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Abstract

We study the incompressible limit of the porous medium equation with a right
hand side representing either a source or a sink term, and an injection boundary
condition. This model can be seen as a simplified description of non-monotone
motions in tumor growth and crowd motion, generalizing the congestion-only mo-
tions studied in recent literature (Alexander et al. in Nonlinearity 27(4):823–858,
2014; Perthame et al. in Arch Ration Mech Anal 212(1):93–127, 2014; Kim and
Požár in Trans Am Math Soc 370(2):873–909, 2018; Mellet et al. in J Funct Anal
273(10):3061–3093, 2017). We characterize the limit density, which solves a free
boundary problem of Hele-Shaw type in terms of the limit pressure. The novel
feature of our result lies in the characterization of the limit pressure, which solves
an obstacle problem at each time in the evolution.

1. Introduction

Theporousmedia equation is a nonlinear evolution equationwhich is commonly
used to model many natural phenomena involving diffusion or heat propagation, in
its simplest form, it consists of a continuity equation with a flux given by Darcy’s
law:

∂tρ − div (ρ∇ p) = 0, p = m

m − 1
ρm−1, m > 1. (1.1)

The exponent m > 1 describes the anti-crowd tendency of the density motion,
where the diffusion is larger at higher density [4,5,20,25]. Due to the degeneracy
of the diffusion at lower densities, it is well-known that the density stays compactly
supported if initially so (see for example [24, Chapter 1]).

In this paper, we consider the porous media equation with a source term,

∂tρ − div (ρ∇ p) = λρ in � × R
+, (1.2)
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set in the (exterior) domain � = R
n \ K , where K is a bounded subset of R

n with
smooth boundary and supplemented with the “injection” boundary condition

ρ(x, t) = f (x, t)
1

m−1 > 0 on ∂K , (1.3)

as well as the initial data ρ(t = 0) = ρ0
m � 0, Importantly we will assume that

the function λ(x, t) is bounded but can take both positive or negative values. When
λ < 0, the term λρ is an absorption term which is competing with the injection
at ∂K . Assumptions on the initial and boundary data are given in Section 2.1.
Classically, (1.2) can also be written as the following equation for the pressure
p(x, t):

∂t p = (m − 1)p(�p + λ) + |∇ p|2. (1.4)

Our interest is with the incompressible limit of this equation, that is the limit
m → ∞. Heuristically speaking, if (ρm, pm) denotes a sequence of solution of
(1.2), then—provided there is an actual limit in a good enough sense—the limits
ρ∞ and p∞ should satisfy

∂tρ∞ − div (ρ∞∇ p∞) = λρ∞ in � × R
+, p∞ = f on ∂K , ρ∞(·, 0) = ρ0, (1.5)

and taking the limit in the relation pm = m
m−1ρ

m−1
m , we may guess that in the limit

ρ∞ and p∞ are connected by what is known as the Hele-Shaw graph

p∞ ∈ P∞(ρ∞) :=

⎧
⎪⎨

⎪⎩

0 if 0 � ρ∞ < 1

[0,∞) if ρ∞ = 1

∞ if ρ∞ > 1.

(1.6)

In particular, the pressure can be viewed as a Lagrange multiplier for the constraint
ρ∞ � 1 [19]. In our framework, as in many of the related works discussed below,
a priori estimates (under appropriate assumptions on f and on the initial data) will
allow us to make the derivations of (1.5)–(1.6) rigorous.

Equations (1.5)–(1.6) fully characterize the evolution of ρ∞ (see the uniqueness
result, Proposition 2.5). However, one would like to give a more geometrical de-
scription of the evolution of ρ∞, and in particular of the evolution of the “saturated
region”

�(t) := {ρ∞(t) = 1}.
Classically, such a description is provided by a Hele-Shaw type free boundary

problem. Indeed, formally at least, we can pass to the limit in (1.4) to get the
so-called complementarity condition:

p∞(�p∞ + λ) = 0 in � × R
+. (1.7)

This implies that p∞(·, t) solves−�p∞ = λ in the set {p∞(·, t) > 0}, and equation
(1.5) implies (in a weak form) that the normal velocity of the interface ∂�(t) is
proportional to |∇ p∞|. However, the derivation of (1.7) is less straightforward than
that of (1.5)–(1.6) in general (see for instance [9]), and it is not obvious that we
should always have {p∞(·, t) > 0} = �(t).
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Incompressible limits were first studied for equation (1.1) (that is when λ = 0).
In the absence of K , there are classical works starting by Bénilan and Crandall [3],
followed by results with more general initial data by Caffarelli and Friedman [8]
and numerical studies describing the shape of the limit by Elliot et al [10] (also
see [12] for its rigorous justification). In [6] a similar weak formulation for the
Hele-Shaw problem (still without right hand side) is derived as a “mesa” limit
from the Stefan problem. The last decade has seen significant advances in the
study of these asymptotics when the right hand side is monotone increasing in ρ—
corresponding to the case λ > 0 in our framework. The convergence as m → ∞
and characterization of the limit as a Hele-Shaw type flow has been achieved for
models of congested crowd motion [1,16] and of tumor growth [15,18,21]. It is
important to note that monotonicity properties are present in the systems studied
in these papers and are essential for proving that {p∞(·, t) > 0} = �(t). For
instance, the monotonicity of the density was a key feature in characterizing the
limiting problem in [15,18]. In [1,16] which features a drift field, the monotonicity
of ρ along the streamline was crucial to characterize the limiting problem in terms
of viscosity solutions.

In our work, the function λ(x, t) is not necessarily positive so that one no longer
expects ρ∞ to be monotone in time thus complicating the analysis. Moreover, a
Hele-Shaw type problemwith a single phase is typicallymonotone in time, suggest-
ing that the lack ofmonotonicity should be reflected by having somemodification of
the one-phaseHele-Shawmodel in the limit. One of themain contribution of this pa-
per is to identify the pressure p∞(·, t) for all time t > 0 by showing that it solves an
obstacle problem in the set�(t) andmight thus be such that {p∞(·, t) > 0} � �(t)
(see Theorem 2.7), causing the saturated set �(t) to shrink. Though our result ap-
pears to be new, its proof is relatively simple and can be generalized to problems
with nonlinear source terms. As an illustration of this latter point, we apply these
ideas to a tumor growth model which involves nonlinear terms (see Appendix A).
Even in the monotone cases mentioned above, our result provides a new approach
to the derivation of the complementarity condition (1.7).

Equation (1.2) is simple but it allows us to study a very general and important
behavior. Indeed, the monotonicity in the aforementioned works is characteristic of
systems with only congestive effects. However, it is clear that de-congestion effects
are important for applications. In [21], a model for tumor growth which takes into
account the evolution of the density of nutrients is introduced and studied. In that
case, the tumor cells decrease their density in the event of insufficient nutrient,
which yields to “de-congestion” or recession of the tumor cells. The consequent
lack of monotonicity significantly complicates the analysis: The derivation of the
complementarity condition was only achieved recently [9] and the geometric de-
scription of the tumor growth still remains to be understood. Similarly, the study of
congested crowd motion that involve de-congestion phenomena is of great interest
(see [19,23]).

Our interest in studying the toy problem (1.2) is thus to better understand such
behavior. By allowing λ to take both positive and negative value, we generate a
motion that consists of both congestion and de-congestion. The presence of a fixed
boundary condition on ∂K is by no mean necessary for our analysis (there is no K
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in the tumor growth model studied in Appendix A), but such injection boundary
conditions are a classical feature of Hele-Shaw problems. In the context of crowd
motion, our model describes a congested crowd coming out of the door (∂K ) to the
outdoors (Rn \ K ). In the context of the classical Hele-Shaw flow (with λ = 0) the
boundary condition describe the injection of the fluids.

In our setting it seems natural to expect that p∞, which acts against congestion,
may vanish even when the density is fully saturated. Indeed we will see that when
λ is not necessarily positive the support of the pressure p∞(t) may be a strict
subset of �(t). In general, p∞(t) must be found by solving an obstacle problem in
�(t). As a result, while �(t) will expand according to a Hele-Shaw type law when
|∇ p∞| > 0 along ∂�(t), it might recede when |∇ p∞| = 0. Formally, the motion
law of �(t) can be written as

|∇ p∞| = (1 − ρE )V on ∂�(t), (1.8)

whereV denotes theouter normal velocity of ∂�(t) andρE is the traceof the“external
density”, namely the trace of ρ∞ on ∂�(t) from {ρ∞ < 1} (this is well defined if
∂�(t) smooth since ρ∞ is in BVloc(R

n \ K )).
The velocity law (1.8) can be formally justified from the weak equation (1.5)

as follows (where ν denotes the inward normal unit vector on ∂K ):

∫

∂K
ρ∇ p · ν dS +

∫

�

λρ dx = d

dt

∫

�

ρ dx

= d

dt

[∫

�(t)
ρ dx +

∫

�\�(t)
ρE dx

]

=
∫

�(t)
∂tρ dx +

∫

�\�(t)
∂tρ

E dx +
∫

∂�(t)
V (1 − ρE ) dS

=
∫

�(t)
div (ρ∇ p) + λρ dx +

∫

�\�(t)
λρE dx +

∫

∂�(t)
V (1 − ρE ) dS

=
∫

∂K
ρ∇ p · ν dS +

∫

∂�(t)
ρ∇ p · ν dS +

∫

�

λρ dx +
∫

∂�(t)
V (1 − ρE ) dS.

From this we deduce (since ρ = 1 in�(t)) that
∫

∂�(t)
[∇ p ·ν+V (1−ρE )]dS = 0.

We note that our motion law is different from [16] where the free boundary can
move back and forth under the action of a force field. Here the receding and advanc-
ing behavior of the free boundary takes place via completely different mechanisms.
The motion law (1.8) is closer to the one obtained in [14] in the context of liquid
drops sliding down on inclined plane. In this context, at the receding end of the
drop, the contact angle between the liquid drop and the plane may vanish. In that
moment the nature of the velocity law suddenly changes: it is no longer dictated by
the local value of the pressure, but rather by the bulk behavior of the liquid via an
obstacle problem.

Finally, we believe that our approach developed for the model problem (1.2)
is quite general and is of independent interest. To illustrate this point we prove
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in Appendix A that it can be applied to the tumor growth problem with nutrients,
considered in [9,21].

Here is a brief outline of the paper. In Section 2 we collect and discuss im-
plications of our results. In Section 3 we show convergence of the density and
pressure variables. In section 4 we derive the novel characterization of the pressure
via an obstacle problem. Section 5 introduces the comparison principle, as well as
the uniqueness, of the limit problem, which will be used in the rest of the paper.
Sections 6–8 describes the motion law of the saturated region, starting with the
measure theoretic representation in Section 6. An alternative characterization, in
the flavor of viscosity solutions, is given in Sections 7–8.

2. Notations and Main Results

2.1. Assumptions

Throughout the paper,wedenote by (ρm , pm) the solutionof the initial boundary
value problem

⎧
⎪⎨

⎪⎩

∂tρm − div (ρm∇ pm) = λρm in Q, pm = m
m−1ρ

m−1
m ,

ρm(x, t) = f (x, t)
1

m−1 on ∂K × R+
ρm(0, x) = ρ0

m(x) in �

(2.1)

where we denote

� := R
n \ K , Q := � × R+, QT := � × (0, T ].

Below are the main assumptions to be used throughout our analysis.

Assumption 2.1. There is a constant 	 > 0 such that

(i) The function λ(x, t) satisfies

|λ(x, t)| � 	 ∀(x, t) ∈ Q, (2.2)

λ ∈ BVloc(� × R+). (2.3)

(ii) The boundary data f (x, t) satisfies

0 < 	−1 � f � 	, |∇ f | � C, |∂t f | � C on ∂K × R
+. (2.4)

In order to write the assumptions on the initial condition ρ0
m , we first introduce

appropriate barriers. Given 0 � R < R, we consider ϕ(x) and ϕ(x) solutions of

−�ϕ = 	 + 1 in BR \ K , ϕ = f
m

m−1 on ∂K , ϕ = 0 on ∂BR (2.5)

and

−�ϕ = −	 in BR \ K , ϕ = f
m

m−1 on ∂K , ϕ = 0 on ∂BR, (2.6)

where we assume that ϕ > 0 in BR \ K (if necessary we can replace BR by a
smaller set sufficiently close to K ).
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Assumption 2.2. (i) The initial condition ρ0
m(x) satisfies

ϕ(x)
1
m � ρ0

m(x) � ϕ
1
m (x) ∀x ∈ � (2.7)

‖�(ρ0
m
m
) + λρ0

m‖L1(�) + ‖∇ρ0
m‖L1(�) � C (2.8)

(ii) The sequence {ρ0
m}m�1 converges in L1(�) to ρ0.

Condition (2.8) may seem restrictive, but the following result shows that a wide
range of initial condition ρ0 can fit into this framework:

Lemma 2.3. Let � ⊃ K be a bounded open set with C2 boundary in R
n and let

ρ0(x) be given by

ρ0 := χ� + ρEχ�C in �,

where ρE ∈ C1,1
c (�) satisfies 0 � ρE < 1. Then there exists a sequence ρ0

m
satisfying Assumption 2.2.

The construction is simple, so we give it here: First, we define the pressure p0
by

−�p0 = 0 in � \ K with p0 = 0 on ∂� and p0 = f on K .

We clearly have p0 � 0 in K and |∇ p0| 	= 0 on ∂�. We can then define

ρ0
m := max{p1/m0 , (ρE − am)+},

where am is a nonnegative sequence such that am → 0 and (1 − am)m → 0 as
m → ∞ (for instance am = (lnm)−1). Note that with this definition (2.7) holds
for sufficiently large m. To check (2.8), first note that p1/m0 is in BV , since

‖Dp1/m‖L1 =
∥
∥
∥
∥
∥

p
1
m −1

m
Dp

∥
∥
∥
∥
∥
L1

� C sup
p�1/m

|Dp| + o(1),

for sufficiently large m, where we have used the fact that p grows at most linearly
near the regular boundary ∂�. Lastly, note that

(ρ0
m)m = max{p0, (ρE − am)m},

which is a maximum of two C2 functions. Moreover for large m we have ∇(p0 −
(ρE − am)m) 	= 0 where they coincide, since ∇ p0 	= 0 due to the regularity of ∂�

and ∇(ρE − am)m uniformly vanishes as m grows. This nondegeneracy yields the
regularity of the set � := {p0 = (ρE − am)m}. Collecting the facts we conclude
(2.8), where �ρ0

m
m
is interpreted as a measure.
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2.2. Limit and weak formulation of the limiting problem

Bygeneralizing classical a priori estimates to our equation,wewill first establish
the convergence of ρm and pm and prove the following result:

Theorem 2.4. Under Assumptions 2.1 and 2.2 and up to a subsequence, the density
ρm and pressure pm solution of (2.1) converge strongly in L1(QT ) for all T > 0
to limits ρ∞ and p∞ which satisfy

ρ∞, p∞ ∈ BV (QT ),

ρ∞ ∈ Cs([0,∞); H−1(�)) ∀s < 1/2, p∞ ∈ L2(0, T ; H1(�)),

0 � p∞(x, t) � C a.e. (x, t) ∈ Q, 0 � ρ∞(x, t) � 1 a.e. x ∈ �, ∀t > 0

and

⎧
⎪⎨

⎪⎩

∂tρ∞ = �p∞ + λρ∞ in D′(� × R
+), p∞ ∈ P∞(ρ∞);

p∞(x, t) = f (x, t) on ∂K × R
+;

ρ∞(x, 0) = ρ0(x) in �,

(2.9)

where P∞ is the Hele-Shaw graph (1.6).

Following [21], we can prove the following result which shows that the result
above fully characterizes the function ρ∞:

Proposition 2.5. Suppose λ ∈ L2([0, T ]; H1(�)), then equation (2.9) has at most
one solution (ρ, p) ∈ X := L∞(� × (0, T ]) × L2(0, T ; H1(�)).
Furthermore, if (ρ1, p1) and (ρ2, p2) are respectively sub and super-solutions of
(2.9) in X satisfying ρ1(·, 0) � ρ2(·, 0) and p1|∂K � p2|∂K , then ρ1 � ρ2 in
� × R

+.

Remark 2.6. This uniqueness result implies in particular that any subsequence of
(ρm, pm) converges to the same limit, and thus the entire sequence converges to
(ρ∞, p∞).

When λ = 0, equation (2.9) implies that the saturated region�(t) = {ρ∞(t) =
1} coincides with the set {p∞(t) > 0}, and �(t) evolves according to the classical
Hele-Shaw free boundary problem:

{
�p∞ = 0 in �(t), p∞ = f on ∂K , p∞ = 0 on ∂�(t);
V = |∇ p∞| on ∂�(t),

where V denotes the outer normal velocity of the interface ∂�(t) [13,22]. This
provides a simple geometric description of the evolution of the set {ρ∞ = 1}.
As explained in the introduction, our goal in this paper is to provide a similar
characterization when λ 	= 0.
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2.3. The pressure p∞(t)

Our first task is to determine how the pressure p∞(t) depends on the set {ρ∞ =
1}. An important and new feature in our framework is that that we may have
{p∞(t) > 0} � {ρ∞(t) = 1}. Indeed we prove that p∞(t) is determined by
solving an obstacle problem in the set {ρ∞ = 1}.

First, we note that for all t0 � 0 we have p∞ ∈ BV (�× (t0, T )) and so we can
define the trace of the function p∞ on {t = t0}. The interested reader might consult
Giusti’s book [11, Chapter 2] for a thorough discussion on traces of BV functions
(it is worth emphasizing that p∞ is of bounded variation in space and time). We
denote this trace p+(x, t0) since it is defined as a limit as t → t+0 . It satisfies, in
particular, that

1

δ

∫ t0+δ

t0

∫

�

|p∞(x, t) − p+(x, t0)| dx dt �
∫ t0+δ

t0

∫

�

|∂t p∞| dx → 0 as δ → 0. (2.10)

and (by Lebesgue differentiation theorem) p∞(x, t) = p+(x, t) almost every-
where. Since λ ∈ BV , we can similarly define the trace λ+(·, t) for all t > 0. We
then prove

Theorem 2.7. Under the conditions of Theorem 2.4 and for all t � 0, p+(·, t) is
the unique solution of the minimization problem

min
v∈Et

∫

�

1

2
|∇v|2 − λ+(·, t)v dx (2.11)

where Et denotes the functional space

Et =
{
v ∈ H1(�) ∩ L1(�) ; v = f on ∂K , v � 0 in �, 〈v, 1 − ρ∞(t)〉H1,H−1 = 0

}
.

Equivalently, p+(·, t) is the unique solution of the variational inequality
⎧
⎨

⎩

p ∈ Et∫

�

∇ p · ∇(p − u) − λ+(·, t)(p − u) dx � 0 ∀u ∈ Et .
(2.12)

If the set �(t) = {ρ∞(·, t) = 1} is a smooth enough subset of �, then (2.11)
is a classical obstacle problem in �(t) with Dirichlet boundary conditions p = f
on ∂K , p = 0 on ∂�(t). The proof of this result is surprisingly simple and quite
flexible (see Section 4). It does not require any additional a priori estimates besides
the ones already used to prove Theorem 2.4. It can easily be adapted to more
complicated models, such as the tumor growth model with nutrient, as we show in
Appendix A (see Proposition A.2).

By using the approach developed in [19], it is also possible to show that for any
weak solutions of (2.9), the pressure p∞(·, t) satisfies, for a.e. t > 0

∫

�

∇ p · ∇u − λu dx = 0, ∀u ∈ Et .
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So the pressure p∞(·, t) solves the equation�p+λ = 0 in the set {ρ∞(t) = 1} for
almost every time. As explained in the introduction, we cannot expect this to hold
for all time, since either λ or the set {ρ∞(t) = 1} may evolve discontinuously over
time. In the event where the solution of the obstacle problem (2.12) has its support
strictly smaller that {ρ∞(t) = 1}, the set {ρ∞(t) = 1} will shrink instantaneously.
The result of [19] does not see these instantaneous collapses (which can happen
over a large set of time, albeit one of measure zero). Our characterization of p∞,
which holds for all time t > 0, identifies how such collapses take place.

When λ = 0, Theorem 2.7 provides a simple proof of the harmonicity of
p∞ in {ρ∞(·, t) = 1}. In the general case, it implies in particular the so-called
complementarity condition:

p∞(�p∞ + λ) = 0 in D′(� × (0,∞))

which is readily obtained by takingu = p(1±εϕ) in (2.12)withϕ ∈ D(�×(0,∞))

and ε small enough so that 1 ± εϕ � 0.
This complementarity condition is proved for the tumor growth model in [21]

(model without nutrient) and in [9] (model with nutrient). In both cases, the deriva-
tion relies on further estimates on the pressure (in particular the Aronson-Bénilan
estimate or some variant of it). Our result thus provides an alternative derivation of
this condition that does not require any of these additional estimates.

Given the interest for the complementarity condition in the literature, it is worth
noting that it is equivalent to the obstacle problem formulation in the following
sense:

Proposition 2.8. Let (ρ, p) ∈ L∞(0, T ; L1(�) ∩ L∞(�)) × L2(0, T ; H1(�)) be
a solution of (2.9) with p ∈ BVloc(� × R+). If p satisfies the complementarity
condition

p(�p + λ) = 0 in D′(� × (0,∞))

then for every t > 0 the trace p+(·, t) (as defined in (2.10)) is the unique solution
of problem (2.11).

Note that given a weak solution of (2.9), we are not able to prove directly that it
satisfies the obstacle problem formulation of Theorem 2.7) or the complementarity
condition, but this proposition shows that these two properties are equivalent.

In general little is known on the boundary regularity of the set {ρ∞(·, t) = 1},
including whether its boundary has measure zero. Thus for pointwise characteri-
zation of the pressure p∞, we define the support of the measure 1 − ρ∞ by

Supp (1 − ρ∞(t)) :=
{

x0 ∈ � ;
∫

Br (x0)
(1 − ρ∞)(·, t) dx > 0 for all r > 0

}

.

While it may differ from the set {ρ∞ < 1} by a measure zero set, this set has
the advantage of being closed by its definition. Then the solution of the obstacle
problem (2.11) has the usual properties in the open set

O(t) := �\Supp (1−ρ∞(t)) =
{

x0 ∈ � :
∫

Br (x0)
(1 − ρ∞)(·, t) = 0 for some r > 0

}

(2.13)
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which can be seen as the “interior” of the set {ρ∞(·, t) = 1}. More precisely, we
have

Proposition 2.9. The function p∗, solution of the minimization problem (2.11), is
in C1,1

loc (O(t)) and satisfies

−�p∗ = λχ{p∗>0} in O(t). (2.14)

2.4. Velocity law: measure theoretic results

In view of Theorem 2.7, we can redefine p∞ a.e. so that for each time t > 0 the
function p∞(·, t) is the unique solution of the obstacle problem (2.11). We would
now like to characterize the evolution of the saturated region. We start with the
following proposition:

Proposition 2.10. For all t > 0, P(t) := {p∞(·, t) > 0} the positivity set of the
solution of the obstacle problem (2.11). Then the density equation in (2.9) can be
rewritten as

∂tρ∞ = μt + λρ∞(1 − χP ), (2.15)

here μt := �p∞(·, t) + λ(·, t)χP(t), which is a non-negative Radon measure
supported in ∂P(t) \ O(t).

When λ � 0, Equation (2.15) shows that the growth of ρ∞ can only occur
when the measure μ is non zero (thus only on ∂P(t) \O(t)) while the density can
only decay when ρ∞(1− χP(t)) > 0. Growth and decay thus take place according
to different mechanisms. One is dictated by a singular measure, the other by an
L∞ function. Note that P(t) is almost the saturated set �(t), in the sense that their
parabolic closures coincide (see Theorem 2.11.)

Heuristically, (2.15) can have a geometric interpretation as follows. Since ρ∞ =
1 in P(t), we can always write

ρ∞(x, t) = χP(t)(x) + ρE (x, t)(1 − χP(t)(x))

for some function ρE . Splitting the singular and regular part of (2.15), we get the
following: {

(1 − χP(t)(x))(∂tρE − λρE ) = 0;
(1 − ρE (x, t))∂tχP(t) = μ.

(2.16)

The first equation determines the value of ρ∞ outside of the congested set (∂tρE =
λρE when p(x, t) = 0, supplemented by the condition that ρE = 1when p(x, t) >

0).
Formally, we have μ = |∇ p|dS, where S is the surface measure on ∂P(t),

so if |∇ p(x0, t0)| 	= 0, the second equation in (2.16) gives (1 − ρE )V (x0, t0) =
|∇ p(x0, t0)| (expansion of the congested region), while if |∇ p(x0, t0)| = 0, then
either ∂tχP(t) = 0 or ρE (x0, t0) = 1. The later can only happen if χP(t)(x0) = 1
as t → t−0 and so ∂tχP(t) � 0 (retraction of the congested region). Altogether,
this gives the free boundary condition (1.8), assuming that the boundary of P(t)
coincides with �(t).
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Fig. 1. The external density ρE has boundary values on red and blue parts of the boundary:
ρE = 1 on the red parts, and ρE = ρ0 on the blue part

Making these statement rigorous in the classical framework would require the
development of a regularity theory which is not the topic of the present paper.
Instead, in what follows, we will use the comparison principle to make sense of
this in the spirit of viscosity solutions.

2.5. Velocity law: barrier approach

We define the external density ρE in the set {p = 0} by solving the first-order
equation ∂tρ = λρ with appropriate boundary condition. More precisely, given x ,
the open set Int({t ; p(x, t) = 0}) can be written as ∪i∈I (ai , bi ) and ρE (x, t) for
t ∈ (ai , bi ) is the solution of the first order ODE ∂tρ = λρ with initial condition

ρE (x, ai ) =
{

ρ0(x) if ai = 0

1 if ai > 0
;

see Figure 1 above for an illustration of this.
With this definition of ρE , and using the comparison principle for the limiting

problem (Proposition 2.5), we obtain the following description on the motion of
the congested zone {ρ∞ = 1}:
Theorem 2.11. Let (ρ, p) ∈ L∞(Q) × L2

loc(0,∞; H1(�)) be a weak solution of
(2.9) with initial data 0 � ρ0(x) � 1. Then the following holds:

(a) If λ ∈ C(QT ) ∩ L2(0, T ; H1(�)), then we have, in the sense of comparison
with barriers,

(1 − ρE )V = |∇ p| on ∂{ρ = 1}. (2.17)

(b) ρE coincides with ρ a.e. outside of {ρ = 1}.
(c) If λ is negative, then for any T > 0

{p > 0} ∩ QT = {p > 0} ∩ QT = {ρ = 1} ∩ QT .
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The barriers used to make sense of (2.17) are local smooth sub- and super-
solutions of (2.9). Their description can be found in in section 7. Such comparison
property is akin to the viscosity solutions approach taken by [15] for λ > 0. We do
not touch upon the issue of whether the barrier properties are enough for a complete
characterization of the limit solution: see [16] and [15] for analysis in this direction.

Part (c) in above theorem says thatwhenλ is negative, the closure of the pressure
support coincides with that of {ρ = 1}, and that the congested zone {ρ = 1} cannot
all of a sudden expand. This is not truewhenλ is positive, due to the nucleation of the
congested zone generated by the growth of the external density. The set {ρ = 1}
certainly can discontinuously shrink. For instance if λ decreases over time, the
pressure decreases and the set {ρ = 1} may start shrinking. While shrinking, if
a component of the set gets disconnected at t = t0 from K , the pressure in this
region will drop to zero and ρ will immediately decrease below one after t0. Such
a scenario makes it difficult to describe ρE in an explicit way, except when λ only
increases over time.

Theorem 2.12. Suppose that λ ∈ C(� × [0, T ]) ∩ L2(0, T ; H1(�)) is non-
decreasing over time, and let (ρ, p) be the weak solution of (2.9) with initial data
ρ0 ∈ BV . Then the set {p(·, t) > 0} is monotone increasing in time. Moreover for
all t � 0

ρ(·, t) = χ�(t) + ρEχRn\�(t), where ρE (x, t) := ρ0(x) exp
∫ t
0 λ(x,s)ds .

In particular �(t) = {ρ(·, t) = 1} for all t > 0.
If ρ0 is a characteristic function and �0 = {ρ0 = 1} = {ρ0 > 0}, then ρ

remains a characteristic function for all positive times.

Note that we may initially have {p(·, 0) > 0} as a strict subset of {ρ0 = 1}. In
this case this last theorem states that {ρ = 1} experiences an initial discontinuous
shrinkage.

2.6. Numerical examples

Figure 2 shows the evolution of the density and pressure in a simple framework
to illustrate the receding and expanding motion of the free boundary. We consider
the one dimension porous media equation

∂tρ − ∂x (ρ∂x p) = λ(t)ρ in (0,∞) × (0, T ), p = m

m − 1
ρm−1

with the boundary condition ρ(0) = 1 and m = 40 (so we are close to the limiting
problem. In particular, the density is close to, but not equal to 1 when p > 0). The
coefficient λ(t) is independent of x but changes value discontinuously in time:

λ(t) =

⎧
⎪⎨

⎪⎩

−1 if t ∈ [0, .75)
−5 if t ∈ [.75, 1)
−1 if t � 1.

(2.18)
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The set {p(t) > 0} is expanding with finite speed for t ∈ (0, .75) (first row) and
receding instantaneously at t = .75+. The density is then decreasing for t ∈ [.75, 1)
in the region where p = 0 since ∂tρ = −5ρ in that region (second row). Finally,
for t > 1 (third row) the set {p(t) > 0} is again expanding with finite speed.

3. Proof of Theorem 2.4

The proof of this theorem uses many classical techniques (see in particular
[21]), though we have to be careful with the two main differences between our
framework and that of [21]: the lack of sign of λ and the presence of the fixed
boundary ∂K .

3.1. Notion of solutions for (2.1)

First, we recall some well known facts about the porous media equation (2.1)
(we refer the interested reader to [24], Chapters 5 (Definition 5.5 and Theorem
5.14).

Definition 3.1. For ρ0 ∈ L1(�), g ∈ L2(0, T ; H1(�)) and λ ∈ L1(QT ), we say
that a non-negative function ρ ∈ L1(QT ) is a weak solution of (2.1) with ρ0

m = ρ0

and f := g1−1/m if

(i) ρm ∈ L2(0, T ; H1(�)) with its trace on ∂K × [0, T ] equal to g;
(ii) ρ ∈ L2(QT );
(iii) ρ satisfies the identity

∫ ∫

QT

(ρ∂tψ − ∇ρm · ∇ψ + λψ)dxdt = −
∫

�

ρ0
m(x)ψ(x, 0)dx

for any function ψ ∈ C1(QT ) which vanishes on ∂K × [0, T ] and for t = T .

Existence of a weak solution can be established by approximation with smooth
functions,which either solves the porousmedia equationwith strictly positive initial
data or solves a regularized equation with strictly positive diffusion (see Theorem
5.14 of [24]). Uniqueness of the weak solution is a consequence of the following
comparison principle, which we will use often in our analysis.

Lemma 3.2. Let ρ and ρ̃ be two weak solutions of (2.1) with initial data ρ0
m, ρ̃0

m

and fixed boundary data f and f̃ . If ρ0
m � ρ̃0 a.e. and f � f̃ a.e., then ρ � ρ̃

a.e..

3.2. Maximum principle: L∞ bounds for ρm and pm and ∇ pm · ν|∂K
Lemma 3.3. Under conditions (2.2), (2.4) and (2.7), and for all T > 0, there exists
a constant C = C(T ) > 0 independent of m such that the following holds:
For sufficiently large m (depending on T ) the pressure pm satisfies:

0 � pm(x, t) � C for all (x, t) ∈ QT , (3.1)
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and
−C � ν(x) · ∇ pm(x, t) � C for all x ∈ ∂K , 0 � t � T . (3.2)

Moreover,
ρm(x, t) → 1, locally uniformly in U × R+ (3.3)

for some neighborhood U of K and

supp ρm(·, t) ⊂ BR+C(T ) for all t ∈ (0, T ). (3.4)

Remark 3.4. Note that by (3.3), ρm stays uniformly positive and solves a uniformly
parabolic equation inU . It is thus smooth, a factwewill use repeatedlywhen dealing
with the boundary data on ∂K .

Proof. We fix T > 0. This lemma follows from the maximum principle for the
pressure pm , which, we recall solves

∂t p = (m − 1)p(�p + λ) + |∇ p|2.
In view of (2.6), ϕ(x) satisfies �ϕ +λ = 	+λ � 0 and is therefore a subsolution
for this equation. Assumption (2.7) thus implies

pm(x, t) � ϕ(x) ∀(x, t) ∈ � × R
+.

For the upper barrier, we define the function ū(x, t) as follows: For all t > 0,
the function x �→ ū(x, t) solves

−�v = 	 + 1 in BR(t) \ K , v = f
m

m−1 on ∂K , v = 0 on ∂BR(t)

where R(t) := R +
∫ t

0
M(s)ds, with M(s) := 2 supx∈∂BR(t)

|∇ū(·, t)|. The func-
tion ū is extended by 0 outside BR(t). Since R(t) depends on ū(x, t), the function ū
can be constructed for instance by discrete-time approximation. We note that (2.5)
implies in particular that ū(x, 0) = ϕ(x)

We claim then ū is a supersolution for the pressure equation for sufficiently
large m. To see this, note first that when ū � (m − 1)−1/2 we have

∂t ū � 0 � (m − 1)ū(�ū + λ) + |∇ū|2 if m � sup
0�t�T

|∇ū|4(·, t).

On the other hand, since ∂t ū � 2|∇ū|2 > 0 on its zero level set ∂BR(t), it is clear
that for small enough ε = ε(T ) we have ∂t ū � |∇ū|2 in 0 � ū � ε. Our claim
follows if m is large enough (depending on T ).

The comparison principle for the pressure equation now yields

ϕ(x) � pm(x, t) � ū(x, t) ∀(x, t) ∈ QT .

The results now follow: (3.1) follows from upper bound, while the lower bound

together with the fact that ρm ∼ p
1

m−1
m implies (3.3). The fact that ū is supported in

BR(t) implies (3.4) and since ϕ(x) = pm(x, t) = ū(x, t) on ∂K , we get

−C � ν(x) · ∇ϕ(x) � ν(x) · ∇ pm(t, x) � ν(x) · ∇ū(x, t) � C ∀x ∈ ∂K , t ∈ (0, T ].
��



844 N. Guillen, I. Kim, & A. Mellet

3.3. L1 bounds for ρm and pm

Lemma 3.5. For all T > 0, there exists a constant C(T ) depending on 	 and T
such that

‖ρm(t)‖L1(�) � ‖ρ0
m‖L1(�)e

	T + C(T ) (3.5)

and
‖pm(t)‖L1(�) � C‖ρ0

m‖L1(�)e
	T + C(T ) (3.6)

for t ∈ [0, T ] and m � 2.

Proof. Integrating (2.1) on � yields

d

dt

∫

�

ρm(t) dx =
∫

�

λ(t)ρm(t) dx +
∫

∂K
ρm∇ pm · ν dS

� 	

∫

�

ρm(t) dx + C,

where we used (3.1), (3.2). The bound (3.5) follows by a Gronwall argument. The
bound (3.6) then follows from (3.5) and (3.1) since pm = m

m−1ρ
m−1
m � m

m−1Cρm .
��

3.4. Bounds on the derivatives of ρm and pm

For δ > 0, we define

�δ := {x ∈ R
n ; dist(x, K ) > δ}.

Lemma 3.6. For any δ > 0, there exists a constant Cδ independent on m such that

‖∂tρm(t)‖L1(�δ) � Cδ ∀t > 0 (3.7)

‖∂xi ρm(t)‖L1(�δ) � Cδ ∀t > 0 (3.8)

Similarly, denoting by BR the ball of radius R, we have the following bounds:

‖∂t pm‖L1((0,T )×�δ∩BR) � Cδ,R,T (3.9)

‖∂xi pm‖L1((0,T )×�δ∩BR) � Cδ,R,T (3.10)

Proof. Proceeding as in [21], we differentiate the first equation in (2.1) with respect
to time and multiply it by sign(∂tρm) and use Kato’s inequality to obtain

∂t |∂tρm | − �(mρm−1
m |∂tρm |) � λ|∂tρm | + ρm |∂tλ| in �. (3.11)

We cannot simply integrate this equation over� because of the boundary condition
on ∂K . Instead, given a large ball BR such that K ⊂ BR , we introduce the function
ϕ such that ϕ = 0 on ∂K , ϕ = 1 on ∂BR , �ϕ = 0 in BR \ K and we extend this
function by 1 outside BR . This function satisfies

ϕ|∂K = 0, �ϕ � 0 in �, ϕ > 0 in �.
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Multiplying (3.11) by ϕ and integrating over �, and using the fact that ϕ|∂K = 0

and mρm−1
m |∂tρm | = m

m−1 f
1

m−1 ∂t f on ∂K , we deduce

d

dt

∫

�

|∂tρm |ϕ dx �
∫

�

mρm−1
m |∂tρm |�ϕ dx −

∫

∂K
mρm−1

m |∂tρm |∇ϕ · ν dS

+
∫

�

λ|∂tρm |ϕ dx +
∫

�

ρm |∂tλ|ϕ dx

� C + 	

∫

�

|∂tρm |ϕ dx +
∫

�

ρm |∂tλ|ϕ dx .

Since ∂tρm(0) = �ρm
in + λρ0

m , the bound (2.8) implies ‖∂tρm(0)‖L1(�) � C and
using (3.4), we deduce

‖∂tρm(t)ϕ‖L1(�) � C(T ) + C
∫ T

0
e	(T−t)

∫

BR0+CT

|∂tλ(x, s)| dx dt

and (3.7) follows from (2.3) and the fact that min�δ ϕ > 0 for all δ > 0 (by the
strong maximum principle).

To get an estimate on ∂t pm , we want to take advantage of the term
∫

�
mρm−1

m
|∂tρm |�ϕ dx in the inequality above.We thus define, for η > 0, ϕη such that ϕη = 0
on ∂K , ϕη = 1 on ∂BR , �ϕη = −η in BR \ K and we extend this function by 1
outside BR .

Given R, we claim that �ϕη � 0 in � if η is sufficiently small (depending on
R). Indeed, Hopf’s Lemma implies x · ∇ϕ0 > 0 on ∂BR , so the C1-convergence
of ϕη to ϕ0 implies x · ∇ϕη � 0 on ∂BR .

Proceeding as above, we get

d

dt

∫

�

|∂tρm |ϕη dx + 4η
∫

�

mρm−1
m |∂tρm | dx � C(T )

Integrating in t , we deduce that for all δ > 0, R > 0 and T , there exists Cδ,R,T

such that
∫ T

0

∫

�δ∩BR

mρm−1
m |∂tρm | dx dt � Cδ,R,T .

Finally, we write

∫ T

0

∫

�δ∩BR

|∂t pm | dx dt =
∫ T

0

∫

�δ∩BR

mρm−2
m |∂tρm | dx dt

�
∫ T

0

∫

�δ∩BR∩{ρm<1/2}
m(1/2)m−2|∂tρm | dx dt

+ 2
∫ T

0

∫

�δ∩BR∩{ρm>1/2}
mρm−1

m |∂tρm | dx dt

�
∫ T

0

∫

�δ

|∂tρm | dx dt + Cδ,R,T ,
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which gives (3.9).
We proceed similarly for the bound on ∂xiρm . The only difference is that we

do not have ∂xi ρm |∂K = 0, so we have an additional boundary term to worry
about. More precisely, differentiating the first equation in (2.1) with respect to xi ,
multiplying it by sign(∂xi ρm) and using Kato’s inequality, we obtain

∂t |∂xiρm | − �(mρm−1
m |∂xiρm |) � λ|∂xiρm | + |∂xiλ|ρm in �. (3.12)

With the same cut-off function ϕ as above, we get

d

dt

∫

�

|∂xi ρm |ϕ dx �
∫

�

mρm−1
m |∂xi ρm |�ϕ dx −

∫

∂K
mρm−1

m |∂xi ρm |∇ϕ · ν dS

+
∫

�

λ|∂xi ρm |ϕ dx +
∫

�

|ρm ||∂xi λ| dx

�
∫

∂K
ρm |∂xi pm ||∇ϕ · ν| dS + 	

∫

�

|∂xi ρm |ϕ dx +
∫

�

|ρm ||∂xi λ| dx .

To conclude, we thus note that the estimate (3.2) gives a bound on the normal
derivative of pm on ∂K , while the condition pm |∂K = m

m−1 f together with the
regularity assumptions (2.4) implies that the tangential derivatives of pm are uni-
formly bounded on ∂K . We deduce that |∂xi pm ||∂K � C , and so (using (2.8), (3.4)
and (2.3))

d

dt

∫

�

|∂xiρm |ϕ dx � C(T ) ∀t ∈ (0, T ).

Hence,

‖∂xi ρm(t)ϕ‖L1(�) � ‖∂xi ρm(0)‖L1(�) + C(T ),

and (3.8) now follows from (2.8). ��

3.5. Passing to the limit

We denote

�k := {x ∈ � ; dist(x, K ) > 1/k, |x | � k}.
Lemma 3.6 implies that ρm and pm are bounded in BV(R+ × �k) for all k and
thus converge (up to a subsequence) strongly in L1([0, k] × �k). By a diagonal
extraction process, we can thus find subsequences (still denoted ρm and pm) and
functions ρ∞, p∞ such that ρm (resp. pm) converges to ρ∞ (resp. p∞) strongly in
L1
loc(R+ × �).
Next, we note that

ρm pm =
(
m − 1

m

) 1
m−1

p
m

m−1
m

passing to the limit (using the a.e. convergence) yields ρ∞ p∞ = p∞ and thus

(ρ∞ − 1)p∞ = 0 a.e. R+ × �, (3.13)
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which gives the Hele-Shaw condition p∞(x, t) ∈ P∞(ρ∞(x, t)) a.e. in R+ × �.
Similarly, we have

ρm
m =

(
m − 1

m
pm

) m
m−1 → p∞ a.e. R+ × �.

Since ρm
m is bounded in BV(R+ × �k), the convergence holds in L1

loc as well.
Rewriting (2.1) as

∂tρm = �pm + λρm

and passing to the limit, we deduce

∂tρ∞ = �p∞ + λρ∞ in D′(R+ × �).

3.6. Bounds on the gradient of pm and convergence of ρm

Lemma 3.7. There exists a constant C independent of m such that
∫ ∫

QT

|∇ pm |2 dx dt � CT . (3.14)

Furthermore, {ρm}m∈N is relatively compact in Cs(0, T ; H−1(�)) for all s ∈
(0, 1/2).

Proof. Integrating the equation for the pressure (1.4) yields

d

dt

∫

�

pm dx = −(m − 2)
∫

�

|∇ pm |2 dx + (m − 1)
∫

∂K
pm∇ pm · νdS + (m − 1)

∫

�

λpm dx .

Using (3.2) and the fact that pm = m
m−1 f on ∂K we deduce

∫

�

|∇ pm |2 dx � − 1

m − 2

d

dt

∫

�

pm dx + m − 1

m − 2
C.

Integrating in time and using (3.6) we deduce (3.14). Using (2.1), we deduce that

∂tρm is bounded in L2(0, T ; H−1(�)).

Since ρm is bounded in L∞(0, T ; L1(�)) and in L∞(0, T ; L∞(�)), we also have

ρm is bounded in L∞(0, T ; L2(�)).

Since H−1(�) is compactly embedded in L2(�), Lions-Aubin Lemma (see for
example [2,17]) implies that {ρm} is relatively compact in

Cs(0, T ; H−1(�)) for all s ∈ (0, 1/2).

Estimate (3.14) implies in particular that ∇ p∞(·, t) ∈ L2(�) for a.e. t > 0: it
will be useful in the proof of Theorem 2.7.

The compactness of {ρm}m∈N in Cs(0, T ; H−1(�)) implies ρ∞ ∈ Cs([0,∞);
H−1(�)). Furthermore, (3.1) and (3.5) implies that ρm(t) is bounded in L1(�) ∩
L∞(�) and thus converges, up to a subsequence, weakly in L∞(�) to ρ∞ ∈ [0, 1].
Wewill see later in Section 5 that the limit density is unique (Proposition 5.1), which
implies that the whole original subsequence converge to ρ∞ weakly in L∞(�).
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4. Proof of Theorem 2.7 and Proposition 2.8, 2.9

In this section, we use the notation ρm and pm even though we are only con-
sidering convergent subsequences. Let us first introduce a lemma to be used in the
proof of Theorem 2.7.

Lemma 4.1. For all t0 � 0, p+(·, t0) ∈ H1(�) and
∫

�

|∇ p+(x, t0)|2 dx � lim inf
δ→0

1

δ

∫ t0+δ

t0

∫

�

|∇ p∞|2 dx dt.

Proof. First, using (4.5) with a nonnegative test function v ∈ H1(�) supported in
U (see (3.3)) and satisfying the boundary condition on ∂K , we get:

1

δ

∫ t0+δ

t0

∫

�

|∇ p∞|2 dx dt � C,

for some constant C independent of δ and so the lim inf exists and is finite. Given
T (x) ∈ (D(�))n , we can write

1

δ

∫ t0+δ

t0

∫

�

p∞div T dx dt = −1

δ

∫ t0+δ

t0

∫

�

∇ p∞ · T dx dt

�
(
1

δ

∫ t0+δ

t0

∫

�

|∇ p∞|2 dx dt
)1/2

‖T ‖L2(�),

and we can pass to the limit δ → 0, using (2.10), to get

∫

�

p+(x, t0)div T (x) dx �
(

lim inf
δ→0

1

δ

∫ t0+δ

t0

∫

�

|∇ p∞|2 dx dt
)1/2

‖T ‖L2(�),

and the result follows. ��
Proof of Theorem 2.7. Given t0 � 0 and a function v(x) in Et0 , and using the
equation for the pressure (1.4) and density (2.1) we can write, in D′(R+),

∫

�

∇ pm · ∇ pm − ρm∇ pm · ∇v − λ(pm − v) dx

= − 1

m − 1

[
d

dt

∫

�

pm dx −
∫

�

|∇ pm |2 dx
]

+ d

dt

∫

�

vρm dx

−
∫

�

λ(·, t)v(ρm − 1) dx +
∫

∂�

[pm − ρmv]∇ pm · ν dS. (4.1)

Formally at least, it is not difficult to see that the variational formulation of the
obstacle problem (2.12) follows by passing to the limit m → ∞ and taking t = t0
in (4.1). The rest of the proof is devoted to making this limit rigorous to derive
(2.12) (for all t0 > 0).

First, using the boundary condition, we note that the last term is equal to
∫

∂�

[
m

m − 1
f (x, t) − f (x, t)

1
m−1 f (x, t0)

]

∇ pm · ν dS
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and thus satisfies (using (2.4)):

lim sup
m→∞

∣
∣
∣
∣

∫

∂�

[pm − ρmv]∇ pm · ν dS

∣
∣
∣
∣ � C

∫

∂�

| f (x, t) − f (x, t0)| dS
� C |t − t0|. (4.2)

Next, it is clear that our a priori estimates do not allow us to pass to the limit
in (4.1) pointwise in time. So, given δ > 0, we integrate (4.1) with respect to
t ∈ (t0, t0 + δ) and pass to the limit m → ∞. The left hand side of (4.1) satisfies

lim inf
m→∞

∫ t0+δ

t0

∫

�

∇ pm · ∇ pm − ρm∇ pm · ∇v − λ(pm − v) dx dt

�
∫ t0+δ

t0

∫

�

|∇ p∞|2 − ∇ p∞ · ∇v − λ(p∞ − v) dx dt,

where we used in particular the fact that ρm∇ pm is bounded in L2(QT ) by (3.14)
and thus converges weakly to ∇ p∞ (since ρm∇ pm = ∇ρm

m converges to ∇ p∞ in
D′(QT )). Using (3.14) and (3.6) to control the first term in the right hand side of
(4.1) and (4.2) for the last term, we deduce

∫ t0+δ

t0

∫

�

|∇ p∞|2 − ∇ p∞ · ∇v − λ(p∞ − v) dx dt

� lim inf
m→∞

∫

�

v(x)[ρm(x, t0 + δ) − ρm(x, t0)] dx

+
∫ t0+δ

t0

∫

�

λ(·, t)v(x)(1 − ρ∞(x, t)) dxdt + O(δ2). (4.3)

Formally, the first term in the right hand side is non-positive because vρ∞(·, t0+
δ) � v while vρ∞(·, t0) = v (this is where we use the fact that v ∈ Et0 ). In order
to make this rigorous, we first note that

d

dt

∫

�

v(x)ρm(x, t) dx = −
∫

�

ρm∇ pm · ∇v dx

+
∫

∂K
ρmv∇ pm · ν dS +

∫

�

λ(·, t)ρmv dx

and so (using the fact that ρm−1
m |∂K = v|∂K = f ):

∣
∣
∣
∣
d

dt

∫

�

v(x)ρm(x, t) dx

∣
∣
∣
∣ �

∫

�

|∇ pm(x, t)||∇v(x)| dx

+
∫

∂K
f

1
m−1 (x, t) f (x, t0)|∇ pm · ν|dS + 	

∫

�

ρmv(x) dx .

The first term in the right hand side is bounded in L2(0, T ) (using (3.14)), and the
second term is bounded in L∞(0, T ) (using (3.2)).We deduce that the function t �→∫

�
vm(x)ρm(x, t) dx is bounded in H1(0, T ) ⊂ C1/2[0, T ] and thus converges
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(up to a subsequence) uniformly in [0, T ]. Since ∫

�
v(x)ρm(x, t) dx converges to∫

�
v(x)ρ∞(x, t) dx in D′(R+), we have

∫

�

v(·)ρm(·, t) dx →
∫

�

v(·)ρ∞(·, t) dx locally uniformly in R+.

Consequently,

lim inf
m→∞

∫

�

v(x)[ρm(x, t0 + δ) − ρm(x, t0)] dx

=
∫

�

v(x)[ρ∞(x, t0 + δ) − ρ∞(x, t0)] dx � 0,

where we used the fact that v(x)ρ∞(x, t0) = v(x) (since v ∈ Et0 ) and ρ∞ � 1.
Going back to (4.3), we deduce (using the fact that v(x)(1 − ρ∞(x, t)) � 0) :

∫ t0+δ

t0

∫

�

|∇ p∞|2 − ∇ p∞ · ∇v − λ(p∞ − v) dx dt

� 	

∫ t0+δ

t0

∫

�

v(x)(1 − ρ∞(x, t)) dxdt + O(δ2), (4.4)

To prove the result, it remains to divide by δ and pass to the limit δ → 0. We first
use Young’s inequality to rewrite (4.4) as:

1

δ

∫ t0+δ

t0

∫

�

1

2
|∇ p∞|2 − λp∞ dx dt

� 1

δ

∫ t0+δ

t0

∫

�

1

2
|∇v|2 − λ(·, t)v dx dt

+ 	

δ

∫ t0+δ

t0

∫

�

v(x)(1 − ρ∞(x, t)) dxdt + O(δ)

�
∫

�

1

2
|∇v|2 −

∫

�

(
1

δ

∫ t0+δ

t0
λ(·, t)dt

)

v dx

+ 	

δ

∫ t0+δ

t0
〈1 − ρ∞(x, t), v(x)〉H−1,H1dt + O(δ). (4.5)

Since ρ∞ ∈ C([0,∞); H−1(�)) and v ∈ Et0 , we have

lim
δ→0

1

δ

∫ t0+δ

t0
〈1 − ρ∞(x, t), v(x)〉H−1,H1dt = 〈1 − ρ∞(x, t0), v(x)〉H−1,H1 = 0 ∀t0 � 0

and we can use (2.10) (and a similar inequality for λ) to pass to the limit in the
terms involving λ.
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From Lemma 4.1, we deduce that
∫

�

1

2
|∇ p+(x, t0)|2 − λ+(x, t0)p

+(x, t0) dx

�
∫

�

1

2
|∇v(x)|2 − λ+(x, t0)v(x) dx ∀t0 > 0,

which implies that p+(·, t) is indeed a solution of (2.11) for every t � 0.
The derivation of (2.12) is classical (given u ∈ Et and ε > 0, take v =

p + ε(u − p) in (2.11) and pass to the limit ε → 0). The uniqueness of p∗ follows
from (2.12): if p1 and p2 are two solutions, then by plugging in each other as test
functions we obtain

∫

�

|∇(p1 − p2)|2dx = 0,

and thus p1 = p2.

Proof of Proposition 2.9. For any ball Br (x0) ∈ O(t), we have 〈ϕ, (1−ρ∞(t)〉 =
0 for any ϕ ∈ D(Br (x0)), and so p solves the classical obstacle problem in Br (x0).
The usual theory (see [7]) implies that p ∈ C1,1(Br/2(x0)) and satisfies �p =
λχ{p>0} in Br/2(x0). The proposition follows. ��

5. Uniqueness of the Limit Solution and Comparison Principle

In this section we establish the uniqueness for the limit problem in a general
bounded domain D of R

n (with smooth boundary): Given a continuous function
g � 0 defined on ∂D × [0, T ] and ρ̄ � 0 a nonnegative function in D satisfying
0 � ρ̄ � 1, we consider the problem

⎧
⎪⎨

⎪⎩

∂tρ = �p + λρ, in D × (0, T ], p ∈ P∞(ρ) a.e. in D × (0, T ];
p = g on ∂D × [0, T ];
ρ(t = 0) = ρ̄ in D.

(5.1)

A weak solution of (5.1) is a set of functions (ρ, p) ∈ L∞(D × (0, T ]) ×
L2(0, T ; H1(D)) satisfying (5.1) in the sense of distribution.

In particular, the condition p ∈ P∞(ρ) implies that 0 � ρ � 1 and p(1−ρ) = 0
a.e. in D×(0, T ] and for any smooth, compactly supported test functionψ : � → R

with ψ(·, T ) = 0 and ψ = 0 on ∂D × [0, T ] we have
∫

D×[0,T ]
(ρψt+p�ψ+λρψ)dxdt = −

∫

D
ρ(·, 0)ψ(·, 0)dx+

∫ T

0

∫

∂D
g∂νψdSdt.

(5.2)
We then have the following result, which implies in particular Proposition 2.5:

Proposition 5.1. Suppose λ ∈ L2([0, T ]; H1(D)), then there is at most one weak
solution (ρ, p) of (5.1).

Furthermore, if (ρi , pi ) for i = 1, 2 are two pairs of weak solutions of (5.1)
with boundary data gi and initial data ρ̄i and if ρ̄1 � ρ̄2 in D and g1 � g2 on
∂D × [0, T ], then ρ1 � ρ2 a.e. in D × [0, T ].
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Proof. To show the uniqueness we follow the Hilbert dual argument developed in
[21]. Since the proof is largely parallel, we will only remark on necessary modifi-
cations due to the presence of the fixed boundary ∂K .

Suppose ψ is a nonnegative test function. Let us denote DT := D × (0, T ).
Taking the differences of the weak formulation (5.2) for (ρi , pi ) for i = 1, 2, we
have

∫ ∫

DT

[(ρ1 − ρ2)∂tψ + (p1 − p2)�ψ + λ(ρ1 − ρ2)]

= −
∫

D
(ρ̄1 − ρ̄2)(x)ψ(x, 0)dx +

∫ T

0

∫

∂D
(g1 − g2)∂νψdSdt

�
∫ T

0

∫

∂D
(g1 − g2)∂νψdSdt.

Thus
∫ ∫

DT

(ρ1−ρ2+p1−p2)[A∂tψ+B�ψ+λAψ]dxdt �
∫ T

0

∫

∂D
(g1−g2)∂νψdSdt.

(5.3)
where ν denotes the outward normal at ∂D and

A = ρ1 − ρ2

ρ1 − ρ2 + p1 − p2
, B = p1 − p2

ρ1 − ρ2 + p1 − p2
.

As in [21] we define A = 0 whenever ρ1 = ρ2 (even when p1 = p2) and B = 0
when p1 = p2 (even when ρ1 = ρ2). Note that A, B ∈ [0, 1] due to the fact that
ρ(1 − p) = 0.

Let now G be a compactly supported and nonnegative smooth function in D ×
[0, T ]. As in [21] the idea is to solve the dual problem

⎧
⎨

⎩

A∂tψ + B�ψ + λψ = −AG in D × [0, T );
ψ = 0 on ∂D × [0, T ];
ψ(·, T ) = 0. in D.

(5.4)

If A and B were strictly positive, by backward-in-time maximum principle, one
can verify that ψ is nonnegative. Thus it follows that ∂νψ � 0 on ∂D × [0, T ].
Thus going back to (5.3) and using the fact that g1 � g2, it follows that

∫ ∫

DT

(ρ1 − ρ2)(−AG) � 0. (5.5)

Since G is arbitrary nonnegative smooth function, we conclude that ρ1 � ρ2 a.e.
in D × [0, T ].

However, A and B can be degenerate, so the argument requires the approxi-
mation of the dual problem (5.4), by a regularized uniformly parabolic, Dirichlet
boundary value problem (see [21] for detailed description of this approximation).
As in [21], we then pass to the limit in the regularization to deduce (5.5). The
assumption λ ∈ L2([0, T ]; H1(D)) is necessary to ensure that the regularized
problem produces small errors.
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To show uniqueness, suppose that (ρi , pi ) are two solutions of (5.1) with the
same boundary condition f and initial condition g. Then ρ1 = ρ2 follows from the
density ordering property obtained above. Once we have this, the difference of the
weak equations yield

∫ ∫

Dt

(p1 − p2)�ψdxdt = 0.

Now, as in [21], we can chooseψ to approximate p1− p2 to conclude that p1 = p2
a.e. in DT . ��
Remark 5.2. It is not immediately clear that the pressure satisfy the ordering prop-
erty (i.e. p1 � p2 in Proposition 5.1). However, the characterization of the pressure
given in Proposition 2.9 implies that the pressure ordering follows from the density
ordering.

Now let us state two consequences of this proposition, based on the comparison
principle for (2.1). First let us discuss our original problem with � := R

n \ K .
Recall that from Lemma 3.3 that the support of ρm lies in BR+C(T ) for given time

range 0 � t � T . Therefore, setting R(T ) := R + C(T ), their limit solution
(ρ∞, p∞) is a weak solution of (5.1) with D := BR(T ) \ K , g = f on ∂K and
g = 0 on ∂BR(T ). Therefore we have the following corollary:

Corollary 5.3. Given T > 0, any weak solution of (5.1) with D := BR(T ) \ K,
g = f on ∂K, g = 0 on ∂BR(T ) and initial data ρ̄ = ρ0 is the L1(QT )- limit of
the functions (ρm, pm) solutions of (2.1). In particular, it follows that the pressure
ordering property is true in this setting.

The next observation will be useful, when we construct radial limit solutions
with explicit free boundary motion laws.

Corollary 5.4. (Comparison Principle) Let (ρ∞, p∞) be the limit solution of (2.1)
in � × [0, T ]. If D is a domain with smooth boundary that does not intersect K
and if (ρ1, p1) is a weak solution of (5.1) in D×[t1, t2]., then the following holds:
If p∞ � p1 on ∂D × [t1, t2] and ρ∞ � ρ1 on t = t1, then p∞ � p1 and ρ∞ � ρ1
in D × [t1, t2].

Proof. Since D does not intersect K , it is easy to check that (ρ∞, p∞) is a weak
solution of (5.1) in D × [t1, t2] with initial data ρ∞(·, t1) and fixed boundary data
given as the trace of p∞ on ∂D×[t1, t2] (such trace exists a.e. in time since p∞(·, t)
is in H1(D) a.e. t > 0). Now we can conclude from Proposition 5.1. ��

6. Proof of Proposition 2.10

In the sequel, we write p(t) instead of p∞(t) for the unique solution of the
obstacle problem (2.11). We also recall that P(t) = {p(t) > 0}. We first show that
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suppμt ⊂ ∂P(t) \ O(t): For all smooth test functions ϕ ∈ D(�), by definition of
μt we have

μt (ϕ) =
∫

�

(−∇ p · ∇ϕ + λ(·, t)χP(t)ϕ) dx .

Clearly, if ϕ is supported in {p(·, t) = 0}, the fact that p ∈ H1(�) implies that
∇ p = 0 a.e. in {p = 0} and thus μt (ϕ) = 0. And if ϕ is supported in O(t), (2.14)
implies

μt (ϕ) = 0.

Since O(t) is an open set, we deduce that

supp (μt ) ∩ Int({p(t) = 0}) = ∅, supp (μt ) ∩ O(t) = ∅.

On the other hand note that Int(P(t)) ⊂ O(t). Indeed if p(t) > 0 in Bδ(x0),
then 1−ρ∞(t) = 0 a.e. in Bδ(x0) and so

∫

Bδ(x0)
(1−ρ∞(t)) dx = 0. It follows that

x0 ∈ O(t). Thus we can conclude that μt is supported in ∂P(t) \ O(t) as claimed
in Proposition 2.10.

Next we show that μt is nonnegative. Define the function

Qδ(s) :=
{

s
δ

if s ∈ [0, δ];
1 if s � δ.

For any test function ϕ ∈ D(�) satisfying 0 � ϕ(x) � 1, we write

μt (ϕ) =
∫

�

−∇ p · ∇ϕ + λχP(t)ϕ dx

=
∫

�

−∇ p · ∇(ϕQδ(p)) + λϕQδ(p) dx + 〈�p, ϕ(1 − Qδ(p))〉

+
∫

�

λχP(t)ϕ(1 − Qδ(p)) dx .

Using (2.12) with u = p − δϕQδ(p) (which satisfies p � u � p(1 − ϕ) � 0 and
is thus admissible) the first integral is non-negative. Next note that

〈�p, ϕ(1 − Qδ(p))〉 =
∫

(∇ p · ∇ϕ(Qδ(p) − 1) + ∇ p · ϕQ′
δ(p)∇ p)dx .

The second term in above equality is nonnegative since Qδ is increasing. For the
first term, we note that ∇ϕ(Qδ(p) − 1) converges a.e. to ∇ϕχ{p=0}. Lebesgue
dominated convergence theorem implies that it converges in L2 and thus the first
term converges to zero since ∇ p = 0 a.e. in {p = 0}.

Thus

μt (ϕ) �
∫

�

λχP(t)ϕ(1 − Qδ(p)) dx .

Finally, we have χP(t)(1−Qδ(p)) → 0 a.e. in�when δ → 0. Sending δ → 0 and
using Lebesgue dominated convergence theorem, we can conclude that μt (ϕ) � 0
and the result follows.
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7. The Velocity Law

In this section we determine the velocity law of the congested zone {ρ∞ = 1}
for the limit solution (ρ∞, p∞) by using comparison principle and barriers, as
in the usual viscosity solutions approach. First we will define the relevant notion
of barriers and prove that the usual comparison with barriers holds for our limit
solution (ρ∞, p∞) (see Corollary 7.3–7.4). In Section 7.2 we show that in the radial
symmetric case, the barriers we construct are indeed classical solutions.

7.1. Comparison with barriers

The difficulty in making (2.16) rigorous is the lack of regularity of the pressure
or density interface (∂P or ∂�) and the lack of monotonicity of its motion. In this
section, we construct sub- and super-solutions of the limiting problem (2.1) to be
used as barrier in a viscosity solution type approach.

Let Br be a ball in�, and let D be either�\ Br or Br . For a given time interval
[t1, t2] ⊂ [0,∞) we consider a function (the pressure) φ ∈ Cc(D × [t1, t2]) such
that {φ(t) > 0} is monotone (increasing or decreasing) and an initial density ρ1(x)
satisfying ρ1 = 1 in {φ(t1) > 0}. We assume that {φ(t) > 0} and ρ1(x) are such
that the external density ρE

φ , defined below, satisfies

ρE
φ (x, t) < 1 in {φ = 0}. (7.1)

This external density ρE
φ (x, t) solves the equation ∂tρ = λρ in the (deconges-

tion) set {φ = 0} together with appropriate boundary conditions. This leads to the
following definitions:

If {φ(t) > 0} is increasing (“expanding solution”), then for all x /∈ {φ(t1) > 0},
we define t (x) = the last time that φ(x, t) = 0 (with t (x) = t2 is φ(x, t2) = 0)
and set

ρE
φ (x, t) = ρ1(x) exp

(∫ t

t1
λ(x, s) ds

)

for all t < t (x)

(condition (7.1) is satisfied if ρ1(x) is small enough in {φ(t1) = 0}).
If {φ(t) > 0} is decreasing (“contracting solution”), then for all x /∈ {φ(t2) >

0}, we define t (x) = the first time that φ(x, t) = 0 (with t (x) = t1 is φ(x, t1) = 0)
and set

ρE
φ (x, t) = ρ1(x) exp

(∫ t

t (x)
λ(x, s) ds

)

for all t > t (x).

(condition (7.1) requires ρ1(x) to be small enough in {φ(t1) = 0}, but since ρ1 = 1

in {φ(t1) > 0}, it also requires exp
(∫ t

t (x) λ(x, s) ds
)

< 1 for x ∈ {φ(t1) > 0}).
In both cases, we define the density in D × (t1, t2) by

ρφ(x, t) := χ{φ(t)>0}(x) + ρE
φ (x, t)(1 − χ{φ(t)>0}(x)) =

{
1 in {φ > 0}
ρE

φ (x, t) in {φ = 0}.
(7.2)

We then have:
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Proposition 7.1. With the notation above, assume that (ρφ, φ) are such that

(a) φ ∈ C1({φ > 0}) ∩ C2
loc({φ > 0}) and � := ∂{φ > 0} is C2 in space and C1

in time.
(b) φ satisfies {

−�φ � λ in {φ > 0};
(1 − ρE

φ )Vφ � |∇φ| on ∂{φ > 0}, (7.3)

where Vφ denotes the normal velocity of the interface ∂{φ > 0}.
Then (ρφ, φ) is a weak subsolution of the limiting problem (5.1) in D × [t1, t2],
namely

∂tρφ � �φ + λρφ in D × (t1, t2), φ ∈ P∞(ρφ) a.e. in D × (t1, t2)

where the first equation holds in the sense that for every smooth, compactly sup-
ported test function ψ : D × (t1, t2) → R with ψ(·, t2) = 0 and ψ(·, t) = 0 on
∂D × [t1, t2] we have
∫

D×[t1,t2]
(ρφψt + φ�ψ + λρφψ)dx dt � −

∫

D
ρ1(x)ψ(·, t1)dx +

∫ t2

t1

∫

∂B
φ∂νψdS dt. (7.4)

Similarly, we have

Proposition 7.2. With the notation above, assume that (ρφ, φ) are such that

(a) {φ(·, t) > 0} � � for all t , φ ∈ C1({φ > 0})∩C2
loc({φ > 0}) and the interface

� := ∂{φ > 0} is C2 in space and C1 in time.
(b) φ satisfies {

−�φ � λ in {φ > 0};
(1 − ρE

φ )Vφ � |∇φ| on ∂{φ > 0}. (7.5)

Then (ρφ, φ) is a supersolution of the limiting problem (5.1) in D × [t1, t2],
namely

∂tρφ � �φ + λρφ in D × (t1, t2), φ ∈ P∞(ρφ) a.e. in D × (t1, t2).

(with the corresponding weak formulation as in (7.4))

Note that for the contracting barrier, we have Vφ � 0 and ρE
φ = 1 on ∂{φ(t) >

0} and so the free boundary condition reduces to |∇φ| � 0 for subsolution and
|∇φ| = 0 for supersolution.

Proof of Proposition 7.1. We denote S(t) := {φ(·, t) > 0} = {ρ(·, t) = 1} and
�(t) = ∂S(t) ∩ D. We also denote ν as the outward normal of the boundary of
either �(t) or ∂D with respect to the domain S(t). With these notations, we have

∫

D
φ�ψ dx =

∫

S(t)
φ�ψ dx � −

∫

S(t)
λψ dx −

∫

∂S(t)
ψ∇φ · ν dS +

∫

∂B
φ∂νψdS

� −
∫

S(t)
λψ dx +

∫

�(t)
ψ |∇φ| dS +

∫

∂B
φ∂νψdS,
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where we used the fact that φ = 0 and ∇φ = |∇φ|ν on �(t).
Next

∫

D
φψt dx =

∫

S(t)
ψt dx +

∫

D\S(t)
ρE

φ ψt dx

= d

dt

∫

S(t)
ψ dx −

∫

�(t)
Vφψ dS +

∫

D\S(t)
(ρE

φ ψ)t dx −
∫

D\S(t)
(ρE

φ )tψ dx

= d

dt

∫

D
ρφψ dx −

∫

�(t)
Vφ(1 − ρE )ψ dS −

∫

D\S(t)
(ρE

φ )tψ dx

� d

dt

∫

D
ρφψ dx −

∫

�(t)
|∇φ|ψ dS −

∫

D\S(t)
(ρE )tψ dx

Using the fact that
(ρE )t = λρE in {φ = 0}, (7.6)

and the definition of ρφ , we deduce
∫

D
(ρφψt + φ�ψ)dx � −

∫

D
λρφψdx + d

dt

∫

D
ρψdx +

∫

∂B
∂νψdS,

and we conclude by integrating with respect to t ∈ (t1, t2).

The proof of Proposition 7.2 is parallel. Note that it is not necessary to work
with barriers such that the set {φ(·, t) > 0} is monotone: we chose to do so because
the definition of ρE

φ is more manageable in that case.
Combining Proposition 7.1 with the comparison principle for weak solutions

of the limiting problem (Corollary 5.4) we get

Corollary 7.3. Let (ρφ, φ) be as in Proposition 7.1 (sub-solution). If

(i) ρ1 � ρ(·, t1) in D, (so in particular {φ(·, t1) > 0} ⊂ {ρ∞(·, t1) = 1});
(ii) φ � p∞ on ∂Br × [t1, t2],
then ρφ � ρ∞ in D × [t1, t2]. In particular

{φ(·, t) > 0} ⊂ {ρ∞(·, t) = 1} for all t ∈ [t1, t2].
Formally, this corollary says that a classical subsolution of the viscosity law (satis-
fying (7.3)) cannot touch ρ∞ from below. In other words, ρ∞ satisfies the motion
law

(1 − ρE∞)V∞ � |∇ p∞| in a viscosity sense.
Similarly, Proposition 7.2 implies

Corollary 7.4. Let (ρφ, φ) be as in Proposition 7.2 (super-solution). If

(i) ρ1 � ρ(·, t1) in D (so in particular {ρ∞(·, t1) = 1} ⊂ {φ(·, t1) > 0})
(ii) φ � p∞ on ∂Br × [t1, t2]
Then ρφ � ρ∞ in D × [t1, t2]. In particular,

{φ(·, t) > 0} ⊃ {ρ∞(·, t) = 1} for all t ∈ [t1, t2].
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As above, this result should be interpreted as saying that ρ∞ satisfies

(1 − ρE∞)V∞ � |∇ p∞| in a viscosity sense.
Typically, for free boundary problems such “barrier property” allows us to

introduce a notion of viscosity solutions which describes the pointwise behavior
of the interface via comparison with barriers (see e.g.[15]). It is thus natural to ask
whether our weak solutions coincide with viscosity solutions. While we suspect
that viscosity solutions theory can be established for our problem, answering this
question would require a different set-up of function spaces, and we do not pursue
this question here to keep our investigation focused.

7.2. The radial symmetric case

In this section we show that the free boundary velocity law holds in the classical
sense in the radial setting as long as ∂tλ does not change signs too often. To simplify
our discussion we further assume that λ is non-positive, since construction of radial
barriers for positive λ has been carried out in [15].

We thus assume that K = B1 and that the boundary data is constant (we can
take f = 1 without loss of generality) and for simplicity we take λ = λ(t) � 0
independent of x monotone C1 function of t . The analysis could be extended to
radial symmetric functions λ(|x |, t) � 0 such that ∂tλ changes sign a finite number
of time in the interval [0, T ].

In this setting, we construct compactly supported, radial sub and super solutions
of (2.9) in QT := {|x | � 1} × [0, T ].

For a given R > 1, let us define φR(·, t) as a solution of the Dirichlet boundary
problem in 1 � |x | � R:

−�φ = λ(t) in |x | < R, φ = 0 on |x | = R, and φ = 1 on |x | = 1. (7.7)

Note that this function will take negative value if R is large (depending on λ).
For a given R0 > 1, we assume that the initial density ρ0 equals 1 on 1 �

|x | < R0 and is strictly less than 1 and Lipschitz in |x | � R0. We assume that R0
is small enough so that the initial pressure φR0(·, 0) is nonnegative. We then define
the external density in the region |x | � R by

ρE (|x |, t) := ρ0(|x |) exp
(∫ t

0
λ(s)ds

)

< 1 in |x | � R0,

then ρE (·, t) is Lipschitz continuous. It is also straightforward to check that the
function ∂rφR(R) is Lipschitz continuous for R0 < R < ∞. Thus we can solve
the following ODE for 0 � t � T :

R′(t) = F(R(t), t), where F(R, t) := (∂rφR)−(R, t)

1 − ρE (R, t)
, R(0) = R0. (7.8)

Note that ∂rφR(·, t) � 0 if and only if the function φR(·, t) has a negative
minimum in 1 � |x | � R. Indeed if ∂rφR(R, t) < 0 and φR(·, t) takes negative
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minimum, from the radial symmetry of φR(·, t) it follows that the function has a
local positive maximum for some x such that 1 < |x | < R, which contradicts the
subharmonicity of φR(·, t).

So as long as φR(t) is a non-negative function, we have ∂rφR(·, t) < 0 and
R′(t) > 0 (which provides is an expanding solution of the limiting problem. and
we can show that it happened when the function t �→ λ(t) is decreasing.
Case 1: t → λ(t) is increasing: In this case, we can define

φ(·, t) := φR(t)(·, t) for 0 � t � T (7.9)

and we claim that φ stays nonnegative for all times.
To show this, suppose that φ(·, t) has a negative minimum at some time t = t0.

Then by continuity of R(t), the same is true for φ(·, s) for s sufficiently close to t0.
Hence from above discussion we have R′(t) = 0 in a small time interval [t0−ε, t0].
Suppose we choose ε such that φ(·, t0 − ε) no longer has negative minimum. This
must be true at least with ε = t0 due to our assumption. But since λ(t0 − ε) < λ(t)
and R(t0 − ε) = R(t) for s = t0 − ε, we have φ(x, t0 − ε) � φ(x, t0), which is a
contradiction to our choice of ε.

Hence we have shown our claim, and it follows from (7.8) and Propositions 7.1
-7.2 that φ is an expanding solution of (2.9) for all t � 0.
Case 2: t → λ(t) is non-increasing: In this case, φ(·, t) might take negative value
for some positive time. We thus define

t∗ := sup{t ∈ [0, T ] : φ(·, t) � 0 in 1 � |x | < R(t)}.
If t∗ = ∞ then we can define φ by (7.9) as above. We thus assume that t∗ < ∞.
The same arguments as above implies that |Dφ| = 0 at (R(t∗), t∗). Since λ is
non-increasing, it follows that φR(t∗)(·, t) turns negative for t > t∗. For t � t∗ we
define R̃(t) as the unique boundary point of {ψ(·, t) > 0}, where ψ(·, t) solves the
obstacle problem

−�ψ = λ(·, t)χ{ψ>0} in 1 < |x | < R(t∗), with ψ = 1 on |x | = 1.

We then define

φ(·, t) := φR(t)(·, t) for 0 � t � t∗, φ(·, t) := φR̃(t)(·, t) for t∗ � t � T .

(7.10)
Since λ is non-increasing, so is R̃ and |Dφ|(R̃(t), t) = 0. It follows that φ is a
contracting solution for t∗ � t � T .

Below is the summary of our conclusion.

Lemma 7.5. If t → λ(t) is increasing, then the function φ defined by (7.9) is an
expanding solution for 0 � t � T .
If t → λ(t) is non-increasing, then the function φ defined in (7.10) is an expanding
solution for 0 � t � t∗ and is a contracting solution for t∗ � t � T .

Due to the uniqueness of the limit problemwe can now completely characterize
the limiting profile of radial solutions for λ that are monotone C1 function of time.
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Proposition 7.6. Assume that K = B1, f = 1 and that t �→ λ(t) is a monotone C1

function. Let ρm
0 be a radially symmetric function satisfying the conditions of As-

sumption 2.2. Then the limit (ρ∞, p∞) given by Theorem 2.4 is radially symmetric
and satisfies

{
�p∞ + λ = 0 in {p∞ > 0};
(1 − ρE∞)V � |∇ p∞| on ∂{p∞ > 0}.

Furthermore

(a) If t �→ λ(t) is increasing, then {p∞ > 0} is always expanding (ρE∞ < 1,
|∇ p∞| > 0 and V > 0 on ∂{p∞ > 0})

(b) If t �→ λ(t) is non-increasing, then there exists a time t∗ ∈ [0, T ] such that
{p∞ > 0} is expanding for 0 � t � t∗ and contracting for t∗ � t � T
(ρE∞ = 1, |∇ p∞| = 0 and V � 0 on ∂{p∞ > 0})

7.3. Continuous expansion of the congested zone

As an application of comparison principle (Corollary 5.4) with a radial barrier,
we show that the congested zone does not expand discontinuously over time. Note
that itmay shrink discontinuously even ifλ is smooth, for instance due to topological
changes. Note also that if λ is nonnegative, the expansion may not be continuous
due to the nucleation of congested zones created by the growth of external densities.

Corollary 7.7. If (ρ, p) is a limit solution in � × [0, T ] and λ ∈ C(QT ) ∩
L2([0, T ]; H1(�)) is negative, then

{p > 0} ∩ QT = {p > 0} ∩ QT = {ρ = 1} ∩ QT for any T > 0. (7.11)

Proof. We denote

S1 := {p > 0} ∩ QT , S2 := {p > 0} ∩ QT .

Since S1 ⊂ S2 by definition, we only need to show that S2 ⊂ S1 in order to prove
the first equality.

Given x0 /∈ S1 there exists r > 0 such that

B2r (x0) × [T − r, T ) ⊂ {p = 0}.
We claim that Br/2(x0) lies in {p(·, T ) = 0}. This proves that (x0, T ) /∈ S2, hence
S2 ⊂ S1.

To show that Br (x0) ⊂ {p(·, T ) = 0}, we use a barrier argument in � :=
Br (x0)×[T−ε, T ) for a sufficiently small ε > 0 as follows.Due to Proposition 2.10
we have ρt = λρ in B2r (x0) × [T − r, T ), and thus

ρ < a(λ, r) < 1 in B2r (x0) × [T − r/2, T ).

Let us construct an expanding supersolution in � as follows. Let φ0 solve

−�φ0 = 	 in {r < |x | < 2r}, φ0 = 0 on {|x | = r},
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and φ0 = M := ‖p‖L∞(�×[0,T ]) on {|x | = 2r},
and let φ(·, t) := φR(t) defined by (7.7) with λ = 	 where R(t) solves

R′(t) = |Dφ|(R(t), t)|
1 − a exp(	t)

for 0 � t � ε, with R(0) = r.

Thenφ is an expanding supersolution in� with fixed boundary dataM on ∂B2r (x0)
and initial data ρ0 = χr<|x |<2r + aχ|x |�r . Corollary 5.4 now applies to show that
p(·, T ) � φ(·, T ). Choosing ε = ε(M, a) sufficiently small so that R(T ) �
R(0) + r

2 , it follows that φ(·, T ) = 0 in Br/2(x0) and we can conclude.
It remains to show the second equality of the Corollary. Note that we have

{p > 0} ⊂ {ρ = 1}, and thus their closures are also ordered. On the other hand we
showed above that if x0 lies outside of {p > 0} then ρ is strictly less than one in a
small neighborhood of x0, and thus it is outside of {ρ = 1}. The result follows. ��

8. Monotone Increasing Solutions

In this section we suppose that λ ∈ L2([0, T ]; H1(�)) is non-decreasing in
time. We first show that in this setting, if the density starts as a characteristic
function, the pressure only increases over time.

Lemma 8.1. Let �0 be a bounded subset of R
n which contains K . Suppose that

ρ0 = χ�0\K and that �0 \ K coincides with the initial pressure support {p0 > 0},
where p0 solves (2.12) with ρ∞(·, t) replaced by ρ0. If (ρ, p) is the limit solution
given by Theorem 2.4 with initial data ρ0, then ρ and p are monotone increasing
with respect to t .

Proof. Let BR contain the support of �0. We claim that (ρ0, p0) is a stationary
subsolution of (5.1) with D = BR \ K and with boundary data f . To verify this
claim, using the monotonicity of λ over time, it is enough to check that

∫

D
−∇ p0∇ψ + λ(·, 0)ρ0ψdx � 0 (8.1)

for any nonnegative test function ψ ∈ C∞
0 (D). Since ρ0 = χ{p0>0}, the question

boils down to the nonnegativity of the measure μ0 := �p0 + λ(·, 0)χ{p0>0}. This
follows the same proof of showing μt � 0 in Proposition 2.10, see section 5.

With the claim and the comparison principle for (5.1) (Proposition 5.1), it
follows that

ρ(x, 0) � ρ(x, ε) for all ε > 0. (8.2)

Note that, since λ is non-decreasing in time, ρ(·, t − ε) is a subsolution of (5.1) for
any ε > 0. Thus by comparison principle and (8.2) it follows that

ρ(x, t − ε) � ρ(x, t) for any t > ε > 0,

and we conclude that ρ increases for all times. p accordingly increases by its
definition. ��



862 N. Guillen, I. Kim, & A. Mellet

Corollary 8.2. Let (ρ, p) be the weak solution of (5.1) in�×[0,∞)with the fixed
boundary data p = f > 0 and the initial data ρ0 ∈ BV . Then �(t) := {p(·, t) >

0} increases in time, and is a set of finite perimeter for a.e. t > 0. Moreover for all
t � 0

ρ(·, t) = χ�(t) + ρEχRn\�(t), where ρE (x, t) := ρ0 exp
∫ t
0 λ(x,s)ds . (8.3)

Proof. We claim that the pressure support �(t) := {p(·, t) > 0} increases over
time. For any t0 > 0, Let us call ρ∗ be the weak solution of (5.1) with the initial data
χ�(t0), and with the same fixed boundary data f for the pressure. Then ρ∗ increases
in time due to Lemma 8.1. From the monotonicity of ρ∗ and Proposition 5.1, we
have

χ�(t0) � ρ∗(·, t) � ρ(·, t0 + t) for all t > 0. (8.4)

It follows that �(t) increases over time. It follows from Proposition 1.5 that

ρt = λρ in �(t)
C × [0, t] for any T > 0, and thus we can conclude (8.3). Lastly

�(t), is a set of finite perimeter for a.e. t > 0 since ρ ∈ BV (�) for a.e. t > 0 and
ρ has jump discontinuity on the boundary of �(t) due to (8.3). ��
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Appendix A. Tumor Growth Model with Nutrient

In [21] (see also [9]), the following model for tumor growth is studied:
⎧
⎪⎨

⎪⎩

∂tρm − div (ρm∇ pm) = ρmG(pm, cm) x ∈ R
n, t � 0

∂t cm − �cm + ρmH(cm) = (cB − cm)K (pm)

cm(x, t) → cB for x → ∞
(A.1)

where

pm = m

m − 1
ρm−1
m .

In this system, the evolution of the cell population density ρm � 0 is coupled to the
concentration of nutrients cm � 0 by the cell division rate G(p, c). Importantly,
this function satisfies

∂pG < −β < 0

(see [21] for a complete list of the assumptions necessary to get a good existence
and uniqueness framework as well as the appropriate estimates to pass to the limit).
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It is proved in [21] thatρm(x, t), pm(x, t) and cm(x, t) converge strongly in L1(QT )

(for all T > 0) to ρ∞, p∞, c∞ in BV (QT )which solves the system
⎧
⎪⎨

⎪⎩

∂tρ∞ − div (ρ∞∇ p∞) = ρ∞G(p∞, c∞) x ∈ R
n, t � 0

∂t c∞ − �c∞ + ρ∞H(c∞) = (cB − c∞)K (p∞)

c∞(x, t) → cB for x → ∞
(A.2)

with the Hele-Shaw relation p∞ ∈ P∞(ρ∞).
Remarkably, the solution of this system is unique, and onewould like to interpret the
system as a weak form of some geometric Hele-Shaw type free boundary problem.
For this one needs to identify the pressure p∞ as solution of an elliptic equation in
{ρ∞ = 1}.
In [9], it is proved that p∞ solves the complementarity condition

p∞(�p∞ + G(p∞, c∞)) = 0 in D′(Q).

This condition says that p∞ solves an elliptic equation in {p∞} and is proved by
deriving additional estimates on pm .
We will show below that the approach used in this paper can be used to characterize
p∞(·, t) as the unique solution of an obstacle problem. First, we summarize the
estimates proved in [21]:

Lemma A.1. Under the assumptions listed in [21], the following holds for all T >

0:

• ρm(t) is uniformly compactly supported for t ∈ [0, T ];
• |∇ pm | is bounded in L2(QT )

• 0 � pm � pM, 0 � ρm �
(m−1

m pM
) 1
m−1 , 0 < cm < cB

• ρm, pm and cB − cm are bounded in BV (QT )

• ρm, pm and cB − cm converge strongly in L1 and almost everywhere to ρ∞,
p∞ and cB − c∞.

Furthermore, proceeding as in Lemma 3.7, it is not difficult to show that {ρm}m∈N
is relatively compact in Cs(0, T ; H−1(Rn)) for all s ∈ (0, 1/2) and thus that
ρ∞ ∈ C(0, T ; H−1(Rn)).
Finally, since p∞ and cB − c∞ are in BV (QT ), we can define the trace p+(·, t)
and c+(·, t) for all t > 0 as in (2.10). We can then prove the following result:

Proposition A.2. For all t > 0, let Et denote the space

Et = {v ∈ H1(Rn) ∩ L1(Rn) ; v(x) � 0, 〈v, 1 − ρ∞(t)〉H1,H−1 = 0}.
Then for all t > 0, the function x �→ p+(x, t) is the unique solution of the
minimization problem:
⎧
⎨

⎩

p ∈ Et∫

Rn

1

2
|∇ p|2 − G(p, c+) dx �

∫

Rn

1

2
|∇v|2 − G(v, c+) dx ∀v ∈ Et

(A.3)

where G is the (concave) function such that ∂pG(p, c) = G(p, c) and G(0, c) = 0.
Furthermore p∞ satisfies the complementarity condition

p∞(�p∞ + G(p∞, c∞)) = 0 in D′(Rn × (0,∞)). (A.4)
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As mentioned in the introduction (see Proposition 2.8), if the complementarity
condition (A.4) is known to hold, then one can derive the variational formulation
(A.3) from the weak equation (A.2). In particular, this complementarity condition
was derived for this particular model in [9] by using a generalized Aronson-Bénilan
estimate and the L2(W 1,4) estimate on the pressure (but our proof here does not
require either of these estimates).

Proof. First we recall the equation for the pressure pm :

∂t pm = (m − 1)pm(�pm + G(pm, cm)) + |∇ pm |2. (A.5)

We then proceed as in the proof of Theorem 2.7: Given t0 > 0 and a function v(x)
in Et0 , we use the equation for the pressure (A.5) and density (A.2) to write that

∫

Rn
∇ pm · ∇ pm − ρm∇ pm · ∇v − G(pm, cm) + G(v, cm) dx

= − 1

m − 1

[
d

dt

∫

Rn
pm dx −

∫

�

|∇ pm |2 dx
]

+ d

dt

∫

Rn
vρm dx

+
∫

Rn
pmG(pm, cm) − ρmvG(pm, cm) − G(pm, cm) + G(v, cm) dx

in D′(R+). Using the concavity of G to write

G(v, cm) − G(pm, cm) � G(pm, cm)(v − pm),

we deduce that
∫

Rn
∇ pm · ∇ pm − ρm∇ pm · ∇v − G(pm, cm) + G(v, cm) dx

= − 1

m − 1

[
d

dt

∫

Rn
pm dx −

∫

Rn
|∇ pm |2 dx

]

+ d

dt

∫

Rn
v ρm dx +

∫

Rn
(1 − ρm) v G(pm, cm) dx .

We can now proceed as in the proof of Theorem 2.7: Integrating this equality with
respect to t ∈ [t0, t0 + δ) and using the weak L2 convergence of ∇ pm and ρm∇ pm
to ∇ p, we get

∫ t0+δ

t0

∫

Rn
|∇ p∞|2 − ∇ p∞ · ∇v − G(p∞, c∞) + G(v, c∞) dx dt

�
∫

Rn
v(x)[ρ∞(x, t0 + δ) − ρ∞(x, t0)] dx +

∫ t0+δ

t0

∫

Rn
(1 − ρ∞)vG(p∞, c∞) dx dt

� ‖G(p∞, c∞)‖L∞
∫ t0+δ

t0

∫

Rn
v(1 − ρ∞) dx dt

(where we used the fact that v(x)ρ∞(x, t0) = v(x) and v(x)ρ∞(x, t) � v(x) for
all t)
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Finally, dividing by δ and using Young’s inequality, we rewrite the inequality as

1

δ

∫ t0+δ

t0

∫

Rn

1

2
|∇ p∞|2 − G(p∞, c∞) dx

� 1

δ

∫ t0+δ

t0

∫

Rn

1

2
|∇v|2 − G(v, c∞) dx dt + C

δ

∫ t0+δ

t0

∫

Rn
v(1 − ρ∞) dx dt

�
∫

Rn

1

2
|∇v|2 − 1

δ

∫ t0+δ

t0
G(v, c∞) dt dx + C

δ

∫ t0+δ

t0
〈v, 1 − ρ∞〉H1,H−1 dx dt.

The continuity of t �→ 〈v, 1 − ρ∞〉H1,H−1 and the fact that v ∈ Et implies that
the last term converges to zero as δ → 0. We can now conclude as in the proof of
Theorem 2.7.
Finally, given a test function ϕ ∈ D(Rn × (0,∞)), we take v = p∞ + ε(p∞ϕ) =
p∞(1+εϕ) in (A.3), with |ε| small enough so that 1+εϕ � 0. Passing to the limit
ε → 0− and ε → 0+ yields

∫

Rn
∇ p∞ · ∇(p∞ϕ) − G(p∞, c∞)p∞ϕ dx = 0

and (A.4) follows. ��

Appendix B. The Complementarity Condition

Proof of Proposition 2.8. We note that ∂tρ = �p + λρ ∈ L2(0, T ; H−1(�)).
Given u ∈ Et , we have p−u ∈ L2(0, T ; H1

0 (�)) and so we can write (inD′(R+))

〈∂tρ, (p−u)〉H−1,H1
0

= 〈�p+λρ, p−u〉H−1,H1
0

= −
∫

�

∇ p·∇(p−u)−λρ(p−u) dx .

(B.1)
Next, proceeding as in the beginning of the proof of Lemma 8.1 (using the compar-
ison principle for the limiting problem, Proposition 5.1), we can show that ρ = 1 in
U × R+ for some neighborhoodU of K and that supp p is bounded in � × [0, T ].
In particular, ∂tρ vanishes in U × R+. Taking a smooth function φ(x) which is
equal to 1 in supp p \ (U × [0, T ]) and vanishes on ∂K , we can write

〈∂tρ, (p − u)〉H−1,H1
0

= 〈∂tρ, (p − u)φ〉H−1,H1
0

= 〈�p + λρ, pφ〉H−1,H1
0

− 〈∂tρ, uφ〉H−1,H1
0

= 〈p(�p + λρ), φ〉D′,D − 〈∂tρ, uφ〉H−1,H1
0

= 〈p(�p + λρ), φ〉D′,D − d

dt

∫

�

ρuφ dx

= − d

dt

∫

�

ρuφ dx in D′(R+),
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where we used the fact that 〈p(�p+λρ), φ〉D′,D = 0 (this is the complementarity
condition). Using (B.1), we deduce

∫

�

∇ p · ∇(p − u) − λρ(p − u) dx = d

dt

∫

�

ρuφ dx in D′(R+).

Using the fact that ρ(x, t)p(x, t) = p(x, t), we deduce that
∫

�

∇ p · ∇(p − u) − λ(p − u) dx dt

=
∫

�

∇ p · ∇(p − u) − λρ(p − u) dx dt +
∫

�

λ(1 − ρ)u dx dt

� d

dt

∫

�

ρuφ dx + 	

∫

�

(1 − ρ)u dx dt

Integrating with respect to t ∈ [t0, to + δ], we get
∫ t0+δ

t0

∫

�

∇ p · ∇(p − u) − λ(p − u) dx dt

�
∫

�

(ρ(t0 + δ) − ρ(t0))uφ dx + 	

∫ t0+δ

t0

∫

�

(1 − ρ)u dx dt

�
∫

�

(ρ(t0 + δ) − 1)uφ dx + 	

∫ t0+δ

t0

∫

�

(1 − ρ)u dx dt

� 	

∫ t0+δ

t0

∫

�

(1 − ρ)u dx dt

and the result now follows by proceeding as in the proof of Theorem 2.7. ��
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