
Identifying Bio-markers Using Support Vector

Machine to Understand the Racial Disparity in

Triple-Negative Breast Cancer.

Bikram Sahoo,1,⇤ Zandra Pinnix,2 Seth Sims,1

Alex Zelikovsky,1,⇤

1 Department of Computer Science, Georgia State University

Atlanta, GA 30303, USA

2Department of Biology and Marine Biology, University of North Carolina at Wilmington

Wilmington, NC, 28403, USA

⇤To whom correspondence should be addressed;

E-mail: alexz@gsu.edu

Keywords: Triple-negative breast cancer, Racial disparity, SVM, RNA se-

quencing, Gene expression, Machine learning and Feature engineering

Abstract: With the properties of aggressive cancer progression

and heterogeneous tumor biology, triple-negative breast cancer is a

type of breast cancer known for its poor clinical outcome. The lack of

estrogen, progesterone and human epidermal growth factor receptor

in the tumors of TNBC leads to fewer treatment options in clinics.

The incidence of TNBC is higher in African Americans compared

to European American women with worse clinical outcomes. The
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2 1 INTRODUCTION

significant factors responsible for the racial disparity in TNBC are

socio-economic lifestyle and tumor biology.

The current study considered the open-source gene expression data

of triple-negative breast cancer samples’ racial information. We im-

plemented a state-of-the-art classification Support Vector Machine

(SVM) method with a recurrent feature elimination approach to the

gene expression data to identify significant biomarkers deregulated in

African American women and European American women. We also

included spearman’s rho and ward’s linkage method in our feature se-

lection workflow. Our proposed method generates 24 features/genes

that can classify the AA and EA samples 98% accurately. We also

performed the Kaplan-Meier analysis and log-rank test on the 24

features/genes. We only discussed the correlation between dereg-

ulated expression and cancer progression with a poor survival rate

of two genes, KLK10 and LRRC37A2, out of 24 genes. We believe

that further improvement of our method with a higher number of

RNA-seq gene expression data will more accurately provide insight

into racial disparity in TNBC.

1 Introduction

Breast cancer is the most frequent and second major cause of cancer-related

death in women in the US and heterogeneous cancer with diverse biological

subtypes Hendrick et al. (2021). Breast cancer tumor growth relies on estrogen,

progesterone hormones, and Her2 (growth factor) protein. The molecular classi-

fication of breast cancer is based on the expression of three biomarkers: estrogen

receptor (ER), progesterone receptor (PR), and human epidermal growth factor

receptor (Her2). Triple-negative breast cancer lacks the expression of estrogen,
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progesterone, and HER2 receptors Cho et al. (2021); Moss et al. (2020). It can

grow in the absence of estrogen and progesterone hormone, and Her2 protein.

Therefore, standard breast cancer treatment options such as hormonal therapies

and targetable drugs fail to cure TNBC Prakash et al. (2020).

Furthermore, TNBC has highly heterogeneous tumor biology with a solid

metastatic potential leading to poor clinical outcomes compared to other breast

cancer subtypes Cho et al. (2021). The rate of TNBC diagnosis in the US is

10-20% compared to di↵erent invasive breast cancer subtypes Prakash et al.

(2020); Dietze et al. (2015); Lehrberg et al. (2021). In addition to that epi-

demiological and clinical studies, the incidence rate of TNBC is twice in African

Americans compared to European American women Chen and Li (2015). The

current finding suggests that biological and socioeconomic factors significantly

contribute to poor clinical outcomes in AA women having TNBC Newman and

Kaljee (2017). Consequently, the recent breast cancer research needs to provide

the underlying biological mechanism of TNBC, especially biomolecules respon-

sible for racial disparity in TNBC Newman and Kaljee (2017); Siddharth and

Sharma (2018); Sturtz et al. (2014). In the era of machine learning and deep

learning, we need robust computational models to build on biomolecular, clini-

cal, and epidemiological data to find novel therapeutic targets that can be used

in clinics to improve the treatment option and survival of African American

TNBC patients.

Cancer researchers generated an unprecedented amount of next-generation

sequencing data to study the molecular mechanism behind cancer progression

and metastasis. This immense amount of NGS data used for di↵erent scien-

tific studies is freely available on the internet Lachmann et al. (2018); Esposito

et al. (2019). The dependency on NGS data to address various cancer-related

questions are in progress at a higher rate than in earlier studies because of its
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cost reduction in data generation with upgradation in sequencing technology

Rondel et al. (2021). With the help of NGS technology, a cancer researcher can

e�ciently study the whole transcriptome and genome of a cancer sample to get

a broader biological perspective. RNA sequencing is one of the sequencing tech-

nologies from the NGS arsenal that can help study the whole transcriptome of a

cancer sample. RNA-seq provides information about a tumor’s transcripts and

gene expression; it can also check gene fusion, immune cell expression, somatic

mutations, splicing variants, intron-retention, pathway analysis, and gene inter-

action networks Rondel et al. (2021); Lachmann et al. (2018). Online databases

such as ArrayExpress EMBL-EBI (2019) and NCBI-GEO geo (2019) store all

forms of sequencing data, including RNA-seq, with raw, processed, and clinical

information for induvial studies considered NGS to address their biological ques-

tions. Also, databases like TCGA and ICGC consortiums provide free access

to the massive amount of sequencing data for di↵erent cancer types Institute

(2019). Computational biologists take advantage of these databases to obtain

reliable sequencing data for their studies to understand cancer. This study also

considered the open-source RNA-sequencing gene expression data of TNBC pa-

tients to identify potential biomarkers expressed in African American women

compared to European American women.

To identify highly discriminant biomarkers in African American and Euro-

pean American TNBC samples gene expression data, we considered it a problem

to classify AA and EA samples with a selected number of genes. We applied

the popular classification algorithm, Support Vector Machine (SVM), with fea-

ture/gene selection techniques on RNA-seq gene expression data to achieve our

goal Guyon et al. (2002); Platt et al. (1999); Vanitha et al. (2015); Brown et al.

(2000); Das et al. (2020). Here, feature/gene selection is an essential step be-

cause clinical/biological science always relies on the top-ranking genes from the
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computational data analysis. In addition to feature selection using the SVM

method, we showed the enrichment/expression of selected features/genes in dif-

ferent groups. Therefore, the proposed method satisfies quantitative and quali-

tative analysis of features/genes that can accurately classify AA and EA TNBC

samples. We further used a micro-array dataset of TNBC gene expression data

with survival information to validate our genes and predict pathological out-

comes. We considered the micro-array dataset because, as per our knowledge,

that is the only dataset that satisfies our study’s requirement. The pathological

role of our genes is accessed by performing Kaplan-Meier and log-rank tests on

the microarray expression and survival data.

Our proposed SVM-based feature/gene selection with the recurrence fea-

ture elimination method identifies 24 genes that can accurately classify AA and

EA samples. We further validated the pathological significance of those genes

with Kalan-Meier survival and log-rank test on a microarray dataset having

survival information. Finally, we found that 12 genes have a significant patho-

logical role in TNBC samples, and we also cherry-picked two genes, KLK10 and

LRRC37A2, from the 12 genes and discussed their biological role in TNBC.

The high expression of KLK10 is known for poor prognosis in TNBC and other

cancers. Our methods also show that KLK10 has an increased expression in

AA samples compared to EA samples and can be a potential biomarker in

this racial disparity study Rückert et al. (2008); Alexopoulou et al. (2013);

Kioulafa et al. (2009); Yousef et al. (2005); Lin et al. (2020). The de-regulation

of LRRC37A2 is known for cancer progression and is a critical member of vari-

ous gene-signature studies to assess the cancer prognosis Wisnieski et al. (2021);

Xu et al. (2022); Wu et al. (2018); Feng et al. (2020). The role of LRRC37A2 in

TNBC progression is known Stewart et al. (2013); we also found low expression

of the LRRC37A2 gene in AA samples compared to EA samples, and it has a
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significant survival outcome in our validation analysis. Considering the above

results, we can conclude that our SVM-based feature selection method identi-

fied essential genes significantly contributing to poor outcomes in AA TNBC

women.

The current study is organized as follows. In section 2, we detail the RNA-

seq gene expression data collection and SVM-based feature selection method.

We also specify the feature/gene enrichment method. Finally, we provided the

details of feature validation methods. In section 3, we provided the final fea-

ture list and discussed the biological significance of two features/genes from the

final feature list such as KLK10 and LRRC37A2. In section 4 , we discussed

our approach’s merit in the TNBC racial disparity study to identify potential

biomarkers and contributions of our research.

2 Data and Methods

In this section, we report our RNA-seq gene expression dataset details in Sec.

2.1. We discuss our SVM-based feature/gene selection method used to study

the racial disparity in TNBC in Sec. 2.2. The feature estimation method is dis-

cussed in Sec. 2.3. The validation method for our features using Kaplan-Meier

survival analysis, log-rank test, and the di↵erential gene expression analysis

using DESeq2 discussed in Sec. 2.4 and 2.5 respectively.

2.1 RNA-seq gene expression data

Open source RNA sequencing gene expression data of breast cancer patients

were considered for this study. The processed RNA-seq gene expression data

with log2 median-centered was downloaded from geo (2019); Institute (2019).

According to hormone-receptor status, breast cancer has various subtypes and

can be accessed by immunohistochemistry tests. We considered the negative im-
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munohistochemistry status for ER, PR, and HER2 receptors to collect the triple-

negative breast cancer samples. The FISH status was considered for the samples

with equivocal immunohistochemistry status for HER2 receptor. The immuno-

histochemistry status filtering criteria generated 145 triple-negative breast can-

cer samples from the breast cancer dataset. This study focuses on discovering

molecular-level racial disparity in EA and AA women having TNBC. Therefore,

we further reduced our sample size from 145 to 128, considering the race cat-

egory information. For our final analysis, we considered 128 TNBC samples,

where 87 were from European Americans, and 41 were from African American

women.

2.2 Construction of SVM based model for feature selec-

tion

2.2.1 Initial feature selection using SVM classifier:

This current research addresses the classification problem of EA and AA women

having TNBC to understand the racial disparity using RNA-seq gene expression

data. As an initial pre-processing step, we dropped the features having few

unique gene expression counts across the dataset. Next, we standardize the

gene expression data to Z-scores in Eq. 1.

Z � score =
(x� µ)

�
(1)

Where: x = the original gene expression value

µ = the mean of the gene expression values

� = the standard deviation of the gene expression values

After that, the support vector machine (SVM) classifier with a linear kernel

fitted to the Z-score normalized data. Finally, L1 regularization was considered
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to generate a classifier for the groups with a sparse feature set to select the

initial feature set.

2.2.2 Feature reduction:

We calculated the pairwise correlation between the features using Spearman’s

rho non-parametric test Eq.2.

⇢ = 1� 6
P

d2i
nf (n2

f � 1)
(2)

Where: ⇢ = the spearman’s rho coe�cient

di = the di↵erence between the two ranks of each features

nf = number of features

Then we applied the ward’s linkage method for hierarchical cluster analysis

to find the highly correlated features by minimizing the increase in ESS (error

sum squares).

ESS(Xf ) =

NxfX

i=1

������
Xfi �

1

Nxf

NxfX

j=1

Xfj

������

2

(3)

Then, we randomly selected one feature from each cluster to represent each.

For Further analysis, the clusters were selected that have a linkage-distance

score of 0.65. The value 0.65 was chosen by performing a grid search in five-fold

cross-validation. The grid search was performed, including the value between

0.25 and 1.75 with a step size of 0.1. A linear SVM with standard L2 loss was

fit to each fold, and the threshold was set to the most significant value, which

maintained complete separation in all folds. Figure 1 plots the accuracy of each

fold during the grid search.
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2.2.3 Further feature reduction using recursive feature:

The recursive feature elimination with cross-validation was performed to reduce

the features further Guyon et al. (2002). This method has been used successfully

to find classification features for other cancers. We continued to use a linear

kernel as the core classifier for the feature selection.

2.2.4 Permutation test on final features:

A permutation test was performed on the final features. The EA/AA labels are

randomly permuted and fed to the feature selection pipeline. The number of

times the magnitude of a feature coe�cient from the permuted data exceeded

the features selected on the original data was counted. This was repeated with

5,000 permutations.

2.2.5 Computation of Influence of each feature:

The influence of each feature was then assessed with Shapley Additive Expla-

nation (SHAP) values Lundberg and Lee (2017). Bootstrapping was used to

assess the distribution of variation of SHAP values for each feature. Each itera-

tion was performed on a randomly selected test-train split of the data. A linear

SVM was fit with the Platt scaling estimation of class probabilities Platt et al.

(1999). The SHAP KernelExplainer method was used to assess the influence

of each item on the test set. The mean of the SHAP value magnitudes was

collected and plotted in Figure 2.

2.2.6 Feature evaluation:

Finally, each feature was evaluated using Student’s T-test for the independence

of the mean with false discovery rate (FDR) control using the Benjamini-

Hochberg procedure. Features with FDR rates > 0.05 were suppressed. All



10 2 DATA AND METHODS

feature selection was performed in a Jupyter notebook Kluyver et al. (2016),

using SciKit-learn Pedregosa et al. (2011), SciPy Virtanen et al. (2020), Pandas,

Seaborn Waskom (2021), and Matplotlib Hunter (2007).

2.3 Estimation of feature/Genes

The dataset consists of gene expression values for 128 samples. Here we used

the term “features” to represent “genes,” and the analysis is conducted in m-

dimensional feature space. While formulating the problem, we restricted the

analysis to a two-class classification problem. The classes represent with the

symbols (+) and (-). A sample set considered {a1, a2, ....., ak, ....., an} having

the true class labels {b1, b2, ....., bk, ....., bn}. Given that bk belongs to (-1,+1).

The training algorithm will build a scalar separation function D(a). Further,

the separation function will use to classify the new samples.

D(a) > 0 ) a 2 class (+)

D(a) < 0 ) a 2 class (-)

D(a) = 0, decision boundary

The separation function is:

D(a) =w · a+ b

Where: w = the weight vector, b = the bias

The sign of the separation function D(a) can be interpreted as a di↵erence

in gene expression. The positive sign represents the direction of the positive

class, and the negative sign represents the direction of the negative class. To

understand the pathological role of genes, we considered the signs (+,-) as up

and down-regulation of gene expression and performed the survival analysis.
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2.4 Feature selection using the kaplan-Meier and log-rank

tests

The reduced feature/gene set generated by our SVM-based approach was further

considered for Kaplan-Meir and log-rank tests. The Kaplan-Meier and log-rank

tests will help to assess the pathogenicity of the selected features/genes in the

poor survival outcome of TNBC in African American women. We considered

a micro-array dataset of breast cancer women with survival data to perform

the analysis. We collected the triple-negative breast cancer samples from the

breast cancer dataset, considering the samples having negative ER, PR, and

Her2 receptor status. We considered a cut-o↵ value for each feature/gene and

performed the Kaplan-Meier and log-rank tests. The feature with a p-value

less than 0.09 was considered for further discussion and included in building a

signature biomarker list to understand the racial disparity in TNBC.

2.5 Di↵erential gene expression analysis using DESeq2

We performed the di↵erential gene expression analysis to check the expression

status and significance of the gene set generated by our SVM-based feature

selection method. The idea behind the di↵erential gene expression analysis is

to validate the results generated from our SVM-based approach. We considered

the DESeq2 Love et al. (2014) tool to perform di↵erential expression analysis

between EA and AA women having TNBC. Furthermore, we selected the genes

having log2foldchange greater and less than +1.5 and -1.5 with a p-adjusted

value less than 0.05 to get the up and down-regulated genes. Finally, we mark

the status of the genes generated from our SVM-based model and report the

results.
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3 Results and Discussion

In this section, we discussed our results; in Sec. 3.1, we discussed the step-wise

approach for selecting 24 genes by our SVM method. In Sec. 3.2, we discussed

our validation method’s results, including the Shapley Additive Explanation

scores (SHAP). We reported the survival analysis results for the selected genes

in Sec. 3.4. The gene expression status and statistics are reported in Sec. 3.3.

Finally, we discussed the association of gene expression and survival outcome in

3.5.

3.1 Selection of final features.

We considered the RNA-seq gene expression data of 128 women’s tumor sam-

ples having triple-negative breast cancer to study the bio-molecular mechanism

behind the racial disparity between European American and African American

women. Our dataset has gene expression counts for 87 European American and

41 African American women samples. Our study’s sample/data point has 20,530

gene expression read-count values. When we performed the primary analysis to

separate the classes into EA and AA considering each gene/feature, we found

that no single gene/feature can divide the data into two categories. After that,

we selected 95 genes/features using an L1 regularized classifier that can separate

the gene expression data into two classes. We performed Spearman’s rho corre-

lation analysis to compute the pairwise correlation among the features. Then,

we applied Ward’s method with a specific threshold to generate 45 clusters us-

ing the pairwise correlation values. We selected one feature from each cluster

and continued the recursive feature elimination procedure with cross-validation.

Finally, we selected 24 genes/features with a final mean accuracy score of 98%

Figure 3.
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3.2 Validation of features

The final 24 features showed approximately a perfect separation of two classes,

EA and AA. The five-fold cross-validation of the final 24 genes/features is repre-

sented in Table 1. We observed that the 1st, 4th, and 5th cross-validation have

a similar value of balanced accuracy, ROC AUC, and weighted F1 score. The

e↵ect of the features is evaluated with Shapley Additive Explanation (SHAP)

values. The bootstrap SHAP distribution for 24 features is illustrated in Figure

2. The SHAP values show that CROCCP2 and POLR1A genes strongly influ-

ence the classification model. The permutation test results only generated four

out of 24 features at a 5% level. The four features generated by the permutation

test are POLR1A, CROCCP2, KBF2, and SULTIE1.

3.3 Gene expression status

The gene expression status and up and down-regulation of our final 24 genes are

reported in Figure 4 and Table 2.The status of each gene in the proposed method

is computed in the feature estimation step. The gene has a (+) sign is considered

an up-regulated gene, and a (-) sign is considered a down-regulated gene. We re-

ported and discussed the expression status of KLK10 and LRRC37A2 from our

final 24 features de-regulated in EA and AA samples significantly. We validated

our method by comparing the results with a popular di↵erential expression anal-

ysis tool, DESeq2. The significant gene generated by DESeq2 is reported in 3.

The table has information about KLK10 expression and p-adjusted values.

3.4 Survival analysis

We performed the Kaplan-Meier survival analysis and log-rank test to under-

stand the pathogenicity of the 24 genes generated by our SVM-based model. The

survival analysis on gene expression status (low vs. high) helps us understand
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each gene’s role in TNBC. We found that 12 out of 24 genes have significant

p-value (<0.05) from the Kaplan-Meier analysis and log-rank test. The Haz-

ard ratio [HR] and log-rank test the p-value for the 12 genes are reported in

4. Furthermore, we considered the gene expression (low or high) in European

Americans (EA) and African Americans (AA) to correlate the pathogenic role

and racial disparity. In this study, we discussed the pathogenic role of KLK10

and LRRC37A2 with expression in EA and AA samples.

3.5 Association of gene expression with survival outcome

In this section, we discussed the role of KLK10 and LRRC37A2 in cancer

progression, especially in triple-negative breast cancer. We try to speculate the

correlation of poor survival outcome with deregulated gene expression in African

American women compared to European American women having TNBC.

3.5.1 KLK10

Our SVM-based feature selection and expression analysis show that KLK10 has

high expression in African Americans compared to European American TNBC

women. KLK10 is one of the non-classical family members of the kallikrein-

related peptidases (KLKs). The KLKs are well-known for playing a significant

role in cancer progression. The KLK10’s expression is found in normal mam-

mary epithelial cells. Therefore, KLK10 is also referred to as the Normal Epithe-

lial cell-specific 1 (NSE1) gene. KLK10 is reported as a potential biomarker for

cancer Borgoño and Diamandis (2004); Kioulafa et al. (2009). KLK10 is a sig-

nificant biomarker with CA125 for understanding the diagnosis and prognosis of

ovarian cancer Dong et al. (2013); El Sherbini et al. (2018); White et al. (2010);

Geng et al. (2017); Batra et al. (2010). High expression of KLK10 mRNA plays

an important role in colorectal and pancreatic cancer Rückert et al. (2008);
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Alexopoulou et al. (2013). Low expression of KLK10 is reported in testicular

and breast cancer Kioulafa et al. (2009); Yousef et al. (2005); Lin et al. (2020).

In TNBC, the study [2] reported that KLK10 ’s high expression promoted tumor

growth and cancer progression. In the log-rank test, we found that increased ex-

pression of KLK10 shows poor survival in triple-negative breast cancer (Hazard

ratio [HR] = 2.41, p < 0.08) Figure 5. The KM- curve drags attention to the

up-regulation of KLK10 in African Americans compared to European American

women may be the reason for the poor survival outcome and can be considered

a biomarker for this racial disparity study. However, we believe more in-depth

analysis will reveal more about it.

3.5.2 LRRC37A2

In this study, the proposed gene selection method shows that LRRC37A2 has

low expression in African Americans compared to European American women.

The gene LRRC37A2 belongs to the LRR37 family of genes. The name LRRC37A2

comes from a leucine-rich repeat-containing 37-member A2 Giannuzzi et al.

(2012); Wisnieski et al. (2021). LRRC37A2 regulates the protein and ligand

interaction. It is associated with non-cancer diseases, Parkinson’s disease, and

epilepsy Yao et al. (2021). High expression of LRRC37A2 shows poor survival

and is considered a member of the gene signature for predicting Lymphoma Xu

et al. (2022). LRRC37A2 is associated with ovarian and gastric cancer progres-

sion Wisnieski et al. (2021). It is also reported in several breast cancer-related

studies Feng et al. (2020); Wu et al. (2018). One of the studies specifically

related to finding de-regulated genes in AA and EA women in TNBC reported

LRRC37A2 Stewart et al. (2013). In our kM and log-rank test, low expres-

sion of LRRC37A2 shows poor survival in triple-negative breast cancer samples

(Hazard ratio [HR] = 0.36, p-value < 0.05). From KM-curve Figure 6, we can

speculate that the down-regulation of LRRC37A2 in African Americans com-
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pared to European American women may be the reason for the poor survival

outcome and can be considered a biomarker for this racial disparity study. How-

ever, we believe more in-depth analysis will provide more information about the

role of LRRC37A2.

4 Conclusion

Triple-negative breast cancer is a highly heterogeneous subtype among the other

subtypes of breast cancer with aggressive tumor progression and poor survival

outcomes. As a consequence of this, TNBC has limited treatment options in clin-

ics. The current vital challenge for the breast cancer community is to discover

targetable bio-marker playing a significant role in TNBC progression that can be

useful in clinics. Epidemiological and clinical studies reported that TNBC has

di↵erent consequences in terms of race. African descent women have a higher

mortality rate compared to European descent women. Unfortunately, this adds

a racial disparity challenge to the current puzzle of TNBC research. The clin-

ical and epidemiological studies evidence reveals that the environmental and

genetic elements are responsible for the aggressive progression of tumors and

poor survival in African American women. Breast cancer research is going on

several fronts to discover some biomarkers accountable for this racial disparity

in TNBC to give better treatment options to African American women. Inte-

grative genomics and proteomics studies can be a vital option for this study to

discover a comprehensive underlying bio-molecular mechanism.

With the help of next-generation sequencing technology, the triple-negative

breast cancer community generated an unprecedented amount of whole tran-

scriptome and genome data for various cell lines and patient samples to study

cancer at the nucleic acid level. In the NGS data processing journey, state-of-

the-art computational algorithms and machine learning models aided the re-
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search community in understanding the molecular heterogeneity of TNBC. As a

result of that, TNBC is divided into various sub-types considering the tumor pa-

rameters such as gene, protein, immune cell, and pathway expression. However,

the current approach to NGS data processing has limitations and vagueness in

selecting the methods to process the data.

This research aims to develop a method to identify critical biomarkers re-

sponsible for the racial disparity in TNBC among EA and AA women and, un-

fortunately, a poor outcome in AA women. We proposed an SVM-based method

with recursive feature elimination to select the biomarkers for this study. We

also computed the pairwise correlation using Spearman’s rho method and clus-

tered the features using Ward’s. Finally, we found 24 features/genes that can

classify African American and European American TNBC samples with 98%

accuracy. The pathological role of the 24 features/gene was further validated

using a micro-array dataset having survival information. The Kaplan-Meier

and log-rank test shows that 12 out of our final 24 genes have a significant

pathological role in TNBC.

In this study, we cherry-picked two genes, KLK10 and LRRC37A2, and re-

ported the consequence of their deregulated expression leading to poor survival

in African American women. Besides our survival analysis results, cancer re-

search studies report that high expression of KLK10 is known for metastasis and

cancer progression, and low expression of LRRC37A2 aids in cancer procession.

KLK10 and LRRC37A2 were also reported as essential bio-marker in triple-

negative breast cancer research. Our proposed SVM-based gene selection model

not only captured these two genes but also clearly showed the expression status

that is high expression of KLK10 and low expression of LRRC37A2 in African

Americans compared to European American TNBC samples. In traditional gene

expression analysis, getting significant genes directly from an analysis is com-
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plex and requires prior biological and statistical knowledge. However, we also

agree that further improvement of our model and wet lab experiments requires

getting a significant bio-marker list that will accurately use as a target in clinics

to provide better treatment options to African American TNBC women.
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Figure 1: The figure shows the accuracy of SVM classification during grid search
for collinearity threshold. The search bound values between 0.25 and 1.75 with
an increasing step size of 0.1.
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Figure 2: The above figure represents the bootstrapped distribution of the Shap-
ley Additive Explanation (SHAP) feature importance for each feature/gene.
The median value of each bootstrap orders them.



26 REFERENCES

Figure 3: The figure shows the 98% mean accuracy of SVM classification with
24 features during recursive feature selection.
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Figure 4: The above heatmap represents the expression of 24 features/genes
selected by our SVM-based method. The blue line in the heatmap separates
African American (AA) from European American (EA) women.
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Figure 5: The figure shows the high expression of KLK10 shows poor overall
survival in the TNBC patients with p-value < 0.09 and Hazard ratio [HR] =
2.41 (0.86-6.78). In the above plot, the red line represents the TNBC samples
with high KLK10 expression, and the black line represents the TNBC samples
with low KLK10 expression.



REFERENCES 29

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LRRC37A2

Time (months)

Pr
ob

ab
ilit

y

Number at risk
31 27 19 7 0low     
67 64 49 12 1high     

HR = 0.36 (0.14 − 0.92)
logrank P = 0.026

Expression
low
high

Figure 6: The figure shows the high expression of LRRC37A2 shows poor overall
survival in the TNBC patients with p-value < 0.09 and Hazard ratio [HR] = 0.36
(0.14-0.92). In the above plot, the red line represents the TNBC samples with
high LRRC37A2 expression, and the black line represents the TNBC samples
with low LRRC37A2 expression.



30 REFERENCES

Fold 1st 2nd 3rd 4th 5th

Balanced Accuracy 1.0 0.94 0.96 1.0 1.0
ROC AUC 1.0 1.0 1.0 1.0 1.0
Weighted F1 1.0 0.96 0.96 1.0 1.0

Table 1: The above table presents the cross-validation of the final SVM classifier.
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EA AA EA means AA means FDR reject
KBF2 H L 746.9 525.83 <0.001 TRUE
TUBB8 L H 11.01 23.6 <0.001 TRUE
TREML4 L H 0.53 2.76 <0.001 TRUE
FLJ45737 L H 13.35 51.86 <0.001 TRUE
TESSP5 L H 1.99 10.31 <0.001 TRUE
CROCCP2 L H 234.93 520.63 <0.001 TRUE
DDX51 L H 411.13 721.8 <0.001 TRUE
LRRC37A2 H L 125.21 61.89 <0.001 TRUE
POLR1A H L 407.11 161.32 <0.001 TRUE
XRCC6P5 L H 0.74 1.98 <0.001 TRUE
RPS26P11 L H 0.86 2.06 <0.001 TRUE
PWP2 L H 1062.2 1619.12 <0.001 TRUE
PLA2G4C L H 132.7 279.76 <0.001 TRUE
HIP1R L H 932.62 1620.51 <0.001 TRUE
PRKY L H 2.26 5.93 0.001 TRUE
LRRC37A H L 320.96 201.34 0.001 TRUE
FLJ26850 L H 0.95 3.64 0.001 TRUE
ELMO3 L H 381.44 679.34 0.001 TRUE
PIF1 L H 105.26 190.83 0.001 TRUE
KIAA1324L H L 242.47 112.44 0.002 TRUE
ZFP64 L H 485.34 607.47 0.002 TRUE
SNORA76C L H 0.13 0.45 0.003 TRUE
DHRS4-AS1 H L 649.67 388.31 0.003 TRUE
KLK10 L H 735.21 2746.76 0.005 TRUE
GPR17 L H 4.95 18.19 0.006 TRUE
IQCK H L 408.64 284.22 0.025 TRUE
DNASE1L1 L H 472.65 661.69 0.028 TRUE
ZNF65 H L 1014.11 782.45 0.029 TRUE
HEXIM1 L H 782.62 987.46 0.029 TRUE

FDH H L 2414.35 1998.87 0.063 FALSE
KCNE3 H L 154.85 112.82 0.063 FALSE
CCDC30 H L 55.81 36.68 0.065 FALSE
PGLYRP1 L H 0.17 0.56 0.112 FALSE
TYW1B L H 93.65 126.9 0.125 FALSE
PDE8A H L 561.4 455.48 0.148 FALSE
PAX6 L H 133.19 298.26 0.148 FALSE
ATXN7L3 L H 1471.25 1654.79 0.152 FALSE
FIH L H 0.35 1.8 0.202 FALSE
FOXA3 L H 8.36 19.11 0.22 FALSE
SULT1E1 L H 9.34 39.47 0.22 FALSE
UPK1B L H 11.14 39.22 0.297 FALSE
PLGRKT H L 433.78 363.53 0.362 FALSE
ZC3H8 L H 182.43 208.53 0.362 FALSE
POLR1A.1 L H 1079.08 1224.81 0.362 FALSE

Table 2: The above table represents the gene expression status in EA and AA
women. Student’s T-test investigated the expression di↵erence for each gene
for Independence of means with FDR correction by the Benjamini-Hochberg
procedure.
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Gene Name log2FoldChange p-value p-adj
LOC387860 3.853183 6.02E-09 3.09E-06
CLD 3.563536 0.000612 0.010813
SCGB1B2P 3.292141 4.01E-17 3.71E-13
SP7 3.272564 1.13E-07 2.95E-05
RETN 2.994998 2.72E-09 1.93E-06
KLK14 2.953535 1.61E-09 1.42E-06
KRT34 2.699778 0.000285 0.006826
MPZ 2.487386 1.03E-09 9.53E-07
NFJ 2.465433 5.53E-08 1.71E-05
PRB2 2.419292 0.003462 0.032299
TESSP5 2.40138 8.15E-10 7.93E-07
MGC34772 2.397453 0.004814 0.039604
LRRC14B 2.359004 2.01E-06 0.000242
R3HDML 2.340992 0.00097 0.014333
TREML4 2.332817 3.91E-09 2.52E-06
HPR 2.295351 0.002648 0.027265
PGLYRP3 2.188858 0.001763 0.021088
HS3ST6 2.126105 0.000336 0.007547
AZU1 2.11035 0.000115 0.003854
HAPLN1 2.105996 9.60E-07 0.000146
LOC93086 2.103133 0.000197 0.005493
FLJ26850 2.041965 1.60E-07 3.90E-05
UPK3B 2.038656 9.19E-08 2.58E-05
MYEOV 2.027528 2.93E-05 0.001569
JSRP1 2.026862 4.26E-06 0.00042
LOC100131650 2.017893 3.35E-06 0.000353
SYCE1 2.012454 5.85E-05 0.002499
TCTE1 1.991721 7.62E-07 0.000123
CMD1D 1.967604 2.81E-06 0.000312
FLJ45737 1.964475 3.29E-12 1.22E-08
RGR 1.944269 0.000231 0.006042
KRT38 1.926021 0.001432 0.018548
KRT3 1.912656 0.000856 0.013151
KLK10 1.895774 1.08E-05 0.000807
VGR1 1.891378 2.64E-10 3.05E-07
LOC115824 1.885044 5.44E-07 9.50E-05
FLJ41941 1.884628 9.56E-05 0.003443
CCL3L3 1.882881 1.91E-06 0.000236
NKX2-3 1.878537 0.000778 0.012487
SPDYC 1.867796 0.001711 0.020739
KLK11 1.862105 0.000801 0.01267
KRT8P41 1.854303 1.82E-09 1.53E-06
SOX15 1.840919 5.19E-06 0.000471
NACA2 1.826642 3.00E-15 1.39E-11
VIL1 1.776616 0.006256 0.046661
C1QL2 1.739977 0.000109 0.003725
ART3 1.737035 0.000356 0.007821
LAIR2 1.674734 3.99E-06 0.000397
MYO7B 1.658655 1.46E-05 0.00097
LEFTY1 1.65524 9.72E-07 0.000146
ACOXL 1.633604 4.50E-07 8.17E-05
PPP1R14A 1.63021 3.88E-07 7.41E-05
FGF17 1.627988 9.73E-06 0.000738
SLC7A5P1 1.626218 0.000346 0.00767
FOLR3 1.620093 0.001239 0.01678
C22ORF34 1.609769 2.11E-06 0.000252
MZB1 1.608739 4.98E-05 0.002248
WNT6 1.603459 1.29E-05 0.000901
CAMKV 1.597514 0.000644 0.011122
CSDC2 1.579737 2.99E-06 0.000324
LCNL1 1.57909 0.002113 0.023732
PGLYRP4 1.57739 0.001634 0.020321
NOTUM 1.571811 0.000636 0.011046
KRT1 1.560206 0.002375 0.025526
MST1L 1.547115 4.89E-08 1.59E-05
CCL3L1 1.546168 1.18E-08 5.45E-06
C2ORF71 1.540708 8.77E-05 0.003245
LEFTY2 1.530902 0.002835 0.028455
CCDC154 1.528481 1.90E-07 4.50E-05
GSTM2P1 1.512902 0.000204 0.005576
LOC221025 1.510338 3.14E-10 3.42E-07
GATA1 1.505911 0.002546 0.02667
FBXO2 1.500185 1.26E-06 0.000176

Table 3: The above table represents the up-regulated genes in AA compared
to EA women with log2FoldChange > 1.5 and p-adjusted value <0.05. The
analysis is performed using DESeq2.
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Gene name HR p-value
RPS26P11 0.27(0.09-0.82) 0.014
PWP2 0.32(0.12-0.85) 0.016
LRRC37A2 0.36(0.14-0.92) 0.02
PIF1 0.34(0.13-0.89) 0.021
PRKY 0.29(0.1-0.9) 0.022
TREML4 0.34(0.13-0.92) 0.026
LRRC37A 3.3(1.09-10.03) 0.026
XRCC6P5 0.29(0.08-1.01) 0.038
GPR17 0.27(0.06-1.19) 0.063
TUBB8 3.65(0.84-15.87) 0.065
POLR1A 3.4(0.78-14.78) 0.083
KLK10 2.41(0.86-6.78) 0.084

Table 4: The above table represents the Hazard ratio [HR] and log-rank test
p-value for the 12 genes (Out of 24 genes selected by our method, only 12 genes
have significant survival di↵erences with p-value < 0.05).
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