately  o#en5,6. Sequencing errors can bias the identi"cation of a  variant7,8. 
!e above "gure represents the incorporation of a sequencing error that appears as a mutation in the spike 
region of the SARS-CoV-2 virus. While such a sequence is part of a lineage in the phylogenetic tree, now it will 
be classed as being part of a di$erent lineage because of the sequencing error. !is "gure is generated using “yEd 
Graph Editor” tool with Version 3.20.1 (https:// www. yworks. com/ produ cts/ yed).

https://www.yworks.com/products/yed
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• We show that for the Illumina-based errored sequences, k-mers Vector and Minimizer Vector are able to 
show better performance than PSSM Vector, again because they likely preserve order information in higher 
detail.

!e rest of the paper is organized as follows. In “Related work” section we discuss related work. !e methods 
to generate the noisy examples are described in “Noise simulations creation” section. In “Feature embeddings 
generation” section, we discuss di$erent embedding methods used to convert the sequences into "xed-length 
numerical representations. “Experimental setup” section contains the details regarding the experimental setup, 
dataset statistics, and data visualization. We report our results for accuracy and robustness in “Results and dis-
cussion” section. We described the limitations of our work in “Limitations” section. Finally, we conclude this 
paper in “Conclusion” section.

Related work
Robustness for noisy data in different domains. Assessing and benchmarking the robustness of ML 
or DL approaches by a series of noise simulations are popular in the image classi"cation  domain22, but there 
are others that are closer to the domain of molecular data.  In23, the authors provide a series of realistic noise 
simulations to benchmark methods that predict chemical properties from atomistic simulations e.g., molecular 
conformation, reactions, and phase transitions. Even closer to the subject of our paper, the authors  of24 show 
that methods, such as  AlphaFold25 and  RoseTTAFold26, which employs deep neural networks to predict protein 
conformation may not be robust: producing drastically di$erent protein structures as a result of very small 
biologically meaningful perturbations in the protein sequence. Our approach is similar, albeit with a di$erent 
goal of classi"cation: namely, to explore how a small number of mutations (simulating the error introduced in 
certain types of NGS technologies) can a$ect the downstream classi"cation of di$erent machine learning and 
deep learning approaches.

Kernel function based methods for sequence classification. Designing Kernel functions is a popu-
lar method for classi"cation in the natural language processing (NLP) and bioinformatics domains for text and 
sequence classi"cation,  respectively27–30. !ese methods work by computing a kernel (distance) matrix based on 
the matches and mismatches between k-mers within sequences. !e kernel matrix is used as input to traditional 
machine learning classi"ers like support vector machine (SVM)27–29 for supervised analysis. !ere are two main 
problems in these methods, namely (1) kernel computation runtime and (2) storage of n × n dimensional matrix 
in memory when n (number of sequences) is large. Authors  in30 proposed an e'cient way of dimensionality 
reduction using information gain to speed up the kernel computation step. However, the space complexity issue 
still remains.

Embedding generation methods for sequence classification. An alternative to kernel functions 
is to design "xed-length numerical embeddings, that can be used as input to machine learning classi"ers for 
sequence classi"cation. Authors  in6 propose an embedding method for the classi"cation of spike sequence data. 
However, their approach is not alignment-free nor scalable to larger datasets. Neural network-based methods, 
such as Wasserstein Distance Guided Representation Learning (WDGRL)31 and  AutoEncoder32 have been pro-
posed in the literature to obtain the embeddings for sequences given one-hot encoding-based vectors as input. 
An end-to-end deep learning model is also proposed  in33 for genome data analysis. !ese neural network-based 
methods, however, take a lot of time to train and usually generalize poorly on test data. Another embedding 
generation method for gene sequences, called DMk, is proposed  in34. However, the resultant embeddings are 
speci"cally designed for the clustering task, hence not applicable in our case since we are performing sequence 
classi"cation.

Bioinformatics tools. Some bioinformatics tools have been proposed in the literature for SARS-CoV-2 sub-
typing, such as  Covidex20 and  Nextclade21. !ese tools show higher predictive accuracy of biological sequences 
in general. However, they are not designed to deal with noisy data, hence generalize poorly when given errored 
sequences for testing, as we see in the results.

Noise simulations creation
We use two types of approaches to generate noisy examples so that we can test the robustness of di$erent 
machine-learning methods.

PBSIM simulated data generation. PBSIM is developed to simulate Paci"c Biosciences (PacBio) 
sequencing reads. Generally, the PacBio sequencer generates two types of reads: continuous long reads (CLR) 
and circular consensus sequencing short reads (CCS). !e CLR reads have a high error rate, and CCS reads have 
a lower error rate. PBSIM can simulate both CLR and CCS reads with di$erent approaches: sampling-based 
simulation and model-based simulation. In the sampling-based simulation, PBSIM considers the length and 
quality of a provided read set to simulate the reads. In the model-based simulation, PBSIM simulates the reads 
on the basis of an error  model35.

To generate a sequence with errors (perturbed sequences), we take an original SARS-CoV-2 genomic sequence 
and simulate reads from it using the model-based approach with the default PacBio error model. !ese reads 
(containing errors) are then aligned to the original sequence, mutations are called, and then consensus sequences 
(with mutations, some of which are errors) are extracted. We control the amount of error (perturbation budget) in 
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the reads by adjusting the depth of the reads (a parameter of PBSIM). More speci"cally, we generate a perturbed 
sequence for each of the 8220 di$erent SARS-CoV-2 sequences from GISAID for reading depths 5, 10, 15, and 20.

InSilicoSeq simulated data generation. !e InSilicoSeq open-source tool simulates the reads from dif-
ferent short-read technologies such as Illumina. InSilicoSeq is a widely used tool, and several studies generate 
more realistic NGS data using this tool for planning new experiments and benchmarking  purposes36–40. !e tool 
can incorporate errors into the reads based on recent Illumina platform details (e.g., chemistry). InSilicoSeq 
supports substitution, insertion, and deletion errors and can model the PHRED score. !e current release of the 
InSilicoSeq tool has a pre-built error model for HiSeq, MiSeq, and NovaSeq instruments. Moreover, InSilicoSeq 
has the option to generate the number of reads according to the user’s  requirement41.

We generate a sequence with errors analogously to the above, this time controlling the error (perturbation 
budget) by adjusting this number of reads. We generate a sequence for the 8220 GISAID sequences mentioned 
above, with a number of reads 50,00, 10,000, 15,000, and 20,000.

Remark 1 Note that we selected PBSIM and InSilicoSeq to generate noisy examples because they are well-known 
methods from the literature. It is important to use these tools because the main challenge while generating noisy 
examples for biological sequences is to introduce the error in “biologically meaningful way” so that the biologi-
cal structure of nucleotide sequences is not disturbed and the resulting sequences do not look synthetic (for 
example, we cannot introduce some random error in the sequences as it will disturb the structure of nucleotide 
sequences). !is way, perturbed sequences highly resemble true biological sequences yet, at the same time, may 
fool a classi"er.

Feature embeddings generation
!is section introduces di$erent feature embedding methods used to convert the nucleotide sequence into a 
"xed-length representation.

k‑mers  vector14. A popular approach to preserve the ordering of the sequential information, called 
 Spike2Vec14, takes the sliding window-based substrings (called mers) of length k (also called n-gram). !is 
k-mers-based representation helps to preserve the order of characters within the  sequences12 (see Fig. 2 for an 
example of k-mers).

First, the k-mers are computed for each nucleotide sequence in this approach. !en a "xed length frequency 
vector is generated corresponding to each sequence, which contains the count of each k-mer in that sequence. 
One advantage of using k-mers based approach is that it is an “alignment-free” method unlike other popular 
baselines (e.g., one-hot encoding “OHE”6,12), which requires the sequences to be aligned. In one-hot encoding, 
each nucleotide is represented by a 0-1 binary vector of length 4 (because of 4 nucleotides in every sequence). 
Since unaligned sequences can have a di$erent number of nucleotides, hence the resultant one-hot representation 
will also have variable length. Although we can use methods such as data padding to make these one-hot vectors 
have similar lengths, the pairwise distance information, however, is lost to a certain extent. Due to these issues, 
one-hot encoding requires aligned sequences as input. Note that sequence alignment is expensive and requires 
a reference sequence (genome)42,43. It may also introduce bias into the  result18. !e total number of k-mers in a 
given nucleotide sequence is N − k + 1 , where N is the length of the sequence. !e variable k is the user-de"ned 
parameter. In this paper, we take k = 3 (decided empirically using standard validation set  approach44).

Frequency vector generation. A#er generating the k-mers, the next step is to generate the "xed-length numeri-
cal representation (frequency vector) for the set of k-mers in a nucleotide sequence. Suppose the set of nucleo-
tides in the whole dataset is represented by the alphabet ! (A, C, G, and T). Now, the length of the frequency 
vector will be |!|k (all possible combinations of k-mers in ! of length k). Note that this length is "xed for all 
sequences regardless of their sequence length. Hence, no matter the number of k-mers extracted from a given 
nucleotide sequence, since the length of the frequency vector is constant, this method can work on variable 

Figure 2.  Example of di$erent k-mers in a nucleotide sequence. !is "gure is generated using “yEd Graph 
Editor” tool with Version 3.20.1 (https:// www. yworks. com/ produ cts/ yed).

https://www.yworks.com/products/yed
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length sequences (hence exhibits the alignment-free property). In our dataset, since we have 4 unique nucleo-
tides in any sequence, the length of the frequency vector in our case would be 43 = 64 (when we take k = 3).

A#er getting the k-mers frequency vectors, authors in Spike2Vec apply random Fourier  feature45 approach to 
reduce the dimensionality of the data. Since our dataset is comparatively smaller, we did not apply that method, 
hence we refer to this method as k-mers Vector rather than Spike2Vec in our paper.

PSSM vector. !e PSSM Vector embedding is based on the idea of the position-speci"c scoring matrix 
(PSSM), also called position weight matrix (PWM)46,47. For a given nucleotide sequence s, PSSM Vector designs 
the PWM. !e PWM generation starts by "rst computing the k-mers (where k = 3 , which is decided using 
standard validation set  approach44) for s. For all the k-mers in s, a matrix of length |!| × k is generated, which 
includes the count of nucleotides at di$erent positions within the k-mers. !is matrix is also called the position 
frequency matrix (PFM). In the next step, column-wise probabilities are computed for PFM to get a new matrix 
called the position probability matrix (PPM). More formally, the PPM is computed as follows:

To avoid having zero in the denominator, we add a small value of 0.01 (called Laplace value or pseudocount) 
during the probability computation. Finally, the PWM is computed from the PPM by taking the log-likelihood 
of each nucleotide c ∈ ! at a position i. More formally:

where p(c) = 1
4 , which corresponds to the equal probability of occurrence for each nucleotide in the sequence. 

A#er generating the PWM, we &atten the matrix to generate a single vector, which we refer to as PSSM Vector.

Minimizer vector. !e Minimizer Vector feature embedding is based on the idea of  minimizers48. !e mini-
mizer is a modi"ed version of a k-mer and is used to represent a biological sequence in a more compact form.

De"nition 1 (Minimizers) For a given k-mer, a minimizer (also called m-mer) is a substring of consecutive 
nucleotides of length m from the k-mer, which is lexicographically smallest one in both forward and backward 
order of the k-mer, where m < k and is "xed.

!e pseudocode to compute the minimizers is given in Algorithm 1. For a better understanding of pseudoc-
ode, we use the syntax of python code. To compute the minimizers, we take k = 9 and m = 3 , which is decided 
empirically using standard validation set  approach44. A#er computing the minimizers for a given nucleotide 
sequence, we follow the same method to generate the frequency vector-based representation as described in 
“Frequency vector generation” section. For reference, we denote this method as Minimizer Vector.

(1)
Frequency of nucleotide

No. of nucleotides in the column
.

(2)Wc,i = log2
p(c, i)

p(c)
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Algorithm 1 Minimizer Computation
1: Input: Sequence s and integer k and m
2: Output: Set of Minimizers
3: 0/=sreziminim
4: queue = [] ! maintain queue of all m-mers
5: idx = 0 ! index of the current minimizer
6: for i ← 1 to |s|− k+1 do
7: kmer = s[i : i+ k]
8: if idx > 1 then
9: queue.dequeue
10: mmer = s[i+ k−m : i+ k] ! new m-mer
11: idx ← idx −1 ! shift index of current minimizer
12: mmer = min(mmer, reverse(mmer)) ! lexicographically smallest forw./rever.
13: queue.enqueue(mmer)
14: if mmer < queue[idx] then
15: idx = k−m ! update minimizer with new m-mer
16: else
17: queue = [] ! reset the queue
18: idx = 0
19: for j ← 1 to k−m+1 do
20: mmer = kmer[ j : j+m] ! compute each m-mer
21: mmer = min(mmer, reverse(mmer))
22: queue.enqueue(mmer)
23: if mmer < queue[idx] then
24: idx = j ! index of current minimizer
25: minimizers ← minimizers ∪ queue[idx] ! add current minimizer
26: return(minimizers)

Remark 2 !e goal of selecting these embedding methods is that they are alignment-free and also showed the 
best results in terms of predictive performance. Moreover, the k-mers, minimizers, and position weight matrix 
are one of the most common methods used in the bioinformatics domain for sequence analysis.

We also use the tools such as  Covidex20 and  Nextclade21 for classifying the lineages. !ese tools simply take 
the nucleotide sequences as input and give us the lineage name as the predicted value. No training is involved 
for these methods as they are “pre-trained” on a set of biological sequences.

Experimental setup
All experiments are conducted using an Intel(R) Core i5 (11th generation) with a 2.40 GHz processor having 
windows 10 (64 bit) OS and 32 GB memory. !e simulated and pre-processed data is available online (https:// 
github. com/ sarwa npasha/ Adver sarial_ attack_ on_ biolo gical_ seque nces). For classi"cation purposes, we use the 
Support Vector Machine (SVM), Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN), 
Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT).

To measure the performance of ML models, we apply the following two di$erent strategies.
Accuracy In this case, we compute the average accuracy, precision, recall, F1 (weighted), F1 (Macro), and 

ROC-AUC for the whole (original) dataset (with respect to the lineages “class labels” reported in Table 1) without 
any errored sequence.

Robustness An important characteristic of the robustness of models is their ability to provide sensible outputs 
when input examples are not drawn from the training  data49,50. !erefore, in this strategy, we only consider the 
noisy examples (set of errored sequences) for the test set (and non-errored sequences for the training set) and 
compute average accuracy, precision, recall, F1 (weighted), F1 (Macro), and ROC-AUC for the ML models.

Dataset statistics. We used the full-length nucleotide sequences of coronavirus from a popular and pub-
licly available database of SARS-CoV-2, GISAID (https:// www. gisaid. org/). In order to collect the error-free 
sequences, we selected speci"c parameters while downloading the data from GISAID, such as full-length SARS-
CoV-2 sequences, generated from high-coverage reads, ensuring that these sequences are virtually error-free. In 
total, we extracted 10, 000 nucleotide sequences from GISAID. A#er preprocessing (removing those sequences 
for which the lineage count was < 10 ) we came up with 8220 sequences. We selected these nucleotide sequences 
along with their COVID-19 lineage information in January 2022.

!e total number of unique lineages (class labels) in our dataset is 41. !e dataset statistics for the prepos-
sessed data are given in Table 1 (the "rst and the third column show the class labels, which are the lineages of 
SARS-CoV-2, while the second and fourth column shows the proportion of sequences corresponding to each 
lineage). Given this set of nucleotide sequences, our problem is to classify the lineages (class labels), and we 

https://github.com/sarwanpasha/Adversarial_attack_on_biological_sequences
https://github.com/sarwanpasha/Adversarial_attack_on_biological_sequences
https://www.gisaid.org/
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do so by converting the sequences into "xed-length numerical vectors using di$erent embedding methods. 
Our simulated dataset is available online for reproducibility (https:// drive. google. com/ drive/ folde rs/ 1adtr 8FImI 
YTqxM 20wgI nRqIZ 8EJY4 HVS? usp= shari ng).

Comparison with DL models. It is well known from the literature that deep learning (DL) methods (and 
other ML classi"ers) do not work e'ciently as compared to simple tree-based methods in the case of tabular 
 data51–53. However, to validate that concept, we use a pre-trained model called  SeqVec54, and other DL methods 
such as  LSTM55, GRU 56, and  CNN57 for sequence classi"cation on original data. Following is the detail regarding 
di$erent DL models:

LSTM. !e LSTM architecture consists of an embedding layer (of length 500), an LSTM layer with 200 mem-
ory units, a LeakyReLU layer with alpha = 0.05, an LSTM layer again with 200 memory units followed by another 
LeakyReLU layer, a dropout with value 0.2, a Dense layer of dimensions 500 followed by LeakyReLU layer, and 
"nally an output layer and a sigmoid activation function. We use the ADAM optimizer in this architecture.

GRU . !e GRU architecture consists of an embedding layer (size of embedding is 500), a GRU layer with 200 
memory units, a LeakyReLU layer with alpha = 0.05 followed by a Dropout layer with value 0.2, and "nally, a 
dense output layer and a sigmoid activation function. We also use the ADAM optimizer in the GRU architecture.

CNN. Similarly, the CNN architecture comprises an embedding layer (size of embedding is 500), a 1-D con-
volution layer (Conv1D) with 128 "lters and a kernel size of 5, a LeakyReLU layer with alpha = 0.05, a batch 
normalization layer, a 1-D convolution layer (Conv1D) again with 128 "lters and a kernel size of 5, a LeakyReLU 
layer with alpha = 0.05 followed by batch normalization, a max pooling layer with pool size equals 2, a dense 
layer of 500 dimensions followed by a LeakyReLU layer with alpha = 0.05, and "nally an output dense layer with 
a sigmoid activation function. For optimization, we use the ADAM optimizer.

SeqVec54. !e SeqVec is a pre-trained language model for biological sequences that use Embeddings from 
Language Models (ELMO)58 for its training. Given biological sequences as input, we "ne-tune the model based 
on our input data and it outputs the embeddings for the sequences. !e resultant embeddings are context-based 
and used as input to classical machine learning classi"ers for supervised analysis.

Data visualization. To visualize if there is any (natural) clustering in our data, we generated a 2D represen-
tation of the feature embeddings using the t-distributed stochastic neighbor embedding (t-SNE)  approach59. !e 
main advantage of t-SNE is that it preserves the pair-wise distance between vectors in 2 dimensions. !e t-SNE 
plot for di$erent coronavirus variants is given in Fig. 3a–c for k-mers Vector, PSSM Vector, and Minimizer Vec-

Table 1.  Dataset statistics for di$erent SARS-CoV-2 lineages in our data. A#er preprocessing, the total 
number of sequences (and corresponding lineages) is 8220.

Lineage No. of sequences Lineage No. of sequences
AY.103 2271 AY.121 40
AY.44 1416 AY.75 37
AY.100 717 AY.3.1 30
AY.3 710 AY.3.3 28
AY.25 585 AY.107 27
AY.25.1 382 AY.34.1 25
AY.39 248 AY.46.6 21
AY.119 242 AY.98.1 20
B.1.617.2 175 AY.13 19
AY.20 130 AY.116.1 18
AY.26 107 AY.126 17
AY.4 100 AY.114 15
AY.117 94 AY.125 14
AY.113 94 AY.34 14
AY.118 86 AY.46.1 14
AY.43 85 AY.92 13
AY.122 84 AY.98 12
BA.1 79 AY.46.4 12
AY.119.2 74 AY.127 12
AY.47 73 AY.111 10
AY.39.1 70 _ _

https://drive.google.com/drive/folders/1adtr8FImIYTqxM20wgInRqIZ8EJY4HVS?usp=sharing
https://drive.google.com/drive/folders/1adtr8FImIYTqxM20wgInRqIZ8EJY4HVS?usp=sharing
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tor, respectively. For the k-mers Vector-based t-SNE plot, we can observe that some of the variants (e.g., AY.103) 
are grouped more clearly than the other variants. PSSM Vector, however, maintains smaller groups of variants 
as compared to k-mers Vector. !e structure of Minimizer Vector-based t-SNE is more similar to k-mers Vector. 
However, it grouped some other variants (e.g., AY.96.1) more clearly as compared to k-mers Vector. In general, 
we can observe that all embedding methods preserve the overall structure of the data.

Results and discussion
In this section, we report the performance of ML models using two metrics, namely accuracy and robustness. 
For the accuracy metric, we report classi"cation results for di$erent ML models on the original data (without 
noisy examples). For the robustness results, we trained the classi"ers on the original sequences (without any 
error) and tested their performance on the errored sequences.

Accuracy results. To evaluate the performance of original nucleotide sequences (non-errored sequences), 
we split the sequences into (random) 70–30% training and testing set and perform classi"cation on di$erent 
embedding methods. To demonstrate that our results are not dependent on the speci"c random splits of data, 
we ran the experiments 5 times and reported average results.

Remark 3 Note that we also performed a 5 fold cross-validation, and the results were not very di$erent from the 
average results of 5 random runs.

!e accuracy results for di$erent embeddings and ML models are shown in Table 2. We can observe that 
the SVM classi"ers with k-mers Vector-based embedding outperform other embeddings and ML models for 
all but one evaluation metric. In terms of runtime, since the length of vectors for PSSM Vector is smaller than 
the other embedding methods, its training runtime for the NB classi"er is the smallest. !e predictive results of 
Covidex and Nextclade are reported in Table 3 for the original data. Overall, we can observe that the predictive 
performance for both of these methods is higher that the embedding methods we used including k-mers Vector, 
PSSM Vector, and Minimizer Vector. !is is because both of these methods are already pre-trained on larger 
datasets and did not go through the typical training process that we used for the embedding methods, hence we 
reported their results separately.

!e standard deviation of 5 runs for the original data (without any errored sequences) is given in Table 4. 
Note that the accuracies (average values of 5 runs) for the same data are reported in Table 2 in the main paper.

!e results comparisons for DL-vs-Non DL methods are shown in Table 5. Since the DL methods show lower 
results than simple ML models, we only report the robustness results (in the next section) for ML models in 
this paper.

Robustness results. For the robustness results, we show the predictive performance of di$erent ML mod-
els by "rst using the PBSIM-based noisy sequences and then show the performance of ML models for Illumina-
based noisy examples.

For the PBSIM-based sequences, we take the original 8220 (non-errored) sequence data for training the ML 
models and use the PBSIM-based (8220) errored sequences as the test set. !e purpose of this experimental set-
ting is to evaluate the performance of ML models on the errored sequences, which were unavailable during the 
training process. In this experimental setting, we show the results for depth 5 and depth 10 (i.e., perturbation 
budgets) based errored sequences (in the test set) in Table 6. !e robustness results for Covidex and Nextclade 
are reported in Table 7. Here, we can observe that although Covidex achieves higher predictive performance 
for noise data with depth 5, it completely fails to predict even a single sequence’s lineage correctly for depth 10 
data. Moreover, Nextclade failed for both depth 5 and depth 10 data completely. !is could happen due to the 
fact that these methods considered the errored mutations as some original mutations which were not present 
during their training process, hence they simply predicted lineage “B” for all of the noisy sequences (where the 
accuracy is 0), which means that these sequences could be any sub-category of a more generic “B” lineage. !is 
behavior shows that these two methods do not generalize well to noisy sequences. Similarly, the robustness 

(a) k-mers Vector (b) PSSM Vector (c) Minimizer Vector

Figure 3.  t-SNE plot for di$erent embedding methods. !is "gure is generated using “Matplotlib” library in 
python with version 3.3.2 (https:// matpl otlib. org/).

https://matplotlib.org/
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results of PBSIM-based errored sequences (with depth 15 and 20) are shown in Table 8. !e robustness results of 
Covidex and Nextclade for depth 15 and 20 datasets are reported in Table 9. We can again observe that these two 
methods failed completely and only gave “B” as the predicted label. Hence, we can conclude that these methods 
cannot generalize well to the noisy data generated using the PBSIM simulator.

For the Illumina-based sequences, we take the original 8220 (non-errored) sequence data for training the ML 
models and use the Illumina-based errored 8220 sequences as the test set. In this experimental setting, we show 
the results for sequences simulated using a di$erent number of short reads (in the test set). !e results for 5000 
short reads and 10, 000 short reads (i.e., perturbation budget) based errored sequences are shown in Table 10. 
!e robustness results for the same data using Covidex and Nextclade are reported in Table 11. Opposite to the 
results for the PBSIM simulator, we can observe that both Covidex and Nextclade show higher robustness results 
compared to the embedding methods. Similarly, the robustness results with Illumina-based errored sequences 
having the number of short reads as 15, 000 and 20, 000 are shown in Table 12. Moreover, the robustness results 
using Covidex and Nextclade on the same datasets are reported in Table 13. Other than Macro F1, both Covi-
dex and Nextclade outperforms the embedding methods for all other evaluation metrics, hence showing better 
generalizability over the noisy sequences.

PBSIM versus illumina results discussion. !ird-generation sequencing technologies such as PacBio 
and Oxford Nanopore Technologies (ONT), being newer than traditional high-throughput NGS technologies 
(e.g., Illumina), o$er longer reads, which are useful to e$orts such as haplotype  assembly60,61. !e drawback with 
these technologies is that they have lower coverage and contain more errors—up to 15% error rate as compared 
to the less than 1% with state-of-the-art  Illumina62–65. !erefore, it is not surprising that perturbing the coverage 
in the case of Pacbio (PBSIM) based experiment had a larger e$ect (see Table 6) on the predictive performance of 

Table 2.  Accuracy results on 8220 (original) nucleotide sequences (without any error). !e best values are 
shown in bold.

Embed. method ML algo. Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC Train. runtime (s)

k-mers vector

SVM 0.87 0.87 0.87 0.86 0.76 0.87 7.43
NB 0.03 0.05 0.03 0.02 0.05 0.55 0.09
MLP 0.75 0.74 0.75 0.74 0.36 0.68 18.42
KNN 0.73 0.73 0.73 0.71 0.48 0.71 2.04
RF 0.82 0.85 0.82 0.80 0.67 0.78 2.17
LR 0.86 0.85 0.86 0.85 0.70 0.84 8.67
DT 0.67 0.67 0.67 0.66 0.42 0.71 0.27

PSSM vector

SVM 0.28 0.08 0.28 0.12 0.01 0.50 3.14
NB 0.01 0.01 0.01 0.00 0.01 0.52 0.03
MLP 0.34 0.27 0.34 0.26 0.06 0.53 17.31
KNN 0.32 0.28 0.32 0.28 0.13 0.55 0.33
RF 0.33 0.30 0.33 0.31 0.16 0.57 1.60
LR 0.28 0.08 0.28 0.12 0.01 0.50 0.68
DT 0.29 0.28 0.29 0.28 0.13 0.56 0.06

Minimizer vector

SVM 0.60 0.58 0.60 0.56 0.48 0.72 15.19
NB 0.05 0.12 0.05 0.04 0.12 0.59 0.08
MLP 0.57 0.52 0.57 0.53 0.30 0.64 26.32
KNN 0.55 0.56 0.55 0.53 0.37 0.66 1.51
RF 0.75 0.79 0.75 0.74 0.61 0.76 1.72
LR 0.58 0.55 0.58 0.54 0.40 0.68 6.36
DT 0.64 0.64 0.64 0.64 0.48 0.74 0.14

Table 3.  Accuracy results on 8220 (original) nucleotide sequences (without any error) using Covidex and 
Nextclade.

Method Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC 
Covidex 0.94 0.95 0.94 0.94 0.60 0.94
Nextclade 0.94 0.95 0.94 0.94 0.62 0.92
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ML models as compared to the Illumina (InSilicoSeq) based experiment (see Table 10). !e sequences submit-
ted to GISAID (https:// www. gisaid. org/) database are almost exclusively from high-throughput  technologies16. 
Hence we got more stable results on the original sequences (without adding any additional error) extracted from 
GISAID (see Table 2).

For the PBSIM-based errored sequences, we can observe that PSSM Vector outperforms the other two embed-
ding methods (see Table 6), which means that a sliding window-based approach (using k-mers or m-mers) is not 
desirable while dealing with Pacbio errors. !is could be due to the fact that the PSSM Vector representation cap-
tures more long-range information than the shorter (length k) sliding window. Similarly, for the Illumina-based 
sequences, we can observe the opposite behavior (see Table 10), where the sliding window-based approaches 
are better than the position weight matrix-based embedding. !is could be because, in PSSM Vector, the order 
of nucleotides is not preserved in as much detail (because we just take the position weight matrix and make it a 
1-D vector by &attening it). In the sliding window-based approach, we are able to preserve the order information, 
which results in better predictive performance (because of less loss of information in generating the numerical 
embedding). !is comes at the cost of it being a higher dimensional representation, of course.

Limitations
We used feature engineering-based embeddings along with some typical neural network models for the experi-
ments in this paper. Using an exhaustive list of end-to-end neural network models (such as one proposed  in33 for 
microRNA prediction) could improve the benchmark dataset’s accuracy and/or robustness. !ese models could 
also help us to understand the behavior of noisy simulations in more detail. Moreover, we use the Illumina-based 
data with 5000, 10, 000, 15, 000, and 20, 000 short reads only—we believe that using a larger number of reads 
may improve the performance of the underlying classi"er. !e same is true for PBSIM data, where we use only 
5 and 10 as read depth.

Conclusion
In this paper, we use two di$erent ways to test the robustness of ML models in terms of sequence classi"cation. 
We test the accuracy and robustness of ML models using di$erent embedding methods and concluded that for 
di$erent simulation tools, di$erent embedding methods perform better than others, and there is no clear win-
ner that consistently outperforms in all scenarios. One interesting future extension is to use other embedding 
methods from the literature and also apply deep learning models for the classi"cation of sequences. Studying 
noise simulations on other viruses (e.g., Zika) is also an interesting future extension. We would also like to explore 
some advanced deep learning methods, such as transformers, to study the robustness in the future.

Table 4.  Standard deviation results on 8220 (original) nucleotide sequences (without any error).

Embed. method ML algo. Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC Train. runtime (s)

k-mers vector

SVM 0.009337 0.008654 0.009337 0.009122 0.011612 0.011101 0.300614
NB 0.003307 0.059135 0.003307 0.003323 0.002726 0.007099 0.017888
MLP 0.012523 0.015917 0.012523 0.015363 0.028586 0.017015 3.836258
KNN 0.009530 0.011883 0.009530 0.010848 0.022703 0.011329 0.036290
RF 0.005541 0.006865 0.005541 0.006641 0.028757 0.014456 0.263474
LR 0.005504 0.004573 0.005504 0.005868 0.017053 0.012580 0.867295
DT 0.004102 0.002976 0.004102 0.003101 0.013446 0.010527 0.032883

PSSM vector

SVM 0.007223 0.003972 0.007223 0.005558 0.000217 0.000000 0.118888
NB 0.002015 0.007148 0.002015 0.000983 0.004011 0.006194 0.008142
MLP 0.005716 0.015879 0.005716 0.006257 0.009698 0.005917 2.603367
KNN 0.009810 0.013064 0.009810 0.010757 0.023313 0.010837 0.028786
RF 0.006478 0.008212 0.006478 0.007973 0.017069 0.007942 0.052490
LR 0.007223 0.003972 0.007223 0.005558 0.000217 0.000000 0.025634
DT 0.006273 0.009446 0.006273 0.007321 0.013302 0.007477 0.009866

Minimizer vector

SVM 0.008510 0.008449 0.009629 0.008932 0.015522 0.010247 0.281588
NB 0.004464 0.060411 0.004464 0.006046 0.02021 0.007911 0.016351
MLP 0.011599 0.007398 0.011599 0.009882 0.028691 0.015814 1.480781
KNN 0.006601 0.009581 0.006601 0.007661 0.014181 0.005275 0.014744
RF 0.004837 0.004967 0.004837 0.006467 0.034441 0.017324 0.044175
LR 0.001902 0.005262 0.001902 0.002995 0.014008 0.004733 0.261828
DT 0.010011 0.011210 0.010011 0.010262 0.024173 0.014445 0.011970

https://www.gisaid.org/
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Table 5.  Comparison of simple ML models with di$erent DL methods on 8220 (original) nucleotide 
sequences (without any error). !e best values are shown in bold.

Method Embed. method ML algo. Acc. Prec. Recall F1 weigh. F1 macro ROC- AUC Train. runtime (s)

Non-DL methods

k-mers vector

SVM 0.87 0.87 0.87 0.86 0.76 0.87 7.43
NB 0.03 0.05 0.03 0.02 0.05 0.55 0.09
MLP 0.75 0.74 0.75 0.74 0.36 0.68 18.4
KNN 0.73 0.73 0.73 0.71 0.48 0.71 2.04
RF 0.82 0.85 0.82 0.8 0.67 0.78 2.17
LR 0.86 0.85 0.86 0.85 0.70 0.84 8.67
DT 0.67 0.67 0.67 0.66 0.42 0.71 0.27
SVM 0.28 0.08 0.28 0.12 0.01 0.5 3.14
NB 0.01 0.01 0.01 0.01 0.01 0.52 0.03
MLP 0.34 0.27 0.34 0.26 0.06 0.53 17.3

PSSM vector

KNN 0.32 0.28 0.32 0.28 0.13 0.55 0.33
RF 0.33 0.3 0.33 0.31 0.16 0.57 1.6
LR 0.28 0.08 0.28 0.12 0.01 0.5 0.68
DT 0.29 0.28 0.29 0.28 0.13 0.56 0.06
SVM 0.60 0.58 0.6 0.56 0.48 0.72 15.1
NB 0.05 0.12 0.05 0.04 0.12 0.59 0.08
MLP 0.57 0.52 0.57 0.53 0.3 0.64 26.3

Minimizer vector

KNN 0.55 0.56 0.55 0.53 0.37 0.66 1.51
RF 0.75 0.79 0.75 0.74 0.61 0.76 1.72
LR 0.58 0.55 0.58 0.54 0.4 0.68 6.36
DT 0.64 0.64 0.64 0.64 0.48 0.74 0.14

DL methods
LSTM – 0.31 0.08 0.31 0.15 0.04 0.52 14894.06
GRU – 0.29 0.11 0.29 0.14 0.05 0.53 45890.74
CNN – 0.25 0.12 0.25 0.16 0.1 0.54 394775.6

Pre-trained SeqVec

SVM 0.74 0.72 0.74 0.71 0.46 0.68 10.5
NB 0.63 0.66 0.63 0.64 0.35 0.67 0.07
MLP 0.75 0.72 0.75 0.72 0.44 0.70 19.7
KNN 0.58 0.61 0.58 0.57 0.18 0.55 1.74
RF 0.75 0.74 0.75 0.74 0.50 0.71 1.45
LR 0.73 0.71 0.73 0.72 0.42 0.69 8.79
DT 0.71 0.70 0.71 0.72 0.47 0.70 0.76
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Table 6.  Robustness results on PBSIM data with 5 and 10 as read depth. !e best values are shown in bold.

Embed. 
method ML algo.

Depth: 5 Depth: 10

Acc. Prec. Recall F1 weigh. F1 macro
ROC-
AUC 

Train. 
runtime 
(s) Acc. Prec. Recall F1 weigh. F1 macro

ROC-
AUC 

Train. 
runtime 
(s)

k-mers 
vector

SVM 0.01 0.00 0.01 0.00 0.00 0.502 16.48 0.01 0.00 0.01 0.00 0.00 0.500 16.88
NB 0.00 0.00 0.00 0.00 0.00 0.501 0.68 0.00 0.00 0.00 0.00 0.00 0.501 0.71
MLP 0.282 0.083 0.285 0.123 0.01 0.505 23.65 0.02 0.00 0.02 0.00 0.00 0.507 16.86
KNN 0.285 0.081 0.283 0.121 0.01 0.504 1.68 0.28 0.08 0.28 0.12 0.01 0.505 1.78
RF 0.289 0.085 0.289 0.124 0.01 0.509 1.78 0.28 0.08 0.28 0.12 0.01 0.502 2.88
LR 0.01 0.00 0.01 0.00 0.00 0.501 11.30 0.01 0.00 0.01 0.00 0.00 0.501 12.04
DT 0.01 0.00 0.01 0.00 0.00 0.503 0.34 0.01 0.00 0.01 0.00 0.00 0.505 0.36

PSSM 
vector

SVM 0.27 0.07 0.27 0.11 0.01 0.504 8.14 0.30 0.09 0.30 0.13 0.01 0.506 8.32
NB 0.27 0.07 0.27 0.11 0.01 0.501 0.34 0.30 0.09 0.30 0.13 0.01 0.508 0.36
MLP 0.27 0.07 0.27 0.11 0.01 0.506 7.47 0.30 0.09 0.30 0.13 0.01 0.503 7.90
KNN 0.27 0.07 0.27 0.11 0.01 0.502 0.51 0.01 0.05 0.01 0.00 0.00 0.502 0.52
RF 0.27 0.07 0.27 0.11 0.01 0.507 1.17 0.302 0.096 0.302 0.130 0.012 0.505 0.98
LR 0.27 0.07 0.27 0.11 0.01 0.503 3.76 0.301 0.095 0.301 0.131 0.016 0.501 3.62
DT 0.27 0.07 0.27 0.11 0.01 0.501 0.02 0.304 0.099 0.304 0.136 0.017 0.509 0.02

Minimizer 
vector

SVM 0.27 0.07 0.26 0.11 0.01 0.506 5.22 0.27 0.08 0.27 0.12 0.01 0.501 4.91
NB 0.26 0.07 0.27 0.11 0.265 0.502 0.43 0.27 0.08 0.27 0.12 0.01 0.504 0.34
MLP 0.26 0.07 0.26 0.11 0.261 0.504 1.63 0.27 0.08 0.27 0.12 0.01 0.506 1.92
KNN 0.26 0.07 0.26 0.11 0.263 0.506 0.62 0.08 0.01 0.08 0.01 0.00 0.503 0.69
RF 0.26 0.07 0.26 0.11 0.268 0.501 0.67 0.27 0.08 0.27 0.12 0.01 0.502 0.77
LR 0.26 0.07 0.26 0.11 0.267 0.502 0.69 0.27 0.08 0.27 0.12 0.01 0.504 0.67
DT 0.26 0.07 0.26 0.11 0.266 0.505 0.17 0.27 0.08 0.27 0.12 0.01 0.501 0.26

Table 7.  Robustness results on PBSIM data with 5 and 10 as read depth using Covidex and Nextclade.

Method
Depth: 5 Depth: 10
Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC 

Covidex 0.78 0.80 0.78 0.77 0.38 0.84 0.0 0.0 0.0 0.0 0.0 0.5
Nextclade 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5
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Table 8.  Robustness results on PBSIM data with 15 and 20 as read depth.

Embed. 
method ML algo.

Depth: 15 Depth: 20

Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC 

Train. 
runtime 
(s) Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC 

Train. 
runtime 
(s)

k-mers 
vector

SVM 0.01 0.00 0.01 0.00 0.00 0.50 11.19 0.01 0.00 0.01 0.00 0.00 0.50 11.17
NB 0.00 0.00 0.00 0.00 0.00 0.50 0.81 0.00 0.00 0.00 0.00 0.00 0.50 0.70
MLP 0.00 0.00 0.00 0.00 0.00 0.50 21.66 0.01 0.00 0.01 0.00 0.00 0.50 20.82
KNN 0.28 0.08 0.28 0.12 0.01 0.50 2.32 0.28 0.08 0.28 0.12 0.01 0.50 2.24
RF 0.28 0.08 0.28 0.12 0.01 0.50 2.48 0.28 0.08 0.28 0.12 0.01 0.50 2.42
LR 0.01 0.00 0.01 0.00 0.00 0.50 11.89 0.01 0.00 0.01 0.00 0.00 0.50 11.77
DT 0.01 0.00 0.01 0.00 0.00 0.50 0.31 0.01 0.00 0.01 0.00 0.00 0.50 0.31

PSSM 
vector

SVM 0.28 0.08 0.28 0.12 0.01 0.50 9.97 0.28 0.08 0.28 0.12 0.01 0.50 9.54
NB 0.01 0.00 0.01 0.00 0.00 0.50 0.15 0.01 0.00 0.01 0.00 0.00 0.50 0.16
MLP 0.01 0.00 0.01 0.00 0.00 0.50 15.63 0.01 0.00 0.01 0.00 0.00 0.50 19.20
KNN 0.01 0.00 0.01 0.00 0.00 0.50 2.21 0.01 0.00 0.01 0.00 0.00 0.50 2.18
RF 0.00 0.00 0.00 0.00 0.00 0.50 2.03 0.00 0.00 0.00 0.00 0.00 0.50 1.94
LR 0.28 0.08 0.28 0.12 0.01 0.50 1.13 0.28 0.08 0.28 0.12 0.01 0.50 1.11
DT 0.00 0.00 0.00 0.00 0.00 0.50 0.09 0.00 0.00 0.00 0.00 0.00 0.50 0.08

Minimizer 
vector

SVM 0.01 0.01 0.01 0.00 0.01 0.50 15.47 0.01 0.01 0.01 0.00 0.01 0.50 17.54
NB 0.00 0.00 0.00 0.00 0.00 0.50 0.77 0.00 0.00 0.00 0.00 0.00 0.50 0.84
MLP 0.05 0.00 0.05 0.00 0.00 0.50 24.19 0.05 0.00 0.05 0.00 0.00 0.50 34.86
KNN 0.05 0.00 0.05 0.00 0.00 0.50 2.50 0.05 0.00 0.05 0.00 0.00 0.50 1.93
RF 0.09 0.01 0.09 0.01 0.00 0.50 2.39 0.28 0.08 0.28 0.12 0.01 0.50 2.25
LR 0.00 0.00 0.00 0.00 0.00 0.50 9.45 0.00 0.00 0.00 0.00 0.00 0.50 10.11
DT 0.07 0.01 0.07 0.01 0.00 0.50 0.20 0.07 0.01 0.07 0.01 0.00 0.50 0.19

Table 9.  Robustness results on PBSIM data with 15 and 20 as read depth using Covidex and Nextclade.

Method
Depth: 15 Depth: 20
Acc. Prec. Recall F1 weigh. F1 macro ROC–AUC Acc. Prec. Recall F1 weigh. F1 macro ROC–AUC 

Covidex 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5
Nextclade 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5
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Table 10.  Robustness results on illumina-based errored sequences with 5000 and 10, 000 short reads used in 
the simulation process. !e best values are shown in bold.

Embed. 
method ML algo.

# of short reads: 5000 # of short reads: 10,000

Acc. Prec. Recall F1 weigh. F1 macro
ROC-
AUC 

Train. 
runtime 
(s) Acc. Prec. Recall F1 weigh. F1 macro

ROC-
AUC 

Train. 
runtime 
(s)

k-mers 
vector

SVM 0.68 0.66 0.68 0.66 0.49 0.73 6.75 0.732 0.72 0.71 0.722 0.55 0.76 10.76
NB 0.69 0.73 0.69 0.71 0.571 0.80 0.31 0.72 0.72 0.72 0.721 0.53 0.77 0.32
MLP 0.68 0.65 0.68 0.66 0.34 0.66 75.93 0.68 0.65 0.68 0.66 0.32 0.65 27.84
KNN 0.73 0.73 0.73 0.72 0.574 0.76 0.75 0.731 0.72 0.733 0.727 0.56 0.76 0.68
RF 0.72 0.72 0.72 0.70 0.51 0.72 2.44 0.738 0.73 0.731 0.71 0.55 0.74 2.43
LR 0.72 0.70 0.72 0.70 0.52 0.74 6.71 0.72 0.71 0.72 0.71 0.54 0.75 6.69
DT 0.51 0.53 0.51 0.52 0.32 0.66 0.24 0.56 0.56 0.56 0.56 0.41 0.70 0.21

PSSM 
vector

SVM 0.27 0.07 0.27 0.12 0.01 0.50 8.20 0.28 0.08 0.28 0.12 0.01 0.50 9.64
NB 0.01 0.00 0.01 0.00 0.01 0.51 0.39 0.02 0.01 0.02 0.01 0.03 0.52 0.25
MLP 0.32 0.22 0.32 0.24 0.06 0.52 10.30 0.34 0.25 0.34 0.26 0.08 0.53 12.72
KNN 0.26 0.21 0.26 0.22 0.06 0.52 1.10 0.29 0.26 0.29 0.25 0.09 0.54 0.70
RF 0.30 0.24 0.30 0.25 0.08 0.52 2.17 0.32 0.25 0.32 0.27 0.08 0.53 1.92
LR 0.27 0.07 0.27 0.12 0.01 0.50 3.92 0.28 0.08 0.28 0.12 0.01 0.50 3.26
DT 0.30 0.24 0.30 0.25 0.07 0.52 0.121 0.32 0.25 0.32 0.26 0.08 0.53 0.07

Minimizer 
vector

SVM 0.52 0.47 0.52 0.46 0.30 0.64 11.75 0.54 0.50 0.54 0.49 0.34 0.66 7.45
NB 0.05 0.27 0.05 0.04 0.09 0.63 0.20 0.07 0.37 0.07 0.08 0.14 0.64 0.19
MLP 0.52 0.46 0.52 0.46 0.26 0.62 25.0 0.52 0.46 0.52 0.48 0.25 0.62 28.70
KNN 0.55 0.55 0.55 0.53 0.39 0.67 0.52 0.57 0.57 0.57 0.56 0.47 0.70 0.56
RF 0.65 0.67 0.65 0.63 0.46 0.70 1.75 0.68 0.69 0.68 0.66 0.56 0.74 1.60
LR 0.51 0.46 0.51 0.46 0.28 0.63 2.91 0.53 0.49 0.53 0.48 0.34 0.65 2.90
DT 0.47 0.47 0.47 0.47 0.31 0.65 0.128 0.54 0.54 0.54 0.54 0.42 0.70 0.10

Table 11.  Robustness results on Covidex and Nextclade using illumina-based errored sequences with 5000 
and 10, 000 short reads used in the simulation process.

Method
# of short reads: 5000 # of short reads: 10,000
Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC Acc. Prec. Recall F1 weigh. F1 macro ROC-AUC 

Covidex 0.94 0.95 0.94 0.94 0.60 0.94 0.78 0.80 0.78 0.78 0.38 0.84
Nextclade 0.76 0.78 0.76 0.77 0.35 0.81 0.77 0.79 0.77 0.78 0.36 0.82
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