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Abstract: We consider a nonlinear Neumann problem, with periodic oscillation in the elliptic operator and
on the boundary condition. Our focus is on problems posed in half-spaces, but with general normal
directions that may not be parallel to the directions of periodicity. As the frequency of the oscillation grows,
quantitative homogenization results are derived. When the homogenized operator is rotation-invariant, we
prove the Holder continuity of the homogenized boundary data. While we follow the outline of Choi and
Kim (Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data,
Journal de Mathématiques Pures et Appliquées 102 (2014), no. 2, 419-448), new challenges arise due to
the presence of tangential derivatives on the boundary condition in our problem. In addition, we improve
and optimize the rate of convergence within our approach. Our results appear to be new even for the linear
oblique problem.
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1 Introduction

For given € > 0, v € 8" 'and 7 € R", let u. be a bounded solution of the following problem:

F(Dzug,£)=0 inMl={xeR": -1<(x-1)Vv<O0}
€
ue = h(x) on H;={x-1)v=-1} (P)e
oU, = G(Dug, i) on Hy = {(x — 7)- v = 0}.
€
Here, F(M, y) and G(p, y) are Z"-periodic in the y variable. We also assume the boundary condition to be

oblique and F to be uniformly elliptic: see Section 1.1 for precise assumptions on F and G.
The examples of boundary conditions we consider include the linear oblique problem:

() o) -o

where the vector field y satisfies c(%, v) = 7(%) -v > 0. In this case, one can write

G, y) = c V) pr + W,
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where pr = p — (p - v) is the tangential component of p € R" on Hy. A nonlinear example is capillarity-type
conditions, for which G is given by

G(p,y) = 0(y)y1+ |pl?, )

where |08(x)| < 1.

We are interested in the behavior of u, as € tends to zero. Our objective is to extend the results of [7,8], to
establish a general framework to understand nonlinear elliptic problems with oscillatory Neumann
boundary data. In particular, we have tried to carefully detail the double-scale averaging argument given
in Section 5, which has been central in understanding continuity properties of the homogenized boundary
condition in both Neumann and Dirichlet boundary problems: see [7,8,12,13]. We focus on problems posed
on half-spaces here. To deal with domains with general geometry, the approach taken in [7] or [13] uses
fundamental solutions as barriers to bound the potential singularity generated at points with rational
normals. For our problem, while our result is likely to hold in general domains, we suspect that these
singular solutions may cause new challenges in dealing with perturbative arguments, due to their singu-
larity in tangential derivatives.

Note that, as first pointed out by Bensoussan et al. [5], if v is a multiple of a vector in Z" (i.e., if v is
rational), then 7 - v must be zero for u® to converge, since otherwise the Neumann boundary condition
changes drastically as € changes, and thus, u, would not have a limit. When v is irrational, we expect u, to
average due to the ergodic property of its Neumann data. However, in this case, uf is no longer periodic, and
thus, interesting challenges arise in dealing with the inherent lack of compactness. Compared to [7] where
the linear Neumann problem was considered, there is an additional challenge in our setting given by the
presence of tangential derivatives on the boundary condition. We will discuss some of the relevant litera-
ture on this issue.

Let us state a convergence result on (P), to begin the discussion. Let F be the homogenized operator of
F obtained by Evans [11].

Theorem 1.1. Let v be irrational, or otherwise suppose that T = 0. Let us assume (F1)—(F3) and (G1)-(G3)
(see Section 1.1). In addition, suppose that F(-,x) is convex when G(-,x) is nonlinear. Then there exists
u(n, q) : S x R*! - R, where u is independent of T, such that u. converges uniformly to the unique
bounded solution i of the oblique boundary problem:

F(D20) =0  in 1T
it = h(x) on H, P)
Bvﬂ = }I(V, DTﬂ) on Ho.

(here, Dru denotes the tangential derivative of u along the direction v*.) Moreover, u is Lipschitz continuous
with respect to q. Finally, if F(M) is rotation-invariant, then u is also Hélder continuous over irrational
directions v with exponent o = Sin

The proof of Theorem 1.1 will be given later in this section, based on our main result (Theorem 1.2),
which establishes rates of convergence for (approximate) cell problem solutions. Our work extends the
previous results in [8] on linear Neumann problems, where G(p, y) = G(y). For general, G(p, y) additional
challenges arise due to the presence of tangential derivatives on the boundary condition, which necessi-
tates Lipschitz regularity estimates for the solutions. As noted in [13], the continuity property of u(v, q) fails
when F is not rotation-invariant, even when it is convex. When the continuity result holds for u we expect to
be able to address domains of general geometry, building on our result and proceeding as in [7].

It is unknown whether the form of the boundary condition such as (1) or (2) is preserved in the limit
& — 0. With the exception of linear problems, the interaction between the operator F and the boundary
condition remains to be better understood to yield further characterizations of the homogenized problems.

Literature. Before proceeding further, let us briefly describe some of the relevant literature. In the
classical article in [5], the following problem was considered:



DE GRUYTER Homogenization of oblique boundary value problems =—— 3

-V (A(E)Vus) =0inQ, v- (A(%)Vus)(x) = g(g) on 0Q. 3)

For this co-normal boundary value problem, explicit integral formulas have been derived for the limiting
operator as well as for the limiting boundary data, under the assumption that 0Q does not contain any flat
piece with a rational normal.

For linear elliptic systems with either Dirichlet or Neumann problem with co-normal derivatives, there
has been a recent surge of development in quantitative homogenization relying on the integral representa-
tion of solutions: we refer to [2,15,20] and the references therein.

For nonlinear problems, or even for linear problems with non co-normal boundary data, until recently,
the focus has been on half-space type domains with rational normal, with the origin on the boundary. In
[21], Tanaka considered some model problems in half-space whose boundary is parallel to the axes of
the periodicity by purely probabilistic methods. In [1], Arisawa studied specific problems in oscillatory
domains near half spaces going through the origin. Generalizing the results of Arisawa [1] for nonlinear
boundary conditions, Barles et al. [4] studied the problem for operators with oscillating coefficients, in
half-space type domains whose boundary is parallel to the axes of periodicity. We also refer to [14], which
adopts an integro-differential approach to study linear scalar problems with the specific Neumann pro-
blem G(p, y) = g(y)-

For the linear Neumann problem G(p, y) = g(y) in (P),, corresponding results to Theorems 1.1 and 1.2
have been recently shown in [8]. General domains has been considered in [7] based on the cell problem
analysis in [8]. Corresponding results for the Dirichlet boundary data have been obtained in [12]. Finally, for
general operator F, [13] discusses the generic nature of discontinuity for the homogenized boundary data,
for either linear Neumann or Dirichlet problem.

Cell problem. By the formal expansion u, = @i(x) + ev(x, g) + 0(&?), the cell problem for v was derived

in [4] for a rational v and 1 = 0. There they find a unique constant y = u(v, q) for g € (v)* such that the
boundary value problem

{F(Dzv, y)=0 in {y-vz>0}, ©

u=GDv+p,y) on Hy,

with p = uv + g, has a bounded periodic solution v in {y - v > 0}. The existence of bounded v leads to the
uniform convergence of u, to @ in the limit € — 0 with p = Dii on H,.

For general v and 7, an approximate cell problem needs to be derived, since v is no longer expected to
be periodic and thus compactness is lost. In the context of (C), our result shows that for irrational v, there
exists a unique constant u = u(v, q) for g € (v)* such that the problem

{F(Dzv,y+‘r)=0 in {y-vz>0}, @
u=GDv+p,y+1) on Hy

has a solution with sublinear growth at infinity, for any 7 € R". To show this, we use the ergodicity of
Neumann data in a scale depending on v, and the stability of solutions under perturbation of boundary
conditions. When the homogenized operator F is rotation-invariant, we show that v is stable as the normal
direction of the domain v varies. A quantitative version of this stability property yields the mode of con-
tinuity for p as v varies.

A discussion on assumptions on F and G. Our assumptions on F and G are mainly to obtain Lipschitz
estimates for the solutions of (€). The Lipschitz estimates ensure that the solution of the cell problem has
the ergodic structure with respect to translations along the Neumann boundary (see Lemma 3.5), when &
changes in (P). and when 7 is not the origin. In particular to guarantee the Lipschitz bound, available
literature restricts F(M, x) to be convex with respect to M when G is a nonlinear function of Du. We refer to
[3] for a detailed description of the regularity theory on nonlinear Neumann boundary problems. For the
continuity properties of u, we further need C-* estimates for solutions of (C); however, this does not further
restrict the class of problems we can address.
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1.1 Assumptions and main results

Let T be the 1-periodic torus in R", and let M" be the space of real n x n symmetric matrices. Consider the
functions F(M,y) : M"x T — R and G(p, y) : R" x T satisfying the following properties:
(F1) (Uniform Ellipticity) There exist constants 0 < A < A such that

ATI(N) < F(M, y) - F(M + N, y) < ATr(N)

forally € T and M, N ¢ M" with N > 0.
(F2) (1-Homogeneity) F(tM,y) = tF(M,y) forally e T,t > 0 and M € M".
(F3) (Lipschitz continuity) There exists C > 0 such that for all y;,y, € T and M, N ¢ M™",

[F(M, y1) = F(N, y,)| < C(ly; = y,|(1 + IMI| + [N]}) + IM — NI).

(G1) (At most linear growth) |G(p, x)| < u,(1 + |p|).
(G2) (Lipschitz continuity) (1 + |p|)|Gyl, |G| < m(1 + |p|) for some m > 0.
(G3) (Oblicity) |G, - v| < ¢ < 1.

A typical example of an operator F satisfying (F1)—(F3) is the linear elliptic operator
F(Du, x) = =Z; ja;j(X)dxuls (4)
where g; : R" - R is periodic and Lipschitz continuous. A nonlinear example is the Bellman-Isaacs
operator arising from stochastic optimal control and differential games

F(D?u, x) = inf sup{L*fu}, ()

BeB gea

where £%F is a family of uniformly elliptic operators of the form (4). In fact, all operators satisfying
(F1)-(F3) can be written as (5). As for G, the ones given in (1) and (2) with Lipschitz coefficients
¢y, clg and 6 satisfy (G1)—(G3).

For 7 € R" and v € S™1, let us define a strip domain

I(r,v) ={xeR": -1<(x-1)v<0}
and a hyperplane
Hy(t,v) ={(x — 1)- v = s}.
We will denote Hy(t, v) by H; throughout the article when it is unambiguous. For a given g € (v)*, let u,
solve the following approximate cell problem:

F(Dzug, £) =0 in I(t,v)
€

Uy = G(Dug, £) on H, Plev.rg-
€
u(x)=q-x on H,4

Now we are ready to state the main result.

Theorem 1.2. Let u, solve (P)g,y,¢,q. Suppose that either v is irrational or T = 0. Then the following holds:
(a) There exists u = u(v, q) such that u, converges uniformly to the linear profile

ux) =pu((x-1)>v+1+gqg-x
Here, u(v, q) is independent of T and Lipschitz continuous with respect to q. Moreover, we have
lus — u| < CA(e,v) in Il(t,v), (6)

where A(g, v) (as given in (23)) is an increasing function of € such that lim,_,oA(g, v) = 0.
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(b) When F is rotation-invariant, there exists a continuous extension ji(v, q) : S™! x R* — R of u(v, q) over
irrational directions v € S"! — RZ™". Moreover, ji is Lipschitz in q and C* in v, with a = Sin

The proof is given in Theorems 4.1, 5.2, and 5.1.

A discussion on the rate of convergence A(e, v). Here, we briefly describe the geometric process used
in Section 4 to obtain an upper bound for the rate function A in (6). Given § > 0, we are interested in finding
&0 = &o(v, 6) such that |u, — u| < C6 for € < ¢.

If v isrational and 7 = 0, F and G are periodic along v-direction with period T,. Hence, we expect that £
needs to be smaller than 1/ T, for a fixed §. In fact, Theorem 4.1 (d) yields that

Ae,v) <8 fore<egy=6%/T,
and thus yields a uniform bound
Mg, v) < C(v)et/2, (7)

If v is irrational, for each 6, we choose a reference rational direction P as follows: choose a point
P =P(v, 6) € Z" such that

|Tv-P| <6 forsome T=T(v,S§6)>O0. (8)

Then F and G are periodic along P-direction with period T + 0(6). If we let 8 = 8(v, 6) be the angle between
v and P, then (8) can be writtenas 6 < § /T.If R < 1/6, then due to the proximity of v to P direction, G(p, -)
takes only limited values of G on Hy N Bgr(7), even though v is irrational. In other words, G(p, -) exhibits
ergodicity on Hy only in a neighborhood of size R > 1/6. For this reason, u, homogenizes only when
€ < 0(0). Indeed Theorem 4.1 (c) yields that

A, v) <6 for € < g = 6%.

Since 6 depends on not only v but also §, we are not able to separate the dependence of the rate function on
€ and v, without further estimate of 8 or T as § varies. Such estimate would require better understanding of
the discrepancy function discussed in in [7], [8] and [12].

Proof of Theorem 1.1. Once Theorem 1.2 (a) is obtained, one can derive our main theorem by the perturbed
test function arguments introduced by Evans [10].
Let u, solve (P), and define u* and u. as follows:

u* = limsup*u, == lim sup u.(y); u, = liminfu, = lim inf w.(y),
r=0(y,e)es¥ r—0(y,e)eS}

where S} = {(y,€) : y € I, |x — y| < 1,0 < € < r}. First, observe that, by using a barrier of the form
Py(x) = M((x - 7)- v+ 1) + f(x),

where f is a C>-approximation of h that is larger than h, one can conclude that u, < ¢, inII for any large M,
and thus, u* < h on H ;. Similar arguments yield that u, > h on H ;.

We claim that u* and u, are, respectively, a viscosity subsolution and supersolution of (P). If the claim is
true, then Corollary 3.4 applies to yield that u* < u.. Since the opposite inequality is true from the definition,
we conclude that u* = u,, which means that u, uniformly converges in Q.

Below we will only show that u* is a subsolution of (P), since the proof for u. can be shown by parallel
arguments. To this end, suppose that u* — ¢ has a local max in B,(),) N II with a smooth test function ¢. If
Y, is in the interior of I1, then F(D?p)(y,) < 0 due to standard interior homogenization (see, for instance,
[10]). Hence, it remains to show that if y, is on the Neumann boundary, then ¢ satisfies

0vp < u(v,q = Drp) at x =y, ©)

First, suppose that v is rational and y, - v = 0. We may assume for simplicity that u(y,) = ¢(y,) = 0 and
define P(x) := D(y,)-(x — y,). Since IT ¢ {x : x - v < 0}, for any 6 > O, we may choose r sufficiently small
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that l5(x) = P(x) — 6(x - v) is strictly larger than u* on B,(0) n II. Then for sufficiently small choice of ¢,
we have

Is>u, on B,(0)NnH_,s, where H_,={x-v=-r6} (10)
Let & := (r6)'e and consider the re-scaled function v.(x) := (r6)u.(réx) — ls(x). Then v, is a subsolution

0of (P)g,v,0,¢> in the local domain IT N Bs-1(0). Note that the corresponding Neumann boundary for v; remains
to be Hj since y, - v = 0: in general, it will be {(x - 7)- v = 0} with

T = (&), (11)
and thus, the choice of T must change as we vary &. We will compare v, with w;, the unique bounded
solution of (P)g,,,0,4 in II obtained in Lemma 3.3. Due to the localization lemma (Lemma 3.2), we have

Ve < Wz + M6 in II n By(0). (12)
Due to Theorem 1.2, we have
we < u(v,@)(x-v+1) +q-x+AE v) in Il
Since A(g, v) — 0 as € — 0, (10) and (12) yield that

limsup&:x) < limsupve(x) + ls(-v) < u(v, @)(x - v+ 1) + g - x + ls(-v) + M6 in II n By(0). (13)

-0 T -0
Now suppose that (9) is false, then there exists § > 0 such that
0v$(0) = 6 — Is(-v) > (v, @) + (M + 1)8. (14)

This means that the right-hand side of (13) is strictly negative at x = 0, which contradicts the assumption
that u*(0) = 0.

Next suppose that v is irrational, we need to choose 7 depending on € so that (11) holds. Then we argue
as earlier with a solution of (P)s,,, 1,4 in II. Here, we must use the fact that v is irrational, and thus, Theorem
1.2 ensures the uniform convergence of w; to the linear profile is regardless of the choice of 7. O

2 Preliminaries

We adopt the following definition of viscosity solutions, which is equivalent to the one given in [9]. Let Q be
domain in R™ with 0Q as a disjoint union of [, and I. Let F satisfy (F1)-(F3) in the previous section, and let G
satisfy (G3) with G(p, x) being uniformly continuous in p independent of the choice of x. For f € C(Iy),
consider the following problem:

F(D*u,x)=0 in Q

u=f(x) on [ ®)
iu = G(Du,x) on I,
v

where v = v(x) is the outward unit normal at x € I3. Here, we replace (G3) with
(G3)' (Oblicity) |G, - v| < ¢ < 1 on 0Q, where v = v, is the outward normal at x € 9Q.

Definition 2.1.
(a) An upper semi-continuous function u : Q@ — R is a viscosity subsolution of (P) if u cannot cross from
below any C? function ¢, which satisfies

F(D’¢p,x)>0 inQ, ¢>f only,
v-D¢ > G(D¢, x) on I.
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(b) A lower semi-continuous function u : @ — R is a viscosity supersolution of (P) if u cannot cross from
above any C? function ¢, which satisfies

F(D’¢p,x) <0 inQ, ¢<f onl,
v-D¢ < G(DP, x) on I.

(c) uis a viscosity solution of (P) if its upper semi-continuous envelope u* is a viscosity subsolution and its
lower semi-continuous envelope u, is a viscosity supersolution of (P).

Existence and uniqueness of viscosity solutions of (P) are based on the comparison principle we state
later. We refer to [9,16] for details on the proof of the following theorem as well as the well-posedness of the
problem (P).

Theorem 2.2. Let G and F satisfy the conditions (G1) and (G3)' and (F1)-(F3) in the previous section, with G
being uniformly continuous in p independent of the choice of x. Let u and v be, respectively, bounded viscosity
subsolution and supersolution of (P) in a bounded domain Q. Thenu < v in Q.

For a symmetricn x n matrix M, we decompose M = M, — M_ with M, > 0 and M,M_ = 0. We define the
Pucci operators as follows:

PHM) = —Atr(M,) + Atr(M.)
and
P-(M) = -Atr(M,) + Atr(M.)

where 0 < A < A. Later this article, we will utilize the fact that the difference of two solutions of
F(D?u, x) = 0 is both a subsolution of P*(D?u) < 0 and a supersolution of P~(D?(u)) = 0 (see [6]).
Next we state some regularity results that will be used throughout this article.

Theorem 2.3. [Chapter 8, [6], modified for our setting] Let u be a viscosity solution of F(D?u, x) = 0 in a
domain Q. Then for any compact subset Q' of Q, we have
IDullr=an < Cd-Yullzogy,

where d = d(Q', 0Q) and C > 0 depends on n, A, and A.

As mentioned in Section 1, regularity results for nonlinear Neumann problems are rather limited. C%#
estimates have been obtained by Barles and Da Lio in the general framework [3]. While a priori results for
the gradient bounds are available for general F and G in [19], their results are based on linearization and
thus require existence of classical solutions. For G(p, x) that is linear in p, regularity estimates on Du were
recently obtained by Li and Zhang [18].

Theorem 2.4. [18,19] Let u be a viscosity solution of (P) with |u| < M.
B ={lx|<r}n{x-e, >0} and T:={x-e,=0}nB.
Let u be a viscosity solution of

F(D%u,x)=0 in Bf
v-Du=GDu,x) on T.

For F and G satisfying (F1)—(F3) and (G1)—(G3), suppose that either (A) F(M, x) is convex with respect to M, or
(B) G(p, x) is linear with respect to p. Then for any 0 < a < 1, we have

lullcoucg; ) IDUllcoeegy, ) < C, (15)

where C depends on a and M as well as the constants given in (F1)-(F3) and (G1)—-(G3).
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Our proof extends in general to the cases where estimate (15) holds for some a > 0.
Below we mention interior homogenization result from [7], which is a modified version of homogeniza-
tion results such as in [11].

Theorem 2.5. (Theorem 2.14, [7]) Let K be a positive constant and let f : R" — R be bounded and Hélder
continuous. Givenv € 8", let uy : {-K < x - v < 0} —» R be the unique bounded viscosity solution of

(Pw)

F(D*uy,Nx) =0 in{-K<x-v<O0}
v-Duy=f(x) on {x-v=0}, u=1 on {x-v=-K}

Then for any 6 > 0, there exists Ny depending only on K, the bound of uy, and the Holder exponent of f, such
that

luy —ul <6 in{x] <K} for N> N,, (16)
where 11 is the unique bounded viscosity solution of

FDW) =0 in{-K<x-v<O0}
v-Di=f(x) on {x-v=0}, u=1 on {x-v=-K}

Next we state some consequences of ergodic property of irrational numbers in R mod Z. First, we state
a version of Dirichlet’s approximation theorem, whose proof is based on the pigeon-hole principle.

Lemma 2.6. [Lemma 2.11 in [13]] For ai,...,a, € R and N € N, there are integers p,..., Pn, q € Z Wwith
1< g < N such that

lga; — pi| < N7U/m,

Finally, we present a lemma that states ergodic property of hyperplanes with irrational normals in R"
mod Z".

Lemma 2.7. [Lemma 2.7 in [8], Lemma 2.3 in [12]]. Forv € S" ! and xo € R™, let H(xg) = {x € R" : (x — Xo)- v = 0}.
Then the following holds:
(a) Suppose that v is a rational direction. Then for any x € H(xy), there is y € H(xy), such that

x-yl<T,; y=xomodZ",

where T, is the smallest positive number such that T,v € Z".

(b) Suppose that v is an irrational direction, and let w, : N — R* be defined as in (2.2) of [12]. Then there
exists a dimensional constant C = C(n) > O such that the following is true: for any x € H(xo) and N € N,
there is y € R" such that

[x —y| < C(n)N; y =xo modeZ™"
and
dist(y, H.4) < w,(N).

We recall that w,(N) converges to 0 as N — oo.
(¢) Ifv is an irrational direction, then for any z € R" and § > 0, there is w € H(x,) such that

|z — w| < 6 modz".
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3 Localization lemmas

In this section, we prove several lemmas on perturbing and localizing the solutions, which will be used
frequently throughout the article. Below we prove a localization lemma, and as a corollary, we prove
existence and uniqueness of solution u, of (P)g,,,r,q With II = II(v, ) for T € R and v € S""1. Denote
Br(t) = {|x — 7| < R} and recall H = {(x — 7)- v = s}.

First, we state a basic lemma, which will be frequently used. The proof is a direct consequence of the
oblicity assumption (G3).

Lemma 3.1. There exists M = M(|q|, ¢), such that q - x + Mx - v are, respectively, super and subsolution
Of(P)e,v,r,q-

Lemma 3.2. Let f € C(R"™) be bounded. Suppose w; and w, solve, in the viscosity sense,

(a) F(Dzwi, g) = 0inZg = I n Bx(O) fori=1,2

(b) v-Dw; = G(Dwi, g) onHy fori=1,2

(C) w1 = W, on H_1

(d) 0 <w, —w; <M onll n dBR(0).

Let L = |Gpllw and O < ¢ < 1 is the constant given in (G3). Then there exists a constant C(%, c, L) > 0,
such that

W1$W2SW1+C7M in II n By(0).
(1-c)R

Proof. Without loss of generality, let us set v = ¢, and T = 0. The first inequality, w; < w,, directly follows
from Theorem 2.2. To show the second inequality, let

w=w; + M(h; + hy) + Cihs,
where

x |2 C ; nA 1+x
hx) = % MO0 = - 00 with =% heo = 12,

and C; > 0 is a large constant depending on n, A, A, L, and ¢, which will be chosen below in the proof.
Note that in Zp,

F(Dzw, 5) = F(D2w1 + M(D?h, + Dhy), 5) > F(Dzwl, f) — PHM(D?hy + D*hy)) = F(Dzwl, f) - 0.
& & t &

Alsow, =w; <won H_;and w, < w; + M < w on 0Bg(0) n II.
Hence, to show that w, < w, it is enough to show thatd, w > G(DW, g) on Hy. We will verify that this is

true when C; is sufficiently large. Observe that in X,
ID(hy + h)| < % for Co = Co(n, A, ). (a7)

Hence, on Hy N X, we have

G G
O W>0,, W) + — — —
Xn xnV1 R R

= G(le, E) + G-G)
€ R

zG(Dw,i)_C_Cl+@+M’
t R R R
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where the last inequality follows from the Lipschitz property of G with (17), if C; = Ci(n, A, A, ¢) is chosen
sufficiently large. It follows from Theorem 2.2 that w, < w in Zg, and we obtain the lemma. O

As a corollary of Lemma 3.2, we prove existence and uniqueness of solutions in strip regions.

Lemma 3.3. There exists a unique solution us of (P),,r,q With the property |u.(x) — q - Xlz~m) < oo, such that

lue — g - x|l < M.

Proof.

1. Let Xk be as given in Lemma 3.2, and consider the viscosity solution wg(x) of (P)¢,,r,q in 2g with the lateral
boundary data g - x on 0Bg(t) N II. The existence and uniqueness of the viscosity solution wg is shown,
for example, in [9, 16].

From Lemma 3.1, ¢ - x + M(x — T + v)- v is a sub- and supersolution of (P),,,r 4, and thus, by com-
parison principle, we obtain that

[Wr(x) —q-x] <M for x € 2.

Due to Theorem 2.5 and the Arzela-Ascoli Theorem, wy locally uniformly converges to a continuous
function u.(x). From the stability property of viscosity solutions, it follows that u.(x) is a viscosity
solution of (P)gv,z,q-.

2. To show uniqueness, suppose both u; and u, are viscosity solutions of (P),r,, With [u; — q - x|,

|u, — g - x| < M. Then Lemma 3.2 yields that, for any point s € H,

[y — ] < O(1/R) in By(s) nII.

Hence, u; = w,. O

The following is immediate from Theorem 2.2 and the construction of u, in the aforementioned lemma.

Corollary 3.4. Suppose u,v are bounded and continuous functions in Il = II(t, v). In addition, suppose they
satisfy, for F satisfying (F1)—(F3) and G satisfying (G1)-(G2),
(@ F(Du,%) <0< F(D%, %) in T
(b) u<v onH.g;
(¢) v-Du < G(Du,x/g); v-Dv=G(Dv,x/e)on Hy.
Thenu <vinll.

Lemma 3.5. There exists C > 0O such that the following holds: let u; fori = 1, 2 solve

F(Dzui) =0 in II n Br(0)
0,u; = Gi(Du;, x) on Hy N Br(0)
u=q-x on H_;n Bg(0),

where Il = II(v, 0). Furthermore, suppose that G; satisfies the assumption in Theorem 2.4 and G, and G, satisfy
|Gi(p, x) = Go(p, X)| <61 + |p]) and  |u — w| < M. (18)

Let L denote the Lipschitz bound for u; and G's. Then there exists C = C(A, A, n), such that
|y — up| < 6(L+1)+CM/R inIIn By0).

Proof. By our assumption, v := (u; — u;)/M satisfies |v| < 1 in Bg(0) with

P+D¥) <0 in II n Br(0)
v=0 on H_; n Bg(0).
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After a change of coordinates, we may assume v = e, so that Il = {x : -1 < x, < 0}, and we denote
x = (x', x,). Define

Wi = (G /M + 6/ Rk + 1+ 2 = Bl - D)1,
where ¢ and ¢ > 8 will be chosen later. Then w is a supersolution of the aforementioned problem with the
Neumann boundary condition:
0,w = (Co/M + a/R) = (co /M + 4|x'|/R?) = (co/M + |Drw|) on {x, = 0} N Br(0).

Now suppose v — w has positive maximum in IT n Bg(0). Then the maximum would need to be achieved at a
point T € Hy N BR(0). At this point, we should have d,(v — w) > 0 and Dyv = Dyw. Therefore,

OpV = 0w = (co/M + |[Drw|) = (co/M + |Dyv]). at x=r1, (19)
On the other hand,
Gi(Duy, x) — Gy(Duy, x) = DGy(p*, x)- D(IMv) + G1(Duy, x) — G»(Duy, X),

and since |DG(p*, x)- e,| < ¢, we have, from (18) and the Lipschitz bound for u; given in Theorem 2.4,
(1 - c)o,v < LIDpv| + $|Gl(Du2, Xx) — Go(Duy, x)| < L|Dyv| + %(L +1) at x=r.

Then using the fact that [Drw| = 4|x’|/R? < 4/R in Bg(0), it follows that

4L 8L+ 1)

1 - o0o)|opv] < R + i (20)

Hence, from (19), we obtain a contradiction if co /M + ¢/R is larger than the right-hand side of (31). This
happens if we choose ¢ > 4L and ¢y = 8(L + 1). Therefore, it follows that v < w in II n Bg. We can now
conclude that

U —uy=Mv<co+cM/R+ ZM(I + %)/R2 in II n By(0).

The lower bound can be obtained with the aforementioned argument applied to u, — . O

4 Homogenization in a strip domain

Let u, solve (P),,y,r,4 With linear boundary data I(x) on H_;. We let v; be the unique linear function on II such
that v, coincides with u, on H_; and at a reference point 7 — v /2. More precisely,

V() =p((x-1)v+1)+1x), (1)
where p, = 2(u(t - v/2) - u(r - v)). Then we define the average slope p(u,) of u as follows:

}'l(ue) = Oyl = He- (22)

Theorem 4.1. The followings hold for u. solving (P)g,y,r,q:
(a) For irrational directions v, there exists a unique constant u = u(v, q), such that u, converges uniformly to
the linear profile

u(x) = p((x = 7)- v + 1) + 100,

where I(x) := q - x. The same holds for rational directions v with T = 0.
(b) [Error estimate] There exists a constant C > O depending on A, A, n, and the slope of I(x) such that the
following holds: if v is an irrational direction or v is a rational direction with T = 0, then
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[u(ue) — | < CA(g,v) in I,

where
inf {eXT, + 1%} if v is a rational direction
Ae,v) =17 e 23)
inf {e"N + w,(N) + €%} if v is an irrational direction.
0<k<1,NeN

In (23), T, and w, are as given in Lemma 2.7. T, is the period of G(P, y) on the Neumann boundary Hy and
w,(N) - 0as N — oo.
(c) Let v be an irrational direction. For any 6 > O, there exist T > 0 and P € Z" such that

|Tv - P| < 6.
Let 0 = (6, v) be the angle between v and P, then
Mg, v) <36 for € < 626.

(d) Letv be a rational direction, and let 6 > 0. Then
62
AE,v) <26 fore< "

v

To prove Theorem 4.1 we begin with a preliminary lemma. The following lemma states that u. looks like
a linear profile (almost flat) on each hyperplane normal to v.

Lemma 4.2. Away from the Neumann boundary Hy and u. — 1(x) is almost a constant on hyperplanes parallel
to Hy. More precisely, for xq € II, we denote

d = dist(xq, Hy) > O
and H_; = {(x — 7)- v = =d} = {(x — x0)- v = 0}. Then the following holds:

(a) Ifv is a rational direction, there exists a constant C > 0 depending on a, A, A, n, and the slope of 1, such
that for any x € H 4,

|(ue(x) = 100) = (Ue(Xo0) = Ix0))| < C(d™" + 1(Te), (24)

where T, is a constant depending on v, given as in (a) of Lemma 2.7.
(b) Ifvis anirrational direction, there exists a constant C > 0 depending on a, A, A, n, and the slope of I, such
that for any x € H_3,

|(e(x) = 100)) = (Ue(Xo) — I(x0))| < C(d 'ewy(N) + wy(N)), (25)

for any N € N and € > 0 with ew,(N) < 1, where w,(N) is given as in Lemma 2.7.

Proof. First, we consider a rational direction v. By (a) of Lemma 2.7, for any x € H_4, there is y € H_; such
that |x — y| < T,e and y = xo mod €Z". Then by comparison,

Ue(x) = ue(x + (¥ = x0)) — I(y) + l(x0). (26)
Hence, u.(xq) = u.(y) — I(y) + l(xo), and we obtain

[(ue(0) = 1)) = (ue(x0) = Lxo))| < [ue(x) — ue(Y) + |1(y) - 10|
<lug(x) — u(y)l + CLe
<Cd'Te + CTe,

where the third inequality follows from Theorem 2.3.
Next, we consider an irrational direction v and let x € H_;. By (b) of Lemma 2.7, for any N € N, there
exists y € R" such that |x — y| < ew,(N), y = xo mod €Z" and

dist(y, H.4) < ew,(N). 27)
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Observe that
(ue(x) = 1(x)) = (ue(X0) = lx))| < [ue(x) = us(Y)| + (ue(y) = L(y)) = (welx0) = Mxo))| + [I(y) — OO,
where, from Theorem 2.3,
lue(O) — us(y)l < Cd'ew,(N).

Next we project y to x; € H ;4 and use Lemma 3.5 for G; = G and G,(p, x) = G(p, x + (xXo — X)) =
G(p, x + (y — x)) with § = w,(N) to conclude that

(ue(xo) — 1(x0)) — (ue(x) — 10))] < Cwy(N).
Then by using Theorem 2.3 with (27) once again, we compare u(y) with u(x) and conclude that
[(ue(y) = 1(¥)) = (uelxo) — lxo))| < C(wy(N) + €).
Finally,
[1(y) - 1(x)| < Cly - x| < Cew,(N) < Cd'ew,(N),

where the last inequality follows since |y — x| < ew,(N) and d < 1. O

Since u, is flat on each hyperplanes located, a constant d-away from the Neumann boundary, u, can be
approximated well by a linear solution as in the following corollary. The proof of Corollary 4.3 follows from
the comparison principle (Theorem 2.2) and Lemma 4.2 with d = g'-k,

Corollary 4.3. For a solution ug of (P, 1,q, let v, be the unique linear function given as in (21). Then there
exists a constant C depending on A, A\, n, and the slope of | such that for any N e N and 0 < k < 1,

C(eXT, + &%) if v is a rational direction
C(e"N + w,(N) + €'7%) if v is an irrational direction,

[ue(x) — ve(x)] < {

and hence,
[ue(x) = v:(0)| < CA(e, v).

Due to the uniform interior regularity of {u.} (Theorem 2.3), along a subsequence, they locally uniformly
converges to u inII. Let us choose one of the convergent subsequence u, and denote it by u;, i.e., u; = u,;. Let
V; = V; and Y = y(ug].), both as given in (21) and (22). Corollary 4.3 implies that for any v € S"1, limy; is
linear. More precisely, the slope y; converges as j — oo (see Lemma 4.1 of [8]), and hence, by Corollary 4.3,

limy = limy; = p((x - 7)- v+ 1) +lx) =u

for p = limp..

Next, we] prove that the subsequential limit is unique, i.e., u does not depend on the subsequence {g;},
when v is irrational or v is rational with T = 0. We will also obtain a mode of convergence of y,.

Proof of Theorem 4.1(a) and (b) for irrational directions: Let v be an irrational direction and let u be
a subsequential limit of u.. We claim that

ou/adv = uv, q)
for a constant (v, q), which depends on v and ¢, not on 7 or the subsequence {g;}. More precisely,
Iu(uy) — uue)l < C(AGe, v) + ). (28)

where we let 0 < 1 < ¢ be sufficiently small.
For the proof of (28), let

W) = ug(;x) ’ Uy (nx)

Wn(x) =
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and denote by H! and H?, the Neumann boundaries of w, and Wy, respectively. By (c) of Lemma 2.7, for
T € R", there exist s; € H! and s, € H?, such that

|T — 51 <npmodZ", and |7 -5, <n modZ".

Hence, after translations by 7 - s; and 7 - s,, we may suppose that w.(x) and wy(x) are defined on the
extended strips

Q. = {x:—l s(x—r).vso} and Q= {x:—ls(x—r)-vso},
€ n
respectively, with
1
we; = I.(x) on {(x -T)V= ——}
£
and

wy = I)(x) on {(X -T)V= —%},

where I; and I, are linear functions with the same slope as I(x). Moreover on Hy, we have
ow; /ov = G(DW,, x —z;) and  ow,/0v = G(Dwy, X — 2)
for some |z], |z;| < 1. Observe that by Lipschitz continuity of G, i.e., by (G2),
IG(p, x = z1) = G(p, x - )| <m(1 + |pn. (29)
Let v, be given in (21). Then by Corollary 4.3 (after a translation),

Ve(ex) < CA(g,v)

[we(x) — | (30)
£
Note that
LG ys((x -T)V+ l) + I(x).
€ €
From (30) and the comparison principle, it follows that
(u, — CA(e, v))((x -T)V+ l) < We(x) — I(x) < (u, + CA(e, v))((x -T)V+ l) (31)
£ €
Here, we denote by [; and b, the following linear profiles
LX) =a(x —1)v+b; and bLKx)=a(x—-1T)V+ by,
whose respective slopes are a; = ji, + CA(g, v) and a, = p, — CA(g, v). by and b, are chosen, so that
L) = L(x) = wy(x) - (x) =0 on {x t(x-1)VvV= —%} 32)

Now we define

L(x) in{-1/n<x-1)v<-1/¢}
We(x) - l(x) +q in{-1/e<(x-1)v<0}

W) = I(x) + {

and
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L(x) in{-1/n<x-1)v<-1/¢g}
w,(x) - lL.(x) + ¢ in{-1/e< (x - 1) Vv <0}

w(x) = (%) + {

where ¢ and ¢, are constants satisfying
L=w-l,+g=q and L=w.-l.+06=0

on {(x - 7)- v = -1/¢}. Note that by (32),
_ 1
w=w=w, on {x:(x_r).vz_ﬁ},

and also due to (31),

W(x) = [00) + min(h(x), we(x) - L(x) + @)
and

w(x) = ly(x) + max(L(x), we(x) - l(x) + )

in {—i <(x-1)v<s 0}. Thus, it follows that W and w are, respectively, viscosity super- and subsolution of
(P). Hence, we obtain

W< W, <W, (33)
where W, is a solution of (P) in Q, with W, = w;; = I,(x) on {(x — 7)- v = -1/n}, and 0w;, / ov = G(DWy,, X — z1)
on Hy. Then by (33) and Lemma 3.5 with (29),

Iy = Ml < Iy — Ol + [uGiy) — | < C(A(e, v) + 1),

where p(W,) is the slope of the linear approximation of W,. The aforementioned inequality implies that the
slope u of a subsequential limit of u, depends on neither the subsequence {;} nor 7. Also sending — 0, we
obtain an error estimate (d) when v is irrational.

Proof of Theorem 4.1(a) and (b) for rational directions: Let v be a rational direction with 7 = 0. We
claim that ou/dv = u(v, q) for a constant u(v, g), which depends on v and g, not on the subsequence {g;}.
More precisely, if n < €, then

[(uy) — u(ue)| < CA(g, v). (34)

The proof of (34) is parallel to that of (28). Let w, and w;, be as given in the proof of (28). Note that
since Q. and Q, have their Neumann boundaries passing through the origin, dw;/dv = G(x) = dw,/dv
without translation of the x variable, and thus, we do not need to use the properties of hyperplanes
with an irrational normal (Lemma 2.7 (b)) to estimate the error between the shifted Neumann boundary
datas. In other words, there exist ¢q; ¢ H' and ¢, € H? such that p=¢;=¢, mod Z", and hence,
G(-,x - z1) = G(-,x — o) in the proof of (28). Following the proof of (28), we obtain an upper bound
A(e, k) of |;u,1 — . |. Note that we do not have the term 5 in (34) since G(-,x — z;) = G(-,x — 2,). By sending
n — 0 in (34), we obtain the error estimate (b) for rational directions with 7 = 0.

Proof of Theorem 4.1(c) and (d): Let § > 0 and let v be an irrational direction. Lemma 2.6 implies that
there is a positive number T,(6) < 6"V such that |T,(6)v] < § mod Z". Then, for some P ¢ Z" and
T = T,(6) + 0(8),

|Tv - P| <6
andTv e P + (F}L. Let 6 = 6(6, v) > 0 be the angle between v and F, then
|Tv - P| = TO < 6. (35)

If we define g:==Tv-Pc¢ (F)L, then |g| <6 by (35). Then for 0 <m < [Tl—e], mTv = mP + mq with
1-6< [%]lfﬂ < 1. Hence, we obtain
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w,(N) < T when N:[%]. (36)

Let £(8, v) be a constant depending on § and the direction v such that

£(8,v) = 620 = 6%0(6, v). (37)
Then for 0 < € < (6, v),
A, v) = inf {ekN + w,(N) + €'} < inf {€k/0 + TO + €%} < inf {ek/0 + £7F} + §,
0<k<1,NeN 0<k<1 O<k<1

where the first and last inequalities follow from (36) and (35), respectively. Then by (37),
inf {€k/0 + €17%} < inf {(620)%/0 + (620)17F}.
0<k<1

O<k<1
The infimum is taken when 0 < k = In(86)/ In(66%) < 1 and
inf {(820)%/6 + (620)'-%} = 26.
O<k<1

Hence, we can conclude A(g, v) < 36 for € < (6, v) = 6%0.
Next, we consider a rational direction v. For § > 0, let € < §2/T,. Then we can check

A(e,v) = inf {e*T, + €17} < inf {* T}k + §20-0Tk1) = 26,
O<k<1 O<k<1
The following lemma will be used in the next section.

Lemma 4.4. Letv = e,, T = 0, and let w solve

F(D*w,x/e) =0 in {-Ne < x,, < 0};
ow /0ox, = G(Dw, x/g) on Hy;
w=A on H_y,

where N and A are constants. Then there is a constant C = C(A, A, n) such that
[w(x) — w(xo)| < Ce for x,xo € Hs, —-Ne<s< —%.

Proof. For xq, x € Hy with s € [-Ng, —%], choose y € H; such that |x — y| < € and y = xo mod £Z". Observe
that w(y) = w(xp), since G is 1-periodic on Hy. Therefore,

X-y

w(x) - w(xo)| = [wx) — w(y)| < Cllw - Al < Ce,

where the second inequality is from the interior Lipschitz regularity (Theorem 2.3) applied to w(Nex) — A. O

5 Continuity over normal directions

In the previous section, we have shown that for an irrational direction v € S""1 — RZ", there is a unique
homogenized slope u(v, q) for any solution u; of (P), 4 in II(v, 7). In this section, we investigate the
continuity properties of y with respect to v and g, as well as the mode of convergence for u as the normal
direction v of the domain varies.

We first show that u is Lipschitz with respect to g, which directly follows from the 1-homogeneity of G.

Theorem 5.1. For v € S"' — RZ", u(v, q) is uniformly Lipschitz in q € (v)*, independent of v.
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Proof. For q;, > € (v)*, let u/ be the unique bounded solution of (P)e,v,1,q fori = 1, 2. Let m be the Lipschitz
constant for G given in (G1) and ¢ be as given in (G3). Then it follows that

m
1-c¢

Wa(x) = up(x) + (g — q)- X % lg1 — gal(x - v)

is, respectively, a super and subsolution of (P),,,,¢,q,- Hence, by Corollary 3.4, we have
w<ul<w, inlIl

From here and Theorem 4.1, it follows that

m
1-c¢

(v, q) — u(v, qo)| < g1 — qal. O

The dependence of y on v is a much more subtle matter due to the change of the domain and the
resulting changes in boundary conditions on the Neumann boundary. From now on, we work with a fixed
choice of g and denote y = u(v).

For s > 0, let T,(s) be the smallest positive number >1 such that

|T,(s)v] <s mod Z™".
Note T,(0) is larger than all T,(s). In general, Lemma 2.6 yields
T(s) < vm - s-D, (38)

Theorem 5.2. With fixed g, let us denote p = u(-,q) : (8*! - RZ™) — R be as given in Theorem 4.1. Then u
has a continuous extension fi(v) : S*! — R. More precisely, let us fix a direction v € S"! and a constant
6 > 0. If v; and v, are irrational directions such that

5/2

tanf; < ————
L T(852)

for G;:=|v,-v| and i=1,2, (39)

then we have
(@) |u(vy) — u(vy)| < C8Y2 for C = C(v).
(b) f(v) is Holder continuous on S™ ! with a Hélder exponent of 5in

Remark 5.3. In the proof, we indeed show that, for any directions v; and v, satisfying (39), the range of
{u(u)}e,i fluctuates only by 6, if € is sufficiently small. The fact that v;’s are irrational is only used to
guarantee that there is only one subsequential limit for p(u).

Remark 5.4. For notational simplicity and clarity in the proof, we will assume thatn =2 and v = e,. We
explain in Remark 5.6 how to modify the notations and proof for v # e,. For general dimension n, we refer to
Remark 5.7.

For the rest of the article, we prove (a) of Theorem 5.2. Theorem 5.2 (b) follows from (38), (39), and
Theorem 5.2 (a).

5.1 Basic settings and Sketch of the proof

We denote
IT :=II(e;, 0) and II%:=1II(v;,0), fori=1,2.

We also denote
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HO = Ho(ez), Hg’ = Ho(Vi) for i = 1, 2.
For given
meN and 6=1/m >0,

we divide the unit strip R x [0, 1] by m numbers of small horizontal strips of width § and define a family of
functions {Gy}; so that the value of G, at (3, %) is same as the value of G at (x;, %), where (x;, %) is the
projection of (x;, x,) onto the bottom of the k-th strip. More precisely, we define

Gi(x, %) = G(xq, 6(k — 1)) for k=1,..., m. (40)

Then Gy is a 1-periodic function with respect to x.
Next we introduce the parameters

O1=|vi—e)l, 0,:=1|vs- e (41)

) 6
N= [tan@l]’ M= [tanez]' (“2)

Without loss of generality, assume 6, < 6;, and thus, N < M.

If ;s are sufficiently small, then we will be able to approximate G on both of the Neumann boundary
Hj'and Hy? using the universal boundary data G,’s, which depends only on §, but not on the direction v; nor
v,. In particular, in meso-scopic scale G can be approximated by many repeating pieces of Gi’s on Hy'
(approximately, N number of pieces of G; for v; and M for v,). Thus, the problem already experiences
averaging phenomena: we call this as the first or near-boundary homogenization. Note that in this step, the
only difference in the averaging phenomena between the two directions v; and v,, besides the errors in
terms of G and Gy on HY, is the number of repeating data Gy for each k. This explains the proximity of p(v;)
and u(vy).

On the other hand, since v's are irrational directions, the distribution of G, approximates the given G on
H{! in large scale. Since v; and v, are close to the rational direction e, the averaging behavior of a solution
u) in IT¥ would appear in a very large scale, and in other words, only after € obtains very small. We call this
as the secondary homogenization.

The two-scale homogenization procedure has been introduced in [7,8]. It allows studying continuity
properties of the homogenized boundary data as we approach the rational direction, which might be
singular points as described in Section 1. This point of view was also employed in [12,13] to study homo-
genization for general operators, by studying the singularity of homogenized operator at rational directions.
Let us also point out near the boundary the small-scale oscillation of the operator interacts with that of
boundary data to create a meso-scale averaging phenomena. Due to this interaction, characterizing the
homogenized boundary condition remains a challenging and interesting open problem. After the first
homogenization, the boundary data change to periodic data in a meso-scale (which will be Ne below),
and hence, the operator is well approximated by the homogenized operator F in the second homogeniza-
tion in large scale.

Below we begin the analysis of the two-step homogenization as described earlier. We will work with
small € > 0 satisfying

and

6 tan6;
<L
T(6°/%)

fori=1,2, (43)

which can be stated as follows:
O<e<étanf fori=1,2 (44)
since T,(s) = 1 when v = e,. It follows that

mNe < mMe < 6. (45)
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After the near-boundary homogenization, u,* will be approximated by a solution, which has periodic
boundary data with period mNe. With (45), it follows that u)* fluctuates in order of § in the interior of
the strip domain.

On the other hand, (39) of Theorem 5.2 can be stated as follows:

0 < tan#; < 6°/2. (46)
It follows then that
1/N < 632 (47)

which ensures 1} to homogenize Ne-close to the Neumann boundary.
Next, we define vertical strips I;’s so that in each I, the Neumann boundary H{' is contained in the
horizontal strip (parallel to Hy)of width approximately de. Let Ny = 0 and

k-1
Ny = max[N eN| (ZN] + N}stan@l < k&:} for k e N,

j=0

We define

1k
[ZNje, ZN,el x R for k e N
_ =0 j=0
I =
k+1 k
[ — Y Ne,-Y Ne| xR for ke -N U {0}

j=0 j=0

Then we can observe

6 - 1< N <
tan6, tan6,;

+1 (48)

since the definition of Ny implies
(N — Detan®; < be < (N + 1)e tan6;.

On the other hand, by the definitions of N; and I, H}' n I is located within e-distance from
Hy + 8e(k — 1)ey, mod €77, for each k € Z. Thus, G is approximated well by G, on Hy' n I, for1 < k < m.
Indeed, if we extend the definition of G, over k € Z by letting G, = Gy for k = k (mod m), then we have

1))

Similarly for v,, we define M for k € N U {0} and the vertical strips i for k € Z.

<CA+1|p))§ on Hynl forkeZ. (49)

Remark 5.5. Observe that (48) implies Ny and M; are comparable, respectively, with N = [ o ] and

tan6;

M= [ta: 92] with [Ny — N|, |Myx — M| < 1. Thus, for simplicity of our proof, we assume
Ne=N; My=M forkeN
and
I, = [(k — 1)Ne, kNe] x R; Ji = [(k — 1)Me, kMe] x R for k€ Z. (50)
Our simplification of Ny does not affect our analysis in Section 5.2: For the first homogenization near the
boundary, the estimate in Lemma 5.9 does not change since Ny and N differ at most by 1, and the analysis is

done in a local ball in the proof of Lemma 5.9. More precisely, Lemma 5.9 holds with uN(Gy) replaced by
ule(Gy), where |[uN(Gy) — uM(Gy)| is small enough by parallel arguments that show (75). For the second
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homogenization in the middle region, we can construct a periodic function A(x) with period & /sin6;
similarly as in step 2 of Section 5.2, since there we view each m union of I, as a “block,” and

(1 - tan6,) < L"J'I-k AEY | < e(1 + tan6y)
sin@l B k=1 o1 sin01
and also
&(L - tan#,) - LUmI_k AEY | < (L + tan6,)
sin91 B k=1 o= sin@l

for any L € N, This shows that the required period of A is € /sin 6;, approximating the average period of

Lm 7 : stan91~
Us2 I with the error Lsing, "€ /L.

Remark 5.6. For v # e, in R?, there exists a rational direction ¥ such that for T = T,(6°/2),
V=0 (modzZ?); |v-7]<6/%T.
Observe that if Theorem 5.2 holds for the rational direction v, it also holds for v. For the proof of the theorem
for v, let x’ = x — (x - V)V and define
Gy = Gi(X',x — x") = G(X', 6(k - 1)V) for 1<k <m.
Then Gy is a periodic function on {x - V = 0} with a period of T. The only difference between the case of V and

e, is in the periodicity of the function Gy, and it does not make any essential difference in the proof. we point
out that instead of the conditions (46), (47), and (45), we will need

1 <82 Ttanb, < 6% mTMe< 6
TN

since Gy has a period of T. These conditions will be ensured if 6; and ¢ satisfy the assumptions as in
Theorem 5.2.

Remark 5.7. For the dimensionn > 2 and v = e,, for a fixed m e Nand 6 = %, let us define
Gi(%, ..., Xn-1, Xn) = GOy ..., Xn_1, 8(i— 1)) fori=0,...,m
and

Ik, .. ket = [(q = DNe, kiNe]x --- x[(kn_1 — DNe, k,_1Ne] x R.

Then parallel arguments as in steps 1-9 in the next section would apply to yield the results in R".

5.2 Proof of Theorem 5.2

In the first three steps, we follow the aforementioned heuristics and replace the Neumann condition with
the locally projected boundary data G. Then we go through the two-step homogenization procedures to
obtain the first slope u¥(Gy) on each I near the boundary, and then the global slope u(v;). While the actual
first homogenization takes place in IT", it turns out that its value has a small difference from u"(Gy) taken in
IT (see Lemma 5.9). This fact is important in establishing a universal domain for both directions v; and v,. In
fact, we rotate the middle and inner regions to compare the slopes in II" and II*2. For this, we use the
rotational invariance of the homogenized operator F. (See Lemmas 5.10 and 5.11.) The rest of steps are to
verify that indeed p(vy) is the correct averaged slope for the problem (P);,,, 7,4
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Step 1. First homogenization near Boundary (Ne-away from Hj')

We proceed to discuss the first homogenization. Denote x = (X, %) throughout this section. For a given
linear function l(x) = () and k € Z, letu = uM-¢ and vy = v,?’ *¢ solve the following problem with u = I(x) on
H%, and vy = 1(x) on H_y,:

F(D’u,x/e)=0 in {-Ne<x-v;<0}

a—u(x) = G(Du,x /g) on H} G
aVl
and
F(D*i,x/e)=0 in {-Ne < x, < 0};
%(x) = Gi(Dvy, x /€) on Hy. 62)
aXZ

Definition 5.8. For a given function u : {-Ne < x - v < 0} — R and I given as in (50), let a; and by be the
middle points of I N Hy, , and I, N H"y,, respectively, and consider the unique linear function h given by
h =u at x = ay, by and Drh(by) = Dru(by). (Here, Drh denotes the tangential derivative of h along the
direction v*.) Then y, (u) is defined by

w(u) = oh/av.

Note that the Neumann boundary data of v; are Gy on each boundary piece Hy N [; (i € Z), and hence,
1;(vi) = u(vi). (Here, u(vy) is the average slope of vy given as in (22) with 7 = (Ne /2)e;.) For N as given in
(42), we denote

UN(Gy) = pu(v). (53)

Lemma 5.9. For k € Z and p(u) as given in Definition 5.8,

[ () — N (Gp)| < C6Y2. (54)

Proof. We will prove the lemma for k = 1, i.e., we will compare p,(u) with u(v). Let i and 7, solve the
following problem with ii = on H" /s and v; = l on H_¢/s:

F(D%i,x/e) =0 in {-£/6 <x-v; <0}

9 ) = G(Di, x /&) on HY

av1

and

F(D*h,x/e)=0 in {-£/6 <x <0}
o

(x) = Gy(Dv, x /[e) on H,.
aXZ

We will compare both of ii(x) and V(x) to wy(x) in the ball |x| < §-1-%¢, where a, = 1/2. For computational
convenience, we will call this number as aq. Let wy(x) solve w; =1 on H f}_, /5 with

F(D*wy, x/g) =0 in {-g/6 <x-v; <0}
awy
avl

() = Gi(Dwi, x /€) on HY. (55)

Here, observe that in the ball |x| < §71-%, the hyperplanes Hy' and H, only differ by tan6;6-1-%¢.
Below we derive some properties of w;. Consider

W(x) = e wy(ex).
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Then by Theorem 2.4, w is C! regular up to the Neumann boundary in a unit ball, if w has a bounded
oscillation in the ball |x| < 1/8. Observe that (¢ /6)'wy(ex /8) is defined in the strip {-1 < x - v; < 0}, and it
has a periodic Neumann data Gy(-,-,x / §) with period 8. Since it has a periodic boundary data, it corresponds
to the case of rational direction with Neumann boundary passing through the origin. Hence, we can use the
error estimate Theorem 4.1 (b) for the rational direction passing through the origin, with T, = 1. Then we

obtain
(9)(5)-0

where h is a linear solution approximating (¢ /) 'wi(ex /§). Then by (56),

&x £
wy| — | - =h(x
‘ 1( 5 ) 5"
and hence, the oscillation of W becomes less than C6-1/2 in the ball |x| < 1/8. Later in the proof, we will use
CU! regularity of w as well as the linear approximation (57) of wy.

First, we compare i to w; in Bg-1-«0,(0). For this, we compare the boundary data of i, that is G, to G;.
Observe that if x € Hy' N Bg1-40.(0), then x € I for some |k| < §1-% /N = §-2-% tan6,. Hence, for x € Hj' n
Bg1-10,(0) (i.e., for x € H}' N I, with |k| < §2"% tan6,),

IG(p, x/€) = Gi(p, x /)| <|G(p, x /&) = Gi(p, x| €)| + |Gi(p, X/ €) = Gi(p, x /€)|
<ClA + |pDS + (1 + [pDlk - 1]6]
<C(1 + |p|)(5 + (tan016(‘1‘“0))) (58)
<C(1 + |p(6 + 66/2)
<C(1 + |pDé,

< ir11<f C(6% + 6% = C81/2, (56)
O<k<1

< C67V%, (57)

where the second inequality follows from (49) and the construction of Gy, third inequality follows from
|k| < 6727% tan®,, the fourth inequality follows from (46), and the last inequality follows since ag < 1/2.
Note that |i — wy| < C% in x| < 2671-%¢, This implies that, by Lemma 3.5, |ii — wy| < 6(L + 1) + C&“og in

|x| < 671-%¢, Now we can compare ii — w; with linear profiles in the strip to obtain
[ti(x) — wi(x)| < C(6 + 8“0)()( VA %) < C6“0(x Y %) in [x| < §71-%¢, (59)
Observe that (57) and (59) yield
lii(x) — Li(x)] < C(6“0 + 51/2)(x v+ %) < CS“O(X SV + %) in |x| < §71-%g,

where Li(x) = I(x) + y(wl)(x -V + %), and u(w) is the average slope of wy. In other words, we obtain
(@) — pw)| < C6%. (60)
Next, we compare V; and w; and prove that
[u(n) — p(wy)| < C8%.

Recall that the oscillation of w is less than C§71/2 in the ball [x| < 1/6 (see (57)). If we consider w = 6'/2w,
then this function solves the boundary condition:

oW /dv = G(DW, x) = 61/2G,(671/2Dw, x),
which satisfies the assumptions for the C%! regularity theory, Theorem 2.4. Thus, we have
IWlcrig,y < O(672).

For x in the oe-neighborhood of HJ!, choose X to be the closest point to x on Hy. Then by (G1) and (G2)
with the C1! regularity of w given earlier, w; satisfies on H,
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‘ G(le(x), g) - G(le()Z), é) < 0(67120)(1 + |Dwy(x))).

Recall that the Neumann boundaries of w; and v; (Hy' and Hp) only differ in the ball |x| < §-1-%¢, by
tan0;6-1-%e < §3/2-%¢ (see (46)). So putting o = §3/2-%,

‘ G(le(x), g) - G(le()?), g) < 0(8%)(1 + [Dwi(x)) on H,

and Lemma 3.5 yields that in |x| < §717%,

[ — w)(x)| < C(61“"0 + 6"‘0)(xn + %) < CS“O(xn + %)
This and (57) yield that in |x| < §717%¢,

[h(x) — L(x)| < C(5“0 + 61/2)(x,, + %) < C8“0(x,, + %),

where L(x) = I(x) + y(wl)(xz + %) In other words, we obtain

[u(w) — p(n)| < C6%. (61)
Recalling ag = 1/2, we conclude from (60) and (61) that
[uy (@) — u()| < 82 (62)

In the rest of proof, we will show
) = u@I, @) - w@I < €82,
Then the aforementioned inequalities and (62) would imply
Iy ) = p(vl < () = @1 + |y @ — p)l + [u@) - pn)| < €812,

First, observe that v; and ¥, have periodic Neumann data G; on Hy. Hence, by similar arguments as in the
proof of (28),

lu(n) - p(M)| < C(AGS, ) + N1 < C(6"2 + N1) < €82, (63)

where the last inequality follows from (47).
Next, recall that

luy (@) — u(wy)| < €82
for a solution w; of (55). (See (60).) Similarly, one can prove that
Iy W) — pOi)| < CN112 < 8112,

where W, solves similar equations as in (55) in the domain {—Ne < x - v; < 0}, and the last inequality follows
from (47). Then since w; and w; have periodic Neumann data G; on Hg!, it corresponds to the case of v = e;.
Hence, by similar arguments as in (63),

[u(wy) — p(Wy)| < C(A(S, e3) + N1) < C(6'% + N) < €82,
and we can conclude
[, () — (@) < |y () — uGWp)| + [y — uwy)| + |u(wy) — uy ()| < €62, O

Step 2. Constructing middle region barrier w. (between H_y,,; and H_gmye)

In step 1, we showed that Ne away from the boundary Hy!, u” is homogenized with average slope
approximated by p¥(Gy) in each vertical strip I,. Now more than Ne away from Hg!, we obtain the second
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homogenization of u)!, whose slope is determined by u¥(Gy), k = 1,..., m. Since the width of I, = Ne, the
homogenized slopes u¥(Gy),..., u¥(G,,) are repeated K times in a vertical strip of width KmNe, Ne-away from
H'. We will specify

K:=1/6,

but for computational clarity, we will keep the symbol K.

We will construct middle region barrier w, in the region {—~KmNe < x, < —Ne /2}. To ensure that w, is
regular near its Neumann boundary, we introduce a regularization of the original Neumann boundary data
uN(Gy) as follows:

Consider a ball Bso/2(0). If I, N Ho, Ij N Hy C By-/2y,(0), then |k — j| < 67%/2 and

IG(p, x /&) ~ Gi(p, x /)l < CA + |pD(Ik — j16) < C(1 + |[p§U-0/2. (64)

By using this fact with Lemma 3.5, we can construct a C! function A(x) on H_y, ,, such that
(@) A € CY(H wes2) with [Afler < 6(Ne)™;

(b) UN(Gy) + 8% < A(x) < uN(Gy) + 6% + § on each I;

(c) A(x) is periodic with period mNe.

Note that when we patch the middle region barrier w, with the near-boundary barrier f; in step 6, we will

need that the average slope of w; is “sufficiently” larger than that of f.. For this, we will make the average

slope of w; to be uN(Gy) + 0(6%), i.e., (b) is to ensure that y, (w,) is sufficiently larger than p, (f;). Also when

we show the flatness of barriers in steps 4 and 5, we will localize them in a “large” ball of size §-%/2Ne.
Let X := {~-KmNe < x, < —Ne /2} and w; solve the following Neumann boundary problem:

F(D’w;,x/e) =0 in X

9% _ A on Hoye/s (65)
aX2
we = 1(x) on H_gmne.

Step 3. Homogenization of the operator in the middle region
Next we show, similar to Lemma 5.9, that the second homogenization does not change too much if the
domain II is replaced by II". More precisely, we will show that w; is close to @, solving

F(D?®,) =0 in {~KmNe < x-v; < -Ne/2}

0w
a—vf =A(x) on HY%,
W = 1(x) on H'%, ne

Here, A(x) is a C! function constructed as in step 2, which approximates u¥(Gy) on each I, which is
extended to R? so that A(x) = A(p(x)) for a projection p(x) onto H_yg .
To this end, we will first compare w, with @,, with the same Dirichlet data l on H_y,,y. and solving
F(D’@;)=0 in X
2, (66)

= A(x on H_ .
aX2 ( ) Ne /2

Lemma 5.10. For any ¢ > 0, there exists Ny such that for Ny > N, we have

|we(x) — @e(x)] < 06Ne in X.
Proof. The proof follows from Theorem 2.5 applied to (6Ne)'w.(Nex). O

Next we compare @, to @, to conclude. Here, we will use the rotational invariance of F.
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Lemma 5.11. Let O be the rotation matrix that maps e, to v,. Then
|@:(Ox) — @e(x)| < 6'/2(KmNe)
inZn{x| <8&V3(Ne).
Proof. Observe that v(x) = @(Ox) solves F(D?v) = 0 in ¥ with Neumann boundary data A(Ox) on H_y; /2
and Dirichlet data I(Ox) on H_gmn.. Note that due to (46) and the C! bound of A, we have
|A(KmNeOx) — A(KmNex)| < tan8; KmNex|sup|DA| < 6|x]|.

and |I(KmNeOx) — I(KmNex)| < KmNe tan8|x| < |x|.
Hence, one can apply Lemma 2.9 of [7] to 7-v(7x) and 7-W(1x) in 77'%, where 7 = KmNe and choose
R =612 and € = 2 to conclude. O

Step 4. Flatness of w, on H_y,, and the construction of near-boundary barrier f,

Lemma 5.12. [Flatness of w,] Let xo be any point on H_y,. Then for x € H_ye N Bg-eo2y.(Xo),

lwe(X) — we(x0) — Mwe(X0)(X — x| < C6~*NE.

Proof. Due to Lemma 5.10, it is enough to show aforementioned lemma for @.. Let w(x) :=
(KmNe)l@.((KmNg)x), then it solves

_ . 1
F(Dzwl) = 0 m {—1 < X2 < —M}
dwy = A(KmNex) on H__1_

aXz 2Km

wix)=1x)+C on H;.

We know that Az < §(Ne)™, so the aforementioned Neumann boundary data has C! norm of 6Km. From
Theorem 2.4, we have that

lwsllctt < C6Km.
Hence,
lw1(X) = wi(x0) — Awi(X0)-(x = Xo)| < C6Kmlx - xo |2, (67)
which can be written in terms of @,
|@:(x) = @e(x0) — 01@:(X0)-(x — Xo)| < C6(Km)*(Ne)|(KmNe)'(x — xo)P
< C6 (67%/2)2(Ne) = C8'-%Ne

in 6-%/2Ne-neighborhood of x,. O

Now we construct the near-boundary barrier f; using w,. Let f, solve

F(D,,x/€)=0 in {-Ne <X < O}
fe = we + 617%Ne on H_yg;

Fe _ G(Dfs, 5) on H,.
X, £

Step 5. Flatness of f,
In this step, we compare pN(Gy) given in (53) with y,(f;) given in Definition 5.8. For simplicity, we put
k = 1. Note that Lemmas 3.2, 5.12, and 3.5 with (64) imply that
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N (Gy) - py(f)l < C(81-%/2 + & + 81-%) < €51, (683)

Also from Lemma 5.12 and the definition of f;, it follows that f; is close to a linear function
[fe(0) = Lo(x)| < C6'"%Ne on H_y. N Bgaorzy(0), (69)

where Ly(x) = f.(~Neey) + u¥(G)(x, + Ne) + 9,f.(~Neey)xi. Then Lemma 4.4, (69), and Lemma 3.2 applied
to the rescaled function (Ne)™f.(Nex) in the region {1 < % < —1/2} N Bg-w0/2 yield that

Ifi = Lol < C(8'% + §4-%/2)Ne + Ce < C8'-%Ne (70)

in {-Ne < % < —Ne /2} N Bg-w/2y,(0), where the last inequality follows from (47).
Before we proceed to the next step, observe that the C! regularity of A, Theorem 2.4, as well as Lemma
5.11 yield that

|we(x1, %) — we(x;, —-Ne) — A(x)(x%; + Ne)| < C5'-%Ne on {—Ns <x < —%} (71)

Step 6. Patching up
Let h(x) = I(x) + (u(w,) — C6'?)(x, + KmNe), where C > 0 is a constant given as in (b) of Theorem 4.1,
and I(x) = I(x) is a linear function chosen so that h(x) = q - x on H_;. We define

_Jh in {-1<x < -KmNe},
Pe = w, in {~-KmNe < x; < —Ne /2}.

Since A is mNe-periodic, (b) of Theorem 4.1 implies that on {% = —KmNg},
Oywe = P(we) — CA(1/K, e3) = u(w,) — CKV/? = p(w,) — C8Y2 = 9,,h.

Thus, it follows that F(D%p,, %) <0in{-1<x < -Ne/2}.

Due to the flatness estimates (70) and (71), we can approximate f; and p, by linear functions, respec-
tively, with normal derivatives of uV(Gy) and A(x), with the error of O(6-%Ne). Here, recall that A(x)
was constructed so that A(x) > uN(Gy) + 6%, and @, is a constant satisfying ay < 1/2. Then since
fe = p, + 6""%Ne on {x, = —Ne},

p.>fe on{x=-Ne/2} and f;>p, on {x=-Ne} (72)
Define p,as follows:
P in {-1 < % < —Ng},
p, = ymin(p,, fo) in {-Ne <x < -Ne/2},
fe in {-Ne /2 < x < 0}.

Then by (72), P, is aviscosity supersolution of (P),.e,,0,4 in{-1 < X, < 0}. Let us mention that, due to Lemmas
5.9, 5.10, and 5.11, a small perturbation of these barriers also yield a supersolution in {-1 < x - v; < O}.
Similarly, one can construct a subsolution g, of (P)g e,,0,4 by replacing A(x) given in the construction of p, by

A(x) < u¥(Gy) — 6%. Then by Lemmas 5.9 and 5.11,
() = u(p )l < @) — )l + €812 < C(8'/2 + §%) < C5% = CB12, (73)

where the last inequality follows by choosing ag = 1/2.

We denote p, = p)* and P, = Be"l indicating that they are obtained from the direction vy, i.e., with the
scale Ne.

Step 7. Comparing the solutions 1! and u}?: Proof of Theorem 5.2(a)

Parallel arguments as in the previous steps apply to the other direction v,. Recall that

92:|V2—€2|<91, M:[ 8 ]>N
tan6,
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Then similarly as in the direction v;, we can construct barriers p}” and BEVZ, such that

m(ue) = u(e)l < m(p) - m(p,”)1 + 82 < €82 74)

Here, their corresponding Neumann boundary conditions satisfy

HM(Gi) - 6% -6 < %ﬁ!z; %BSVZ <uM(G) + 8% + 8 on Hoye Nk,
2 2

where ap =1/2, and the respective derivatives of p'? and ££V2 are taken as a limit from the region
{-1< x5 < -Mg}.

Thus, to compare p(u2) and pu(u)?), we compare u¥(Gy) and p¥(Gy). Recall that we define p¥(Gy)
similarly as uV(Gy). More precisely, p™(Gy) is the slope of the linear approximation of v}*¢, where v} is
defined similarly as in (52) in the region {-Me < x < 0} with the boundary condition:

IV E(x) = Gr(DvM#,x/e) on H,

and v,ﬁ”’f = I(x) on H_y. Since Gy is periodic on the Neumann boundary, it corresponds to the case of
Neumman boundary with rational normal, passing through the origin. Hence, by applying arguments as in
the proof of (34),

[N (Gi) - uM(Gi)l < CA(1/N, e)) = C inf {I/N* + 1/N*"}} = C /NV/2, (75)
0<k<1
Now we prove the following lemma using the estimate (75).

Lemma 5.13. For any ¢ satisfying (44),
m(u) - u(u?)) < c8'/2,

Proof. By the construction of the viscosity supersolution stl and Lemma 5.10,
() - @)l < ', (76)

where @, is given as in (66). Similarly, we obtain
u(p.”) - u(@2)l < c8', )
where @} solves

F(Dzd)g‘”z) =0 in {~KmMe < x, < -Me /2};

w2

—— = N2(x) on H_y2;
ov
(,(_)gv2 = I(X) on H,KmMg.

Here, A"(x) is constructed similarly as A(x) with N replaced by M, i.e., with uN(Gy) replaced by uM(Gy).
Then by (73), (74), (76), and (77), it suffices to prove

(@) - (@) < c'/2.

Recall that |[A(x) — uN(Gy)| < 8% + 6 on I, and similarly, |[A2(x) — uM(Gy)| < 6% + & on I, with ag = 1/2.
Hence,

(@) - phy)l, (@) - plho)| < €672 (78)
for solutions h; and h, of

F(D’h) =0 in {~KmNe < x, < -Ne/2}
oh
a_vl =puN(Gy) on Hoygjp NI

h = 1(x) on H_gmne
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and

F(D?h,) =0  in {-KmMe < x, < -Me /2}

oh
a_vz = uM(Gy) on H_per N I
hy = 100) on H_gme.

Note that h; has a periodic Neumann condition on H_y.,; with period mNe, and also h, has a periodic
Neumann condition on H_y > with period mMe. Hence, they correspond to the case of periodic Neumann
boundary data, i.e., the case of Neumann boundary with a normal direction e,, and passing through the
origin. Hence, by Theorem 4.1 with (75) and K = 1/6, we obtain

[u(h) - u(ho)l < A8, €5) + C/NV? < C(6'2 + (1/N)'?) < €82, (79)

where the last inequality follows from (47). Then we can conclude from (78) and (79). O
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