In-Timestep Remeshing for Contacting Elastodynamics

ZACHARY FERGUSON, New York University & Adobe, USA

TESEO SCHNEIDER, University of Victoria, Canada
DANNY M. KAUFMAN*, Adobe, USA
DANIELE PANOZZO", New York University, USA

X

i

|
|

VA v ' avd

WL
[

—

|

!

A
N
N
A
\
2
m

= > §

S RN
‘ N
AN 7NN WA N
A% g% s i
e

Fig. 1. Ball on spikes. In-Timestep Remeshing (ITR) enables physics-aware adaptive refinement and coarsening to robustly capture detailed contact-driven
deformations in simulated trajectories. Here we drop a soft (neo-Hookean material, E = 10° Pa) ball at large timesteps (k = 0.01s) onto very stiff (E = 10° Pa)
sharp spikes. Starting with coarse, unstructured finite-element meshes for all geometries (see Figure 2a) we show here two later steps in the trajectory as the
ball initially collides with and then comes to rest on the spikes (top and bottom left respectively). Views from below (middle and middle inset) for each of
these steps highlight how our physics-aware remeshing automatically and locally adapts the tetrahedral mesh in time to capture the changing detailed
deformations within the material and at contact regions. In a cutaway view (right), we remove the tetrahedral interior elements from the ball, leaving just
its bottom surface mesh faces to highlight how ITR tightly conforms, per timestep, without intersection, to the sharp and challenging contacts without
over-refining (please compare to the sizing field method in Figure 2b). Correspondingly we cut the ball geometry from the view altogether (right inset) and
zoom in on the tightly wound spike geometries that form the severe indentation on the ball, evidencing the accurate solution of the challenging timestep

problem resolving forces between highly disparate material stiffnesses.

We propose In-Timestep Remeshing, a fully coupled, adaptive meshing
algorithm for contacting elastodynamics where remeshing steps are tightly
integrated, implicitly, within the timestep solve. Our algorithm refines and
coarsens the domain automatically by measuring physical energy changes

“Co-corresponding authors D.K and D.P. jointly conceptualized the study and algorith-
mic solution.

Authors’ addresses: Zachary Ferguson, New York University & Adobe, USA, zfergus@
nyu.edu; Teseo Schneider, University of Victoria, Canada, teseo@uvic.ca; Danny M.
Kaufman, Adobe, USA, dannykaufman@gmail.com; Daniele Panozzo, New York Uni-
versity, USA, panozzo@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART1 $15.00

https://doi.org/10.1145/3592428

within each ongoing timestep solve. This provides consistent, degree-of-
freedom-efficient, productive remeshing that, by construction, is physics-
aware and so avoids the errors, over-refinements, artifacts, per-example
hand-tuning, and instabilities commonly encountered when remeshing with
timestepping methods. Our in-timestep computation then ensures that each
simulation step’s output is both a converged stable solution on the updated
mesh and a temporally consistent trajectory with respect to the model and
solution of the last timestep. At the same time, the output is guaranteed
safe (intersection- and inversion-free) across all operations. We demonstrate
applications across a wide range of extreme stress tests with challenging
contacts, sharp geometries, extreme compressions, large timesteps, and
wide material stiffness ranges — all scenarios well-appreciated to challenge
existing remeshing methods.

CCS Concepts: « Computing methodologies — Physical simulation.

Additional Key Words and Phrases: Adaptive Meshing, Elastodynamics,
Variational Contact, Friction

ACM Reference Format:
Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo.
2023. In-Timestep Remeshing for Contacting Elastodynamics. ACM Trans.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:2 « Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

Graph. 42, 4, Article 1 (August 2023), 15 pages. https://doi.org/10.1145/
3592428

1 INTRODUCTION

We propose, In-Timestep Remeshing (ITR), a new algorithm for
simulating frictionally contacting elastodynamics where remesh-
ing criteria, remeshing operations, and variable mappings are all
tightly coupled implicitly, within the timestep solve. Our algorithm
automatically adapts meshing in-timestep to account for time-local
conditions of both the internal forces and frictional contacts of a tra-
jectory. At the same time, by careful construction, non-intersection
and non-inversion are respected as invariants over each operation
within the remeshing, and so across each timestep. This provides
consistent improvement across extreme variations in materials, se-
vere boundary conditions, fine surface contact details, large friction,
and even under the extreme compressions and tensions regularly
imposed by contacting and impacting domains.

Large-deformation elastodynamic simulations often require ex-
ceedingly dense spatial discretizations to capture critical and often
transient features like shockwaves and indentations. At the same
time, meshes dense enough to capture these behaviors can be prohib-
itively expensive in both runtime and memory for practical applica-
tions with real-world examples - especially in 3D. These challenges
motivate the application of adaptive meshing (AM) methods that
seek to locally introduce and remove simulation degrees of free-
dom (DOF) on the fly, in order to concentrate them where they are
most needed.

Generally, AM for simulating dynamics is currently applied in-
between simulation timesteps. This often fits well within optimized
physics pipelines in graphics but keeps mesh changes, and the re-
sultant necessary remapping of physical quantities, decoupled from
the actual timestep simulation solves. In turn, this decoupling intro-
duces a number of fundamental challenges that we address in this
work.

Meshing Criteria. First, the measures evaluated on-mesh that de-
cide where and how to change discretization, can not directly evalu-
ate how remeshing options will impact the solution of the physical
problem when decoupled in this way. Applied post-solve, these
criteria instead provide approximations, based on the current gen-
erated state, at the current, fixed discretization. Indirect proxies are
then generally applied, using geometric criteria and/or snapshots of
physical quantities to guide the refinement and coarsening, which,
in turn, then need to be re-tuned as the specific physical system
simulated (e.g., materials, speeds, boundary conditions) change.

Invariants. Second, necessary invariants for accurate, large-de-
formation contact simulation are often broken in remeshing pipelines,
with element inversions and intersections regularly generated. A
range of fail safes and stabilizations have been applied to fix these
issues post hoc [Narain et al. 2013; Spillmann and Teschner 2008].
However, these fixes all have trade-offs: they generally introduce
errors, can inject energy (potentially creating instabilities) [Narain
et al. 2013], and require per-example tuning even as they work to
remove intersections and/or fix elements.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Mapping. Third, physical quantities, e.g., displacements, veloc-
ities, and accelerations, must be mapped to new discretizations.
Inherently, all such mappings, aside from happy nesting cases, in-
troduce errors. However, the process of alternating timestep solves,
meshing, and mapping, additionally introduces inconsistencies be-
tween the physical state and the mesh discretization, while mapping
operations themselves can also generate intersections and inver-
sions. As we cover in the next sections, this leads to unacceptable
artifacts, additional instabilities, and even simulation failures. Prior
work in simulating dynamics with adaptive-meshing, in dealing
with these issues, often seeks to minimize refinement operations to
reduce error [Wicke et al. 2010]. However, this often opposes the
original goal of adapting where needed.

Contact. Contact-driven dynamics particularly pose both signifi-
cant challenges to, and high demand for AM, where large and highly
singular contact forces generate significant and localized deforma-
tions in simulation meshes. In such cases, the above-covered issues
are especially critical to consider as the separation of meshing steps
and solves breaks temporal coherence, introduces infeasible states
and unnecessarily perturbs system energies (with attendant nu-
merical artifacts and jittering), and so often undoes much of the
immediate benefit of improved accuracy and quality targeted by AM
operations in the first place. Likewise, existing contact-aware AM
methods, applying solely geometric criteria significantly over-refine
boundaries (see Figure 5), in many cases again directly opposing
the original intent of AM.

In-Timestep AM. We address the above challenges with, to our
knowledge, a first fully coupled AM method for contacting elasto-
dynamics with meshing criteria, operations, and mappings, tightly
coupled within each timestep solve. To do so we apply the recently
proposed, Incremental Potential Contact (IPC) model [Li et al. 2020]
which provides a convergent [Li et al. 2023] and smooth model
for frictionally contacting solids Applying the IPC model, we con-
struct In-Timestep Remeshing where meshing criteria have access
to the current, ongoing, nonlinear timestep solve’s merit function.
With this framework, we can apply efficient “micro” simulations per
mesh operation, and so make physics-informed and invariant-safe
decisions on how to update the discretization.

Contributions. ITR thus refines and coarsens by measuring the
change in improvement within each ongoing timestep solve and
so avoids recourse to geometric meshing criteria that are physics-
oblivious and require per-example tuning.

To build ITR our technical contributions include:

e a “safe” constrained L2-projection method for variable map-
ping that minimizes mapping error while preserving invari-
ants by ensuring a globally injective mapping;

e a consistent, smooth remeshing criteria function for friction-
ally contacting elastodynamics built upon the IPC model;
and

e a refinement and coarsening algorithm with provably safe
operations, operation filtering heuristics for limiting per-step
cost while ensuring solution improvement, and local nonlin-
ear analysis leading to a final, convergent timestep solution
on each step’s new mesh.

Runtime Efficiency. When compared to uniform mesh refinement,
ITR judiciously adds and removes DOF, reducing linear solve times
in the inner loop of the nonlinear timestepping algorithm with a
DOF improvement ranging from 2.6 to 185% less DOF per example
with corresponding 2.7 to 1,444X linear solve speedups. However,
additional computation is applied to select where and when the
spatial discretization is modified. The interplay between resultant
time-savings in linear solves and this overhead varies significantly
depending on the scene (and how suitable a naive refinement is).
Scenes requiring localized refinement (e.g., Figure 1) are up to 3.3x
faster with our implementation of ITR, while others (e.g., Figure 6)
can be up to 9.6x slower. We provide a detailed analysis of this
trade-off and discuss its long-term implications for this technology
in Section 4.3.

We demonstrate the effectiveness of our approach across a wide
range of challenging 3D (and 2D) examples, where we highlight the
benefits of physics-aware AM. While simple methods are desirable,
remeshing necessarily comes with the cost of complex implemen-
tation: we release a modular, open-source implementation of our
methods at polyfem.github.io to enable replicability and future ap-
plication.

2 RELATED WORK

Meshes are ubiquitous in graphics and there are a wide range of
algorithms and applications that create and/or modify them. We
focus here specifically on related work on unstructured meshes and
the application of mesh modifications for elastodynamic simulation,
both with and without frictional contact. For a broad overview of
adaptive methods in graphics covering a wide range of physical
problems, models, and structured discretizations, please refer to
Manteaux et al. [2017]. Hu et al. [2018] similarly review dedicated
meshing algorithms, and Mitchell and McClain [2014] cover meth-
ods combining mesh modifications with basis refinement (p and
hp-refinement), which we do not consider in this work.

Adaptive remeshing also plays a critical role in modeling fracture
and cutting [Chentanez et al. 2009; Hahn and Wojtan 2015; Koschier
et al. 2015; Manteaux et al. 2015; O’Brien et al. 2002; O’Brien and
Hodgins 1999; Pfaff et al. 2014] as well as in surface tracking meth-
ods which employ complex and robust remeshing operations to
explicitly track the movement of colliding and merging bound-
aries [Brochu and Bridson 2009; Da et al. 2014; Jiang et al. 2017;
Klingner et al. 2006; Menon et al. 2015; Misztal et al. 2014; Misztal
and Beerentzen 2012; Miller et al. 2015; Stein et al. 2004; Wojtan et al.
2009]. Here we focus solely on elastodynamic simulation without
fracture and look to extensions in these areas as exciting potential
future directions.

Changing a physical model’s spatial discretization during elas-
todynamic simulation requires four high-level algorithmic compo-
nents:

(1) Criteria: where to change the discretization and, when doing
so, where to increase or decrease the number of DOF;

(2) Operations: which operations are applied to change the dis-
cretization;

In-Timestep Remeshing for Contacting Elastodynamics + 1:3

Initial mesh

Sizing field

Fig. 2. Sizing field comparison. (a) The initial conditions and mesh used
for the “ball on spikes” simulations in Figures 1 and 2b. (b) A comparison of

our algorithm (right) and results of applying a contact-aware sizing field-
based adaptive meshing criteria [Li et al. 2018; Narain et al. 2012; Wicke et al.
2010] (left) for in-timestep simulation. We show a cutaway view (bottom
row) where we have clipped the geometry to see the inside of the sphere’s
surface. While the sizing field result refines around the contacts, it severely
over-refines right away (circled in red) and so fails to capture intricate
interactions. In comparison, our method adaptively updates while tracking
both contact and internal forces and so locally refines to capture the spikes
pushing into the ball (see Figure 1 for a closer view of our results).

(3) Mapping: once a discretization is changed, how physical quan-
tities are mapped from the prior discretization to the new one;
and

(4) Solution Schedule: how and when these mapped quantities
are applied to update the physical model’s solution.

In the following, we next categorize and consider related works
with respect to their treatment of these four core components.

2.1 Criteria

Geometry. Starting from the seminal work of Hutchinson et al.
[1996] for mass-spring systems, a popular way of guiding simulation
mesh adaptation is to rely on the geometry of the discretization,
either in rest configuration [Bargteil et al. 2007], deformed configu-
ration [Dunyach et al. 2013], or both, enabling the use of a snapshot
of strains or stresses [Bargteil et al. 2007; Debunne et al. 2001; Spill-
mann and Teschner 2008; Wicke et al. 2010]. Similar criteria have
been proposed for shells [Li and Volkov 2005; Narain et al. 2013, 2012;
Simnett et al. 2009; Villard and Borouchaki 2005], where additional
considerations for the complex in-plane and bending behaviors of
thin materials play an important role. Additionally, and interestingly,
user-dependent geometric criteria such as camera view [Koh et al.
2015] can be considered for refinement. These measures are then
primarily proxies for the variations in physical energy in the system,
and for the quality of the underlying discretization to represent it.
They are, however, approximations based solely on the current rest
and deformed configurations at the current, fixed discretization.

Contact. Contacts pose both significant challenges to, and high
demand for, adaptive remeshing. Contact forces generate large, yet
localized, deformations in many simulation meshes and regularly
introduce highly singular strains on boundaries for which it is often

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:4 « Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

desirable to improve resolution. Geometric proximity criteria are of-
ten applied to help select regions for remeshing on simulation mesh
boundaries where two or more surfaces are geometrically close [Ben-
der and Deul 2013; Erhart et al. 2006; Simnett et al. 2009]. Proximity
alone is often insufficient and so is sometimes augmented by tem-
poral continuity conditions of the detected collisions [Spillmann
and Teschner 2008], and even higher-order approximations that
consider a contact region’s curvature via contact tangents across
mesh faces [Li et al. 2018; Narain et al. 2013, 2012; Pfaff et al. 2014].
While often effective, these measures do not account for the actual
contacting geometry, force balance between contacts and the elastic
materials (e.g., considering whether materials involved are equally
stiff and so less likely to deform and require adaptation), contact
force magnitudes, nor the frictional forces involved. With purely
geometric analysis these underlying material and configurational
aspects are unaccounted for and so opportunities for necessary re-
finement and useful coarsening on the contact regions are missed —
leading to significant over-refinement or under-refinement in many
cases; see Section 4.1 and Figures 2b and 5 for examples and evalua-
tion.

Elastic Energy. Rather than apply geometric proxies, a number
of recent works focus on applying criteria that measure a model’s
elastic energy as a criterion in assessing the effectiveness of remesh-
ing [Demkowicz 2006; Mitchell and McClain 2014]. Most closely
related to our approach Mosler and Ortiz [2007] propose elastic- and
incremental-plastic energy decrease as criteria for small remeshing
problems in elastostatics and plasticity, but are limited to solely
refinement operations, and do not address contact, friction, nor
dynamics.

2.2 Operations

Global. Global methods [Jiang et al. 2017; Klingner et al. 2006;
Skouras et al. 2014; Stein et al. 2004], create a new mesh for every
timestep. Often this is applied via an external meshing tool and
so gives the advantage of reducing the implementation effort that
would otherwise be required for tighter integration. However, in
building a new mesh from scratch, opportunities for problem-aware
and ideally smaller updates are lost while such large global changes
in the simulation mesh, necessarily incur larger errors in mapping;
see Section 2.3 below.

Local. Local methods applied in simulation [Li et al. 2018; Narain
et al. 2013, 2012; Spillmann and Teschner 2008] utilize a sequence
of local remeshing operations (splits, collapses, swaps/flips) to mod-
ify the mesh according to the criteria applied (Section 2.1). While
applied locally these operations can still cause trouble by creating
intersections that must be prevented [Brochu and Bridson 2009] and
inversions [Wicke et al. 2010], while also potentially injecting error
by introducing instabilities if not resolved carefully (Section 2.4).
We apply local mesh operations in concert with invariant checks
and post-operation energy evaluations to guarantee effective (error-
decreasing) and safe (invariant-preserving) mesh adaptations.

Basis and r-Refinement. An alternative to explicit changes in the
mesh is to adaptively refine the basis, either via h-refinement within-
element [Grinspun et al. 2002] or via p-refinement [Mitchell and

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

McClain 2014]. While adaptive, these methods are not designed
to deal with large deformations as they cannot change the shape
of the elements (the mesh is fixed). Complementary adaptivity is
also provided by r-adaptive or “moving-mesh” methods [Budd et al.
2009] which update the nodal locations in the deforming model’s
rest mesh but not the topology. While effective in capturing localized
dynamics behavior [Zielonka et al. 2008], on its own r-adaptivity is
not suited for dynamic contact problems, which generally require
concentrated refinement in highly local and often rapidly changing
regions.

2.3 Mapping

Closest Point. An efficient approach to transfer vertex-based quan-
tities between two meshes in close spatial proximity is to transfer
the attributes from a vertex/quadrature point of one mesh to its
closest neighbor on the other [Molinari and Ortiz 2002]. This ap-
proach introduces large errors when the meshes have elements of
different sizes, and usually requires post-stabilization techniques
(Section 2.4) to avoid simulation artifacts, especially in the presence
of stiff materials and contact.

Interpolation. A more accurate method with a bit larger computa-
tional overhead is to interpolate via the finite element basis — when
linear elements are applied, this is equivalent to the barycentric
coordinate interpolation commonly applied in graphics [Spillmann
and Teschner 2008; Wicke et al. 2010]. Despite higher accuracy,
significant errors still accumulate and post-stabilization techniques
remain necessary [Narain et al. 2013; Spillmann and Teschner 2008].

L? Projection. Given the above issues, a natural strategy is to com-
pute a mapping that minimizes error [Léger et al. 2014; Vavourakis
et al. 2013]. The L? projection finds the representation of the func-
tion in the finite element space of the target mesh that is a least-
squares fit of the function in the finite element space of the source
mesh [Léger et al. 2014], and so minimizes the residual of the map-
ping. Considerably more expensive and challenging to implement
than the above alternatives, this projection is commonly applied in
scientific computing and mechanical engineering.

We advocate, to our knowledge, for the first time in the graphics
community, the L? projection for adaptive mesh refinement, as it
is robust to both varying mesh densities and low-quality elements.
However, despite these important properties, the L? projection, on
its own, remains insufficient for large-deformation dynamics as it
can not ensure necessary invariants in elastodynamics are preserved.
In particular, the projection can create intersections and element
inversions. In Section 3.5, we provide a brief overview of the L2
projection and then propose our extension to obtain an invariant-
preserving, error-minimizing mapping.

2.4 Solution Schedule

For elastodynamic simulation, a fundamental question is how to
integrate remeshing and mapping variables into each timestep’s
solution of the physical model.

Interleaving. The standard strategy is to decouple timestepping
from remeshing, generally by interleaving timestep solve, remesh-
ing, and mapping. This leaves the remeshing criteria to the mercy

of post hoc quantities, while after remeshing, the newly mapped
variables are finalized as the updated state for the timestep [Narain
et al. 2012; Wicke et al. 2010]. Except for local remeshing operations
that create nested spaces, the above-covered mappings (Section 2.3)
all necessarily introduce errors in the projected quantities - mean-
ing the newly mapped solution is inaccurate and inconsistent with
the underlying mesh it is defined on and so introduces artifacts
including instabilities and jittering [Narain et al. 2013]. Moreover,
the updated solution can introduce intersections and inversions,
generated by the prior mapping. Earlier works, recognizing these
issues, do apply geometric corrections for intersections [Narain et al.
2012] but, at the same time, generally strive to minimize the overall
number of remeshing operations to reduce total error [Narain et al.
2012; Wicke et al. 2010].

Post-Stabilization. Post-stabilization methods, recognizing the in-
stability and jittering introduced by direct mapping of timestepped
variables to the new mesh, introduce an additional step, after map-
ping, to improve stability (although not accuracy). Narain et al.
[2013], apply a nonlinear least-squares solve to perturb mapped
positions to find a more stable configuration, while Spillmann and
Teschner [2008] apply a similar strategy with additional collision
response phases to also correct for intersections. These methods,
with proper parameter tuning, can be effective at removing visual
artifacts, such as jittering, but they also introduce significant errors
in the physical model, as they can apply arbitrary perturbations to
a solution that already contains errors.

2.5 IPC and In-Timestep Remeshing

The above analysis leads us to the conclusion that for simulating
elastodynamics, the remeshing criteria, remeshing operations, and
variable mappings, should all be tightly coupled, and so integrated to-
gether within each timestep solve. The next question is how. Mosler
and Ortiz’s [2007] work on simulating elastostatics using the elas-
ticity potential is our starting point for contacting elastodynamics.
We begin by applying the recently proposed, IPC model [Li et al.
2023, 2020] which provides a convergent and smooth model for fric-
tionally contacting solids. In turn, because IPC contact forces are
smooth and the IPC timestep update is variational, this allows us
to formulate, per timestep, a spatially smooth merit function as our
meshing criteria. This merit function includes elasticity, contact,
and friction, and its decrease guarantees solution improvement. We
then carefully design our solver to refine, coarsen and safely L?-
project, within each timestep solve, to maintain consistent updates,
while ensuring that the final output of each timestep is an accu-
rate, intersection-free, and inversion-free solution progressing the
simulation dynamics forward in time.

Hierarchical Methods. Hierarchical methods provide solver strate-
gies, complementary to AM methods, that can be applied to improve
timestep solves. These methods (e.g., [Hormann et al. 1998; Zhang
et al. 2022]) apply a hierarchy of pre-determined resolutions to
better compute a solution for a final (pre-specified) and generally
uniform, high-resolution target mesh.

In-Timestep Remeshing for Contacting Elastodynamics + 1:5

Eﬁ% S E

- Vst @@%Qb'

No Remeshing

Ours

Fig. 3. Masticator. A challenging 3D compression example, simulated with-
out refinement (top) and with (bottom) our algorithm, starting from the
same initial mesh. The insets highlight how our method is able to capture
the sharp contact features and buckling under compression by increasing
mesh resolution. Without remeshing, these details are lost, resulting in a
different deformation.

In contrast, AM methods (including ITR) locally adapt solution
meshes to apply detailed resolution where it can be better used. In fu-
ture work, it should be an interesting extension to consider the appli-
cation of hierarchical methods within ITR to obtain faster nonlinear
solves. For this, the most closely related approach to ITR in the hier-
archical literature, is the recent work of Zhang et al. [2022] who build
a hierarchical solver for IPC. They propose a Euclidean projection
to find non-intersecting geometries nearest to possibly-intersecting,
Loop-subdivision-upsampled targets, by applying barrier-enforced,
continuous collision detection (CCD)-filtering to the direct path
from a “safe”, midpoint-upsampled triangle mesh, to a target. Here
we construct a complementary, error-minimizing, L2-projection, for
tetrahedral meshes, constructed by constrained quadratic energy
minimization, supplemented with CCD-filtered collision barriers,
suitable for refinement and coarsening operations.

3 IN-TIMESTEP REMESHING
3.1 Spatially Continuous Setting

We consider the solution of simplicial simulation meshes (triangles
in 2D, tetrahedra in 3D) undergoing large-deformation elastody-
namics with frictional contact. Before discretizing to a spatial mesh,
we first begin by discretizing in time: we construct the solution of
each timestep’s problem in semi-discrete optimization form,

x'* = argmin E; (x) (1)
X

with a spatially continuous Incremental Potential,
Er(x) = / 2l x) - # x)|f av
Q 2
+ah? / ¥ (x(X)) = x(X) T f(X) dV ()
Q
+ah? / B(x(X)) + D(x(X)) dA
oQ

Here V¥ is a hyperelastic deformation-energy density (e.g. neo-Hook-
ean), f encodes the sum of body forces and (when ranging over

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 + Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

boundary regions) any applied reactions, and B and D are the spati-
ally-continuous analogs of the IPC energies [Li et al. 2023] for, re-
spectively, contact barrier and friction pseudo-potential. In turn,
the choice of predictor position, X’ (an explicit function of prior
deformation, velocity, and possibly acceleration fields: x%, x*~1, .. .,
of ot~ . at atml . .), scaling term a € R*, and an explicit up-
date equation for velocity (and acceleration as needed) from optimal

solution x?*1

, jointly define the specific choice of numerical time-
integration method. Here, in the main text, for simplicity, we will

keep in mind implicit Euler with
= xt + ot o' = %(x“rl —-xh), a=1, 3)

while similarly, a wide range of additional time integration methods
are directly covered!.

3.2 Solution Quality per Timestep

In this continuum form, the optimization timestep solve in Equa-
tion (2) highlights an important deciding feature: when we are
allowed to range over the space of all valid deformations x, a defor-
mation giving the (locally) smaller value of E; is the better solution
to the timestep. Looking ahead to our next step of spatial discretiza-
tion, this provides a simple, physics-focused metric for ranking
finite-element meshes in a solution space, that is custom-suited to
each timestep. Of course, a corollary is that this energy decrease is
always “easily” obtained via uniform refinement to finer and finer
meshes but this also comes with the associated cost of more, and
generally too much, computation. Instead, here we focus on apply-
ing this metric to locally adapt our mesh in regions of high value.
To do so we focus our adaptivity on this actual, temporally local,
measured change in the timestep’s solution quality itself, rather than
on intermediate proxies via mesh qualities or physical properties.

3.3 Spatial Discretization

We apply piecewise-linear discretization of Equation (2) on meshes
7 with discrete fields defined, per triangulation/tetrahedralization,
at the n vertices of the mesh in 3D (respectively 2D) space and stored
in vectors x, v, a € R3" (respectively Rzn).

Each of the spatially discrete energy terms in our incremental
potential are now expressed as weighted sums of energy functions
over mesh element stencils, s (tetrahedral, triangle, edge, point or
pairings thereof depending on energy and dimension) in 7,

D wss (),

SET
where wg > 0 is the volume, area or length-weighted scaling of
the rest shape element s, and W is the respective energy density
function of each potential restricted to this element’s stencil.

!For example, other time-integration methods we applied are Implicit Newmark, with
a=1/4,%" =x" +ho+h?[4a’, 0™ = 2/h (x" - x") - o', and
at*l = 2/h (0" - o) - at,
and second-order backward differentiation formula (BDF2), with
a=4/9,%" = 1(4x' = x'7) + L (40" - o' "), 0" = #(xt+1 - x"),and
z)t“ — %(401‘ _ Z)t_l) + %atﬂ.

Small changes by additional terms in the arguments of the energy functions extend the
range of our application even further to a yet wider range of numerical time integration
methods without loss of generality [Li et al. 2023].

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

For a fixed mesh 77, the timestep solution is then a local minimizer
of a fully discrete Incremental Potential, per timestep

E:(x,T) =E(x, T, %%)
=2 (e = 5 My (x - 51 @

+ah? (¥ (x) + Br(x) + Dy (x) — x " f7),

where Mg is the mesh’s consistent mass matrix, and ¥z, By, and Dy
are the total resultant energy potentials generated, respectively, by
the aforementioned discretizations of the corresponding deforma-
tion, contact barrier, and friction energies on 7~ [Li et al. 2023].

3.4 Timestepping Framework and Invariants

We advance our simulation domain through time using an incre-
mentally updating triangulation of the domain, 7 (¢), with deforma-
tions x(t), velocities v(t), and rest positions, X(t) defined at 7 (¢)’s
vertices. Input for the solve of each timestep optimization is then:
it xt ot and current applied forces (body and external), f ¢t defined
on mesh 7 with the deformed mesh (x?,7") giving a penetration-
and inversion-free configuration.

In turn output for each of our timestep solves is then a new mesh
7%*1 and updated fields, #+1, x/*1, »**! that maintain the invariants
of non-intersection and non-inversion at end state, while accurately
satisfying the numerical time-integration model by minimizing the
incremental potential with ||VxEt (x, ‘7'“'1)” < €q.

At the same time, as we cover in detail below, to better resolve
dynamics, each of our timestep solves also incrementally updates
the simulation mesh 77, as a “configurational” degree of freedom
with mesh-refinement to lower the total value of the incremental
potential solution in Equation (2) measured by

m(T) = mxinEt(x, 7)), (5)

and similarly coarsening where this does not significantly increase
this same value.

Maintaining Invariants. We apply Newton iterations to minimize
E;(x,7") when holding the mesh fixed. Preserving invariants for
these steps we follow the IPC method’s filtered line-search step [Li
et al. 2020] which applies CCD and inversion-checking to descent
steps. This ensures that all applied displacements for position up-
dates to x ensure both safety and energy decrease towards con-
vergence. In our setting with remeshing, this is not enough - all
operations during each timestep computation, including remeshing,
must maintain non-intersection and non-inversion at every update.

3.5 Safe Projections Between Spaces

Each remeshing operation, i, applied during a timestep solve changes
the mesh, 7¢ — 77! This means that all quantities, (x*, ot ft,
X,...) defined in the prior mesh must, of course, be mapped, or
projected, to the new one.

When simulating dynamics these quantities are generally trans-
ferred in-between timestep solves (see Section 2.3); that is given
%, x%, 0%, and 7! we would first solve for a new timestep solution,
xi*1 o1 then update the mesh to a new one 72, Then, only after
remeshing, xt+1 o+ are projected to the new mesh. Unfortunately,
this staggered process means that x*! # argmin, E;(x,7%) and

so is not a solution to the timestep problem on the current mesh.
This inconsistency between solution space and deformation then
commonly generates instabilities and jittering artifacts, especially
when dealing with stiffer materials and collisions (see e.g., Narain
et al. [2013] and their supplemental video).

Another fundamental challenge for remapping variables is the
actual definition of the projection operator itself. As alluded to above,
changing the mesh also changes the underlying function space of
the model. This is why inconsistencies from staggering the timestep
solves and projections can generate such significant errors when
timestepping.

A cheap, popular, and perhaps simplest projection strategy is
closest-point sampling where we assign new nodal values from the
closest node in the prior mesh. While tempting, this “projection”
introduces large artifacts and instabilities when elements’ sizes
differ [Vavourakis et al. 2013], e.g., under refinement, where many
new nodes’ values are often assigned from the same source node in
the prior mesh. A popular alternative is to apply interpolation from
the finite-element basis — barycentric interpolation in our linear-
element setting. This generally gives better results than closest-point
sampling, but still introduces large projection errors, again leading
to artifacts [Léger et al. 2014; Vavourakis et al. 2013; Wicke et al.
2010].

We instead begin with the L2 projection that minimizes the two-
norm error residual when we map from starting to target finite-
element space [Léger et al. 2014]. Consider again updating from
71 with function space V! and basis {(pl.1 | 1 <i<n}toT? with
corresponding function space V2 and basis {(pi2 | 1<i<m} We
now define a least-squares projection operator

P. v - Ve (6)

so that for functions f! € V1 their projection f2 = P(f!) € V2
minimizes the L? residual % || fl-f 2“2. Optimality conditions min-
imizing this residual [Léger et al. 2014] give the projection of a
quantity u, defined on the vertices of 71 (e.g., the coefficient vector
of f1), to the vertices of 772 as

=1 47
M A Lu, 7)
where M2 € R™ ™ is the density-normalized mass matrix on

1 . .
72 and A(;Z € R™*" is a transfer matrix between bases so that

aijj = /Q (pl.zqojl. dV. The two bases are then defined on two different
meshes and so we use arrangement via PolyClipper [Powell 2021]
to compute the quadrature points necessary for the integral [Krause
and Zulian 2016].

Although not, to our knowledge, previously applied in graphics,
this L2-projection has long been appreciated in mechanics applica-
tions for its better preservation of quantities [Léger et al. 2014] due
to minimized error. However, while well-projecting unconstrained
quantities the L? projection (and all others) are oblivious to our in-
variants. Projections can and will create both element inversions and
intersections, meaning we can not apply the L? projection operator
as-is.

To make the L? projection safe we return to the variational picture
and now rebuild a constrained least-squares residual minimization,
subject to non-intersection and non-inversion constraints, that safely

In-Timestep Remeshing for Contacting Elastodynamics + 1:7

t=3.66 s

t=1‘._05 S t=2s

E i\zs‘#‘i— y)\j :1‘\-‘\ ,";

UR 1 QOurs ¢

Fig. 4. Gorilla rollers. a very soft gorilla model (E = 2 x 10* Pa) is dropped
on a pair of stiff rotating elastic rollers (E = 2 x 108 Pa) with softer spikes
(E = 2 x 107 Pa). As the gorilla impacts the spikes, the mesh is refined
to account both for the large elastic forces in thin features and for the
rapidly changing contact forces. Our method adapts to the different material
stiffness, by refining the softer gorilla in the necessary regions of contact,
much less for the stiffer spikes, and leaves the even stiffer roller unadapted.
The dynamics for the single-level uniformly-refined (UR) solution (UR 1)
is comparable up to ¢ = 2s where the spike is (unlike the adapted mesh
solution) is unable to push into the gorilla’s left shoulder.

projects quantities from an old mesh 7°4 to a new one, 7,

Pr(u) = argmin %Z)TMTZJ - ZJTA;OlCl u+ Br(x) +I-(x). (8)
0

The first two terms form the least squares condition, By is our
discretized IPC contact barrier defined on the new mesh, and I
discretizes a new barrier we propose to enforce non-inversion dur-
ing projection without biasing the solution with elastic material
behavior,

Ir(x) = > wier(x,0), o

ter

where, the function ¢; returns a log barrier on the volumes v; (x) of
tetrahedra ¢, that is smoothly activated when volume falls below 4,

2
—Kyp (—U‘gx) - 1) In (—U’gx)), 0<ov(x)<?d (10)
0 v (x) > 0.

ct(x,0)

We use 4 = 10712 m3 and k, = 0.1E (same as contact barrier stiff-
ness) throughout where E is the material’s Young’s modulus. To
apply each constrained projection we first safely initialize our dis-
placement variables on the new mesh via linear interpolation and
then directly reuse our same line-search-filtered Newton method to
solve Equation (8) and so minimize the L?-residual while ensuring
safe new variables on the updated mesh.

For all of our ITR phases, detailed in the next two sections, all
prior timestep quantities (-') must be projected to ensure consistency.
However, in our setting, we are able to take advantage of a simple
optimization: during refinement (only), barycentric interpolation
is equivalent to our L? projection and so can be safely and cheaply
applied rather than Equation (8) for all our edge-split operations.

3.6 Remeshing with Local Operations

Changing the geometry (i.e., vertex rest-positions in our setting) of
a mesh is attractive for mesh adaptation as it leads to continuous
changes in the underlying finite element space, and so is amenable
to gradient-based optimization of functionals depending on them.
However, such r-adaptive-type updates are insufficient to capture

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 « Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

the large, often transient, and highly localized deformations we cap-
ture in accurate elastodynamic modeling. Instead, we often require
increasing (and decreasing) the number of DOF and so the number
of vertices in our meshes. However, in changing the connectivity of
amesh we obtain discontinuous changes in our finite-element space.
In turn, this will drive nonsmooth changes in our meshing crite-
ria functional in Equation (2) and so here we will apply a discrete
optimization strategy.

We consider two types of operations that are applicable to both
triangle and tetrahedral meshes: 1) an edge split, which splits every
triangle/tetrahedra touching an edge into two while inserting a
vertex, and 2) its inverse, an edge collapse. These operations are
discrete in nature, but depend on both discrete and continuous
parameters: a split operation is applied to a discrete edge, but the
position of the newly inserted vertex is controlled by two or three
continuous coordinates.

Due to the discrete nature of the problem, it is not practical to seek
an optimal sequence of operations minimizing Equation (5) (pre-
suming a fixed sequence length or a targeted given tolerance). We
instead apply a greedy block-coordinate descent strategy: we test a
set of potential operations and pick those that provide maximal local
improvement in the energy for the inserted DOF. We first discuss
how we evaluate the effect of a single operation, and then how to
greedily select a sequence of operations reducing Equation (5).

Effect of an individual operation. To evaluate the effect of an op-
eration on Equation (5) a naive approach would be to perform the
mesh modification, project quantities (Section 2.3), ensure that the
invariants are still valid, and minimize Equation (5) globally. How-
ever, this is computationally prohibitive: inspired by approaches
used for a posteriori error estimators [Mitchell 1991; Schmidt and
Siebert 2000], we perform local solves in the neighborhood of the
mesh modification. This enables a sound approximation of each op-
eration’s impact, under the assumption that this effect decays as we
move from the operation’s stencil. By changing the neighborhood’s
size, we trade accuracy of our estimator with computational cost.

Scheduling. While we can not tractably obtain globally optimal
sequences for meshes, we could potentially find locally optimal so-
lutions by always continually selecting splits that satisfy a sufficient
amount of energy decrease (i.e., a minimal necessary reduction) of
our energy until no more remain. However, as we scale to larger
(and 3D) meshes, this approach is no longer practical either. De-
tailed below we thus introduce a culling method that preemptively
discards candidate split operations that are not likely to lead to
large energy reductions (and correspondingly discards candidate
edge collapses that are likely to lead to energy increases). We do
this by filtering based on the elastic and contact energies per mesh
element, with greater local energy concentration indicating a higher
likelihood (although not guaranteed) of energy reduction benefit
by splitting. Note that our filtering heuristic is applied solely to cull
likely ineffective operations — our criteria for acceptance remains
unchanged by it. We detail our filtering method in the next section.

Implementation. Implementing this discrete optimization algo-
rithm is challenging, especially for tetrahedral meshes, as we need
a mechanism to preview each connectivity change, extract its patch,

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

and minimize Equation (5). If the operation is invalid, or else does
not satisfy our criteria, changes to the connectivity and to its as-
sociated fields defined on our mesh need to be rolled back. This is
significantly challenging to implement via low-level libraries, e.g.,
CGAL, libigl, or OpenMesh. We opt to implement our remeshing
with declarative specification in Jiang et al. [2022], which allows us
to explicitly work on the mesh before and after the operation, and
directly supports invariant checks and rollbacks.

3.7 In-Timestep Remeshing Algorithm

We provide a high-level overview of our method in Algorithm 1.

Initial Timestep Solution. Give a current solution state xt, ot from
the last timestep solve? at time ¢, our ITR first computes a new
predictor timestep solution x” by minimizing Equation (4) on the
current mesh 7; (Line 3).

Refinement. Using the new solution x’, we sort every edge e;
according to its elastic energy ¥y, (e;) (area-weighting all adjacent
cells) to form list Ey, and create list Eg by sorting e; according to
its contact energy Br, (e;) (averaged over two adjacent faces in 3D)
(Line 6). We then select the top es% of both lists to form the filtered
set S of edges as candidates for splitting operations (Line 7).

We then proceed to the Split procedure (Line 8). The Split pro-
cedure takes the set of candidate operations S, and for each op-
eration performs the split (Line 25), obtaining a new mesh 77,
updates the variable on the mesh by linear interpolation along
the split edge® (Line 26), which for each split is equivalent to a
zero-error L? projection, and then performs a small local solve
(Line 27). See the next section below for details on the Local Solve.
The split operation is accepted if we obtain sufficient decrease,
OF = Ep41(xi, T7) — Et11(xp, Tp) > s, and the newly created edges
are applied to update the queue (Line 31). Otherwise, if the oper-
ation is rejected for providing insufficient improvement, we undo
the split.

Local Solve. Local solves applied in both the Split procedure above
and the Collapse procedure below follow the same procedure. A
timestep re-solve is performed in a local patch by minimizing Equa-
tion (4) on the current mesh, but now fixing all nodes in the system
except for DOF in a local patch with a size that is the maximum
between the 2-ring of the edge and 1% of the domain’s volume,
and using x” as a safe and “near-to-solution” warm start. A first i
iterations are run (i = 4 for contacting patches and 1 otherwise) and
then checked to see if it reaches respectively, sufficient decrease
for a split (see above) or small (by |d.|) acceptable increase for a
collapse (see below). If the remeshing criteria is not reached the oper-
ation is abandoned (as covered) as the Newton decrement shows no
progress. Otherwise, if the criteria are met and we will be accepting
the operation we continue the local-patch solve to convergence

2For clarity in pseudocode and discussion we do not track the update of a?, a’*!
nor x?~! here. Treatment for acceleration terms, when time-integration methods are
applied that use them, follow identically to o?, v**! throughout, similarly treatment of
x!=1 follows identically to x?.

3In practice, we use a simple averaging of endpoint values.

Algorithm 1 Overview of our in-timestep remeshing algorithm.

1: procedure INTIMESTEPREMESHING(xX, 07, 7)

2 // Initial Timestep

3 x’ « argmin, E; (x, 77)

4

5: // Refinement

6 Ey « Sort({¥r, (e:)}), Ep < SORT({Br, (ei)})
7 S «— Ey > es UER > €g,

8 T} %}, X, 0] = SPLIT(S, T ¢, %', x¢,01)

9 Xt,0p — X,,0}

10:

11: // Coarsening

12: C«— Ey <ecNEg < €c,

13: T 141, X, 15 X1, 0; < CoLLAPSE(C, T}, X}, 1, X1, 07)
14: Xt, 0t <— SAFEPROJECT(T%, Tr+1, X1, Ut)

15:
16: // Global Solve

17: X1 argming E;(x, Tr41)

18: return 7 s41, X¢+1, X¢, 0t

19: end procedure

20:

21: procedure SPLIT(S, T, X¢41, X¢, Ut)

22: Q < BUILDPRIORITY(S)

23: while Q # 0 do

24: e < Por(Q)

25: T « SpLITEDGE(e, T)

26: X}, 1> X}, 0) ¢ INTERPOLATE(xX1+1, X1, 01, T, T)
27: x;,, < LocarSorve(x;,,, 7")

28: if E; (xt+1, T) — E; (x;H, T') > 55 then
29: T 7T

30: Xp41 — x;+1, Xp < X, 0p < 0]

31: Q « UpPpATEQUEUE(Q, 7)

32: end if

33: end while

34: return 7, xy41, X¢, 0

35: end procedure

36:

37: procedure COLLAPSE(C, T, X¢41, X, Ut)

38: Q «BurLpPriorITY(C)

39: while Q # 0 do

40: e < Por(Q)

41: J « CoLLAPSEEDGE(e, T")

42: X}, 1, X}, 0; < INTERPOLATE(x¢+1, X7,01, T, T)
43: if INVARIANTCHECK(x;, x;+1, 7”) then
44; x;,, < LocarSorve(x;, ,, 7”)

45: if Et(xt+1, T) - Et(X;_H, 7-,) > §. then
46: T T

47: X4l = Xy q, Xp < X[, 0p < 0]
48: Q « UprpATEQUEUE(Q, 7 ¢)

49: end if

50: end if

51: end while

52: return 7, xy41, X¢, 0

53: end procedure

In-Timestep Remeshing for Contacting Elastodynamics + 1:9

(same termination tolerance as the global solve) ensuring that down-
stream operations (and the final solve) all start from well-resolved
regions.

Coarsening. Next, we then select the bottom e-% from Ey and Ep
to form the set C of candidate edges for potential collapse operations
(Line 12) and attempt to collapse them (Line 13).

As in Split, the Collapse procedure takes a set of candidate op-
erations C, and for each operation performs the collapse (Line 41),
obtaining a new mesh 77;. However, differently from Split, the col-
lapse operation does not create a nested space, and so interpolation
will introduce mapping-errors. In turn, these errors can occasionally
break our invariants. To avoid this problem, we locally perform an
interpolation, and then explicitly check if the invariants are violated
(Line 43). If they are violated, we reject the operation, otherwise we
proceed similarly to check that the Split operation does not increase
system energy by more than a small, prescribed tolerance via a
d¢ < 0 and otherwise follow as in the Collapse procedure.

As in the interpolation applied in our Split operations, we in-
terpolate the endpoints of the collapsed edge to determine each
new vertex’s attributes. We collapse boundary edges if and only if
neighboring faces are coplanar in order to preserve the mesh’s rest
shape. For the same reason, when an edge has a single vertex on
the boundary, we collapse it to the boundary endpoint. For all other
edges, we average the endpoints.

After all collapse operations are complete, unlike after splits, we
now require a L?-projection of prior displacements and velocities
on 7 ;41 by means of the safe L? projection (Line 14) described in
Section 3.5, using our interpolated quantities as safe initialization.

Global Solve. Finally, warm-starting with the latest solution es-
timate x;_;, we perform a final re-solve of Equation (4) on the full
domain using the finalized new mesh 7 ;41 and then explicitly up-
date velocity to vz41. As we have been incrementally updating (ef-
fectively relaxing) the solution throughout this process this final
solve is efficient (the number of iterations for convergence is low)
as the majority of the effort has been performed in both the initial

and intermediary solves during remeshing.

4 EVALUATION

Our algorithm is implemented in C++, using Eigen [Guennebaud
et al. 2010] for basic linear-algebra, PolyFEM [Schneider et al. 2019]
for finite element (FE) system construction, IPC Toolkit [Ferguson
et al. 2020] for evaluating IPC potentials and collision detection,
Wildmeshing-toolkit [Jiang et al. 2022] for mesh data structures and
editing, Pardiso [Alappat et al. 2020; Bollhofer et al. 2019, 2020] for
the large linear systems in our global Newton solves, and Eigen’s
dense Cholesky decomposition (LLT) for the small linear systems
in our local Newton solves. All experiments are run on a cluster
node with an Intel Cascade Lake Platinum 8268 processor limited
to 16 threads. Our reference implementation, used to generate all
results, will be released as an open-source project. Please see our
supplemental video for result animations and Table 3 for parameters
used.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 « Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

No Remeshing

Sizing Field Ours

Fig. 5. 2D Masticator. Simulation of the deformation of a 2D bar deformed
by a set of squares. the same mesh is used for the simulation without
remeshing (left column), remeshed using a sizing field based on [Li et al.
2018; Narain et al. 2012; Wicke et al. 2010] within our in-timestep frame-
work (middle column), and with ITR (“Ours”, right column). ITR produces a
more detailed simulation compared to the run without remeshing, adding
DOF to accurately capture the sharp contact with the cubes and the large
deformation of the bar. The method based on the sizing field overrefines
the contact regions (and does not refine elsewhere) and leads to a different
“snagged” final configuration.

4.1 Comparisons

To our knowledge, our ITR algorithm is the only AM method that
can ensure the preservation of IPC invariants and so can be com-
bined with the IPC contact model. This is because mappings and
contact failsafes applied in previous works can and will fail with
intersections and downstream failures in challenging contacting
scenarios like those we test here (Section 2). In order to compare
with prior methods on these challenging scenarios we focus on
comparing meshing criteria in a comparable side-by-side setting
allowing all methods to utilize within-timestep simulation and IPC
solves.

To robustly process contacts and implicitly solve dynamics with
IPC we replace our physics-aware meshing criteria within ITR with
Wicke et al.’s [2010] sizing field, based on the deformation gradient
[Wicke et al. 2010, Equation (7)], for internal deformation criteria,
and on the most recent, state-of-the-art contact sizing criteria pro-
posed by Li et al. [2018]. We compare our energy-based acceptance
criteria with this sizing field*. To do so we replace our criteria in our
implementation with the above sizing field and accept edge-split
and edge-collapses following the scheduling of Narain et al. [2012]
(same as Li et al. [2018]).

We instrument two side-by-side comparison examples: one in
2D (Masticator) and the other in 3D (Ball-on-Spikes). Initially, we
observe that the contact-based sizing field leads to runaway endless
refinement on contacting surfaces — rapidly leading to intractable
simulations. On closer inspection, we see that division by contact
distance in the denominator of Li et al.’s [2018] sizing tensors is the
source: here accurate IPC contact-processing allows for exceedingly

“Note that we do not apply the additional deformation sizing field criteria from [Li
et al. 2018; Narain et al. 2012] as those are customized for shell models - for this, we
take our deformation sizing component instead from the volumetric work of Wicke
et al. [2010].

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

close compliance between surfaces. To enable the contact sizing
field strategy to progress we add a limit to the method restricting
edge lengths to 0.01.

For our 2D example, we see in Figure 5 that both our algorithm
and the sizing field method improve on the simulation of the origi-
nal unrefined mesh (left column). However, the sizing field greedily
refines in contact regions with large numbers of unnecessary faces
that can significantly slow simulation and lead to overly compliant
surfaces locally, that “snag” on boundaries. Please see our supple-
mental video for detailed trajectories of all three simulations.

Similar results bear out for our 3D test in Figure 2b. Here we again
see that our remeshing criterion automatically adapts to both the
contact geometries, the relative material stiffnesses of the domains,
and the force balance between the coiled spikes and the dropped ball
- leading to the resolution and local mesh adaptation necessary to
capture all these details. In contrast, we again see that the sizing field
rapidly over-refines for the first initial contacts, leading to highly
meshed, but minor, side indentations for the first initial collisions
with the spikes, but entirely misses the later spike protrusions and
compressed coiling as it does not account for the physical solution
and relative forces (compare with Figure 1). Please also see our
supplemental video for more details and a comparison with the
simulation of the unrefined starting mesh.

4.2 Results

Sharp Contact. In Figure 3, we reproduce the Masticator example
of Wicke et al. [2010] with a large timestep (h = 0.05 s) to stress-test
a deformable bar compressed by a set of rigid boxes. Our algorithm
quickly captures the sharp contact interfaces upon collision, fol-
lowed by more refinement to allow compliance along the block,
curvature on top, and initially symmetric bulging of the bar out-
of-plane, followed by the start of buckling. In contrast, without
refinement, the simulated bar’s initial mesh does not have sufficient
DOF to capture contact and compliance - these behaviors are missed
and instead we obtain a jagged and twisted deformation.

Large Deformation with Self-Contact. In Figure 6, a stiff bar (E =
107 Pa) is anchored on both sides and twisted by rotating its top. In
the close-ups we see how prior to contact our algorithm progres-
sively refines the tetrahedral domain as more winding introduces
greater curvature and more stress. As winding continues, the simula-
tion adapts to provide even twisting along bar faces and edges until
buckling. Upon buckling, we observe in the zoom-in of Figure 6 how
our simulation of the bar adapts the mesh to capture the collapse,
fold-in, and exceedingly tight frictional contact of its faces (e.g., the
middle red face). In contrast, simulating directly (unrefined) with
the initial bar misses these details and leads to large deformation
errors even before the onset of buckling.

Complex geometry and material-awareness. Varying surface com-
plexity and material stiffness across domains are likewise simulta-
neously resolved by our algorithm. Here a stiff roller is scripted to
rotate, with slightly softer spikes and much softer dropped gorilla
geometry in Figure 4. On contact, we see the gorilla geometry in-
creasingly refines around the impact site with the bar (which refines
less due to a stiffer reaction) and then coarsens as it rebounds.

No Remeshing

Ours

Fig. 6. Bar-twist. Starting from the same coarse geometry (shown in grey)
the resulting deformed mesh is very different without (top) and with (middle)
ITR. Our algorithm adaptively adds (and removes) DOF in the mesh to better
resolve elastodynamics. As our adaptive simulation progresses we move
from regular twisting to buckling. Bottom inset: during buckling our physics-
aware remeshing allows the face to collapse (see the center red face) and
fold in on itself with tightly resolved contact.

High-Speed Impact. While above we stress-test ITR with a number
of large timestep examples, for many phenomena we may wish to
capture detailed deformation occurring at much finer time scales. In
Figure 8, we model the high-speed impact test from Li et al. [2020]
with ITR. A soft (E = 10° Pa) ball is fired at a wall obstacle with
high velocity (g = 67 m/s) with a timestep of h = 2 x 107> s. Here
ITR begins with a much coarser (17X fewer tetrahedra) initial mesh.
Then, on impact, ITR automatically begins refining the mesh to
capture both the rapidly changing contact interface on the surface
and the internal propagation of shock waves across the material. It
then coarsens the mesh as the shockwave passes through, with light,
secondary refinement and coarsening applications capturing the
subsequent oscillations in free-flight. Please see our supplemental
video for the resulting dynamics of the simulation and the changing
mesh supporting it.

Dynamic Wave Propagation. In many cases, emergent behavior
in a system’s dynamics would best define a suitable mesh choice —
but this is hard to predict without a higher-resolution simulation
result to guide us in the first place. In Figure 7, we fix the left side of
a coarsely triangulated beam and then drive its other end with peri-
odic vertical oscillations. Appropriately modeled, this driven system
should lead to a steady state of attenuating waves damping as they
traverse the bar from right to left. Over multiple timesteps, we see

In-Timestep Remeshing for Contacting Elastodynamics « 1:11

Rest Mesh

Deformed

t=0 0.625 1.875 3 6s

Fig. 7. Elastic wave. Simulation of a driven periodic wave motion. Starting
from a coarse rectangular mesh (top), ITR progressively adapts the sim-
ulation mesh with increasing corresponding resolution from left to right
and local adaptations in appropriate regions to capture the steady wave
dynamics (bottom).

that ITR progressively adapts the simulation mesh with increas-
ing corresponding resolution left to right and local adaptations in
appropriate regions to smoothly capture the steady wave dynamics.

Energy Effectiveness of Remeshing. We instrument the above ball-
impact example to study the effectiveness of our ITR (Figure 9).
Across the entire simulation, we compute the energy decrease
per timestep of the total incremental potential energy obtained
by remeshing from the beginning of the timestep solve (prior to
our algorithm initializing the remeshing operation: Algorithm 1
Line 3) to the final solution output (Algorithm 1 Line 17) on the
timestep’s adapted mesh: AE = E(xt41, 7 t+1) — E(x’, 7 ¢). In Fig-
ure 9 we see that as we refine the mesh (noticeably just around the
first contact, marker (a)) our method dramatically improves the en-
ergy, while during coarsening (e.g., after complete separation in (d))
the energy does not increase, despite the removal of DOF. Looking
more closely at the trends we also see proportionately more energy
decrease when more refinement operations are performed demon-
strating the effectiveness of our criteria’s selection and timing of
operations.

Stability. As covered in Section 2, a fundamental challenge in
AM methods for dynamics, especially during coarsening, is stability.
Each ITR timestep solve in all the above examples is solved to con-
vergence on the timestep’s final output mesh with the prior state
safely L2-projected to it. We observe that qualitatively (see our sup-
plemental video), all the trajectories generated by ITR remain stable,
and so free of jittering and instability artifacts, e.g. as demonstrated
in prior methods by Narain et al. [2013].

4.3 Performance and Resolution

For non-adapted (fixed mesh) timestep solves of IPC there are three
primary sources of computational cost per Newton iterate: (1) eval-
uation of the energy potential gradients and Hessians, and their
assembly to a global linear system, (2) the linear solve of each such
system to compute a descent direction, and (3) line search along this
direction. Both (1) and (3) involve the evaluation of potential-energy

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:12 « Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

3
3

o Velocity (m/s)

Fig. 8. Impacting ball. We replicate the high-speed impact test from [Li
et al. 2020] where a soft (E = 10° Pa) ball is fired at a static wall with a
high velocity (vp = 67 m/s). Beginning with a much coarser initial mesh,
ITR’s adaptive remeshing determines that refinement only begins during
initial collision (left column). As the ball bounces away from the wall, ITR
then begins removing DOF, which were earlier added to capture the contact
dynamics and are now unnecessary. The bottom row shows the velocity
magnitude throughout this process.

Splits # Collapses AE

2e-3
600
F2e-3
400
] Fle—3
@
g 200 E FSe—4
g 0 { | : § F0e+0 2
‘ |
Oc:. |
| —5e—4
w200 >
—le-3
400
2¢-3
600 (a) (b) (c) (d) 263

0 0.001 0.002 0.003 0.004
t(s)

Fig. 9. For each timestep of the impacting ball simulation (Figure 8), we
plot the number of splits (green bars), the number of collapses (orange bars),
and the change in energy (blue line) from the initial solve of the timestep
(prior to remeshing operations) via minimization of E to the final solution
of the timestep on the final updated mesh. Key times in the simulation
are indicated by virtual lines: (a) first contact, (b) maximal compression, (c)
rebound of the material as peels away, and (d) complete separation. The
plot shows significant improvements (decrease) in the energy as we apply
splitting operations, and at the same time, the coarsening operations do not
negatively affect the energy, while increasing efficiency.

stencils and collision detection. As such, they generally dominate
costs only for exceedingly small systems since, with modern accel-
eration strategies and easy parallelization, they generally scale close

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

to linear in the number of elements. On the other hand, the large,
ill-scaled, sparse linear system solves per Newton iteration in (2)
dominate the costs for all practical examples as they require direct
solvers [Li et al. 2020] with poor parallel scaling of a memory bound
problem [Lipton et al. 1979].

By adapting the mesh ITR significantly lowers DOF count for
high-quality simulation output (see Table 1) and so reduces the size
of the largest (super-linear cost) solver bottleneck: linear system
sizes. At the same time, ITR introduces a new potentially large
(albeit linear and currently unoptimized) overhead cost per timestep
to evaluate the suitability of each mesh-adaptation proposal.

To evaluate the current runtime performance of ITR with respect
to these computational costs, we compare ITR with successive uni-
form refinements [Ong 1994] (splitting along the first diagonal) in
two inter-related analyses. In the first, we measure the wall-clock
time used by each implementation, including current (unoptimized)
costs for ITR’s remeshing overhead. Here we report both running
time and memory consumption, noting that there is only one value
for memory as linear solves are the bottleneck for memory usage.
In the second, we consider an ideal analysis; we keep in mind that
linear solver technology is an advanced, exceptionally well-studied
domain with little expectation of significant improvement, while
costs for ITR mesh adaptivity are currently linear and not yet ad-
dressed in our ITR implementation with significant optimization nor
even low-hanging opportunities for parallelization. For the latter,
we focus on the DOF difference (for comparable quality output) and
the corresponding difference in global system linear solve times for
the IPC timestep solver.

Statistics for these comparisons are reported in Tables 1 and 2. We
begin by visually identifying, per benchmark example, the artifact-
free baseline UR simulation with qualitatively comparable results
to our ITR simulation. As a concrete example, consider the ball
on-spike scene, where we observe that simulations with both one
and two levels of refinement exhibit significant snagging and severe
element distortion; please see Figure 10 for examples. On the other
hand, for the gorilla roller scene, two-levels of uniform refinement
are sufficient to remove most artifacts and obtain qualitatively sim-
ilar deformation and contact compliance to our I'TR result, please
see Figure 11.

In summary, we see ITR’s DOF improvement ranging from 2.6
to 185X less DOF per example with corresponding 2.7 to 1,444X
linear solve speedups. At the same time, the impact of our initial,
unoptimized implementation of our remeshing procedures on wall-
clock time varies significantly across examples, ranging from 3.3x
speedup for the complex ball on spikes scene to 9.6x slowdown for
the much simpler bar-twist scene.

Opportunities for wall-clock performance improvement. We iden-
tify four high-impact and immediate directions for future exten-
sions that we believe will likely provide significant improvement in
remeshing costs (and so runtimes) for ITR: (1) the most immediate
and low-hanging opportunity is the development of parallel and
distributed versions of ITR; (2) similarly low-hanging is the appli-
cation of custom collision-detection that is spatially localized to
leverage the small local support that our individual mesh operations
evaluate in our local-solve updates (currently this is still applied

In-Timestep Remeshing for Contacting Elastodynamics « 1:13

Table 1. The average running time per timestep, peak memory, and the number of DOF for an unrefined mesh (UR 0), three levels of uniform refinement (UR
1-3), and our method. We bold the values corresponding to the lowest resolution showing comparable and artifact-free results to ITR.

Scene Average running time per step (s) Peak memory (GiB) Number of DOF
URO UR1 UR 2 UR 3 Ours | URO UR1 UR2 UR3 Ours | URO UR1 UR2 UR3 Ours
avg (max)
Ball on spikes (Figure 1) | 20.1 418.1 83716 40,648.1 12,316.6 0.9 37 243 1515 20 | 27k 144k 900k 6M 43k (55k)
Masticator (Figure 3) 708 4807 9,7817 16,7758 8,230.8 0.9 0.5 2.7 16.2 4.1 1k o9k 63k 476k 16k (57k)
Gorilla rollers (Figure 4) | 152 1620 3,317.3 233725 1,077.8 1.0 3.8 247 1826 7.7 | 18k 115k 800k 5M 22k (27k)
Bar-twist (Figure 6) 0.2 15 232.5 2,733.6 2,234.9 0.1 0.4 3.1 21.1 3.7 1k ok 63k 476k 24k (78k)
Impacting ball (Figure 8) 0.3 5.9 115.8 8,564.0 960.8 0.2 1.1 8.3 71.8 2.9 5k 34k 248k IM 50k (61k)
==UR0 ==UR 1 == UR2 ==UR 3 ==Ours UR 2 Ours
| e
[T 2
g
2
100k
——=
G
g ° 10k
3 100
oh O
z35 1
(%2}
0 3 10k
£3
S E 100
& F
;
035 04 045 05 055 06 065 07 075 (t=065)
Time (s)

Fig. 10. Ball on spikes uniform comparison. Here we plot a detailed view of the performance of the ball on spikes simulation (Figure 1). We compare an
unrefined mesh (UR 0), three levels of uniform refinement (UR 1-3), and our method. Circled in the rendering on the right, it is clear that UR 2 was insufficient
in capturing the local deformations and stretching caused by the spike tips.

Table 2. Average linear solver running time.

Scene | UR 0 | UR1 | UR 2 | UR 3 | Ours
Ball on spikes (Figure 1) 0.08 0.81 9.88 | 201.77 0.25
Masticator (Figure 3) 0.01 0.06 0.78 939 | 022
Gorilla rollers (Figure 4) 0.12 1.23 | 16.82 | 245.44 0.17
Bar-twist (Figure 6) 0.00 0.05 0.57 8.77 0.21
Impacting ball (Figure 8) 0.02 0.28 3.60 | 126.68 0.37

Fig. 11. Gorilla rollers uniform comparison demonstrates results of the
gorilla roller simulation with two levels of uniform refinement (UR 2) and
ITR (“Ours”) at the halfway point of the simulation.

globally), (3) exploiting both temporal- and spatial-coherence during
collision-detection and culling, and (4) exploration of higher-order
bases and geometry to further reduce DOF count.

5 DISCUSSION

We have proposed ITR, a first fully-coupled adaptive-remeshing
algorithm for implicit timestepping elastodynamics with frictional
contact via a spatially continuous incremental potential merit func-
tion. To do so ITR ensures non-penetration and non-inversion
throughout all operations in both remeshing and solving. In turn,
it applies robust physics-aware remeshing to generate stable and
accurate trajectories with low DOF counts. Simulated geometries
conform well to necessary contacting interfaces and deformations
with parsimonious refinement where new DOF are needed to im-
prove the solution, and effective coarsening where they are not.

5.1 Limitations and Future Work

Along with the opportunities for improved remeshing operation
performance discussed above in Section 4.3 we see a number of
additional avenues for fruitful improvements and extensions.
Currently, we empirically demonstrate improved solution behav-
ior on a wide range of challenging examples. However, an important
next step, which we do not address here is a formal convergence
study of our refinement. We provide a preview of such a study in
Figure 12, where we consider a cantilever convergence test (see
e.g., Pelteret [2016]). As can be seen, ITR’s convergence is currently
highly dependent on the initial discretization. At least in part, this
dependence appears closely related to controlling for mesh quality.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:14 »

Zachary Ferguson, Teseo Schneider, Danny M. Kaufman, and Daniele Panozzo

Table 3. IPC simulation and ITR parameters. For each example, we report the timestep size (h), density (p), Young’s modulus (E), Poisson ratio (v), barrier
activation distance (d), barrier stiffness (), coefficient of friction (u), friction accuracy parameter (€,), and max friction iteration setting. We also report the split
and collapse acceptance tolerances (8s,c) and the culling thresholds (es,c). For all examples, we use a Newton convergence criteria of || Ax||/h < 1073 m/s,

implicit Euler time integration, and a neo-Hookean material.

Scene ‘ h(s) ‘ p (kg/m), E (Pa), v ‘ d (m), k (Pa) ‘ 1, € (m/s), friction iters. ‘ Ss (J), 8¢ () ‘ €s, €C

Ball on spikes (Figure 1) | 0.01 | 2000/1100, 1e5/1e8, 0.4 le-3, 6e4 0.1, 1e-3, 1 le-5, -1e-8 0.95,0.01
2D Masticator (Figure 5) | 0.05 le3, le4, 0.4 le-3, 1e3 0.1, 1e-3, 1000 le-3, -1e-8 0.95, 0.01
3D Masticator (Figure 3) | 0.05 le3, le4, 0.4 le-3, 1e3 0.1, 1e-3, 1000 le-5, -1e-8 0.95, 0.01
Gorilla rollers (Figure 4) 0.01 1e3, 5e4/2e7/2€8, 0.3 le-3, 3e5 0.5, 4e-3, 1 le-5, -1e-8 0.95, 0.01
Bar-twist (Figure 6) 0.01 le3, 1e7, 0.4 le-3, le6 - le-3, -1e-8 0.95, 0.01
Elastic wave (Figure 7) 0.025 1340, 1e4, 0.495 le-3, 1e3 - 5e-5, -1e-8 0.85, 0.01
Impacting ball (Figure 8) | 2e-5 1150, 1e6, 0.45 6.9e-5, 1e5 - le-14, -1e-16 | 0.95, 0.01
Cantilever (Figure 12) 0.1 1le6, 1.1€9, 0.3 le-3, 1.1e8 - *-le-13 0.6, 0.4

=== Uniform refinement === Ours (1) Ours (2) === Ours (3) == Ours (swap+smooth)

N}
S

0-1nF

=

>

~

Tip Displacement (mm)
>

2 5100 2 51000 2 5 10k 2 5
Degrees of Freedom

Fig. 12. Cantilever convergence. Using a cantilever example (see e.g., Pel-
teret [2016]), we examine the convergence behavior of ITR with varying
refinement acceptance tolerances 8 from 1 uJ to 10 pJ. We observe that the
accuracy of our method is largely dependent on the initial discretization:
Ours (1-3) start from 1 to 3 levels of initial refinement, respectively. As
a proof-of-concept, we also test a preliminary extension of ITR that addi-
tionally utilizes edge-swapping and vertex smoothing, starting from the
same mesh as Ours (1). Here we see that these operations are important to
“breakaway” from the initial discretization.

We observe that while split and collapse operations are effective
for adaptive updates, they are insufficient to preserve mesh quality
and so limit the convergence and range of refinement that ITR can
currently apply. The inclusion of edge/face flips/swaps will be a
simple and direct improvement that naturally fits within the ITR
framework, as will be explicit optimization for mesh quality [Wicke
et al. 2010]. As a proof-of-concept investigation, in the above can-
tilever experiment, we have updated ITR operations to additionally
include a preliminary version of edge flips and vertex smoothing.
As we see in Figure 12 this improves ITR’s convergence.

Additional extensions of ITR’s adaptivity to also include r-refinement

should also be valuable. Likewise, while we focus here solely on
volumetric elastodynamics, ITR should usefully extend to codimen-
sional models for shell and rod simulations and even alternative
contact models.

We hope that this work and its reference implementation will en-
courage further research on the application of adaptive unstructured

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

remeshing. As simulation methods advance and problem complexi-
ties grow, it becomes all the more important to judiciously apply
computation where it can be most effective.

ACKNOWLEDGMENTS

This work was supported in part through the NYU IT High Per-
formance Computing resources, services, and staff expertise. This
work was also partially supported by the NSF CAREER award un-
der Grant No. 1652515, the NSF grants OAC-1835712, OIA-1937043,
CHS-1908767, CHS-1901091, NSERC DGECR-2021-00461 and RG-
PIN 2021-03707, a Sloan Fellowship, and a gift from Advanced Micro
Devices, Inc.

REFERENCES

Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf
Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring
Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication.
ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages.

Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. 2007. A Finite
Element Method for Animating Large Viscoplastic Flow. In ACM SIGGRAPH 2007 Pa-
pers (San Diego, California) (SSIGGRAPH *07). Association for Computing Machinery,
New York, NY, USA, 16-es.

Jan Bender and Crispin Deul. 2013. Adaptive cloth simulation using corotational finite
elements. Computers & Graphics 37, 7 (2013), 820-829.

Matthias Bollhofer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-
scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Scientific
Computing 41, 1 (2019), A380-A401.

Matthias Bollhofer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli.
2020. State-of-the-Art Sparse Direct Solvers. (2020), 3-33.

Tyson Brochu and Robert Bridson. 2009. Robust Topological Operations for Dynamic
Explicit Surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472-2493.
Chris] Budd, Weizhang Huang, and Robert D Russell. 2009. Adaptivity with moving

grids. Acta Numerica 18 (2009), 111-241.

Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K. Hauser, Ken
Goldberg, Jonathan R. Shewchuk, and James F. O’Brien. 2009. Interactive Simulation
of Surgical Needle Insertion and Steering. ACM Trans. Graph. 28, 3, Article 88 (July
2009), 10 pages.

Fang Da, Christopher Batty, and Eitan Grinspun. 2014. Multimaterial Mesh-Based
Surface Tracking. ACM Trans. on Graphics (SSGGRAPH North America 2014) (2014).

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. 2001. Dynamic
Real-Time Deformations Using Space and Time Adaptive Sampling. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’01). Association for Computing Machinery, New York, NY, USA, 31-36.

Leszek Demkowicz. 2006. Computing with hp-ADAPTIVE FINITE ELEMENTS. Chapman
and Hall/CRC.

Marion Dunyach, David Vanderhaeghe, Loic Barthe, and Mario Botsch. 2013. Adaptive
Remeshing for Real-Time Mesh Deformation. In Eurographics 2013 - Short Papers,
M.-A. Otaduy and O. Sorkine (Eds.). The Eurographics Association.

Tobias Erhart, Wolfgang A. Wall, and Ekkehard Ramm. 2006. Robust adaptive remeshing
strategy for large deformation, transient impact simulations. Internat. j. Numer.
Methods Engrg. 65, 13 (2006), 2139-2166.

Zachary Ferguson et al. 2020. IPC Toolkit. https://ipc-sim.github.io/ipc-toolkit/

Eitan Grinspun, Petr Krysl, and Peter Schréder. 2002. CHARMS: A Simple Framework
for Adaptive Simulation. ACM Trans. Graph. 21, 3 (July 2002), 281-290.

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
David Hahn and Chris Wojtan. 2015. High-Resolution Brittle Fracture Simulation with
Boundary Elements. ACM Trans. Graph. 34, 4, Article 151 (July 2015), 12 pages.
Kai Hormann, Giinther Greiner, and Swen Campagna. 1998. Hierarchical Parametriza-
tion of Triangulated Surfaces. Proceedings of Vision, Modeling and Visualization (Jan.

1998).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages.

Dave Hutchinson, Martin Preston, and Terry Hewitt. 1996. Adaptive Refinement for
Mass/Spring Simulations. In Proceedings of the Eurographics Workshop on Computer
Animation and Simulation *96 (Poitiers, France). Springer-Verlag, Berlin, Heidelberg,
31-45.

Zhongshi Jiang, Jiacheng Dai, Yixin Hu, Yunfan Zhou, Jeremie Dumas, Qingnan Zhou,
Gurkirat Singh Bajwa, Denis Zorin, Daniele Panozzo, and Teseo Schneider. 2022.
Declarative Specification for Unstructured Mesh Editing Algorithms. ACM Trans-
actions on Graphics (Proceedings of SSGGRAPH Asia) 41, 6, Article 251 (Nov. 2022),
14 pages.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Aug-
mentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6, Article 186 (Nov.
2017), 9 pages.

Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien.
2006. Fluid Animation with Dynamic Meshes. In ACM SIGGRAPH 2006 Papers
(Boston, Massachusetts) (SSGGRAPH ’06). Association for Computing Machinery,
New York, NY, USA, 820-825.

Woojong Koh, Rahul Narain, and James F. O’Brien. 2015. View-Dependent Adaptive
Cloth Simulation with Buckling Compensation. IEEE Transactions on Visualization
and Computer Graphics 21, 10 (Oct. 2015), 1138-1145.

Dan Koschier, Sebastian Lipponer, and Jan Bender. 2015. Adaptive Tetrahedral Meshes
for Brittle Fracture Simulation. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Copenhagen, Denmark) (SCA ’14). Eurographics
Association, Goslar, DEU, 57-66.

Rolf Krause and Patrick Zulian. 2016. A Parallel Approach to the Variational Transfer of
Discrete Fields between Arbitrarily Distributed Unstructured Finite Element Meshes.
SIAM Journal on Scientific Computing 38, 3 (2016), C307-C333.

Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby,
George E. Brown, and Laurence Boissieux. 2018. An Implicit Frictional Contact
Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (July
2018), 15 pages.

Ling Li and Vasily Volkov. 2005. Cloth Animation with Adaptively Refined Meshes.
In Proceedings of the Twenty-Eighth Australasian Conference on Computer Science
- Volume 38 (Newcastle, Australia) (ACSC '05). Australian Computer Society, Inc.,
AUS, 107-113.

Minchen Li, Zachary Ferguson, Teseo Schneider, Chenfanfu Jiang, Denis Zorin, Daniele
Panozzo, and Danny M. Kaufman. 2023. Convergent Incremental Potential Contact.
arXiv.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential
Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM
Transactions on Graphics (Proceedings of SSIGGRAPH) 39, 4, Article 49 (Aug. 2020),
20 pages.

Richard Lipton, Donald Rose, and Robert Targan. 1979. Generalized Nested Dissection.
SIAM 3. Numer. Anal. 16, 2 (1979), 346-358.

S. Léger, A. Fortin, C. Tibirna, and M. Fortin. 2014. An updated Lagrangian method
with error estimation and adaptive remeshing for very large deformation elasticity
problems. Internat. . Numer. Methods Engrg. 100, 13 (2014), 1006-1030.

Pierre-Luc Manteaux, Wei-Lun Sun, Francois Faure, Marie-Paule Cani, and James F.
O’Brien. 2015. Interactive Detailed Cutting of Thin Sheets. In Proceedings of ACM
SIGGRAPH Motion in Games. 1-8.

P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M.-P. Cani. 2017. Adaptive
Physically Based Models in Computer Graphics. Computer Graphics Forum 36, 6
(2017), 312-337.

Sandeep Menon, Kyle G. Mooney, K.G. Stapf, and David P. Schmidt. 2015. Parallel
adaptive simplical re-meshing for deforming domain CFD computations. J. Comput.
Phys. 298 (2015), 62-78.

Marek Krzysztof Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund, Brian Bunch
Christensen, Jakob Andreas Beaerentzen, and Robert Bridson. 2014. Multiphase
flow of immiscible fluids on unstructured moving meshes. IEEE Transactions on
Visualization and Computer Graphics 20, 1 (2014), 4-16.

Marek Krzysztof Misztal and Jakob Andreas Beerentzen. 2012. Topology-Adaptive
Interface Tracking Using the Deformable Simplicial Complex. ACM Trans. Graph.
31, 3, Article 24 (jun 2012), 12 pages.

In-Timestep Remeshing for Contacting Elastodynamics « 1:15

William F. Mitchell. 1991. Adaptive refinement for arbitrary finite-element spaces with
hierarchical bases. J. Comput. Appl. Math. 36, 1 (1991), 65-78. Special Issue on
Adaptive Methods.

William F. Mitchell and Marjorie A. McClain. 2014. A Comparison of Hp-Adaptive
Strategies for Elliptic Partial Differential Equations. ACM Trans. Math. Softw. 41, 1,
Article 2 (Oct. 2014), 39 pages.

J. F. Molinari and M. Ortiz. 2002. Three-dimensional adaptive meshing by subdivision
and edge-collapse in finite-deformation dynamic-plasticity problems with appli-
cation to adiabatic shear banding. Internat. J. Numer. Methods Engrg. 53, 5 (2002),
1101-1126.

J. Mosler and M. Ortiz. 2007. Variational h-adaption in finite deformation elasticity and
plasticity. Internat. J. Numer. Methods Engrg. 72, 5 (2007), 505-523.

Matthias Miiller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air
Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4, Article 133 (July
2015), 9 pages.

Rahul Narain, Tobias Pfaff, and James F. O’Brien. 2013. Folding and Crumpling Adaptive
Sheets. ACM Trans. Graph. 32, 4, Article 51 (July 2013), 8 pages.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remesh-
ing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.

James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. 2002. Graphical Modeling
and Animation of Ductile Fracture. ACM Trans. Graph. 21, 3 (July 2002), 291-294.

James F. O’Brien and Jessica K. Hodgins. 1999. Graphical Modeling and Animation of
Brittle Fracture. In Proceedings of ACM SIGGRAPH 1999. ACM Press/Addison-Wesley
Publishing Co., 137-146.

Maria Elizabeth G. Ong. 1994. Uniform Refinement of a Tetrahedron. SIAM Journal on
Scientific Computing 15, 5 (1994), 1134-1144.

Jean-Paul Pelteret. 2016. The 'Quasi-Static Finite-Strain Compressible Elasticity’ code
gallery program. https://dealii.org/developer/doxygen/deal.ll/code_gallery_Quasi_
static_Finite_strain_Compressible_Elasticity.html. Accessed: 2023-04-24.

Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O’Brien. 2014. Adaptive
Tearing and Cracking of Thin Sheets. ACM Trans. Graph. 33, 4, Article 110 (July
2014), 9 pages.

Devon Powell. 2021. PolyClipper. https://github.com/LLNL/PolyClipper.

Alfred Schmidt and Kunibert G. Siebert. 2000. A posteriori estimators for the h - p
version of the finite element method in 1D. Applied Numerical Mathematics 35, 1
(2000), 43-66.

Teseo Schneider, Jérémie Dumas, Xifeng Gao, Denis Zorin, and Daniele Panozzo. 2019.
PolyFEM. https://polyfem.github.io/

Timothy J. R. Simnett, Stephen D. Laycock, and Andy M. Day. 2009. An Edge-based
Approach to Adaptively Refining a Mesh for Cloth Deformation. In Theory and Prac-
tice of Computer Graphics, Wen Tang and John Collomosse (Eds.). The Eurographics
Association.

Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel,
Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM
Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages.

Jonas Spillmann and Matthias Teschner. 2008. An Adaptive Contact Model for the
Robust Simulation of Knots. Computer Graphics Forum 27, 2 (2008), 497-506.

Keith Stein, Tayfun E. Tezduyar, and Richard Benney. 2004. Automatic mesh update with
the solid-extension mesh moving technique. Computer Methods in Applied Mechanics
and Engineering 193, 21 (2004), 2019-2032. Flow Simulation and Modeling.

Vasileios Vavourakis, Dimitrios Loukidis, Dimos C. Charmpis, and Panos Papanastasiou.
2013. Assessment of Remeshing and Remapping Strategies for Large Deformation
Elastoplastic Finite Element Analysis. Comput. Struct. 114-115 (Jan. 2013), 133-146.

J. Villard and H. Borouchaki. 2005. Adaptive Meshing for Cloth Animation. Eng. with
Comput. 20, 4 (Aug. 2005), 333-341.

Martin Wicke, Daniel Ritchie, Bryan M. Klingner, Sebastian Burke, Jonathan R.
Shewchuk, and James F. O’Brien. 2010. Dynamic Local Remeshing for Elastoplastic
Simulation. ACM Trans. Graph. 29, 4, Article 49 (July 2010), 11 pages.

Chris Wojtan, Nils Thiirey, Markus Gross, and Greg Turk. 2009. Deforming Meshes
That Split and Merge. In ACM SIGGRAPH 2009 Papers (New Orleans, Louisiana)
(SIGGRAPH °09). Association for Computing Machinery, New York, NY, USA, Article
76, 10 pages.

Jiayi Eris Zhang, Jéerémie Dumas, Yun (Raymond) Fei, Alec Jacobson, Doug L. James,
and Danny M. Kaufman. 2022. Progressive Simulation for Cloth Quasistatics. ACM
Trans. Graph. 41, 6, Article 218 (2022).

M. G. Zielonka, M. Ortiz, and J. E. Marsden. 2008. Variational r-adaption in elastody-
namics. Internat. J. Numer. Methods Engrg. 74, 7 (2008), 1162-1197.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Criteria
	2.2 Operations
	2.3 Mapping
	2.4 Solution Schedule
	2.5 IPC and In-Timestep Remeshing

	3 In-Timestep Remeshing
	3.1 Spatially Continuous Setting
	3.2 Solution Quality per Timestep
	3.3 Spatial Discretization
	3.4 Timestepping Framework and Invariants
	3.5 Safe Projections Between Spaces
	3.6 Remeshing with Local Operations
	3.7 In-Timestep Remeshing Algorithm

	4 Evaluation
	4.1 Comparisons
	4.2 Results
	4.3 Performance and Resolution

	5 Discussion
	5.1 Limitations and Future Work

	Acknowledgments
	References

