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Abstract

We study the incompressible limit of the porous medium equation with a right
hand side representing either a source or a sink term, and an injection boundary
condition. This model can be seen as a simplified description of non-monotone
motions in tumor growth and crowd motion, generalizing the congestion-only mo-
tions studied in recent literature (Alexander et al. in Nonlinearity 27(4):823-858,
2014; Perthame et al. in Arch Ration Mech Anal 212(1):93-127, 2014; Kim and
Pozar in Trans Am Math Soc 370(2):873-909, 2018; Mellet et al. in J Funct Anal
273(10):3061-3093, 2017). We characterize the limit density, which solves a free
boundary problem of Hele-Shaw type in terms of the limit pressure. The novel
feature of our result lies in the characterization of the limit pressure, which solves
an obstacle problem at each time in the evolution.

1. Introduction

The porous media equation is a nonlinear evolution equation which is commonly
used to model many natural phenomena involving diffusion or heat propagation, in
its simplest form, it consists of a continuity equation with a flux given by Darcy’s
law:

3 p — div (pVp) = 0, pzﬁpm*‘, m > 1. (1.1)
The exponent m > 1 describes the anti-crowd tendency of the density motion,
where the diffusion is larger at higher density [4,5,20,25]. Due to the degeneracy
of the diffusion at lower densities, it is well-known that the density stays compactly
supported if initially so (see for example [24, Chapter 1]).

In this paper, we consider the porous media equation with a source term,

dorp —div (pVp) = Ap in Q x RT, (1.2)
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set in the (exterior) domain 2 = R" \ K, where K is a bounded subset of R” with
smooth boundary and supplemented with the “injection” boundary condition

o, 1) = fx, )T >0 ondkK, (1.3)

as well as the initial data p(r = 0) = p,% 2 0, Importantly we will assume that
the function A(x, ) is bounded but can take both positive or negative values. When
A < 0, the term Ap is an absorption term which is competing with the injection
at 0K. Assumptions on the initial and boundary data are given in Section 2.1.
Classically, (1.2) can also be written as the following equation for the pressure
px, 1):

dp=(m—1pAp+1+IVpl (1.4)

Our interest is with the incompressible limit of this equation, that is the limit
m — oo. Heuristically speaking, if (p,,, pm) denotes a sequence of solution of
(1.2), then—provided there is an actual limit in a good enough sense—the limits
Poo and poo should satisfy

dpoo — iV (PooVPoo) = Moo INQ X R, pao=f ondkK, pul0)=p" (1.5)

and taking the limit in the relation p,, = %p,’n"’l, we may guess that in the limit

Poo and po, are connected by what is known as the Hele-Shaw graph

0 if0< poo < 1
Poo € Poo(poc) == 110,00) if poo =1 (1.6)
00 if poo > 1.

In particular, the pressure can be viewed as a Lagrange multiplier for the constraint
Poo < 1[19]. In our framework, as in many of the related works discussed below,
a priori estimates (under appropriate assumptions on f and on the initial data) will
allow us to make the derivations of (1.5)—(1.6) rigorous.

Equations (1.5)—(1.6) fully characterize the evolution of ps, (see the uniqueness
result, Proposition 2.5). However, one would like to give a more geometrical de-
scription of the evolution of p, and in particular of the evolution of the “saturated
region”

2() = {poo(t) = 1}.

Classically, such a description is provided by a Hele-Shaw type free boundary
problem. Indeed, formally at least, we can pass to the limit in (1.4) to get the
so-called complementarity condition:

Poo(Apoo + 1) =0in Q x RT. (1.7)

This implies that po (-, 1) solves —Aps, = Aintheset{pso (-, ) > 0}, and equation
(1.5) implies (in a weak form) that the normal velocity of the interface d X (¢) is
proportional to |V ps |. However, the derivation of (1.7) is less straightforward than
that of (1.5)—(1.6) in general (see for instance [9]), and it is not obvious that we
should always have {poo (-, 1) > 0} = X(¢).
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Incompressible limits were first studied for equation (1.1) (that is when A = 0).
In the absence of K, there are classical works starting by Bénilan and Crandall [3],
followed by results with more general initial data by Caffarelli and Friedman [8]
and numerical studies describing the shape of the limit by Elliot et al [10] (also
see [12] for its rigorous justification). In [6] a similar weak formulation for the
Hele-Shaw problem (still without right hand side) is derived as a “mesa” limit
from the Stefan problem. The last decade has seen significant advances in the
study of these asymptotics when the right hand side is monotone increasing in p—
corresponding to the case A > 0 in our framework. The convergence as m — oo
and characterization of the limit as a Hele-Shaw type flow has been achieved for
models of congested crowd motion [1,16] and of tumor growth [15,18,21]. It is
important to note that monotonicity properties are present in the systems studied
in these papers and are essential for proving that {pso(-,¢) > 0} = X(¢). For
instance, the monotonicity of the density was a key feature in characterizing the
limiting problem in [15,18]. In [1, 16] which features a drift field, the monotonicity
of p along the streamline was crucial to characterize the limiting problem in terms
of viscosity solutions.

In our work, the function A (x, t) is not necessarily positive so that one no longer
expects poo to be monotone in time thus complicating the analysis. Moreover, a
Hele-Shaw type problem with a single phase is typically monotone in time, suggest-
ing that the lack of monotonicity should be reflected by having some modification of
the one-phase Hele-Shaw model in the limit. One of the main contribution of this pa-
per is to identify the pressure poo (-, ¢) for all time r > 0 by showing that it solves an
obstacle problem in the set X (#) and might thus be such that { poo (-, #) > 0} C 2 ()
(see Theorem 2.7), causing the saturated set X (¢) to shrink. Though our result ap-
pears to be new, its proof is relatively simple and can be generalized to problems
with nonlinear source terms. As an illustration of this latter point, we apply these
ideas to a tumor growth model which involves nonlinear terms (see Appendix A).
Even in the monotone cases mentioned above, our result provides a new approach
to the derivation of the complementarity condition (1.7).

Equation (1.2) is simple but it allows us to study a very general and important
behavior. Indeed, the monotonicity in the aforementioned works is characteristic of
systems with only congestive effects. However, it is clear that de-congestion effects
are important for applications. In [21], a model for tumor growth which takes into
account the evolution of the density of nutrients is introduced and studied. In that
case, the tumor cells decrease their density in the event of insufficient nutrient,
which yields to “de-congestion” or recession of the tumor cells. The consequent
lack of monotonicity significantly complicates the analysis: The derivation of the
complementarity condition was only achieved recently [9] and the geometric de-
scription of the tumor growth still remains to be understood. Similarly, the study of
congested crowd motion that involve de-congestion phenomena is of great interest
(see [19,23)).

Our interest in studying the toy problem (1.2) is thus to better understand such
behavior. By allowing A to take both positive and negative value, we generate a
motion that consists of both congestion and de-congestion. The presence of a fixed
boundary condition on dK is by no mean necessary for our analysis (there is no K
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in the tumor growth model studied in Appendix A), but such injection boundary
conditions are a classical feature of Hele-Shaw problems. In the context of crowd
motion, our model describes a congested crowd coming out of the door (0 K) to the
outdoors (R" \ K). In the context of the classical Hele-Shaw flow (with A = 0) the
boundary condition describe the injection of the fluids.

In our setting it seems natural to expect that po,, which acts against congestion,
may vanish even when the density is fully saturated. Indeed we will see that when
A is not necessarily positive the support of the pressure poo(f) may be a strict
subset of X (¢). In general, p,(¢) must be found by solving an obstacle problem in
% (t). As aresult, while ¥ (¢) will expand according to a Hele-Shaw type law when
|V pso| > 0 along 9% (t), it might recede when |V p| = 0. Formally, the motion
law of X (¢) can be written as

IV pocl = (1 = pF)V on 9% (1), (1.8)

where V denotes the outer normal velocity of 9 X (¢) and p E i the trace of the“external
density”, namely the trace of pso on 9 X () from {ps, < 1} (this is well defined if
d X () smooth since pso is in BV, (R" \ K)).

The velocity law (1.8) can be formally justified from the weak equation (1.5)
as follows (where v denotes the inward normal unit vector on 9 K):

d
/prwzdS—i—/)»pdx:—/pdx
9K Q dr Jo
S ]
= pdx + o~ dx
dr s Q\=(1)

:/ a,pdx+/ a,pde+/ V(1 —pf)ds
(1) Q\X(1) ax (@)

=/ div(,on)—i—)»pdx—i—/ xpde+/ V(1 —pE)ds
(1) QA\Z() ax ()

=/ pr«vdS—l—/ pr-vdS—I—/)»pdx—i—/ v —pE)yds.
K a2 (1) Q 42 (1)

From this we deduce (since p = 1in X (7)) that / [Vp-v+V (- pE)1ds = o.
3T (1)
We note that our motion law is different from [16] where the free boundary can

move back and forth under the action of a force field. Here the receding and advanc-
ing behavior of the free boundary takes place via completely different mechanisms.
The motion law (1.8) is closer to the one obtained in [14] in the context of liquid
drops sliding down on inclined plane. In this context, at the receding end of the
drop, the contact angle between the liquid drop and the plane may vanish. In that
moment the nature of the velocity law suddenly changes: it is no longer dictated by
the local value of the pressure, but rather by the bulk behavior of the liquid via an
obstacle problem.

Finally, we believe that our approach developed for the model problem (1.2)
is quite general and is of independent interest. To illustrate this point we prove
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in Appendix A that it can be applied to the tumor growth problem with nutrients,
considered in [9,21].

Here is a brief outline of the paper. In Section 2 we collect and discuss im-
plications of our results. In Section 3 we show convergence of the density and
pressure variables. In section 4 we derive the novel characterization of the pressure
via an obstacle problem. Section 5 introduces the comparison principle, as well as
the uniqueness, of the limit problem, which will be used in the rest of the paper.
Sections 6-8 describes the motion law of the saturated region, starting with the
measure theoretic representation in Section 6. An alternative characterization, in
the flavor of viscosity solutions, is given in Sections 7-8.

2. Notations and Main Results

2.1. Assumptions

Throughout the paper, we denote by (0;,, pn) the solution of the initial boundary
value problem

m—1

0 pm — div (o Vpm) =rom 0 Q,  pm=50m s
1

om(x, 1) = f(x,t)mT ondK x R (2.1)

Pm (0, x) = pp,(x) in Q
where we denote

Q:=R"\K, 0:=QxRy, Qr:=Qx(0,T].
Below are the main assumptions to be used throughout our analysis.

Assumption 2.1. There is a constant A > 0 such that

(i) The function A(x, t) satisfies

A, DS A Yx, 1) e O, (2.2)
A€ BVipe(Q x RY). 2.3)

(i1) The boundary data f (x, t) satisfies
0<A 'S F<SA, IVASC, |8fISC ondK xRY. (2.4)

In order to write the assumptions on the initial condition ,0,91, we first introduce
appropriate barriers. Given 0 £ R < R, we consider ¢(x) and ¢(x) solutions of

—Ap =A+1in B\ K, @:fﬁonakﬂ @ =0ondBy (2.5)
and
—Ag:—AinBﬁ\K, f:f% ondkK, 9:00n83§, (2.6)

where we assume that ¢ > 0 in Bg \ K (if necessary we can replace Bg by a
smaller set sufficiently close to K).
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Assumption 2.2. (i) The initial condition p,,01 (x) satisfies

1 _1
) < ph(x) SPn(x)  VxeQ 2.7)
1AGWS™) + 2ol + IV omll i) < C 2.8)
(ii) The sequence {0 },,> converges in L' () to p°.

Condition (2.8) may seem restrictive, but the following result shows that a wide
range of initial condition p° can fit into this framework:

Lemma 2.3. Let & D K be a bounded open set with C* boundary in R" and let
p°(x) be given by

P = xz + pFxgc inQ,

where pF e Cg’l(Q) satisfies 0 < pE < 1. Then there exists a sequence p,?l
satisfying Assumption 2.2.

The construction is simple, so we give it here: First, we define the pressure pg
by

—Apo=0in X\ K with po=0o0ndX and pg = f on K.
We clearly have pg = 0in K and |V pg| # 0 on dX. We can then define

I
P8 = max{py™, (0¥ — am) s},

where a,, is a nonnegative sequence such that a,, — 0 and (1 — a,,)™ — 0 as
m — oo (for instance a,, = (Inm)~!). Note that with this definition (2.7) holds
for sufficiently large m. To check (2.8), first note that p(l)/ " isin BV, since

L

m

Dp| =C sup |Dp|+o(D),

P
nmﬂwu=“
Ll pzl/m

for sufficiently large m, where we have used the fact that p grows at most linearly
near the regular boundary dX. Lastly, note that

(P2)™ = max{po, (pF — an)™},

which is a maximum of two C? functions. Moreover for large m we have V(pg —
(pF —an)™) # 0 where they coincide, since V py # 0 due to the regularity of X
and V(p¥ — a,,)™ uniformly vanishes as m grows. This nondegeneracy yields the
regularity of the set I' := {pg = (E — an)™). Collecting the facts we conclude
(2.8), where A pf,’,’" is interpreted as a measure.
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2.2. Limit and weak formulation of the limiting problem

By generalizing classical a priori estimates to our equation, we will first establish
the convergence of p,, and p,, and prove the following result:

Theorem 2.4. Under Assumptions 2.1 and 2.2 and up to a subsequence, the density
om and pressure py, solution of (2.1) converge strongly in L'(Q7) forall T > 0
to limits poo and pso Which satisfy

10009 pOO € BV(QT)’
Poo € C5([0, 00): HH(Q)) Vs < 1/2, peo € L*0,T; H (),
0= peo(x,t) £C ae (x,1) €0, 05 poo(x, 1) S1 aexeQ, Vi>0

and

3 Poo = APoo + Ao inD'(R X RY),  po € Poo(Poo):
DPoo(x, 1) = f(x,1) on dK x RT; (2.9)
Poo(x,0) =p(x)  inQ,

where Po is the Hele-Shaw graph (1.6).

Following [21], we can prove the following result which shows that the result
above fully characterizes the function pso:

Proposition 2.5. Suppose . € L>([0, T1; H'(RQ)), then equation (2.9) has at most
one solution (p, p) € X := L*°(Q2 x (0, T]) x L2(0, T; HY(Q)).

Furthermore, if (p1, p1) and (p2, p2) are respectively sub and super-solutions of
(2.9) in X satisfying p1(-,0) = p2(-,0) and pilax = palok, then py = pa in
QxR

Remark 2.6. This uniqueness result implies in particular that any subsequence of
(Pm> pm) converges to the same limit, and thus the entire sequence converges to

(Poos Pco)-

When A = 0, equation (2.9) implies that the saturated region X (#) = {poo(?) =
1} coincides with the set { poo(f) > 0}, and X () evolves according to the classical
Hele-Shaw free boundary problem:

Apso = 01in X(2), Poo = fondkK, Poo = 0o0n dX(2);
V = |Vpeolon d%(1),

where V' denotes the outer normal velocity of the interface dX (¢) [13,22]. This
provides a simple geometric description of the evolution of the set {p, = 1}.
As explained in the introduction, our goal in this paper is to provide a similar
characterization when A # 0.
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2.3. The pressure poo(t)

Our first task is to determine how the pressure poo(¢) depends on the set {poo =
1}. An important and new feature in our framework is that that we may have
{Po(t) > 0} € {poo(t) = 1}. Indeed we prove that p(t) is determined by
solving an obstacle problem in the set {psc = 1}.

First, we note that for all 7p = 0 we have ps € BV (2 x (fy, T)) and so we can
define the trace of the function ps, on {t = #p}. The interested reader might consult
Giusti’s book [11, Chapter 2] for a thorough discussion on traces of BV functions
(it is worth emphasizing that po, is of bounded variation in space and time). We
denote this trace p*(x, to) since it is defined as a limit as t — tar . It satisfies, in
particular, that

1

to+0 to+0
7/ / [Poo(x, 1) — pt(x, o) dx dr < / / |0 pooldx — 0  ass — 0. (2.10)
3 Ju Q 0 Q

and (by Lebesgue differentiation theorem) poo(x,t) = p*(x,t) almost every-
where. Since A € BV, we can similarly define the trace AT (-, ) for all t > 0. We
then prove

Theorem 2.7. Under the conditions of Theorem 2.4 and for allt 2> 0, pT (-, t) is
the unique solution of the minimization problem

. l 2 _ 4+
min V| AT, Hudx 2.11)
Q2

veE;

where E; denotes the functional space
E, = {v e HA(Q)NLYQ): v=fondK, v=0in, (v.1— paol®)) i g1 = o}.
Equivalently, p™ (-, t) is the unique solution of the variational inequality

p € E;

/vp-V(p—u)—,\+(-,t)(p—u)dx <0 VYuek. 2.12)
Q

If the set £ () = {po(-, 1) = 1} is a smooth enough subset of €2, then (2.11)
is a classical obstacle problem in X (¢) with Dirichlet boundary conditions p = f
on 0K, p = 0 on dX(¢). The proof of this result is surprisingly simple and quite
flexible (see Section 4). It does not require any additional a priori estimates besides
the ones already used to prove Theorem 2.4. It can easily be adapted to more
complicated models, such as the tumor growth model with nutrient, as we show in
Appendix A (see Proposition A.2).

By using the approach developed in [19], it is also possible to show that for any
weak solutions of (2.9), the pressure poo (-, ) satisfies, fora.e. t > 0

/Vp~Vu—Audx:O, Yu € E;.
Q
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So the pressure poo (-, t) solves the equation Ap + A = 0 in the set {poo () = 1} for
almost every time. As explained in the introduction, we cannot expect this to hold
for all time, since either A or the set {p~,(#) = 1} may evolve discontinuously over
time. In the event where the solution of the obstacle problem (2.12) has its support
strictly smaller that {poo(#) = 1}, the set {pso(t) = 1} will shrink instantaneously.
The result of [19] does not see these instantaneous collapses (which can happen
over a large set of time, albeit one of measure zero). Our characterization of pso,
which holds for all time # > 0, identifies how such collapses take place.

When A = 0, Theorem 2.7 provides a simple proof of the harmonicity of
Poo I {pso(+, 1) = 1}. In the general case, it implies in particular the so-called
complementarity condition:

Poo(Apoc + 1) =01in D' (R x (0, 00))

which isreadily obtained by takingu = p(1£e¢)in (2.12) withg € D(Q2x (0, 00))
and ¢ small enough so that 1 +¢¢ > 0.

This complementarity condition is proved for the tumor growth model in [21]
(model without nutrient) and in [9] (model with nutrient). In both cases, the deriva-
tion relies on further estimates on the pressure (in particular the Aronson-Bénilan
estimate or some variant of it). Our result thus provides an alternative derivation of
this condition that does not require any of these additional estimates.

Given the interest for the complementarity condition in the literature, it is worth
noting that it is equivalent to the obstacle problem formulation in the following
sense:

Proposition 2.8. Let (p, p) € L0, T; L'(Q) N L>®(Q)) x L*(0, T; H'(Q)) be
a solution of (2.9) with p € BVj,:(2 x Ry). If p satisfies the complementarity
condition

p(Ap + 1) =0inD'(Q x (0, 00))

then for every t > 0 the trace p™ (-, t) (as defined in (2.10)) is the unique solution
of problem (2.11).

Note that given a weak solution of (2.9), we are not able to prove directly that it
satisfies the obstacle problem formulation of Theorem 2.7) or the complementarity
condition, but this proposition shows that these two properties are equivalent.

In general little is known on the boundary regularity of the set {px (-, ) = 1},
including whether its boundary has measure zero. Thus for pointwise characteri-
zation of the pressure poo, we define the support of the measure 1 — po, by

Supp (1 — po(t)) := {xo e Q; / (1 — poo) (-, t)dx > O for all r > O} .
B

7 (x0)
While it may differ from the set {poc < 1} by a measure zero set, this set has
the advantage of being closed by its definition. Then the solution of the obstacle
problem (2.11) has the usual properties in the open set

O(t) := Q\Supp (1 —pso (t)) = {xo eQ: / (1 = poo) (-, 1) = O for some r > 0} (2.13)
B

- (X0)
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which can be seen as the “interior” of the set {p~ (-, #) = 1}. More precisely, we
have

Proposition 2.9. The function p*, solution of the minimization problem (2.11), is
in Clla’cl, (O(1)) and satisfies

—Ap* = Ax(pea0) in O). (2.14)

2.4. Velocity law: measure theoretic results

In view of Theorem 2.7, we can redefine po, a.e. so that for each time # > 0 the
function poo (-, t) is the unique solution of the obstacle problem (2.11). We would
now like to characterize the evolution of the saturated region. We start with the
following proposition:

Proposition 2.10. For all t > 0, P(t) := {poc(-, t) > 0} the positivity set of the
solution of the obstacle problem (2.11). Then the density equation in (2.9) can be
rewritten as

01 Poo = Mt + Apoo (1 — xP), (2.15)

here p; = Apeo(-,t) + A(-, 1) XP(r), which is a non-negative Radon measure
supported in 9P (t) \ O(t).

When A < 0, Equation (2.15) shows that the growth of peo can only occur
when the measure p is non zero (thus only on dP(¢) \ O(¢)) while the density can
only decay when poo (1 — xp()) > 0. Growth and decay thus take place according
to different mechanisms. One is dictated by a singular measure, the other by an
L°° function. Note that P(¢) is almost the saturated set X (¢), in the sense that their
parabolic closures coincide (see Theorem 2.11.)

Heuristically, (2.15) can have a geometric interpretation as follows. Since poo =
1 in P(t), we can always write

Poo(x, 1) = xp@y(x) + pE (x, (1 — xp(ry (X))

for some function p%. Splitting the singular and regular part of (2.15), we get the
following:

(2.16)

(1 = xp@y (X))@ pE — 1pF) = 0;
(1= pEx, )0 xpu) = 1.

The first equation determines the value of p., outside of the congested set (3; pF =
ApE when p(x, t) = 0, supplemented by the condition that p© = 1 when p(x, ) >
0).

Formally, we have u = |V p|dS, where S is the surface measure on 3P (z),
so if |V p(xo, t9)| # 0, the second equation in (2.16) gives (1 — pE)V(xo, ty) =
|V p(x0, t9)| (expansion of the congested region), while if |V p(xo, #9)| = O, then
either 0; xp) = 0 or pE (x0, t0) = 1. The later can only happen if xXPn(xo) =1
as t — t, and so d; xp) < O (retraction of the congested region). Altogether,
this gives the free boundary condition (1.8), assuming that the boundary of P(¢)
coincides with X ().
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p>0

p>0

X

Fig. 1. The external density oE has boundary values on red and blue parts of the boundary:
pE = 1 on the red parts, and ,oE = po on the blue part

Making these statement rigorous in the classical framework would require the
development of a regularity theory which is not the topic of the present paper.
Instead, in what follows, we will use the comparison principle to make sense of
this in the spirit of viscosity solutions.

2.5. Velocity law: barrier approach

We define the external density pZ in the set {p = 0} by solving the first-order
equation d;p = Ap with appropriate boundary condition. More precisely, given x,
the open set Int({r ; p(x,t) = 0}) can be written as U;c;(a;, b;) and p (x, 1) for
t € (a;, by) is the solution of the first order ODE 9, p = Ap with initial condition

E po(x) ifa; =0

X,a;) = ;
e T

see Figure 1 above for an illustration of this.

With this definition of p%, and using the comparison principle for the limiting
problem (Proposition 2.5), we obtain the following description on the motion of
the congested zone {p, = 1}:

Theorem 2.11. Let (p, p) € L*(Q) x L? (0, 00; HY(Q)) be a weak solution of

loc

(2.9) with initial data 0 < p°(x) < 1. Then the following holds:

@Ifr e C@Qr)N L?(0, T; H'()), then we have, in the sense of comparison
with barriers,
(1 - pbHyv = IVpl ondf{p =1} 2.17)

(b) pE coincides with p a.e. outside of {p = 1}.
(c) If A is negative, then for any T > 0

(p>01NQ0r={p>01NQ0r={p=1NQ0r.
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The barriers used to make sense of (2.17) are local smooth sub- and super-
solutions of (2.9). Their description can be found in in section 7. Such comparison
property is akin to the viscosity solutions approach taken by [15] for A > 0. We do
not touch upon the issue of whether the barrier properties are enough for a complete
characterization of the limit solution: see [16] and [15] for analysis in this direction.

Part (c) in above theorem says that when A is negative, the closure of the pressure
support coincides with that of {p = 1}, and that the congested zone {p = 1} cannot
all of a sudden expand. This is not true when X is positive, due to the nucleation of the
congested zone generated by the growth of the external density. The set {p = 1}
certainly can discontinuously shrink. For instance if A decreases over time, the
pressure decreases and the set {p = 1} may start shrinking. While shrinking, if
a component of the set gets disconnected at ¢ = 1y from K, the pressure in this
region will drop to zero and p will immediately decrease below one after 7. Such
a scenario makes it difficult to describe pZ in an explicit way, except when A only
increases over time.

Theorem 2.12. Suppose that » € C(Q x [0, T]) N L*(0,T; H'(Q)) is non-
decreasing over time, and let (p, p) be the weak solution of (2.9) with initial data
0 € BV. Then the set {p(-, t) > 0} is monotone increasing in time. Moreover for
allt 2 0

1
P 1) =tz + P xmmy 50y, where pF(x, 1) 1= p°(x) explo M

In particular () = {p(-,t) = 1} forallt > 0.
If p° is a characteristic function and o = {p° = 1} = {p° > 0}, then p
remains a characteristic function for all positive times.

Note that we may initially have {p(-, 0) > 0} as a strict subset of (p° =1}. In
this case this last theorem states that {p = 1} experiences an initial discontinuous
shrinkage.

2.6. Numerical examples

Figure 2 shows the evolution of the density and pressure in a simple framework
to illustrate the receding and expanding motion of the free boundary. We consider
the one dimension porous media equation

) m _
dp — dc(pdp) =A()p  in(0,00) x (0, T), P:m_lpml

with the boundary condition p(0) = 1 and m = 40 (so we are close to the limiting
problem. In particular, the density is close to, but not equal to 1 when p > 0). The
coefficient A(¢) is independent of x but changes value discontinuously in time:

—1 ift e[0,.75)
M) =1{-5 iftel751) (2.18)
—1 ifr=>1.
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The set {p(t) > 0} is expanding with finite speed for r € (0, .75) (first row) and
receding instantaneously at = .75%. The density is then decreasing for ¢t € [.75, 1)
in the region where p = 0 since d;p = —5p in that region (second row). Finally,
for t > 1 (third row) the set {p(t) > 0} is again expanding with finite speed.

3. Proof of Theorem 2.4

The proof of this theorem uses many classical techniques (see in particular
[21]), though we have to be careful with the two main differences between our
framework and that of [21]: the lack of sign of A and the presence of the fixed
boundary 0K .

3.1. Notion of solutions for (2.1)

First, we recall some well known facts about the porous media equation (2.1)
(we refer the interested reader to [24], Chapters 5 (Definition 5.5 and Theorem
5.14).

Definition 3.1. For p° € L1(Q), g € L>(0, T; H'(Q)) and » € L'(Qr), we say
that a non-negative function p € L'(Q7) is a weak solution of (2.1) with ,0,91 = p°
and f = g!=l/mif

(i) p™ € L*(0, T; H'(Q)) with its trace on 9K x [0, T'] equal to g;

(i) p € L*(Q7);
(iii) p satisfies the identity

/ (03 — Vo™ -V + Ap)dxdt = —/ o () (x, 0)dx
Oor Q

for any function ¥ € C 1(Q7) which vanishes on K x [0, T] and forr = T.

Existence of a weak solution can be established by approximation with smooth
functions, which either solves the porous media equation with strictly positive initial
data or solves a regularized equation with strictly positive diffusion (see Theorem
5.14 of [24]). Uniqueness of the weak solution is a consequence of the following
comparison principle, which we will use often in our analysis.

Lemma 3.2. Let p and p be two weak solutions of (2.1) with initial data ,02,, ,52,
and fixed boundary data f and f. If pO < 5° a.e. and f < f a.e., then p <
a.e..

3.2. Maximum principle: L bounds for py, and p,, and NV py, - v|gk

Lemma 3.3. Under conditions (2.2), (2.4) and (2.7), and for all T > 0, there exists
a constant C = C(T) > 0 independent of m such that the following holds:
For sufficiently large m (depending on T ) the pressure p,, satisfies:

0< pu(x,t) £C  forall (x,t) € O, (3.1)
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and
—CSv(x) Vpulx,t) £C forallx e 9K, 0=t < T. (3.2)
Moreover,
pm(x,t) = 1, locally uniformly in U x R4 (3.3)

for some neighborhood U of K and
supp pm (-, t) C Bric forallt € (0, T). 34

Remark 3.4. Note that by (3.3), p;, stays uniformly positive and solves a uniformly
parabolic equation in U Itis thus smooth, a fact we will use repeatedly when dealing
with the boundary data on 0K .

Proof. We fix T > 0. This lemma follows from the maximum principle for the
pressure p,,, which, we recall solves

d@p=(m—1DpAp+21) +|Vpl

In view of (2.6), ¢(x) satisfies Ap +1 = A+ A 2 0 and is therefore a subsolution
for this equation. Assumption (2.7) thus implies

pm(x.1) Z o(x)  V(x,1) € QxR

For the upper barrier, we define the function u(x, #) as follows: For all # > 0,
the function x — u(x, t) solves

—Av=A+1in Brp \ K, v:f% ondK, v=0ondBg

1
where R(t) —f—}—/ M (s)ds, with M (s) _23upx€83Rm IVu(-, t)|. The func-

tion u is extended by O outside Bg(;). Since R(t) depends on u(x, ), the function i
can be constructed for instance by discrete-time approximation. We note that (2.5)
implies in particular that u(x, 0) = @(x)

We claim then u is a supersolution for the pressure equation for sufficiently
large m. To see this, note first that when iz = (m — 1~1/2 we have

it = 0= (m—Dia(Aa+2) +|Val*> ifm= sup |Va|*C,1).
0<t<T

On the other hand, since 3;iz = 2|V12|2 > 0 on its zero level set d Bg(y), it is clear
that for small enough ¢ = &(T) we have 8, > |Vii|> in 0 < i < €. Our claim
follows if m is large enough (depending on 7).

The comparison principle for the pressure equation now yields

@) = pm(x, 1) Su(x, 1) V(x,1) € Or.
The results now follow: (3.1) follows from upper bound, while the lower bound

m— l

together with the fact that p,, ~ p;,; " implies (3.3). The fact that i is supported in
Bpg() implies (3.4) and since g(x) pm(x,t) =u(x,t)ondK, we get

—C = v(x)-Vo(x) S v(x) - Vpu(t,x) Svx) - Vi(x,t) SC  Vxe€dK, te(0,T]
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3.3. L' bounds for p,, and py,

Lemma 3.5. For all T > 0, there exists a constant C(T) depending on A and T
such that

lom @1 = gl e +C(T) 3.5

and
1Pm L1y < CllopllLiee™ + C(T) (3.6)

fort € [0, Tland m = 2.

Proof. Integrating (2.1) on 2 yields
d
_/ Pm (1) dx :/ M(t) o (1) dx +/ PV pm - vdS
dt Jo Q oK

< A/ pm(t)dx + C,
Q

where we used (3.1), (3.2). The bound (3.5) follows by a Gronwall argument. The
bound (3.6) then follows from (3.5) and (3.1) since p,, = %pm’l S B Com.

m = m—
]

3.4. Bounds on the derivatives of p,, and p,,

For § > 0, we define

Q= {x e R"; dist(x, K) > 8}.

Lemma 3.6. For any § > 0, there exists a constant Cs independent on m such that
[10: o (Ol L1 (25 <Cs V>0 3.7
[19x; om (Dl 123y = Cs Yt >0 (3.8)

Similarly, denoting by B the ball of radius R, we have the following bounds:
10: Pl L1 0.7y x 23 BR) = Co.R.T (3.9
10x; Pmll L1 0.7y x23nBR) = Co.R,T (3.10)

Proof. Proceeding as in [21], we differentiate the first equation in (2.1) with respect
to time and multiply it by sign(d; p,,) and use Kato’s inequality to obtain

3191 pm| — Amoly 101 pm|) < M0 om| + pmldA] in Q. (.11

We cannot simply integrate this equation over €2 because of the boundary condition
on 0 K. Instead, given a large ball Bg such that K C Bg, we introduce the function
@ such that ¢ = 0on dK, ¢ = 1 0on dBg, Ap = 0in Bg \ K and we extend this
function by 1 outside Bg. This function satisfies

¢lak =0, Ap=<0inQ, ¢ >0inQ.
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Multiplying (3.11) by ¢ and integrating over €2, and using the fact that ¢|3x = 0
1
and mp" |8, o | = g fm=10; f on 9K, we deduce

d _ _
—/ IafpmlsodX§fmp$ 1|3tmeA¢>dx—/ mop =3 pm| Ve - vdS
dr Jo Q IK
+/ /\|8zpm|<de+/ Pm|0:h|p dx
Q Q
§C+A/ |8t:0m|(pdx+/ om0 A dx.
Q Q

Since 9,0, (0) = Aply + Ap,?l, the bound (2.8) implies [|9; 0 (0) [ 11 () < C and
using (3.4), we deduce
T
om0l < CTY+C [ AT [ e slarar
0 Bry+cr
and (3.7) follows from (2.3) and the fact that mings ¢ > O for all § > O (by the
strong maximum principle).

To get an estimate on 9, p,,,, we want to take advantage of the term fQ mp;’;_l
|0; om | A dx in the inequality above. We thus define, forn > 0, ¢, such thatg, =0
on dK, ¢, = 1 o0n dBg, Ap; = —nin Bg \ K and we extend this function by 1
outside Bg.

Given R, we claim that Ag, < 0in Q if 7 is sufficiently small (depending on
R). Indeed, Hopf’s Lemma implies x - Vgg > 0 on d B, so the Cl—convergence
of ¢, to ¢ implies x - Vg, = 0 on dBg.

Proceeding as above, we get

d m—1 <
I Q|at,0m|(p7]dx+477 Qmpm [0 pm| dx = C(T)

Integrating in ¢, we deduce that for all § > 0, R > 0 and T, there exists Cs g, T
such that

T
/ / mpr’:_1|atpm|dx dr £ Cs 7.
0 JQInBg

Finally, we write

T T
/ / |0, piu] dix dit =f / mpp~ 2|0y pm| dx dt
0 QSHBR 0 QBQBR

T
g/ f m(1/2)"2(,p] d
0 JQNBrN{pn<1/2)

mpp " 10; pn | dx di

~

0 /QMBRm{p,,,>1/2}

T
< /8 10; o | dx dt 4+ Cs. R, T,
Q

(=)
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which gives (3.9).

We proceed similarly for the bound on 9y, p,,. The only difference is that we
do not have dy, omlsxk = 0, so we have an additional boundary term to worry
about. More precisely, differentiating the first equation in (2.1) with respect to x;,
multiplying it by sign(dy, o) and using Kato’s inequality, we obtain

—1 .
0¢10x; om | — A(m,On”{ [0x; Pm ) < AOx; pm | + 10x; Ao in 2. (3.12)
With the same cut-off function ¢ as above, we get
d < m—1 m—1
(T |ax;pm|(/7dx = mp,, |3xipm‘A(/’dx - mp,;, |ax,'pmlv‘/) -vdS
tJq Q K
+ [ Mo pmlar+ [ 1oaliaaian
Q Q
g / ,0m|3x,»1?m||V§0 -v|dS + A[ |axiprn|§0dx +/ |pm||ax,')\| dx.
K Q Q
To conclude, we thus note that the estimate (3.2) gives a bound on the normal
derivative of p, on 0K, while the condition p,[sx = ;5 f together with the
regularity assumptions (2.4) implies that the tangential derivatives of p,, are uni-

formly bounded on d K. We deduce that |0y, pim ||k < C, and so (using (2.8), (3.4)
and (2.3))

d
—/ |0x; pmlp dx = C(T) V1t € (0, 7).
dt Jqo

Hence,
l10x; om (t)(p”Ll(Q) < [|0x; Pm(o)”Ll(Q) + C(T),
and (3.8) now follows from (2.8). O
3.5. Passing to the limit
We denote

Q= {x € Q; dist(x, K) > 1/k, |x| L k}.

Lemma 3.6 implies that p,, and p,, are bounded in BV(R x €2;) for all k and
thus converge (up to a subsequence) strongly in L' ([0, k] x €2). By a diagonal
extraction process, we can thus find subsequences (still denoted p,, and p,,) and
functions poo, Poo Such that p,, (resp. p,,) converges to peo (resp. poo) strongly in
L, Ry x Q).

Next, we note that

1
m— 1 m-l m’ll
Pm Pm = Pm
m

passing to the limit (using the a.e. convergence) yields poo Poc = Poo and thus

(Poo — Dpoo =0 ae Ry x Q, (3.13)
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which gives the Hele-Shaw condition pso(x, ) € Poo(poo(x, 1)) a.e. in Ry x .
Similarly, we have

m—1 m=T
o = <Tpm) — Po  ae. Ry x Q.

1

ioc as well.

Since p;; is bounded in BV(R4 x €2), the convergence holds in L
Rewriting (2.1) as

0t om = Apm + APpm
and passing to the limit, we deduce

01 Poo = Apoo + Ao in D'(Ry x Q).

3.6. Bounds on the gradient of p,, and convergence of pp,

Lemma 3.7. There exists a constant C independent of m such that
f/ IV pm|>dxd:t < CT. (3.14)
or

Furthermore, {py}men is relatively compact in C*(0, T} H1(Q) for all s €
(0, 1/2).

Proof. Integrating the equation for the pressure (1.4) yields

d
. pmdx=—<m—2)/|wm|2dx+(m—1)
1 Jo Q

/ PmVpm-vdS + (m — 1)/ Apm dx.
0K Q

Using (3.2) and the fact that p,, = =5 f on 9K we deduce
/Q IV pm|? dx < —ﬁ% | pndx+ Z—:;c.
Integrating in time and using (3.6) we deduce (3.14). Using (2.1), we deduce that
0¢ pm 1s bounded in LZ(O, T; H_I(Q)).
Since p,, is bounded in L>°(0, T'; L' ()) and in L%°(0, T'; L*°(£2)), we also have
om is bounded in L*(0, T; L*(R)).

Since H~1(Q) is compactly embedded in L2($2), Lions-Aubin Lemma (see for
example [2,17]) implies that {p,,} is relatively compact in

C5(0,T; H-'(Q)) forall s € (0, 1/2).

Estimate (3.14) implies in particular that V pso (-, t) € L2(Q) forae.t > 0: it
will be useful in the proof of Theorem 2.7.

The compactness of {p,, }men in C*(0, T; H~1(R)) implies poo € C*([0, 00);
H~'()). Furthermore, (3.1) and (3.5) implies that p,,(¢) is bounded in L' (Q) N
L°°(2) and thus converges, up to a subsequence, weakly in L°°(2) to po € [0, 1].
We will see later in Section 5 that the limit density is unique (Proposition 5.1), which
implies that the whole original subsequence converge to po, weakly in L°(2).
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4. Proof of Theorem 2.7 and Proposition 2.8, 2.9

In this section, we use the notation p,, and p,, even though we are only con-
sidering convergent subsequences. Let us first introduce a lemma to be used in the
proof of Theorem 2.7.

Lemma 4.1. Forall tg > 0, p*(-, t9) € H'(Q) and

1 to+4
/|vp+(x,t0)|2dx§nminf—/ /|Vpoo|2dxdt.
Q §=0 8 Jy Q

Proof. First, using (4.5) with a nonnegative test function v € H' () supported in
U (see (3.3)) and satisfying the boundary condition on 0K, we get:

1 to+6
5/ /Q|Vpoo|2dxdr§c,
o

for some constant C independent of § and so the lim inf exists and is finite. Given

T (x) € (D(2))", we can write
1 to+6
——/ /Vpoo-dedt
) 1o Q

1 to+4
- / / poodiv T dx di
) 1o Q
| piots X 12
(5/ /|Vpoo| dxdr) 171200
to Q

and we can pass to the limit § — 0, using (2.10), to get

[IA

1 to+36 172
/ p+(x, to)div T (x)dx < (lim inf — / / |Vpc,o|2 dx dt) ||T||Lz(Q),
Q §=0 8 Jy Q
and the result follows. |

equation for the pressure (1.4) and density (2.1) we can write, in D' (R4.),

Proof of Theorem 2.7. Given #p = 0 and a function v(x) in E,, and using the

/ Vom - VPm — pmVPpm - Vv —A(pym —v)dx
Q

! d/ dx /|v 1>d +d/ dx
=——|= - x — | v
m—1|dr Jo, P q m dr Jo "

—/ AC Dv(om — 1) dx +/ [Pm — PmV]V Py - v dS. 4.1)
Q 02

Formally at least, it is not difficult to see that the variational formulation of the
obstacle problem (2.12) follows by passing to the limit m — oo and taking ¢t = 1y
in (4.1). The rest of the proof is devoted to making this limit rigorous to derive
(2.12) (for all 1y > 0).

First, using the boundary condition, we note that the last term is equal to

/ [Lf(x»l) - f(x,l)"’l‘f(x,to)} Vpm-vdS
alm—1
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and thus satisfies (using (2.4)):

lim sup
m— o0

/ [pm — omV]V pm - vdS‘ < C/ [f(x,t) — f(x,10)|dS
02 02
< Clt - 1. 4.2)

Next, it is clear that our a priori estimates do not allow us to pass to the limit
in (4.1) pointwise in time. So, given § > 0, we integrate (4.1) with respect to
t € (t9, to + 6) and pass to the limit m — oo. The left hand side of (4.1) satisfies

m—0o0

to+5
liminff / Vom - Vom — omVpm-Vv—A(py —v)dxde
1o Q
to+5
z/ /|Vpoo|2—Vpoo-W—A(poo—mdxdt,
1o Q

where we used in particular the fact that p,, V p,, is bounded in L2(Q7) by (3.14)
and thus converges weakly to V p, (since p,, Vp,, = Vp,» converges to V p in
D'(Q71)). Using (3.14) and (3.6) to control the first term in the right hand side of
(4.1) and (4.2) for the last term, we deduce

to+4
/ / IV pool? = Voo - VU — A(peo — v) dx dt
to Q
< nminff V[ (x, 10 + 8) — pm (x, 10)] dx
m— 00 Q
to+6
+f f A, V) (1 — poo(x, 1)) dxdr + O(S?). (4.3)
1o Q

Formally, the first term in the right hand side is non-positive because vpoo (-, fo+
8) < v while vpoo (-, fp) = v (this is where we use the fact that v € Ey,). In order
to make this rigorous, we first note that

d
—/ v(x)pp(x, 1) dx = —/ omV pm - Vodx
dr Q Q
+/ PmVV P 'Vds+/ A, 1) pmu dx
0K Q

and so (using the fact that p”" !5k = v|yx = f):

‘3/ V() o (3, 1) dx §/|me<x,r)||w(x>|dx
dr Q Q

+f .fﬁ(x,t)f(x,to)lvpm~VIdS+A/ Pmv(x) dx.
K Q
The first term in the right hand side is bounded in L%(0, T) (using (3.14)), and the

second term is bounded in L*°(0, T') (using (3.2)). We deduce that the function ¢ —
fQ U (X) o (x, ) dx is bounded in H'(0,T7) c CY?[0, T] and thus converges
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(up to a subsequence) uniformly in [0, T']. Since fQ v(x) o (x, t) dx converges to
Jo v(xX) poo(x, 1) dx in D'(Ry), we have

/Qv(-),om(-, t)ydx — /Qv(~)poo(~, t) dx locally uniformly in R.
Consequently,
I}nrrl)igoffg V() [om(x, to + ) — pm(x, to)] dx
= /Qv(x)[poo(x, t0 +8) — poo(x, 10)]dx = 0,

where we used the fact that v(x) poo (x, f9) = v(x) (since v € Ej) and poo < 1.
Going back to (4.3), we deduce (using the fact that v(x)(1 — poo(x, 7)) = 0) :

to+5
f /|Vpoo|2—Vpoo-w—x(poo—v)dxdt
1o Q

to+6
< A/ f V(X)(1 = poo(x, 1)) dxdt + O%),  (4.4)
to Q

To prove the result, it remains to divide by § and pass to the limit § — 0. We first
use Young’s inequality to rewrite (4.4) as:

1 oot g 2
5/ / §|vpoo| — APoo dx dt
to Q

1 [t g
< -/ / —|Vv|? = A(, v dx dt
8ty Ja2

A to+4
+ —/ / v(x)(1 — poo(x, 1)) dxdr + O(6)
) to Q

1 1 [lo+d
§/ —|Vv|2—/ (—/ )\(.,t)dt)vdx
Q2 Q \d Jy

A to+4
+ 3/ (1 = poo(x, 1), v(x)) g1 g1dt + O(). 4.5)
0]

Since po € C([0, 00); H ' (Q))and v € E;,, we have

1 10+38

giH}) 3 (1= poo(x, 1), V(X)) -1 g1dt = (1 — poo(x, o), V(X)) -1 g1 =0 Vig =0
g fo

and we can use (2.10) (and a similar inequality for ) to pass to the limit in the
terms involving A.
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From Lemma 4.1, we deduce that
1
/ 5|Vp+<x,to)|2—A+(x,ro>p+<x,to>dx
Q
1
g/ §|VU(X)|2—)»+(X,IO)U(X)C1X Vig > 0,
Q

which implies that pT (-, ¢) is indeed a solution of (2.11) for every ¢ > 0.

The derivation of (2.12) is classical (given u € E; and ¢ > 0, take v =
p+¢e(u— p)in(2.11) and pass to the limit ¢ — 0). The uniqueness of p* follows
from (2.12): if p; and p» are two solutions, then by plugging in each other as test
functions we obtain

/ V(p1 — p2)dx =0,
Q

and thus p; = p».

Proof of Proposition 2.9. For any ball B, (xg) € O(t), we have (¢, (1 — pso (1)) =
0 forany ¢ € D(B,(x0)), and so p solves the classical obstacle problem in B (xp).
The usual theory (see [7]) implies that p € C“(Br/z(xo)) and satisfies Ap =
AX{p>0) in By2(xp). The proposition follows. |

5. Uniqueness of the Limit Solution and Comparison Principle

In this section we establish the uniqueness for the limit problem in a general
bounded domain D of R" (with smooth boundary): Given a continuous function
g = 0 defined on 3D x [0, T] and o = 0 a nonnegative function in D satisfying
0 < p < 1, we consider the problem

o:p=Ap+Xrp, inDx(0,T], p € Px(p)ae.in D x (0, T];

p=2g ondD x [0,T]; 5.D

pt=0)=p in D.

A weak solution of (5.1) is a set of functions (p, p) € L*°(D x (0,T]) x
L0, T; H' (D)) satisfying (5.1) in the sense of distribution.

In particular, the condition p € Pso(p) impliesthat0 < p < land p(1—p) =0

a.e.in D x (0, T']and for any smooth, compactly supported test function ¢y : 2 — R
with (-, 7) =0and ¢y =0on dD x [0, T] we have

T
/ (p¥i+pAY-+hoy)dxds = — / (.0 (- O)dx+ / [ g0, ydSdr.
Dx[0.T] D o Jap

(5.2)
We then have the following result, which implies in particular Proposition 2.5:

Proposition 5.1. Suppose A € L2([0, T1; H (D)), then there is at most one weak
solution (p, p) of (5.1).

Furthermore, if (p;, pi) fori = 1,2 are two pairs of weak solutions of (5.1)
with boundary data g; and initial data p; and if py < po in D and g1 < g2 on
0D x [0, T], then p1 < pr a.e.in D x [0, T].
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Proof. To show the uniqueness we follow the Hilbert dual argument developed in
[21]. Since the proof is largely parallel, we will only remark on necessary modifi-
cations due to the presence of the fixed boundary 0K .

Suppose ¥ is a nonnegative test function. Let us denote Dy := D x (0, T).
Taking the differences of the weak formulation (5.2) for (p;, p;) fori = 1, 2, we
have

/ /D (o1 — P23 + (p1 — P AV + A(p1 — p2)]
T

T
=—/@rﬁﬁ@¢wmﬂ+/‘f(&—&ﬂwﬁm
D o Jop

T
2/ / (g1 — g2)d,ydSdr.
o Jap

Thus

T
/ (p1—p24+-p1— P Ad Y+ BAY 42 Ay Idxds = fo /d (g1-g2)d, dSdr.
Dr oD

(5.3)
where v denotes the outward normal at 0 D and
_ p1 = P2 B p1—p2
pL—p2+p1—p2’ pL—p2+pL—p2

As in [21] we define A = O whenever p; = p> (even when p; = py)and B =0
when p; = p» (even when p; = p»). Note that A, B € [0, 1] due to the fact that
p(l—p)=0.

Let now G be a compactly supported and nonnegative smooth function in D x
[0, T]. As in [21] the idea is to solve the dual problem

Aoy + BAY + Ay = —AG in D x[0,T);
Y =0 on 0D x [0, T]; 5.4
Y, T)=0. in D.

If A and B were strictly positive, by backward-in-time maximum principle, one
can verify that v is nonnegative. Thus it follows that 8,3 < 0 on dD x [0, T].
Thus going back to (5.3) and using the fact that g; < g», it follows that

/ (p1 = p2)(—AG) = 0, 5.5)
Dr

Since G is arbitrary nonnegative smooth function, we conclude that p; < p; a.e.
in D x [0, T].

However, A and B can be degenerate, so the argument requires the approxi-
mation of the dual problem (5.4), by a regularized uniformly parabolic, Dirichlet
boundary value problem (see [21] for detailed description of this approximation).
As in [21], we then pass to the limit in the regularization to deduce (5.5). The
assumption A € L%([0, T]; HY(D)) is necessary to ensure that the regularized
problem produces small errors.
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To show uniqueness, suppose that (p;, p;) are two solutions of (5.1) with the
same boundary condition f and initial condition g. Then p; = p, follows from the
density ordering property obtained above. Once we have this, the difference of the
weak equations yield

/ (p1 — p2)Aydxdr = 0.
Dy

Now, as in [21], we can choose ¥ to approximate p; — p» to conclude that p; = p;
a.e.in Dr. O

Remark 5.2. It is not immediately clear that the pressure satisfy the ordering prop-
erty (i.e. p1 < pp in Proposition 5.1). However, the characterization of the pressure
given in Proposition 2.9 implies that the pressure ordering follows from the density
ordering.

Now let us state two consequences of this proposition, based on the comparison
principle for (2.1). First let us discuss our original problem with Q := R" \ K.
Recall that from Lemma 3.3 that the support of py, lies in By, (7 for given time
range 0 < t < T. Therefore, setting R(T) := R + C(T), their limit solution
(Poos Poo) 1s a weak solution of (5.1) with D := Br(7y \ K, g = f on K and
g = 0 on 9 Bg(r). Therefore we have the following corollary:

Corollary 5.3. Given T > 0, any weak solution of (5.1) with D := Bp() \ K,
g = fondK, g = 0o0ndBgr) and initial data p = 00 is the LY (Qr)- limit of
the functions (pp, pm) solutions of (2.1). In particular, it follows that the pressure
ordering property is true in this setting.

The next observation will be useful, when we construct radial limit solutions
with explicit free boundary motion laws.

Corollary 5.4. (Comparison Principle) Lef (poo, Poo) be the limit solution of (2.1)
in 2 x [0, T]. If D is a domain with smooth boundary that does not intersect K
and if (p1, p1) is a weak solution of (5.1) in D X [t1, t2]., then the following holds:
If poo = prondD x [t1, 2] and pso < p1 ont = ty, then poo < p1 and poo = pi
inD x [t, 1]

Proof. Since D does not intersect K, it is easy to check that (peo, Poo) 1S @ weak
solution of (5.1) in D X [#1, t2] with initial data ps (-, #1) and fixed boundary data
given as the trace of po, on d D X [#1, 12] (such trace exists a.e. in time since poo (-, 1)
isin H'(D) a.e. r > 0). Now we can conclude from Proposition 5.1. m|

6. Proof of Proposition 2.10

In the sequel, we write p(¢) instead of poo(¢) for the unique solution of the
obstacle problem (2.11). We also recall that P(¢) = {p(¢) > 0}. We first show that
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supp u; C aP(t) \ O(t): For all smooth test functions ¢ € D(L2), by definition of
W we have

Mt(‘ﬂ):/Q(_VP'VQD‘f‘)»('J)XP(t)(P)dx-

Clearly, if ¢ is supported in {p(-, ) = 0}, the fact that p € H'(Q) implies that
Vp =0ae.in {p = 0} and thus u,(¢) = 0. And if ¢ is supported in O(¢), (2.14)
implies

pi(p) = 0.

Since O(¢) is an open set, we deduce that

supp (uy) NInt({p(t) = 0}) =@,  supp (u,;) NO@) = 0.

On the other hand note that Int(P(z)) C O(¢). Indeed if p(r) > 0 in Bs(xp),
then 1 — poo(t) = O a.e. in Bs(xp) and so fBa(Xo)(l — Poo(t)) dx = 0. It follows that
xo € O(t). Thus we can conclude that p, is supported in dP(¢) \ O(z) as claimed
in Proposition 2.10.

Next we show that u; is nonnegative. Define the function

_ % if s € [0, 8];
Qs(s) : {1 ifs > 5.

For any test function ¢ € D(2) satisfying 0 < ¢(x) < 1, we write
wi(p) = /Q —Vp-Vo+ixpeedx
= /Q =Vp - V(pQs(p)) + A9 Qs(p)dx + (Ap, ¢(1 — Qs(p)))

+/QKX7>(z)<P(1 — Qs(p)) dx.

Using (2.12) with u = p — 8¢ Qs5(p) (which satisfies p = u = p(1 — ¢) = 0 and
is thus admissible) the first integral is non-negative. Next note that

(Ap, (1 = Qs(p))) = f(VP -Vo(Qs(p) = ) + Vp - 9Qjs(p)V p)dx.

The second term in above equality is nonnegative since Q; is increasing. For the
first term, we note that Vo(Qs(p) — 1) converges a.e. to Vg x(p=0). Lebesgue
dominated convergence theorem implies that it converges in L? and thus the first
term converges to zero since Vp = 0 a.e. in {p = 0}.

Thus

Mz(go)z/QAXP(t)w(l—Qa(p))dX-

Finally, we have xp) (1 — Qs(p)) — Oa.e.in @ when§ — 0. Sending § — 0 and
using Lebesgue dominated convergence theorem, we can conclude that u; (@) = 0
and the result follows.
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7. The Velocity Law

In this section we determine the velocity law of the congested zone {px, = 1}
for the limit solution (o0, Poo) by using comparison principle and barriers, as
in the usual viscosity solutions approach. First we will define the relevant notion
of barriers and prove that the usual comparison with barriers holds for our limit
solution (pso, Po) (see Corollary 7.3—7.4). In Section 7.2 we show that in the radial
symmetric case, the barriers we construct are indeed classical solutions.

7.1. Comparison with barriers

The difficulty in making (2.16) rigorous is the lack of regularity of the pressure
or density interface (0P or dX) and the lack of monotonicity of its motion. In this
section, we construct sub- and super-solutions of the limiting problem (2.1) to be
used as barrier in a viscosity solution type approach.

Let B, be aball in 2, and let D be either 2 \E, or B,. For a given time interval
[#1, 2] C [0, c0) we consider a function (the pressure) ¢ € CC(B X [t1, 12]) such
that {¢ () > 0} is monotone (increasing or decreasing) and an initial density p1 (x)
satisfying p; = 1 in {¢(t;) > 0}. We assume that {¢(z) > 0} and p;(x) are such
that the external density pg , defined below, satisfies

pg (x.1) < lin {¢ = 0}. (7.1)

This external density ,of (x, t) solves the equation d;p = Ap in the (deconges-
tion) set {¢p = 0} together with appropriate boundary conditions. This leads to the
following definitions:

If {¢(r) > O} isincreasing (“expanding solution”), thenforall x ¢ {¢(¢;) > 0},
we define 7(x) = the last time that ¢ (x, 1) = 0 (with t(x) = 1 is ¢ (x, 1) = 0)
and set

1
,oqf(x, 1) = p1(x)exp (/ Ax, s)ds) forall t < r(x)
41

(condition (7.1) is satisfied if p;(x) is small enough in {¢ (¢;) = 0}).

If {¢(r) > 0} is decreasing (“‘contracting solution”), then for all x ¢ {¢ (%) >
0}, we define ¢ (x) = the first time that ¢ (x, t) = 0 (witht(x) = t;is¢p(x, 1;) = 0)
and set
t

P (x.1) = p1(x) exp (f
t(x)

(condition (7.1) requires p1 (x) to be small enough in {¢(#;) = 0}, but since p; = 1
in {¢(t;) > 0}, it also requires exp (ft[(x) Alx,s) ds) < 1forx e {¢(t1) > 0O}).
In both cases, we define the density in D x (#1, t2) by

A(x,s)ds) for all t > (x).

(x, 1) = () + pj (x. ) (1 = @ =1 B
Py (X, 1) 1= X(p>0) () + pg (x, HoO=0RP = pE ) infg =0},
(7.2)

We then have:
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Proposition 7.1. With the notation above, assume that (pg, ¢) are such that

@ ¢ eC'({¢p >0HNC?.({p >0} and T := d{$ > 0} is C? in space and C'
in time.
(b) ¢ satisfies
—A¢ =4 in {¢ > 0};

(7.3)
(1= pg)Vy S IV@| ondf¢ >0},
where Vy denotes the normal velocity of the interface d{¢ > 0}.

Then (pg, @) is a weak subsolution of the limiting problem (5.1) in D x [t1, 12],
namely

0Py = AP+ Apy in D x (t1,12), ¢ € Poo(py) a.e.in D x (t1, 12)

where the first equation holds in the sense that for every smooth, compactly sup-
ported test function ¥ : D x (t1,t2) — R with (-, t0) = 0and ¥ (-, t) = 0 on
0D x [t1, 1r] we have

/ (Po¥i + SOV + hop)dx dt = — / POV )y + / / po,pdSdr. (1.4)
Dx[t1,t2] D n JoB

Similarly, we have
Proposition 7.2. With the notation above, assume that (pg, ¢) are such that

(@) {¢p(-, 1) > 0} € Qforallt, ¢ € C'({¢p > OHNC? ({¢ > 0}) and the interface
I':=3{¢ > 0} is C? in space and C" in time.
(b) ¢ satisfies

{—A¢ = in{¢ > 0}; 75)

(1= p5)Vs 2 |Vl ondp >0}

Then (pg, ¢) is a supersolution of the limiting problem (5.1) in D x [t1, 1],
namely

0P > Ap+ Apg in D X (11, 12), ¢ € Pxo(pg) a.e.in D x (11, 12).
(with the corresponding weak formulation as in (7.4))

Note that for the contracting barrier, we have V; < 0 and ,o(f =1lond{p(t) >
0} and so the free boundary condition reduces to |V¢| = 0 for subsolution and
|V@| = 0 for supersolution.

Proof of Proposition 7.1. We denote S(¢) := {¢(-, 1) > 0} = {p(-,¢) = 1} and
I'(t) = 3S(t) N D. We also denote v as the outward normal of the boundary of
either I'(¢) or 9 D with respect to the domain S(¢). With these notations, we have

/¢A1/fdx=/ ¢A1/fdx§—/ Apdx — 1/fV¢-vdS+/ $d,yrdS
D S(t) S(t) aS(t) B

> —/ Ay dx + 1/I|V¢)|ds+/ $d,rdS,
S(1) I(t) 9B
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where we used the fact that ¢ = 0 and V¢ = |Vé|v on I'(7).

Next
[owax=[ wacs [ pfua
D S(1) D\S(1)
d
— o [ owar— [ vewase [ wfwar— [ @bva
t Js@ NO) D\S(1) D\S()

d
= [rovar— [ vea-sPwas— [ b
dr Jp I D\S(1)

d E
> d—/ ,de_/ |V¢>wde—/ (pE)y d
t Jp (1) D\S(t)

Using the fact that
(p")r = 2p% in {¢ = 0}, (7.6)

and the definition of pg, we deduce

/(P¢1ﬂt+¢A1ﬂ)dx > —/ )L,oqﬂ/fdx—l—S/ pi//dx—i-/ 9, ¥dS,
D D dt D 9B

and we conclude by integrating with respect to ¢ € (1, £2).

The proof of Proposition 7.2 is parallel. Note that it is not necessary to work
with barriers such that the set {¢ (-, t) > 0} is monotone: we chose to do so because
the definition of pq’f is more manageable in that case.

Combining Proposition 7.1 with the comparison principle for weak solutions
of the limiting problem (Corollary 5.4) we get

Corollary 7.3. Let (py, ¢) be as in Proposition 7.1 (sub-solution). If

(i) p1 £ p(-, 1) in D, (so in particular {¢ (-, 1) > 0} C {poo(, 1) = 1});
(i) ¢ < poo 0n 3B, x [11, 12],

then pg < poo in D x [t1, t2]. In particular
{#(,1) > 0} C{poc(:, 1) =1} forallt € [11, 12].

Formally, this corollary says that a classical subsolution of the viscosity law (satis-
fying (7.3)) cannot touch p, from below. In other words, pso satisfies the motion
law

(1 - ,Ofo)Voo 2 |V pool in a viscosity sense.
Similarly, Proposition 7.2 implies
Corollary 7.4. Let (py, ¢) be as in Proposition 7.2 (super-solution). If

(i) p1 Z p(, 1) in D (so in particular {poo (-, 1) = 1} C {¢ (-, 11) > 0})
(i) ¢ 2 poo 0n IB, X [11, 12]
Then py 2 poo in D X [t1, t2]. In particular,

{6, 1) >0} D {poo(-,t) = 1} forallt € [11, 12].
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As above, this result should be interpreted as saying that ps, satisfies
(1 - ,ofo)VOo < |V pool in a viscosity sense.

Typically, for free boundary problems such “barrier property” allows us to
introduce a notion of viscosity solutions which describes the pointwise behavior
of the interface via comparison with barriers (see e.g.[15]). It is thus natural to ask
whether our weak solutions coincide with viscosity solutions. While we suspect
that viscosity solutions theory can be established for our problem, answering this
question would require a different set-up of function spaces, and we do not pursue
this question here to keep our investigation focused.

7.2. The radial symmetric case

In this section we show that the free boundary velocity law holds in the classical
sense in the radial setting as long as d; A does not change signs too often. To simplify
our discussion we further assume that A is non-positive, since construction of radial
barriers for positive A has been carried out in [15].

We thus assume that K = B and that the boundary data is constant (we can
take f = 1 without loss of generality) and for simplicity we take A = A(t) < 0
independent of x monotone C! function of 7. The analysis could be extended to
radial symmetric functions A(]x|, ) < 0 such that ;A changes sign a finite number
of time in the interval [0, T].

In this setting, we construct compactly supported, radial sub and super solutions
of 2.9)in Or := {|x| = 1} x [0, T].

For a given R > 1, let us define ¢g (-, t) as a solution of the Dirichlet boundary
problemin 1 < |x| £ R:

~Ap=Ar(t)in|x| <R, ¢=0onlx|=R, andp=1lon|x|=1.(7.7)

Note that this function will take negative value if R is large (depending on A).

For a given Ry > 1, we assume that the initial density pg equals 1 on 1 <
|x| < Ro and is strictly less than 1 and Lipschitz in |x| = Ry. We assume that Ry
is small enough so that the initial pressure ¢g, (-, 0) is nonnegative. We then define
the external density in the region |x| = R by

t

p"(Ixl, 1) == po(|x) exp (_/(; )»(S)dS) < Lin [x] 2 Ro,

then p% (-, 1) is Lipschitz continuous. It is also straightforward to check that the
function 9,¢g (R) is Lipschitz continuous for Ry < R < oo. Thus we can solve
the following ODE for0 <t < T
) _(R,t
R'(t) = F(R(t),t), where F(R,t) := M, R(0) = Ry. (7.8)
Note that 9,¢g(-, ) = 0 if and only if the function ¢g(-, ) has a negative
minimum in 1 < |x| £ R. Indeed if 9,¢r(R, 1) < 0 and ¢g(-, 1) takes negative
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minimum, from the radial symmetry of ¢g(-, t) it follows that the function has a
local positive maximum for some x such that 1 < |x| < R, which contradicts the
subharmonicity of ¢g (-, 7).

So as long as ¢g(;) is a non-negative function, we have 9,¢r(-,t) < 0 and
R’(t) > 0 (which provides is an expanding solution of the limiting problem. and
we can show that it happened when the function ¢ +— A(?) is decreasing.

Case 1: t — A(t) is increasing: In this case, we can define

O, 1) =Ry, 1) for0 <t =T (7.9)

and we claim that ¢ stays nonnegative for all times.

To show this, suppose that ¢ (-, ) has a negative minimum at some time ¢ = fg.
Then by continuity of R(¢), the same is true for ¢ (-, s) for s sufficiently close to #y.
Hence from above discussion we have R’(#) = 01in a small time interval [fo —e€, fo].
Suppose we choose € such that ¢ (-, fo — €) no longer has negative minimum. This
must be true at least with € = 7y due to our assumption. But since A(fg — €) < A(?)
and R(fo — €) = R(¢t) for s = t) — €, we have ¢ (x, 1o — €) < ¢ (x, fp), which is a
contradiction to our choice of €.

Hence we have shown our claim, and it follows from (7.8) and Propositions 7.1
-7.2 that ¢ is an expanding solution of (2.9) for all 7 = 0.

Case 2: t — A(t) is non-increasing: In this case, ¢ (-, t) might take negative value
for some positive time. We thus define

t*:=sup{t €[0,T]:¢(-,t) 20in1 < |x| < R(1)}.

If t* = oo then we can define ¢ by (7.9) as above. We thus assume that t* < oo.
The same arguments as above implies that |[D¢| = 0 at (R(t*), t*). Since X is
non-increasing, it follows that ¢+ (-, ) turns negative for r > r*. For r 2 t* we
define Ié(t) as the unique boundary point of {1/ (-, #) > 0}, where (-, t) solves the
obstacle problem

—AY = AC, Dxysoyin 1 < x| < R(t*), withy =1on |x|=1.
We then define

GG 1) :=prpy(. ) for0 =1 1%, ¢(-,1) := Do) fort* <t <T.
(7.10)
Since A is non-increasing, so is R and |D@|(R(t), 1) = 0. It follows that ¢ is a
contracting solution for t* <t < T.
Below is the summary of our conclusion.

Lemma 7.5. If t — M\(t) is increasing, then the function ¢ defined by (7.9) is an
expanding solution for0 <t < T.

Ift — A(t) is non-increasing, then the function ¢ defined in (7.10) is an expanding
solution for 0 < t < t* and is a contracting solution for t* <t < T.

Due to the uniqueness of the limit problem we can now completely characterize
the limiting profile of radial solutions for A that are monotone C! function of time.
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Proposition 7.6. Assume that K = By, f = 1 andthatt — A(t) is a monotone c!
function. Let pg' be a radially symmetric function satisfying the conditions of As-
sumption 2.2. Then the limit (pso, Poo) given by Theorem 2.4 is radially symmetric
and satisfies

Apso+A =0 in{ps > 0};
(1= pE)V £ |Vpo| ond{pec > 0}.

Furthermore

(@) If t — A(t) is increasing, then {ps > 0} is always expanding (,ofo < 1,
IVPoo|l > 0andV > 0on d{ps > 0})

(b) If t — A(t) is non-increasing, then there exists a time t* € [0, T] such that
{Poo > 0} is expanding for 0 < t < t* and contracting for t* <t < T
(pE =1, |Vpool =0and V < 0 0n d{ps > 0})

7.3. Continuous expansion of the congested zone

As an application of comparison principle (Corollary 5.4) with a radial barrier,
we show that the congested zone does not expand discontinuously over time. Note
that it may shrink discontinuously even if X is smooth, for instance due to topological
changes. Note also that if A is nonnegative, the expansion may not be continuous
due to the nucleation of congested zones created by the growth of external densities.

Corollary 7.7. If (p, p) is a limit solution in Q x [0,T] and A € C(Qr) N
L2([0, T1; HY(2)) is negative, then

{(p=>=0NQ0r={p=>0NQ0r={p=1}NQ7 forany T > 0. (7.11)
Proof. We denote
S1:={p>0}NQ0r, S :={p>0NQOr.

Since S| C S by definition, we only need to show that S> C S in order to prove
the first equality.
Given xg ¢ S there exists » > 0 such that

Bar(xo) x [T —r,T) C {p=0}.

We claim that B, >(xp) lies in {p(-, T) = 0}. This proves that (xo, T) ¢ 5>, hence
S C 8.

To show that B,(xp) C {p(-, T) = 0}, we use a barrier argument in ¥ :=
B, (x0) X [T —e, T) for asufficiently small € > 0 as follows. Due to Proposition2.10
we have p, = Ap in By, (xg) X [T —r, T), and thus

p <a(i,r)y<lin By (xg) X [T —r/2,T).
Let us construct an expanding supersolution in X as follows. Let ¢y solve

—A¢po=Ain{r <|x| <2r}, ¢o=0o0n{|x|=r},



A Hele-Shaw Limit Without Monotonicity 861

and ¢ = M := || pllL@xjo,7) on {|x| = 2r},
and let ¢ (-, t) := ¢g(s) defined by (7.7) with L = A where R(#) solves
ID@|(R(1), 1)|

R'(1) = 2PR0- D1
® 1 — aexp®?

for0 <t <e, withR00) =r.
Then ¢ is an expanding supersolution in ¥ with fixed boundary data M on d B>, (x¢)
and initial data pg = X, <|x|<2r + @ Xix| <r- Corollary 5.4 now applies to show that
p(-,T) £ ¢(-, T). Choosing € = €(M, a) sufficiently small so that R(T) <
R(0) + 7, it follows that ¢ (-, T) = 0 in B, 2(x0) and we can conclude.

It remains to show the second equality of the Corollary. Note that we have
{p > 0} C {p = 1}, and thus their closures are also ordered. On the other hand we
showed above that if x¢ lies outside of {p > 0} then p is strictly less than one in a
small neighborhood of xg, and thus it is outside of {p = 1}. The result follows. O

8. Monotone Increasing Solutions

In this section we suppose that A € L2([0, T]; HY(Q)) is non-decreasing in
time. We first show that in this setting, if the density starts as a characteristic
function, the pressure only increases over time.

Lemma 8.1. Let ¥ be a bounded subset of R" which contains K. Suppose that
P0 = Xzo\k and that Xy \ K coincides with the initial pressure support { po > 0},
where pg solves (2.12) with ps (-, t) replaced by po. If (p, p) is the limit solution
given by Theorem 2.4 with initial data po, then p and p are monotone increasing
with respect to t.

Proof. Let Bg contain the support of Xg. We claim that (pg, po) is a stationary
subsolution of (5.1) with D = Bg \ K and with boundary data f. To verify this
claim, using the monotonicity of A over time, it is enough to check that

/ =VpoVy + (¢, 0)poyrdx = 0 (8.1)
D

for any nonnegative test function ¢ € C§°(D). Since pg = X{p,>0}, the question
boils down to the nonnegativity of the measure po := Apg + A(-, 0) x{py>0}. This
follows the same proof of showing u; = 0 in Proposition 2.10, see section 5.
With the claim and the comparison principle for (5.1) (Proposition 5.1), it
follows that
p(x,0) < p(x,e) forall e > 0. (8.2)

Note that, since A is non-decreasing in time, p (-, t — €) is a subsolution of (5.1) for
any € > 0. Thus by comparison principle and (8.2) it follows that

o(x,t —€) < p(x, 1) forany t > € > 0,

and we conclude that p increases for all times. p accordingly increases by its
definition. o
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Corollary 8.2. Let (p, p) be the weak solution of (5.1) in Q x [0, 00) with the fixed
boundary data p = f > 0 and the initial data po € BV. Then X(t) := {p(-,t) >
0} increases in time, and is a set of finite perimeter for a.e. t > 0. Moreover for all
t=20

1
pC.1) = xz() + pE Xrm\5(). where pF (x, 1) 1= ppexph M@ (8.3)

Proof. We claim that the pressure support X(¢) := {p(-,t) > 0} increases over
time. For any 7y > 0, Let us call p* be the weak solution of (5.1) with the initial data
XX (1)» and with the same fixed boundary data f for the pressure. Then p* increases
in time due to Lemma 8.1. From the monotonicity of p* and Proposition 5.1, we
have

Xzt S p ¢ 1) S p(,t9+1) forallz > 0. (8.4)

It follows that X (¢) increases over time. It follows from Proposition 1.5 that

Pt = Ap in E(I)C x [0, ¢] for any T > 0, and thus we can conclude (8.3). Lastly
3.(t), is a set of finite perimeter for a.e. r > 0 since p € BV (L2) for a.e. t > 0 and
p has jump discontinuity on the boundary of X (¢) due to (8.3). |

Acknowledgements. The authors would like to acknowledge the generous support of the
National Science Foundation. Inwon Kim was partially supported by National Science Foun-
dation grant DMS-1900804 and Antoine Mellet was partially supported by National Science
Foundation grant DMS-2009236.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Appendix A. Tumor Growth Model with Nutrient

In [21] (see also [9]), the following model for tumor growth is studied:

0t Pm — div (0 Vpm) = pmG(pm,cm) x €R", 120
Orcm — Acy + pmH (c) = (cp — cn) K (Pm) (A.T)
cm(x,1) = cpforx — o0

where
m —1
il L
In this system, the evolution of the cell population density p,,, = 0 is coupled to the
concentration of nutrients ¢, = 0 by the cell division rate G(p, ¢). Importantly,
this function satisfies

39,G < —B <0

(see [21] for a complete list of the assumptions necessary to get a good existence
and uniqueness framework as well as the appropriate estimates to pass to the limit).
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Itisprovedin [21]that p,, (x, 1), pm (x, ) and ¢;, (x, t) converge strongly in L! 0r)
(forall T > 0) t0 pPoo, Poos Coo in BV (Q7)which solves the system

01 Poo — div (000 V Poo) = P0G (Poo, Coo) xeR", 120
0rCo0 — ACoo + PooH (Coo) = (B — Co0) K (Poo) (A.2)
Coo(x,t) — cp forx — o0

with the Hele-Shaw relation po € Poo(000)-

Remarkably, the solution of this system is unique, and one would like to interpret the
system as a weak form of some geometric Hele-Shaw type free boundary problem.
For this one needs to identify the pressure p, as solution of an elliptic equation in
{poo = 1}.

In [9], it is proved that p., solves the complementarity condition

Poo(APoo + G(Poos €a0)) =0 in D'(Q).

This condition says that p, solves an elliptic equation in {p~o} and is proved by
deriving additional estimates on py,.
We will show below that the approach used in this paper can be used to characterize
Poo(+, 1) as the unique solution of an obstacle problem. First, we summarize the
estimates proved in [21]:
Lemma A.1. Under the assumptions listed in [21], the following holds for all T >
0:

e pn (1) is uniformly compactly supported fort € [0, T];

e |V pul is bounded in L2(QT)

1

0= P S pm. 0= pw < (2L py)™ 7,0 < <cp

® Oy, Pm and cg — ¢y are bounded in BV (Qr)

® P, Pm and cg — ¢y, converge strongly in L' and almost everywhere to poo,

Poo and cp — Coo.

Furthermore, proceeding as in Lemma 3.7, it is not difficult to show that { o, };neN
is relatively compact in C*(0, T; H~'(R")) for all s € (0, 1/2) and thus that
poo € C(0, T; H™'(R™)).

Finally, since ps, and cp — ¢ are in BV (Q7), we can define the trace p™ (-, t)
and ¢t (-, 1) for all f > 0 as in (2.10). We can then prove the following result:

Proposition A.2. For all t > 0, let E; denote the space
E;={ve H'®)NL'®R"); v(x) 20, (v.1— poo(t)) g1 -1 = O}.

Then for all t > 0, the function x — pT(x,t) is the unique solution of the
minimization problem:

pEE

1 1 A3
fR§|vp|2—g(p,c+)dx§/R5|Vu|2—g(u,c+)dx Yv € E, (A-3)

where G is the (concave) function such that 9,G(p, ¢) = G(p, c) and G(0,c) = 0.
Furthermore p satisfies the complementarity condition

Poo(Apoc + G (P, €0)) =0 in D'(R" x (0, 00)). (A4)
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As mentioned in the introduction (see Proposition 2.8), if the complementarity
condition (A.4) is known to hold, then one can derive the variational formulation
(A.3) from the weak equation (A.2). In particular, this complementarity condition
was derived for this particular model in [9] by using a generalized Aronson-Bénilan
estimate and the LZ(W1#) estimate on the pressure (but our proof here does not
require either of these estimates).

Proof. First we recall the equation for the pressure p,,:

O pm = (m = 1) pu(Apm + G (P cm)) + |V pul*. (A.5)

We then proceed as in the proof of Theorem 2.7: Given #y > 0 and a function v(x)
in Ey,, we use the equation for the pressure (A.5) and density (A.2) to write that

/ Vom - Vom — PV pm -V —=G(Pm, cm) + G, cp) dx

_bd / d / IV | dx | + d f d
= — — X — X — v X
m—11|dr n Pm Q Pm dr R~ Pm

+ / PG (Pms cm) — PG (Pms Cm) — g(l’m7 cm) + G, cp) dx
Rn

in D'(R). Using the concavity of G to write

G(v, cp) — Q(Pm, Cm) § G(pm»cm)(V — pm),

we deduce that

/ Vou - Vpm = omVpm - Vv —=G(pm,cm) +GW, cp) dx

1 d
= | = dx — [ |Vpul*d
m—1 I:d[ /rzpm o ‘/lign| pm| x]

d
+ — v o dx + (I = om) v G(pm, ) dx.
dr R~ Rn

We can now proceed as in the proof of Theorem 2.7: Integrating this equality with
respect to t € [fo, fo + 8) and using the weak L? convergence of V p,, and p,, V pu
to Vp, we get

t0+38
/ /}R|Vpoc|2—v]voo-w—g(poo,coaw(v,coo)dxdr
i) n
to+4
§/ v(x)[poo(x,rws)—poo(x,tondx+/ / (1 poo)0G (Poon coo) dx d
R2 10 R#
to+68
< ||G<poo,coo)||m/ / o(1 — pay) dx dt
1o Rn

(where we used the fact that v(x)pec (X, 19) = v(x) and v(x)p00(x, 1) < v(x) for
all 1)
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Finally, dividing by § and using Young’s inequality, we rewrite the inequality as

1 oot o )
—/ / IV pool = G(poo, coo) dx
5)y  Jre2

1 [+ 1 C [lots
§—/ / —|Vv|2—g(v,coo)dxdt+—/ / v(l — poo) dx dt
8 tO Rn 2 8 lO Rn

1 1 to+6 C to+6
< f ~ |Vl — —/ G(v, coo) dr dx + —f (1 = o)t -1 dx dr.
"2 5 )y 5 )

The continuity of # > (v, 1 — poo) g1 -1 and the fact that v € E; implies that
the last term converges to zero as 6 — 0. We can now conclude as in the proof of
Theorem 2.7.

Finally, given a test function ¢ € D(R" x (0, 00)), we take v = poo + €(Po@) =
Poo(1+£¢) in (A.3), with |¢| small enough so that 1 +&¢ = 0. Passing to the limit
g — 07 and ¢ — 07 yields

/R VP - V(Po®) — G(Poos Coo) Poop dx =0

and (A.4) follows. O

Appendix B. The Complementarity Condition

Proof of Proposition 2.8. We note that 8;p = Ap + Ap € L*(0,T; H-(Q)).
Givenu € E;,wehave p—u € L*(0, T; Hé (£2)) and so we can write (in D' (R,.))

(@i, (p=w) g1 g} = (Ap+rp, p—t)y-1 g = — / Vp-V(p—u)—ip(p—u)dx.
¢ (B.1)

Next, proceeding as in the beginning of the proof of Lemma 8.1 (using the compar-

ison principle for the limiting problem, Proposition 5.1), we can show that p = 1 in

U x Ry for some neighborhood U of K and that supp p is bounded in €2 x [0, T'].

In particular, d;p vanishes in U x R,. Taking a smooth function ¢ (x) which is

equal to 1 in supp p \ (U x [0, T']) and vanishes on d K, we can write

00, (p = W) o1 gy = (0, (P = ) -1
= (Ap + Ap, P¢)H—1,H01 — (0, u¢)H—I’H01
= (p(Ap +4p), ). D — (3P, ud) y-1

d
(p(Ap + 1p), o) D — d—/ pug dx
LJjq

d

—— | pupdx inD'Ry),
dr Jo
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where we used the fact that (p(Ap +Ap), ¢)p p = O (this is the complementarity
condition). Using (B.1), we deduce

d
/ Vp-V(p—u)—)»,o(p—u)dx:—f pup dx in D'(Ry).
Q dr Jo
Using the fact that p(x, t)p(x, t) = p(x, t), we deduce that
/ Vp-V(p—u)—A(p—u)dxdet
Q
:f Vp~V(p—u)—kp(p—u)dxdt+/ (1 — p)udx dr
Q

_dt pu¢dx+A/(l—p)udxdt

Integrating with respect to ¢ € [, t, + 5], we get
to+5
/ /Vp-V(p—u)—k(p—u)dxdt
) Q
to+35
§/(p(to+5)—p(to))u¢dX+Af /(1—p)udxdt
Q ) Q

to+34
§/(p(to+8)—1)u¢dx+A/ /(1—,0)udxdt
Q to Q

to+5
§A/ /(l—p)udxdt
to Q

and the result now follows by proceeding as in the proof of Theorem 2.7. O
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