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THE L1-CONTRACTION PRINCIPLE IN OPTIMAL TRANSPORT

MATT JACOBS, INWON KIM, AND JIAJUN TONG

Abstract. In this work we use the JKO scheme to approximate a general class of diffusion
problems generated by Darcy’s law. Although the scheme is now classical, if the energy density
is spatially inhomogeneous or irregular, many standard methods fail to apply to establish conver-
gence in the continuum limit. To overcome these difficulties, we analyze the scheme through its
dual problem and establish a novel L1-contraction principle for the density variable. Notably, the
contraction principle relies only on the existence of an optimal transport map and the convexity
structure of the energy. As a result, the principle holds in a very general setting, and opens the
door to using optimal-transport-based variational schemes to study a larger class of non-linear
inhomogeneous parabolic equations.

1. Introduction

Darcy’s law describes a fluid flowing along a pressure gradient with the assumption that inertial
forces are negligible. In this paper, we consider Darcy’s law where the pressure is generated by
a spatially inhomogeneous and convex energy functional. To be more precise, for T > 0, we
consider

(P )

{

ρt −∇ · (ρ∇p) = 0 in Ω× (0, T ],
p ∈ ∂E(ρ),

with initial data ρ0, and with p satisfying the homogeneous Neumann boundary condition on
∂Ω × [0, T ]. Here ρ = ρ(x, t) represents the density of a certain material flowing in a bounded
smooth domain Ω ⊂ Rd and p = p(x, t) is the pressure generated by ρ according to a free energy
E(ρ). We will focus on proper, convex, lower semi-continuous energies of the form

E(ρ) = χΩ(ρ) +

∫

Ω
s(ρ(x), x) dx, (1.1)

where

χΩ(ρ) =

{

0 if ρ(x) = 0 for all x /∈ Ω,

+∞ otherwise

restricts the density to Ω, and s(z, x) : R × Ω → R ∪ {+∞} denotes a spatially inhomogeneous
free energy density that is convex in the first variable. Note that when s is smooth (P ) can be
written as a parabolic PDE ρt −∇ · (ρ∇(∂zs(ρ, x))) = 0 for nonnegative densities ρ(x, t).

Since the pioneering work of Otto et al. [JKO98, Ott01], optimal transport has been used
extensively to study and model a large class of dissipative PDEs in the form of Darcy’s law
via minimizing movement scheme, also known in this context as the JKO scheme. The JKO
scheme is a discrete-in-time approximation of the problem, based on the interpretation of the
equation as a gradient flow of the energy E(ρ) with respect to the 2-Wasserstein metric. From a
modeling perspective, the energy structure of the JKO scheme is itself meaningful and natural.
Furthermore, the JKO scheme is particularly useful for numerical simulations as the variational
structure automatically provides unconditional stability.
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Our goal in this paper is to study the equation (P ) via the JKO scheme and establish the
convergence of the scheme to the continuum limit. To study convergence, an important concept
in the literature has been the geodesic convexity of the energy [AGS08, San15]. When the energy
density function s is spatially inhomogenous, geodesic convexity seems unlikely to hold in general.
Even verifying this lack of geodesic convexity seems challenging: see [DFM14] for a relevant
discussion in one space dimension. In the absence of the geodesic convexity, various approaches
are still available to find compactness properties to obtain convergence to the continuum limit;
see for instance [MMS09, DPMSV16, MRCS10, KM19]. However, all of these results are limited
to the first-order inhomogeneity s(z, x) = s1(z) + zf(x) and many require the domain Ω to be
convex.

In this paper, we establish a novel L1-contraction principle for the minimizing movement
scheme for a broad class of spatially inhomogeneous energy densities s (see assumptions (s1)-(s2)
below). While the L1-contraction property is well-known for the continuum PDEs [Car99, Ott96],
our result appears to be the first such one for the discrete solutions generated by the minimizing
movements scheme. The principle relies only on the existence of an optimal transport map and
the convexity structure of the energy (1.1). As a result, the principle holds in a very general
setting, and it opens the door to using JKO scheme to study a large class of non-linear diffusion
equations (see the discussion below). For this reason, in the first half of the paper, we will
consider a more general version of the JKO scheme where we replace the 2-Wasserstein metric
with a more general transport cost function. Here, our analysis will focus on the variational
structure of the scheme, and show how the interplay between primal and dual variables leads to
the L1-contraction principle. In the second half of the paper, we will return to the particular
case of the 2-Wasserstein metric and use the L1-contraction principle to establish convergence of
the scheme to the continuum solution of (P ).

Let us now introduce the minimizing movement scheme. Given a time step τ > 0, the classical
JKO scheme constructs an approximate solution to the PDE (P ) by iterating

ρn+1,τ = argmin
ρ

E(ρ) +
1

2τ
W 2

2 (ρ, ρ
n,τ ), (1.2)

where W 2
2 is the squared 2-Wasserstein distance. We will consider a generalized version of this

variational problem where the 2-Wasserstein metric is replaced by a general optimal transport
cost. Given two nonnegative measures, µ and ν, of equal mass supported on Ω and a transport
cost c : Ω× Ω → [0,∞), the total transport cost between µ and ν with respect to c is

C(µ, ν) := inf
π∈Π(µ,ν)

∫

Ω×Ω
c(x, y) dπ(x, y), (1.3)

where Π(µ, ν) is the set of nonnegative measures on Ω × Ω with first marginal µ and second
marginal ν. For a given density ρ̄, we consider the primal problem

argmin
ρ

J(ρ, ρ̄), where J(ρ, ρ̄) := E(ρ) + C(ρ, ρ̄). (1.4)

In the case c(x, y) = 1
2τ |x− y|2, this recovers (1.2).

The variational problem (1.4) is convex in ρ, so we can introduce the equivalent dual problem

argmax
p

J∗(p, ρ̄), where J∗(p, ρ̄) =

∫

Ω
ρ̄(x)pc(x) dx− E∗(p), (1.5)

and where the maximizer corresponds to the pressure variable in (P ). Here

E∗(p) :=

∫

Ω
s∗(p(x), x) dx, s∗(p, x) := sup

z∈R

(

pz − s(z, x)
)

,
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and
pc(x) := inf

y∈Ω
p(y) + c(x, y)

is the c-transform of p, which plays an essential role in the theory of optimal transport. Let us
note that the only conditions that we require for c are those needed to guarantee the existence
of an optimal transport map and to make c behave similarly to a distance function (see (c1)-(c3)
in section 1.1).

Much of our subsequent analysis in both parts of the paper will focus on the dual problem
(1.5). The advantage of the dual problem over the primal problem is that variations of the
c-transform are easier to study than variations of the transport cost C(ρ, ρ̄). In addition, the
optimal pressure variable has better regularity properties than the optimal density variable.
To recover information about the optimal density, we shall exploit the fact that the primal
and dual variables are very closely linked. Any optimal density ρ∗ ∈ argminρ J(ρ, ρ̄) and any
optimal pressure p∗ ∈ argmaxp J

∗(p, ρ̄) are linked through the duality relation p∗ ∈ ∂E(ρ∗).
Furthermore, whenever the optimal map T between ρ̄ and ρ∗ exists, it must solve the equation
∇p∗(T (x))+∇yc(x, T (x)) = 0 (see Proposition 3.1). This interplay between the primal and dual
problems will be essential in our derivation of the L1-contraction principle.

From the perspective of the continuum PDE (P ), the focus on the dual problem is also natural.
Again through the equivalent duality relations p(x) ∈ ∂zs(ρ(x), x) and ρ(x) ∈ ∂ps∗(p(x), x), the
system (P ) can be rewritten as a nonlinear diffusion problem in terms of the pressure:

(a(p, x))t −∇ · (∇s∗(p, x)−'b(p, x)) = 0, (1.6)

where a(p, x) = ρ(x, t) = ∂ps∗(p, x) and 'b(p, x) = ∂xs∗(p, x). Compared to the density version of
the equation, (1.6) allows lower regularity for the energy density s.

In section 6, we will show that our scheme converges to a weak solution of (1.6) in the sense of
[Car99]. We further characterize the transport velocity −∇p for (P ) in the density support, see
Theorem 1.7 below. While uniqueness results hold for the spatially homogeneous case [Car99]
and for certain inhomogeneous cases (see section 7), the complete uniqueness result for our notion
of weak solutions remains open in general setting.

Before stating the main results, let us emphasize that the enlarged class of costs that we
consider are not artificial. Indeed, by allowing more general costs one obtains interesting gener-
alizations of Darcy’s law. Consider costs given by the Lagrangian action

cτ (x, y) = inf
γ∈Γτ (x,y)

∫ τ

0
L(γ′(t), γ(t)) dt,

where Γτ (x, y) = {γ ∈ C1([0, τ ] → Ω) : γ(0) = x, γ(τ) = y} is the set of paths from x to y
and the Lagrangian L : Rd × Rd → [0,∞) is C1 and convex in the first variable. Let H be the
Hamiltonian corresponding to L, i.e.,

H(q, x) = sup
v∈Rd

v · q − L(v, x).

Then the minimizing movement scheme with the cost cτ formally approximates the PDE
{

ρt(x)−∇ ·
(

ρ(x)∇qH
(

∇p(x), x
))

= 0 in Ω× (0, T ];
p(x) ∈ ∂s(ρ(x), x),

Note that in the special case H(q, x) = 1
2 |A(x)q|

2, where A : Ω → Rd×d is some non-degenerate
matrix field, one obtains the anisotropic version of Darcy’s law v = −A(x)ᵀA(x)∇p. In this spe-
cial case and indeed in any case where∇qH(∇p(x), x) is linear with respect to ∇p, the techniques
of this paper could be applied to obtain the convergence of the scheme to the continuum limit.
However, when ∇qH(∇p(x), x) is non-linear with respect to ∇p, passing to the limit becomes
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much more difficult and would require additional new ideas. Regardless, for simplicity, when
discussing continuum PDEs we shall only discuss the equation (P ).

1.1. Assumptions and main results. Let us now introduce precise assumptions on the energy
and the cost functions. For the L1-contraction principle, we only need the following minimal
assumptions on the energy functional, which will be assumed throughout the paper.

(s1) For all x ∈ Ω, s(·, x) is a proper, lower semi-continuous, convex function.
(s2) s(z, x) ≡ +∞ if z < 0, s(0, x) = 0,

−∞ < inf
(z,x)∈R×Ω

s(z, x), and lim
z→+∞

inf
x∈Ω

s(z, x)

z
= +∞.

For the cost function in (1.3), we always assume that it satisfies

(c1) symmetry: c(x, y) = c(y, x), and c(x, x) = 0.
(c2) continuity: c ∈ C1

loc(R
d × Rd → [0,∞)).

(c3) the twist condition: for all x0 ∈ Rd the map y *→ ∇xc(x0, y) is injective over Rd.

These assumptions guarantee that there exists an optimal transport map for the cost c between
any two absolutely continuous measures with the same mass [San15].

For the convergence analysis in the second part of our paper, we will require further regularity
properties for the dual energy s∗ as follows:

(s3) s∗ is differentiable, with its derivatives ∂ps∗(p, x) and ∇xs∗(p, x) continuous with respect
to p for all x ∈ Ω. Moreover for any finite b we have

∫

Ω
‖∇xs

∗(·, x)‖2
C
(

(−∞,b)
) dx < +∞.

(s4) limα→−∞ ess supx∈Ω ∂ps∗(α, x) = 0, and limα→+∞ ess infx∈Ω ∂ps∗(α, x) > 0.
(s5) For any α ∈ R there exists Mα ∈ (0,∞) such that

ess sup
x∈Ω

∂ps
∗(α, x) ≤ Mα ess inf

x∈Ω
∂ps

∗(α, x).

Remark 1.1. The assumption (s3) ensures sufficient regularity for the existence of weak solutions
to (1.6). Note that (s3) is equivalent to the strict convexity of z *→ s(z, x) for z ∈ ∂s∗(R, x). (s4)
guarantees the existence of a stationary solution to the primal problem with a given mass, while
(s5) ensures that the flow cannot spontaneously form a vacuum when the density is everywhere
bounded away from zero. Together, assumptions (s4) and (s5) allow us to construct barriers
that give uniform lower bounds on solutions starting from certain strictly positive initial data.
Crucially, these barriers will allow us to approximate any solution with a non-degenerate and
regular solution.

Remark 1.2. Let us note that a simple class of energy densities satisfying (s1)-(s5) are given by
the multiplicative structure s(z, x) = f(x)g(z), where f : Ω̄ → R is smooth and strictly positive
and g is a convex and superlinear function such that ∂g(0) ⊂ [−∞, 0] and ∂g(z) ⊂ (0,∞) if
z > 0. This includes many familiar choices, for example,

g(z) = z ln z − z, g(z) =
1

m− 1
zm (m > 1), or g(z) =

1

m− 1
zm + z2 (m < 1).

One can then create a larger class of energy densities by taking sums s(z, x) =
∑k

i=1 fi(x)gi(z) or

infimal convolutions s(z, x) = inf∑k
i=1 zi=z

∑k
i=1 fi(x)gi(zi) of copies of the multiplicative struc-

ture described above.
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To state the main results, first let us only assume s satisfies (s1)-(s2) and c satisfies (c1)-(c3).
Define

X := {ρ ∈ L1(Ω) : E(ρ) < ∞} (1.7)

and

X∗ := {p : Ω → [−∞,+∞] : p is measurable and E∗(p) < ∞}. (1.8)

For the primal problem (1.4), we assume the initial density to satisfy

0 <

∫

Ω
ρ̄(x) dx < lim

b→∞

∫

Ω
sup ∂s∗(b, x)dx. (1.9)

Here ∂s∗(b, x) denotes the subdifferential of s∗(·, x) with respect to the first variable at b ∈ R. It
is noteworthy that (1.9) can be equivalently written as

lim
b→−∞

∫

Ω
sup ∂s∗(b, x)dx <

∫

Ω
ρ̄(x) dx < lim

b→∞

∫

Ω
inf ∂s∗(b, x) dx.

It will be shown in Lemma 2.12 that limb→−∞
∫

Ω sup ∂s∗(b, x)dx = 0. As for switching the sup
to an inf in the upper bound, since ∂s∗(·, x) is increasing, it is true that for all x ∈ Ω, b ∈ R and
ε > 0,

inf ∂s∗(b, x) ≤ sup ∂s∗(b, x) ≤ inf ∂s∗(b+ ε, x).

Hence, the limits must be the same. (1.9) guarantees that the corresponding maximizing pressure
in the dual problem (1.5) will be finite (see the proof of Proposition 3.1).

Theorem 1.3 (Discrete L1-contraction property, Theorem 4.4). Let ρ0, ρ1 ∈ X satisfy (1.9),
and

ρ∗i = argmin
ρ∈X

J(ρ, ρi),

where J(ρ, ρi) is defined in (1.4). Then we have

‖(ρ∗1 − ρ∗0)+‖L1(Ω) ≤ ‖(ρ1 − ρ0)+‖L1(Ω).

Remark 1.4. In the special case where the energy is translation invariant (i.e. Ω = Rd and
s(z, x) = s(z)), our contraction result should result in BV estimates akin to that of [DPMSV16].
The translation invariance allows one to apply the contraction principle to the difference between
a density and its translated version. Hence, for any y ∈ Rd one has the inequality

∫

Rd
|ρ∗(x+ y)− ρ∗(x)| ≤

∫

Rd
|ρ(x+ y)− ρ(x)|

which can be readily converted into a BV norm inequality. Note that this will also hold for a
general domain Ω and a spatially homogeneous energy, as long as one knows that the density
stays compactly supported away from the boundary.

Based on Theorem 1.3, we obtain the discrete comparison principle for both density and
pressure variable. To our best knowledge, the only previous comparison result is [AKY14],
which addresses the particular case of s(z) = 1

m−1z
m with m > 1 and the quadratic cost. In

addition to the inherent interest of the comparison principle, it will also prove to be useful in our
approximation argument (see the discussion below).

Theorem 1.5 (Discrete comparison principle, Lemma 3.4, Lemma 4.5, and Theorem 4.6). Under
the assumptions of Theorem 1.3, suppose ρ0 ≤ ρ1 a.e. in Ω. Then

(1) ρ∗0 ≤ ρ∗1 a.e. in Ω.
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(2) With i = 0, 1, there exists a largest and a smallest c-concave maximizing pressure in

argmax
p∈X∗, pcc̄=p

J∗(p, ρi),

denoted by p+i and p−i respectively, in the sense that p−i (x) ≤ p̃i(x) ≤ p+i (x) in Ω for any

p̃i ∈ argmax
p∈X∗, pcc̄=p

J∗(p, ρi).

Here J∗(p, ρi) is defined as in (1.5), and

qc̄(x) := sup
y∈Ω

q(y)− c(x, y)

is the c̄-transform. p is called c-concave if and only if pcc̄ = p.
For such p±i , we have p+0 ≤ p+1 and p−0 ≤ p−1 in Ω.

The remainder of our main results concern the second part of our paper where we show that
the discrete solutions obtain from the minimizing movement scheme converge to solutions of the
problem (P ). The contraction principle will play a crucial role in our arguments.

s is now assumed to satisfy all the assumptions (s1)-(s5), and the cost is specialized to the
quadratic cost c(x, y) := 1

2τ |x− y|2, where τ plays the role of a time step. We shall suppose that
the initial data ρ0 satisfies a slightly stronger version of (1.9), i.e.,

∫

Ω
ρ0 dx > 0, and ρ0 ≤ ∂ps

∗(M, ·) a.e. in Ω (1.10)

for some M < +∞. In fact, this will imply that ρ0 admits a pressure variable bounded from
above, and that ρ0 satisfies (1.9).

Setting ρ0,τ = ρ0, we construct approximate solutions to (P ) by iterating:

ρn+1,τ := argmin
ρ∈X

J(ρ, ρn,τ ), (1.11)

and
pn+1,τ ∈ argmax

p∈X∗, pcc̄=p
J∗(p, ρn,τ ) (1.12)

where pn+1,τ is chosen as the smallest c-concave maximizer given in Theorem 1.5. Note that now
the primal problem has the more familiar form (1.2).

Define ρτ : Ω×[0,∞) → [0,∞) and pτ : Ω×[0,∞) → R as the piecewise constant interpolations
on [0,∞) of the discrete solutions

ρτ (x, t) := ρn+1,τ (x), pτ (x, t) := pn+1,τ (x) for nτ ≤ t < (n+ 1)τ. (1.13)

Our goal is to show that as τ → 0, (ρτ , pτ ) converges up to a subsequence to a weak solution of
the problem (P ).

The starting point of the analysis is to use the L1-contraction to establish spatial equicontinuity
of ρτ (see Proposition 5.2) which then yields the L1-convergence of ρτ in space-time. As for the
compactness of pτ , the available energy dissipation inequality (see Lemma 5.1) only bounds the
integral of the combined quantity ρτ |∇pτ |2, and thus additional ideas are needed to discuss
the convergence of pτ in view of potential degeneracy of ρτ (i.e. ρτ = 0 in some region of the
space-time domain).

First we show that, for strictly positive initial density ρ0, (ρτ , pτ ) converges to the standard
weak solution of (P ) where ∇p is obtained as an L2-function in space-time. A crucial ingredient
is Lemma 4.7, by which stationary solutions can serve as barriers to provide uniform bounds on
ρτ and pτ . For a given T > 0, we denote ΩT := Ω × [0, T ]. The convergences as τ → 0 are
subsequential.



THE L1-CONTRACTION PRINCIPLE IN OPTIMAL TRANSPORT 7

Theorem 1.6 (Theorem 6.1). Suppose ρ0 ∈ X satisfies (1.10). In addition, suppose ρ0(x) ≥
∂ps∗(m,x) for some constant m ∈ R such that ∂ps∗(m,x) is not identically zero. Then for
any T > 0, there exist ρ ∈ L∞

(

ΩT
)

and p ∈ L2
(

[0, T ];H1(Ω)
)

∩ L∞(ΩT ) such that, up to a
subsequence, ρτ → ρ in L1

(

ΩT
)

and pτ ⇀ p in L2([0, T ];H1(Ω)). Moreover, (ρ, p) is a weak
solution of (P ) in the sense that p(x, t) ∈ ∂ps(ρ(x, t), x) a.e. in ΩT and
∫ t0

0

∫

Ω
ρ(x, t)∂tφ(x, t)− ρ(x, t)∇p(x, t) ·∇φ(x, t) dx dt =

∫

Ω
ρ(x, t0)φ(x, t0)− ρ0(x)φ(0, x) dx

for any φ ∈ C∞(ΩT ) and for a.e. t0 ∈ [0, T ].

For general bounded initial data ρ0 satisfying (1.10), we obtain a weaker notion of continuum
solutions of (P ) in the context of (1.6), similar to that of [Car99]. This notion still admits
uniqueness results on the ρ-variable for a wide class of s∗ (see section 7). Instead of directly taking
the limit τ → 0 in the discrete solutions (ρτ , pτ ), our solution is obtained by an approximation
argument using solutions starting from strictly positive initial data. In this process, the L1-
contraction and the comparison principle play crucial roles. See the details in section 6.

Theorem 1.7 (Theorem 6.2). Suppose ρ0 ∈ X satisfies (1.10). Then for any T > 0 there exists
ρ ∈ L∞

(

ΩT
)

and a measurable p with p+ := max{p, 0} ∈ L∞
(

ΩT
)

, such that ρτ → ρ in L1(ΩT )
along a subsequence, and ρ(x, t) = ∂ps∗(p(x, t), x) a.e. in ΩT . Moreover (ρ, p) is a weak solution
of (1.6) in the sense that for any φ ∈ C∞(ΩT ) and for a.e. t0 ∈ [0, T ]

∫ t0

0

∫

Ω
ρ(x, t)∂tφ(x, t)−m(x, t) ·∇φ(x, t) dx dt =

∫

Ω
ρ(x, t0)φ(x, t0)− ρ0(x)φ(x, 0) dx,

where m(x, t) := ∇[s∗(p(x, t), x)] − ∂xs∗(p(x, t), x) ∈ L2(ΩT ). Lastly, m
ρ = ∇p in the support of

ρ, in the sense that
∫

ΩT

m

ρ
· f = −

∫

ΩT

p∇ · f

for any d-dimensional vector field f ∈ L2([0, T ];H1(Ω)) with ‖ρ−1f‖L2(ΩT )+ ‖ρ−1∇ · f‖L1(ΩT ) <
+∞ and with zero normal component along ∂Ω× [0, T ].

Finally we discuss uniqueness of weak solutions, extending the results of [Car99] and [Váz07]
to the spatially inhomogeneous cases. To ensure uniqueness, we impose the structural condition
(7.1), which guarantees sufficient regularity of the drift term. In particular, our weak solution
formulation does not require the additional entropy condition considered in [Car99] to obtain
uniqueness.

Theorem 1.8 (Theorem 7.3). Let ρ0 be as given in Theorem 1.7, and suppose s either is of
the form s∗(p, x) = f(x)w(p) or satisfies (7.1). Then the density variable ρ in the weak solution
of (P) constructed in Theorem 1.7 is unique, and the entire sequence ρτ converges to ρ. The
m-variable in Theorem 1.7 is also unique.

Moreover in this case the L1-contraction carries over to the continuum solutions. Namely, let
ρ0,i (i = 1, 2) be given as in Theorem 1.7, and let ρi be the corresponding density variables. Then

‖ρ1(·, t) − ρ2(·, t)‖L1(Ω) ≤ ‖ρ0,1 − ρ0,2‖L1(Ω) for any t > 0.

1.2. Organization of the paper. As mentioned above, the paper consists of two parts. Sections
2-4 establish important general principles of the minimizing movement scheme with general costs,
whereas sections 5-7 turn to the quadratic cost, with focus on establishing convergence of the
discrete solutions as τ → 0.

In section 2, we recall basic properties of optimal transport and convex duality theory. In
section 3, we discuss the equivalence between the primal and the dual problems, as well as the
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existence and uniqueness of their solutions (Proposition 3.1). We prove the existence of the
largest c-concave maximizing pressure in Lemma 3.4, and a maximum-principle-type result for
the pressure in Proposition 3.5. Section 4 features the L1-contraction principle (Theorem 4.4)
and the comparison principle (Theorem 4.6). The existence of the smallest c-concave maximizing
pressure is also proven in Lemma 4.5.

Section 5 establishes strong compactness of the discrete density variable ρτ in L1(ΩT ) (see
Proposition 5.6). The main ingredient needed for compactness is the L1-equicontinuity of {ρτ}τ
(Proposition 5.2), which we obtain by combining the L1-contraction principle with an approxima-
tion argument. Section 6 justifies the convergence to the continuum solutions stated in Theorems
1.6 and 1.7, making use of the strong compactness of {ρτ}τ in section 5, uniform bounds coming
from the comparison principle, the energy dissipation inequality, and the dual relation between
ρτ and pτ . Lastly, section 7 yields a uniqueness result for the ρ- and m-variables of the weak
solutions obtained in Theorem 1.7, under additionally assumptions on s∗(p, x). This general-
izes the uniqueness result of Vázquez [Váz07], which considered spatially homogeneous energy
densities.

1.3. Acknowledgement. I.K. thanks Felix Otto for helpful discussions, in particular motivating
our investigation on the L1-contraction for the discrete scheme. I.K. also thanks Katy Craig for
helpful discussions on the geodesic convexity and pointing to the reference [DFM14]. The authors
are grateful to Alpár Mészáros for helpful comments. M.J. is supported by ONR N00014-18-1-
2527 and AFOSR MURI FA9550-18-1-0502. I.K. is supported by NSF grant DMS-1900804 and
the Simons Fellowship.

2. Preliminary Results

2.1. Properties of the optimal transport. We first list some essential properties of optimal
transport. Since we primarily work with optimal transport in its dual formulation, we shall work
extensively with the c-transform. Recall that we always assume that c satisfies (c1)-(c3).

Definition 2.1. Given a function p : Ω → R the c-transform of p is given by

pc(y) = inf
x∈Ω

p(x) + c(x, y). (2.1)

Given a function q : Ω → R the conjugate c-transform is given by

qc̄(x) := sup
y∈Ω

q(y)− c(x, y).

Remark 2.2. Note that there is no universally-agreed-upon choice of sign convention for the
c-transform. We choose the convention that leads to the simplest notation for our variational
problems.

Lemma 2.3 ([San15]). Given functions p, q : Ω → R, we have

pcc̄ ≤ p, q ≤ qc̄c,

and
pcc̄c = pc, qc̄cc̄ = qc̄.

Definition 2.4. We say that a function p : Ω → R is c-concave if pcc̄ = p, and we say a pair of
functions p, q : Ω → R are c-conjugate if pc = q and qc̄ = p.

The following regularity result is a well-known consequence of the c-transform definition.

Lemma 2.5 ([San15]). If p is c-concave, then p is Lipschitz and the Lipschitz constant depends
only on c and Ω.
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The following two lemmas establish the fundamental relationship between optimal transport
and the c-transform.

Lemma 2.6 ([San15]). If µ is a nonnegative measure, then for any bounded function p : Ω → R,

inf
ρ∈L1(Ω),ρ(Ω)=µ(Ω)

∫

Ω
p(x)ρ(x) dx+ C(ρ, µ) =

∫

Ω
pc(y) dµ(y).

Lemma 2.7 ([Gan94, Gan95, GM96]). If p : Ω → R is c-concave, µ is a nonnegative measure,
and φ : Ω → R is a continuous function, then

lim
t→0+

∫

Ω

(p+ tφ)c(y)− pc(y)

t
dµ(y) =

∫

Ω
φ(Tp(y)) dµ(y)

where Tp : Ω → Ω is the almost everywhere unique solution to

∇p(Tp(y)) +∇xc(Tp(y), y) = 0. (2.2)

Furthermore, Tp is invertible for almost every y ∈ Ω, and T−1
p is the almost everywhere unique

solution to
∇p(x) +∇xc(x, T

−1
p (x)) = 0. (2.3)

Remark 2.8. The maps Tp and T−1
p can additionally be characterized as the unique solutions to

the optimization problems:

Tp(y) = argmin
x∈Ω

p(x) + c(x, y), T−1
p (x) = argmax

y∈Ω
pc(y)− c(x, y). (2.4)

Remark 2.9. If c(x, y) = 1
2τ |x− y|2, the maps Tp and T−1

p are given by

Tp(y) = y − τ∇pc(y), T−1
p (x) = x+ τ∇p(x). (2.5)

Now we can finally state the fundamental result that guarantees the existence and uniqueness
of the optimal transport maps.

Theorem 2.10 ([Bre91, Gan95, GM96]). If µ, ν ∈ L1(Ω) are nonnegative densities with the
same mass, then there exists a c-concave function p∗ : Ω → R such that

p∗ ∈ argmax
p

∫

Ω
pc(y)µ(y) dy −

∫

Ω
p(x)ν(x) dx,

C(µ, ν) =

∫

Ω
(p∗)c(y)µ(y) dy −

∫

Ω
p∗(x)ν(x) dx,

Tp∗ is the unique optimal map (up to a µ-measure-zero set) transporting µ to ν, and T−1
p∗ is the

unique optimal map (up to a ν-measure-zero set) transporting ν to µ.
Conversely, if p̃ is a c-concave function such that Tp̃#µ = ν, then Tp̃ is the unique optimal

map (up to a µ-measure-zero set) transporting µ to ν and T−1
p̃ is the unique optimal map (up to

a ν-measure-zero set) transporting ν to µ.

2.2. Properties of the convex duals. Next we review several useful properties of the convex
duals that will be used throughout the paper.

Lemma 2.11. For any proper, lower semi-continuous, convex function h : R → R ∪ {+∞}, we
have p ∈ ∂h(y) if and only if py = h(y) + h∗(p). Moreover, p ∈ ∂h(y) if and only if y ∈ ∂h∗(p).

Proof. First suppose p ∈ ∂h(y). This implies that for any z ∈ R, h(z) ≥ h(y) + p(z − y). Hence,
py ≥ h(y)+pz−h(z) for any z ∈ R. Taking the supremum over z ∈ R, we get py ≥ h(y)+h∗(p).
The opposite direction py ≤ h(y) + h∗(p) immediately follows from Young’s inequality.
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On the other hand, suppose that py = h(y) + h∗(p). Then

h(y) = py + inf
z
h(z)− pz ≤ h(y′) + p(y − y′)

for any y′ ∈ R. Thus p ∈ ∂h(y).
The second claim immediately follows from the first one if one notices that h∗ is a proper,

lower semi-continuous, convex function on R with value in R ∪ {+∞}. "

Lemma 2.12. Suppose h : R → R∪ {+∞} is a proper, lower semi-continuous, convex function,
satisfying h(x) = +∞ if x < 0 and h(0) = 0. Then h∗ is nonnegative, increasing, and in fact
strictly increasing on ∂h((0,∞)). Moreover, sup ∂h∗(p) → 0 as p → −∞; here the supremum is
taken over the elements in the subdifferential ∂h∗(p).

Remark 2.13. By the assumption on s(·, x), we immediately know that for all x ∈ Ω, s∗(·, x) is
nonnegative, increasing, and strictly increasing on ∂s((0,∞), x).

Proof. By the assumption on h,
h∗(p) = sup

z≥0
pz − h(z).

Hence,
h∗(p) ≥ −h(0) = 0.

If p1 ≤ p2, then p1z ≤ p2z for all z ≥ 0, so h∗(p1) ≤ h∗(p2). If p1 ∈ ∂h
(

y0) for some y0 > 0 and
p2 > p1, then

h∗(p2) = sup
y≥0

p2y − h(y) ≥ p2y0 − h(y0) > p1y0 − h(y0) = h∗(p1).

We used Lemma 2.11 in the last equality.
Lastly, suppose that sup ∂h∗(p) → 0 as p → −∞ does not hold. Since sup ∂h∗(p) is non-

decreasing in p and non-negative, we must have that sup ∂h∗(p) ≥ c for all p ∈ R with some
c > 0. Hence, for any p ≤ p′,

h∗(p′) ≥ h∗(p) + (p′ − p) · sup ∂h∗(p) ≥ c(p′ − p).

Letting p → −∞ yields that h∗(p′) = +∞ for all p′ ∈ R, which leads to a contradiction. "

Lemma 2.14. Suppose p is a measurable function on Ω such that p ≤ M for some M finite,
and ρ(x) ∈ ∂s∗(p(x), x) a.e. in Ω. Then ρ ∈ L∞(Ω) and ρp ∈ L∞(Ω) and both bounds depend
only on s and M .

Proof. The condition ρ(x) ∈ ∂s∗(p(x), x) a.e. in Ω is equivalent to ρ(x) ∈ argmaxz≥0 zp(x) −
s(z, x) a.e. in Ω. From (s2) we have

lim
z→∞

sup
x∈Ω

zp(x)− s(z, x) ≤ lim
z→∞

sup
x∈Ω

zM − s(z, x) = −∞.

Since ρ(x) ∈ argmaxz≥0 zp(x) − s(z, x) for almost every x and choosing z = 0 always gives the
value 0, it follows that ρ ∈ L∞(Ω) with a bound that depends only on s and M .

By Lemma 2.11, that ρ(x) ∈ ∂s∗(p(x), x) is equivalent to

ρ(x)p(x) = s(ρ(x), x) + s∗(p(x), x).

So we can derive that

ess inf
x∈Ω

ρ(x)p(x) = ess inf
x∈Ω

s(ρ(x), x) + s∗(p(x), x) ≥ inf
(z,x)∈R×Ω

s(z, x) > −∞,

where we used Lemma 2.12 to deduce that s∗(p(x), x) ≥ 0. Hence ρ(x)p(x) is bounded from
below, allowing us to conclude that ρp ∈ L∞(Ω). "
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3. Properties of the Primal and the Dual Problems

In this section we show the equivalence of the primal and dual problems and give character-
ization of the corresponding extremizers. We always assume s satisfies (s1)-(s2) and c satisfies
(c1)-(c3).

Proposition 3.1. Suppose that ρ̄ ∈ X and satisfies (1.9). Then the primal problem (1.4) has
a unique minimizer ρ∗ ∈ X also satisfying (1.9), and the dual problem (1.5) admits at least one
c-concave maximizer in X∗. For the minimizing ρ∗ and any c-concave maximizer p∗ ∈ X∗, we
have

J(ρ∗, ρ̄) = inf
ρ∈X

J(ρ, ρ̄) = sup
p∈X∗

J∗(p, ρ̄) = J∗(p∗, ρ̄)

and
ρ∗ ∈ ∂s∗(p∗(x), x) a.e. x ∈ Ω.

Furthermore, Tp∗ is the optimal map transporting ρ̄ to ρ∗ for the cost c, and ∇p∗ is unique
ρ∗-a.e..

Remark 3.2. If ρ̄ ∈ X while (1.9) fails, one can check that ρ̄ is itself the minimizer of the primal
problem. Thus, the excluded cases are trivial.

Remark 3.3. Uniqueness of the optimal pressure p∗ may fail when s∗(·, x) is not strictly convex.
Nevertheless, we will show later that there always exists a largest and a smallest c-concave
maximizing pressure among all c-concave maximizers of the dual energy. See Lemma 3.4 and
Lemma 4.5, respectively.

Proof. From Lemma 2.12, it follows that the dual energy E∗(p) is monotone, i.e. if p0(x) ≤ p1(x)
for a.e. x ∈ Ω then E∗(p0) ≤ E∗(p1). Thus, given some p ∈ X∗, we see from Lemma 2.3 that

∫

Ω
pcc̄c(y)ρ̄(y) dy − E∗(pcc̄) ≥

∫

Ω

∫

Ω
pc(y)ρ̄(y) dy − E∗(p).

Hence,
sup

p∈X∗, pcc̄=p
J∗(p, ρ̄) = sup

p∈X∗

J∗(p, ρ̄),

and so we can restrict our search to the space of c-concave functions.
Let pk be a sequence of c-concave functions such that

lim
k→∞

J∗(pk, ρ̄) = sup
p∈X∗, pcc̄=p

J∗(p, ρ̄).

If we set αk = 1
|Ω|

∫

Ω pk(x) dx, then p̃k = pk − αk is c-concave and has zero mean. Thanks to

Lemma 2.5, p̃k are uniformly bounded in W 1,∞(Ω). So we can assume without loss of generality
that p̃k converges uniformly to a function p̃ of mean zero. Next, we choose

βk ∈ argmax
β∈R

∫

Ω
(p̃k(x) + β)cρ̄(x) dx − E∗(p̃k + β).

Since (p̃k(x) + β)c = p̃ck(x) + β, we see that βk must satisfy
∫

Ω
ρ̄(x) dx =

∫

Ω
ζ(x) dx, for some ζ(x) ∈ ∂s∗(p̃k(x) + βk, x) for a.e. x.

Since ∂s∗(p̃k(x) + β, x) is increasing with respect to β, and {p̃k}k are uniformly bounded, it
follows from (1.9) and Lemma 2.12 that the sequence {βk}∞k=1 exists and is bounded uniformly

in R. Hence, we can assume without loss of generality that the βk converge to a finite limit β̃.
Define p∗ = (p̃+ β̃)cc̄. We then have the string of inequalities

J∗(p∗, ρ̄) ≥ J∗(p̃+ β̃, ρ̄) ≥ lim sup
k→∞

J∗(p̃k + βk, ρ̄),
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where the last inequality follows from the fact that the c-transform and −E∗ are upper semi-
continuous with respect to pointwise convergence. Thanks to the choice of βk, we see that

lim sup
k→∞

J∗(p̃k + βk, ρ̄) ≥ lim sup
k→∞

J∗(p̃k + αk, ρ̄) = sup
p∈X∗, pcc̄=p

J∗(p, ρ̄).

Therefore, we can conclude that p∗ is a c-concave maximizer of the dual problem.
In the rest of the proof, with abuse of the notation, we let p∗ be an arbitrary c-concave

maximizer in X∗ of the dual problem. Using Lemma 2.7, the optimality condition for the dual
problem at p∗ implies that there exists η(x) ∈ ∂s∗(p∗(x), x) such that

∫

Ω
φ(Tp∗(y))ρ̄(y) dy −

∫

Ω
φ(x)η(x)dx = 0,

for every continuous function φ : Ω → R. Thus, if we define ρ∗ := Tp∗#ρ̄, we must have

ρ∗(x) ∈ ∂s∗(p∗(x), x) for a.e. x ∈ Ω.

Therefore, from Lemma 2.11 we have the duality relation
∫

Ω
ρ∗(x)p∗(x) dx = E(ρ∗) + E∗(p∗).

Hence,
∫

Ω
(p∗)c(y)ρ̄(y) dy − E∗(p∗) = E(ρ∗) +

∫

Ω
(p∗)c(y)ρ̄(y) dy −

∫

Ω
p∗(x)ρ∗(x) dx = E(ρ∗) + C(ρ∗, ρ̄),

where the last equality follows from Theorem 2.10. This allows us to conclude that

J∗(p∗, ρ̄) = J(ρ∗, ρ̄).

On the other hand, if we dualize the energy in the primal problem (1.4), we get

inf
ρ∈X

J(ρ, ρ̄) ≥ inf
ρ∈X

sup
p∈X∗

∫

Ω
p(x)ρ(x) dx+ C(ρ, ρ̄)− E∗(p).

Interchanging the supremum and the infimum, it follows that

inf
ρ∈X

J(ρ, ρ̄) ≥ sup
p∈X∗

inf
ρ∈X

∫

Ω
p(x)ρ(x) dx + C(ρ, ρ̄)− E∗(p) = sup

p∈X∗

∫

Ω
pc(x)ρ̄(x) dx− E∗(p),

where we used Lemma 2.6 in the last equality. Note that the last expression is nothing but
supp∈X∗ J∗(p, ρ̄). Thus,

inf
ρ∈X

J(ρ, ρ̄) ≥ sup
p∈X∗

J∗(p, ρ̄) = J∗(p∗, ρ̄) = J(ρ∗, ρ̄)

Therefore, ρ∗ is a minimizer of the primal problem. The cost functional ρ *→ C(ρ, ρ̄) is strictly
convex over L1(Ω) [San15], so ρ∗ must be unique. That ρ∗ satisfies (1.9) is obvious since it has
the same total mass as ρ̄.

Finally, if p∗ and p̃∗ are two maximizers of the dual problem, then both T−1
p̃∗ and T−1

p∗ are the
optimal maps transporting ρ∗ to ρ̄. Thanks to Theorem 2.10, the optimal map is unique up to
a ρ∗-measure-zero set. It then follows from (2.3) that ∇p̃∗(x) = ∇p∗(x) for ρ∗-a.e. x ∈ Ω. "

To better understand the maximizing c-concave pressures, which may not be unique in certain
situations, we denote the set of all c-concave maximizers of the dual functional to be

Σ(ρ̄) := argmax
p∈X∗, pcc̄=p

J∗(p, ρ̄). (3.1)

The following lemma states that there always exists a largest c-concave maximizer in Σ(ρ̄).

Lemma 3.4. If ρ̄ ∈ X and satisfies (1.9), then there exists a unique p∗ ∈ Σ(ρ̄) such that p∗ ≥ p̃
for any p̃ ∈ Σ(ρ̄). In other words, p∗ is the largest c-concave maximizer of the dual problem.
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Proof. Let us first show that if p0, p1 ∈ Σ(ρ̄), then q := max(p0, p1) ∈ Σ(ρ̄). Clearly,

qcc̄ ≥ max(pcc̄0 , p
cc̄
1 ) = max(p0, p1) = q,

so q is c-concave. Next, let ρ∗ = argminρ J(ρ, ρ̄), which is unique. Then Proposition 3.1 together
with Lemma 2.11 implies that p0(x), p1(x) ∈ ∂s(ρ∗(x), x) for almost all x ∈ Ω. Therefore, we
also have q(x) ∈ ∂s(ρ∗(x), x) for almost all x.

Proposition 3.1 and Theorem 2.10 also imply Tp0(x) = Tp1(x) for ρ̄-a.e. x. We can then see
that for ρ̄-a.e. x,

q
(

Tp0(x)
)

+ c
(

x, Tp0(x)
)

= max
i∈{0,1}

(

pi
(

Tpi(x)
)

+ c
(

x, Tpi(x)
)

)

.

On the other hand, for ρ̄ almost every x ∈ Ω and any y ∈ Ω,

max
i∈{0,1}

(

pi
(

Tpi(x)
)

+ c
(

x, Tpi(x)
)

)

≤ max
i∈{0,1}

(

pi
(

y
)

+ c
(

x, y
)

)

= q(y) + c(x, y).

Hence,

Tp0(x) = argmin
y∈Ω

q(y) + c(x, y) = Tq(x)

for ρ̄ almost every x. Combining the facts that q is c-concave, q(x) ∈ ∂s(ρ∗(x), x) a.e. and
Tq#ρ̄ = ρ∗, one can follow the proof of Proposition 3.1 to show that

J∗(q, ρ̄) = inf
ρ
J(ρ, ρ̄).

This implies that q is a maximizer.
Now define

p∗(x) = sup
p̃∈Σ(ρ̄)

p̃(x).

Clearly p∗ ≥ p̃ for any p̃ ∈ Σ(ρ̄), and thus it suffices to show that p∗ is a c-concave maximizer.
The c-concavity of p∗ is clear, since

(p∗)cc̄(x) ≥ sup
p̃∈Σ(ρ̄)

p̃cc̄(x) = sup
p̃∈Σ(ρ̄)

p̃(x) = p∗(x).

Let {xk}k∈Z+ be a dense subset of Ω. For each n, k ∈ Z+, there exists some pn,k ∈ Σ(ρ̄) such
that p∗(xk) ≤ pn,k(xk) +

1
n . For each N ∈ Z+, define

qN := max
1≤k≤N

pN,k.

Our argument above shows that qN ∈ Σ(ρ̄) for all N ∈ Z+. The c-concavity implies that p∗ and
the family {qN}N∈Z+ are uniformly Lipschitz. Hence, for any x ∈ Ω we have

|p∗(x)− qN (x)| ≤
1

N
+ 2L min

1≤k≤N
|x− xk|,

where L is the Lipschitz constant associated to c-concave functions on Ω. Thus,

lim
N→∞

|p∗(x)− qN (x)| = 0.

Moreover, since

sup
x∈Ω

min
1≤k≤N

|x− xk| → 0 as N → +∞

due to the density of {xk}k∈Z+ , we know that the convergence from qN to p∗ is uniform in x.
The functional J∗(·, ρ̄) is clearly continuous with respect to uniform convergence, therefore p∗ is
a maximizer. "
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Next we prove a maximum-principle-type result for the pressure variable, which is of indepen-
dent interest. In order for the statement to hold, we will need to assume the initial density is
almost everywhere positive.

Proposition 3.5. Suppose that ρ̄ ∈ X satisfies (1.9) and that ρ̄ > 0 a.e. in Ω. Let p̄(x) ∈
∂s(ρ̄(x), x) for almost every x. Denote

a := ess inf
x∈Ω

p̄(x), b := ess sup
x∈Ω

p̄(x).

Let ρ∗ be the minimizer of the primal problem and take an arbitrary p̃ ∈ Σ(ρ̄). We have the
following dichotomy:

(1) If ρ∗ /= ρ̄, then p̃(x) ∈ [a, b] for all x.
(2) If ρ∗ = ρ̄, then all members of Σ(ρ̄) are constant functions. More precisely, there exists

a bounded closed interval [a′, b′] ⊂ R with [a, b] ∩ [a′, b′] /= ∅, such that p ∈ Σ(ρ̄) if and
only if p is constant function with its value in [a′, b′].

Proof. Choose a c-concave maximizer p̃ ∈ Σ(ρ̄) and let ρ∗ = Tp̃#ρ̄. It follows from Proposition
3.1 that ρ∗ is the unique solution of the primal problem and ρ∗ ∈ ∂s∗(p̃, x) a.e.. Let

V := {x ∈ Ω : p̃(x) > b},

U := {x ∈ Ω : p̃(x) < a}.

Since p̃ is c-concave and hence Lipschitz, both V and U are open sets.
Suppose that U ∪ V /= ∅. V is an upper level set of p̃ and U is a lower level set of p̃, so we

have the inclusions T−1
p̃ (V ) ⊂ V and U ⊂ T−1

p̃ (U). The monotonicity of ∂s∗(·, x) implies that

ρ̄(x) ≤ ρ∗(x) for a.e. x ∈ V,

and
ρ∗(x) ≤ ρ̄(x) for a.e. x ∈ U.

Here the monotonicity of ∂s∗(·, x) is understood in the following sense: for any b(0) < b(1) and
any η(i) ∈ ∂s∗(b(i), x) (i = 0, 1), we have η(0) ≤ η(1). Hence, we can compute

0 ≤

∫

V
ρ∗(x)− ρ̄(x) dx = −

∫

V−T−1
p̃ (V )

ρ̄(x) dx ≤ 0,

and

0 ≥

∫

U
ρ∗(x)− ρ̄(x) dx =

∫

T−1
p̃ (U)−U

ρ̄(x) dx ≥ 0.

Hence it follows that ρ∗(x) = ρ̄(x) for almost all x ∈ U ∪ V .
Consider the maps

S1(x) =

{

x if x ∈ V,

Tp̃(x) otherwise,

and

S2(x) =

{

x if x ∈ U,

T−1
p̃ (x) otherwise.

Since T−1
p̃ (V ) ⊂ V and ρ̄(x) = ρ∗(x) for a.e. x ∈ V , it follows that

(

S1#ρ̄
)

(x) = ρ∗(x) a.e. on

V and
(

S1#ρ̄
)

(x) ≤ ρ∗(x) for a.e. x /∈ V . But since pushforwards preserve mass, this is only
possible if S1#ρ̄ = ρ∗. Next, it is clear that the transportation cost of S1 cannot exceed the
transportation cost of Tp̃, thus S1 must be an optimal transport map between ρ̄ and ρ∗. The
uniqueness of optimal maps (see Theorem 2.10) then implies that S1 = Tp̃ ρ̄-almost everywhere.
An analogous argument shows that S2 = T−1

p̃ ρ∗-almost everywhere. Now we can conclude that
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Tp̃(x) = T−1
p̃ (x) = x for ρ̄-almost all x ∈ U ∪ V . Combining (2.2) and the assumptions (c1)-

(c2) we can conclude that ∇p̃(x) = 0 for ρ̄-a.e. x ∈ U ∪ V . Since ρ̄ > 0 a.e. in Ω, this implies
∇p̃(x) = 0 a.e. in U ∪ V .

Given some x0 ∈ U ∪V , let A be the connected component of x0 in U ∪V . It is then clear that
p̃ is constant on A. Since p̃ is c-concave and hence Lipschitz, A must be both open and closed.
By the connectivity of Ω, this is only possible if A = Ω. It then follows that p̃ is constant, ∇p̃ = 0
on Ω and hence, ρ∗ = ρ̄ almost everywhere. Therefore, if ρ∗ /= ρ̄, we must have U ∪ V = ∅ and
thus p̃ ∈ [a, b].

Now we prove the second part of the dichotomy. If ρ∗ = ρ̄, then for any p ∈ Σ(ρ̄) we have
Tp(x) = x for ρ̄ almost every x. Hence, Σ(ρ̄) only contains constant functions. Now it is clear
from Proposition 3.1 that p ∈ Σ(ρ̄) if and only if p is constant and p ∈ ∂s(ρ∗(x), x) for almost
every x. Combining the condition p ∈ ∂s(ρ∗(x), x) with the assumption (1.9), we see that the
maximizers must be contained in a bounded set. J∗ is concave and continuous with respect to
uniform convergence, so the set of maximizers must be closed and convex. Now it follows that
Σ(ρ̄) = [a′, b′] for some a′, b′ ∈ R.

Finally, if [a′, b′]∩ [a, b] = ∅, then there must exist a set Ω′ ⊂ Ω of positive measure such that
[a, b] ∩ ∂s(ρ∗(x), x) = ∅ for all x ∈ Ω′. However, this contradicts the existence of p̄, and thus,
[a, b] ∩ [a′, b′] /= ∅. "

4. L1-contraction

In this section we prove the L1-contraction principle for the discrete solutions. At the discrete
level, we have the c-concavity of the pressure functions, which provides regularity that is inde-
pendent of s. This allows for a pointwise argument that is not as dependent on the regularity of
s as it is for the continuum solutions.

At the heart of the L1-contraction principle is the following simple observation.

Lemma 4.1. Let p0, p1 : Ω → R be c-concave functions and let U = {x ∈ Ω : p0(x) < p1(x)}. If
Tp1(y) ∈ U , then Tp0(y) ∈ U .

Proof. Recall that
Tpi(y) = argmin

x∈Ω
pi(x) + c(x, y).

For any x̃ /∈ U and y satisfying Tp1(y) ∈ U ,

p0(x̃) + c(x̃, y) ≥ p1(x̃) + c(x̃, y)

≥ p1
(

Tp1(y)
)

+ c
(

Tp1(y), y
)

> p0
(

Tp1(y)
)

+ c
(

Tp1(y), y
)

,

where the second inequality follows from the definition of Tp1(y). The above computation shows
us that compared to x̃ /∈ U , Tp1(y) is always a better competitor for minx∈Ω p0(x)+c(x, y). Thus,
it follows that Tp0(y) ∈ U . "

We first establish the L1-contraction property in the case that the mapping z *→ ∂s(z, x) is
strictly monotone.

Lemma 4.2. Given ρ0, ρ1 ∈ X satisfying (1.9), let

ρ∗i = argmin
ρ∈X

J(ρ, ρi).

If for all x ∈ Ω, z *→ ∂s(z, x) is strictly increasing when z ≥ 0, then

‖(ρ∗1 − ρ∗0)+‖L1(Ω) ≤ ‖(ρ1 − ρ0)+‖L1(Ω).

Remark 4.3. Here the strict monotonicity of z *→ ∂s(z, x) is understood as follows: for any
0 ≤ z(0) < z(1) and any q(i) ∈ ∂s(z(i), x) (i = 0, 1), we have q(0) < q(1).
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Proof. By Proposition 3.1, we can choose pi ∈ Σ(ρi), where Σ(ρi) is the set of c-concave maximiz-
ers for the data ρi as defined in (3.1). Then ρ∗i = Tpi#ρi and pi(x) ∈ ∂s(ρ∗i , x). Since z *→ ∂s(z, x)
is strictly increasing for z ≥ 0,

sgn(p1(x)− p0(x))+ = sgn(ρ∗1(x)− ρ∗0(x))+

whenever ρ∗1(x) /= ρ∗0(x). Therefore,
∫

Ω
(ρ∗1(x)− ρ∗0(x))+ dx =

∫

Ω
(ρ∗1(x)− ρ∗0(x)) sgn(p1(x)− p0(x))+ dx.

Write ϕ(x) := sgn(p1(x) − p0(x))+ and note that ϕ is simply the characteristic function of the
set U = {x ∈ Ω : p0(x) < p1(x)}. Using ρ∗i = Tpi#ρi, the previous line becomes

∫

Ω
(ρ∗1(x)− ρ∗0(x))+ dx =

∫

Ω
(ρ1(x)− ρ0(x))ϕ(Tp1(x)) + ρ0(x)(ϕ(Tp1(x))− ϕ(Tp0(x))) dx.

Since ϕ ∈ {0, 1},
∫

Ω
(ρ1(x)− ρ0(x))ϕ(Tp1(x)) dx ≤ ‖(ρ1 − ρ0)+‖L1(Ω).

On the other hand, Lemma 4.1 gives ϕ(Tp1(x))− ϕ(Tp0(x)) ≤ 0, so the result follows. "

To prove the L1-contraction we shall remove the strict monotonicity assumption of ∂s(·, x) by
approximation.

Theorem 4.4. Suppose s satisfies (s1)-(s2) and c satisfies (c1)-(c3). Let ρ0, ρ1 ∈ X satisfy
(1.9), and

ρ∗i = argmin
ρ∈X

J(ρ, ρi),

where J(ρ, ρi) is defined in (1.4). Then we have

‖(ρ∗1 − ρ∗0)+‖L1(Ω) ≤ ‖(ρ1 − ρ0)+‖L1(Ω).

Proof. Define

sδ(z, x) = s(z, x) + δ
(

√

1 + z2 − 1
)

.

Obviously, sδ satisfies (s1) and (s2). Let

Eδ(ρ) =

∫

Ω
sδ(ρ(x), x) dx.

By (s2), Xδ := {ρ ∈ L1(Ω) : Eδ(ρ) < ∞} coincides with X. To verify that ρi satisfies (1.9) with
s∗ replaced by s∗δ , it suffices to show that for any x ∈ Ω and b ∈ R+,

∂s∗(b− δ, x) ≤ ∂s∗δ(b, x) ≤ ∂s∗(b, x). (4.1)

Here by writing inequalities between these subdifferentials, we mean any choice of elements in
these sets satisfies this inequality. Indeed, by Lemma 2.11, b ∈ ∂sδ

(

∂s∗δ(b, x), x
)

. By the way sδ
is defined, we find

b− δ ≤ sup ∂s
(

∂s∗δ(b, x), x
)

and inf ∂s
(

∂s∗δ(b, x), x
)

≤ b,

which implies (4.1) by applying Lemma 2.11 again.
Let

ρ∗i,δ = argmin
ρ∈X

Eδ(ρ) + C(ρ, ρi).

Now thanks to Lemma 4.2, we have

‖(ρ∗1,δ − ρ∗0,δ)+‖L1(Ω) ≤ ‖(ρ1 − ρ0)+‖L1(Ω).
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For i = 0, 1, the family {ρ∗i,δ}δ>0 lies in a bounded subset of X, in the sense that

E(ρ∗i,δ) ≤ Eδ(ρi) ≤ E(ρi) + δ‖ρi‖L1(Ω) < +∞.

Thanks to de la Vallée-Poussin’s theorem on uniform integrability and conditions (s1) and (s2)
on the energy [Mey66], the family ρ∗i,δ is weakly compact in L1. Hence, without loss of generality,

we can assume that ρ∗i,δ converges weakly in L1(Ω) to some limit ρ̃i ∈ L1(Ω).
From Theorem 2.10, it follows that the optimal transport cost ρ *→ C(ρ, ρi) is lower semi-

continuous with respect to L1(Ω) weak convergence. Furthermore, the convexity of s can be
used to show that E is L1-weakly lower semi-continuous (see for instance [Eva90, §2.B, Theorem
1] for the proof of a similar argument). Therefore,

∫

Ω
s(ρ̃i(x), x) dx + C(ρ̃i, ρi) ≤ lim inf

δ→0

∫

Ω
s(ρ∗i,δ(x), x) dx + C(ρ∗i,δ, ρi).

It is then clear that for any ρ ∈ L1(Ω),

lim inf
δ→0

∫

Ω
s(ρ∗i,δ(x), x) dx + C(ρ∗i,δ, ρi) ≤ lim inf

δ→0

∫

Ω
sδ(ρ(x), x) dx + C(ρ, ρi).

Since

lim
δ→0

∫

Ω
sδ(ρ(x), x) dx =

∫

Ω
s(ρ(x), x) dx,

we take infimum over all ρ ∈ L1(Ω) and find that
∫

Ω
s(ρ̃i(x), x) dx + C(ρ̃i, ρi) ≤ inf

ρ∈L1(Ω)

∫

Ω
s(ρ(x), x) dx + C(ρ, ρi).

So ρ̃i is a minimizer, and obviously ρ̃i ∈ X. The uniqueness of the minimizers established in
Proposition 3.1 allows us to conclude that ρ̃i = ρ∗i a.e.. Finally,

‖(ρ∗1 − ρ∗0)+‖L1(Ω) = lim
δ→0

∫

Ω
(ρ∗1,δ − ρ∗0,δ)χ{ρ∗1>ρ∗0}

(x) dx

≤ lim inf
δ→0

‖(ρ∗1,δ − ρ∗0,δ)+‖L1(Ω) ≤ ‖(ρ1 − ρ0)+‖L1(Ω).

"

In Lemma 3.4, we have shown that there always exists the largest c-concave maximizing
pressure of the dual problem. The following lemma states that we can always find the smallest
c-concave maximizing pressure as well.

Lemma 4.5. If ρ̄ ∈ X and satisfies (1.9), then there exists a unique p∗ ∈ Σ(ρ̄) such that p∗ ≤ p̃
for any p̃ ∈ Σ(ρ̄). In other words, p∗ is the smallest c-concave maximizer of the dual problem.

Proof. For any k ∈ Z+, define s∗k(b, x) := s∗(b, x) + 1
k ln(1 + eb) and

J∗
k (p, ρ̄) :=

∫

Ω
pc(x)ρ̄(x)− s∗k(p(x), x) dx.

Let
sk(z, x) := sup

p∈R
pz − s∗k(p, x).

It is clear that for all k ∈ Z+, sk(z, x) ≤ s(z, x) satisfies (s1). We claim that sk(z, x) also satisfies
(s2). Indeed, by Lemma 2.12, s∗(·, x) is non-negative and increasing, and so is s∗k(·, x). For z = 0,

sk(0, x) = sup
p∈R

−s∗k(p, x) ≤ − inf
p∈R

s∗(p, x)− inf
p∈R

1

k
ln(1 + ep) = s(0, x) = 0.
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On the other hand,
sk(0, x) ≥ lim

p→−∞
−s∗k(p, x) = 0.

When z < 0,
lim

p→−∞
pz − s∗k(p, x) = lim

p→−∞
pz + lim

p→−∞
−s∗k(p, x) = +∞.

Note that the second limit is 0 thanks to the argument above for the case z = 0. For z > 0,

sk(z, x) ≥ max

{

sup
p≤0

pz − s∗k(0, x), sup
p>0

pz − s∗k(p, x)

}

≥ max

{

−s∗(0, x) −
ln 2

k
, sup

p>0
pz − s∗(p, x)−

p+ 1

k

}

≥ max

{

inf
(z,x)

s(z, x)−
ln 2

k
, sup

p>0
p

(

z −
1

k

)

− s∗(p, x)−
1

k

}

.

The first term in the last line implies inf(z,x) sk(z, x) > −∞. We also observe that, when z̃ :=

z − 1
k > 0 is sufficiently large, for all x ∈ Ω,

s(z̃, x) = sup
p>0

pz̃ − s∗(p, x).

Indeed, by (s2), the left hand side is positive throughout Ω whenever z̃ is sufficiently large, while

sup
p≤0

pz̃ − s∗(p, x) ≤ 0.

Therefore, for z 0 1,

sk(z, x) ≥ s

(

z −
1

k
, x

)

−
1

k
.

This shows sk(·, x) has the uniform-in-x superlinear growth in (s2).
Let

Ek(ρ) =

∫

Ω
sk(ρ(x), x) dx.

Then Ek(ρ̄) ≤ E(ρ̄) < +∞ since sk(z, x) ≤ s(z, x). Moreover,

0 <

∫

Ω
ρ̄(x) dx < lim

b→∞

∫

Ω
sup ∂s∗k(b, x) dx.

Since s∗k(·, x) is strictly convex, Proposition 3.1 implies that J∗
k (p, ρ̄) has a unique c-concave

maximizer p∗k for all k ∈ Z+.
Now we will show that p∗k is pointwise increasing with respect to k. Given k0 < k1, let

U = {x ∈ Ω : p∗k1(x) < p∗k0(x)} and let φ be the characteristic function of U . The optimality of

the p∗ki implies that there exists ηi(x) ∈ ∂s∗ki
(

p∗ki(x), x
)

such that
∫

Ω
φ
(

Tp∗ki
(x)
)

ρ̄(x) dx =

∫

U
ηi(x) dx.

Hence,
∫

Ω

(

φ
(

Tp∗k1
(x)
)

− φ
(

Tp∗k0
(x)
)

)

ρ̄(x) dx =

∫

U
(η1(x)− η0(x)) dx. (4.2)

Thanks to Lemma 4.1, the left hand side of (4.2) is nonnegative. On the other hand, from the
subdifferential condition ηi(x) ∈ ∂s∗ki

(

p∗ki(x), x
)

, it follows that η1(x) < η0(x) for all x ∈ U . Thus,
(4.2) can only hold if U has measure zero. Since the p∗ki are Lipschitz, we can then conclude that
p∗k0 ≤ p∗k1 everywhere. Note an identical argument shows that p∗k ≤ p̃ for any k ∈ Z+ and any
maximizing pressure p̃ ∈ Σ(ρ̄).
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Let p∗(x) := limk→∞ p∗k(x), and we note that p∗k must converge uniformly to p∗ since they are
uniformly Lipschitz (by Lemma 2.5) and uniformly bounded (see the proof of Proposition 3.1).
We also have

(p∗)cc̄ ≥ lim
k→∞

(p∗k)
cc̄ = lim

k→∞
p∗k = p∗,

so p∗ is c-concave. Now take an arbitrary maximizing pressure p̃ ∈ Σ(ρ̄), which is bounded
and Lipschitz. Since the c-transform and −E∗ are upper semi-continuous with respect to the
pointwise convergence, we get the string of inequalities

J∗(p∗, ρ̄) ≥ lim sup
k→∞

J∗(p∗k, ρ̄) ≥ lim sup
k→∞

J∗
k (p

∗
k, ρ̄) ≥ lim

k→∞
J∗
k (p̃, ρ̄) = J∗(p̃, ρ̄).

Thus, p∗ ∈ Σ(ρ̄). That p∗ is the smallest possible c-concave maximizer follows from our earlier
observation that p∗k ≤ p̃ and the pointwise convergence p∗k → p∗. "

Now we are ready to prove the discrete comparison principle.

Theorem 4.6. Under the assumptions of Theorem 4.4, suppose ρ0 ≤ ρ1 a.e. in Ω. Then

(1) ρ∗0 ≤ ρ∗1 a.e. in Ω.
(2) Let Σ(ρi) be defined as in (3.1). For i = 0, 1, let p+i ∈ Σ(ρi) be the largest c-concave

maximizers constructed in Lemma 3.4. Then p+0 ≤ p+1 in Ω.
(3) Alternatively, let p−i ∈ Σ(ρi) be the smallest c-concave maximizers constructed in Lemma

4.5. Then we also have p−0 ≤ p−1 in Ω.

Proof. That ρ∗0 ≤ ρ∗1 a.e. in Ω is an immediate consequence of Theorem 4.4.
To show the inequality between p±i , we first note that by Lemma 2.11, the subdifferential

relation ρ∗i (x) ∈ ∂s
∗(p±i (x), x) a.e. implies that p±i (x) ∈ ∂s(ρ∗i (x), x) a.e..

We first prove p+0 ≤ p+1 . It suffices to show that

p̃+ := max(p+0 , p
+
1 ) ∈ Σ(ρ1).

Indeed, by the maximality of p+1 , this implies p̃+ = p+1 and thus p+0 ≤ p+1 . Clearly, p̃
+ is c-concave

since
(p̃+)cc̄ ≥ max

(

(p+0 )
cc̄, (p+1 )

cc̄
)

= p̃+.

Let
U := {x ∈ Ω : p+1 (x) < p+0 (x)}.

Since ∂s(·, x) is increasing and ρ∗0 ≤ ρ∗1, we must have ρ∗0 = ρ∗1 a.e. on U . Hence, it follows that

ρ∗1(x) ∈ ∂s∗(p̃+(x), x) a.e. x ∈ Ω. (4.3)

If we can show that
ρ̃1 := Tp̃+#ρ1 = ρ∗1 a.e. on Ω, (4.4)

then together with (4.3) it follows that any infinitesimal variation of J∗(p, ρ1) over p at p̃+ will
not make its value increase, and we conclude from the concavity of the energy that p̃+ is a
maximizer, so p̃+ ∈ Σ(ρ1).

Using the same logic as Lemma 4.1, we can show that if Tp+0
(x) ∈ U then Tp̃+(x) ∈ U .

Furthermore, since p̃+ and p+0 agree on U , (2.4) implies that Tp̃+(x) = Tp+0
(x) when Tp+0

(x) ∈ U .

Define φ to be the characteristic function of U . Then for any non-negative smooth function
f : Ω → [0,∞)

∫

U
ρ̃1(x)f(x) dx =

∫

Ω
ρ1(x)φ(Tp̃+(x))f(Tp̃+(x)) dx

≥

∫

Ω
ρ0(x)φ(Tp+0

(x))f(Tp+0
(x)) dx =

∫

U
ρ∗0(x)f(x) dx.
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Hence, ρ∗1 = ρ∗0 ≤ ρ̃1 a.e. in U .
On the other hand, using Lemma 4.1 again, we see that if Tp+1

(x) /∈ U , then Tp̃+(x) /∈ U . This

implies φ(Tp̃+(x)) ≤ φ(Tp+1
(x)). Therefore,

∫

U
ρ̃1(x) dx =

∫

Ω
ρ1(x)φ

(

Tp̃+(x)
)

dx ≤

∫

Ω
ρ1(x)φ

(

Tp+1
(x)
)

dx =

∫

U
ρ∗1(x) dx.

Hence ρ̃1(U) ≤ ρ∗1(U). Combining this with the above fact that ρ∗1(x) ≤ ρ̃1(x) for a.e. x ∈ U , we
must have ρ̃1 = ρ∗1 a.e. on U .

Using the same logic from above, we must have Tp̃+(x) = Tp+1
(x) when Tp+1

(x) /∈ U , since

p̃+ = p+1 on Ω \ U . Therefore,
∫

Ω\U
ρ̃1(x)f(x) dx =

∫

Ω

(

1− φ
(

Tp̃+(x)
))

ρ1(x)f
(

Tp̃+(x)
)

dx

≥

∫

Ω

(

1− φ
(

Tp+1
(x)
))

ρ1(x)f
(

Tp+1
(x)
)

dx =

∫

Ω\U
ρ∗1(x)f(x) dx.

Hence, ρ̃1 ≥ ρ∗1 a.e. in Ω \ U . Since ρ̃1 = ρ∗1 a.e. on U , conservation of mass then allows us to
conclude (4.4). This proves p̃+ ∈ Σ(ρ1) and thus p+0 ≤ p+1 in Ω.

Next we show p−0 ≤ p−1 . Suppose b *→ ∂s∗(b, x) is strictly increasing for a.e. x ∈ Ω. Then
by Lemma 2.11, for a.e. x ∈ Ω, ∂s(z, x) only contains one element for all z in ∂s∗(R, x) :=
∪b∈R∂s∗(b, x). Since ρ∗0 ≤ ρ∗1 a.e. and ∂s(·, x) is increasing, we find p−0 (x) ≤ p−1 (x) a.e.. This
further implies p−0 (x) ≤ p−1 (x) everywhere since p−i are Lipschitz. (In fact, in this case, the
maximizing pressure is unique.)

If b *→ ∂s∗(b, x) is not strictly increasing for almost all x, we can apply the argument in Lemma
4.5 to construct a sequence of s∗k(b, x) that have ∂s

∗
k(b, x) strictly increasing, and two sequences

of ordered maximizing pressures p∗0,k(x) ≤ p∗1,k(x) with p∗i,k converging uniformly to the smallest

c-concave maximizer p−i . As a result, p−0 ≤ p−1 . "

We conclude this section with a lemma providing construction of a family of stationary densities
that will serve as stationary barriers. Later, we will see that they can give uniform bounds on
the discrete densities and pressures over iterations. We will assume (s1)-(s5). Since in this case
s∗(·, x) will be differentiable, instead of the subdifferential ∂s∗(·, x), we shall write the partial
derivative of s∗ with respect to the first variable as ∂ps∗(·, x).

Lemma 4.7. Suppose that s satisfies (s1)-(s5). For any λ satisfying

0 < λ < lim
b→∞

∫

Ω
∂ps

∗(b, x) dx, (4.5)

the variational problem

inf
ρ∈X∫

Ω ρ(x) dx=λ

E(ρ) (4.6)

admits a unique (in the a.e. sense) minimizer ρλ. It has the following properties:

(1) There exists a minimal αλ ∈ R such that ρλ = ∂ps∗(αλ, x) a.e.. By minimality, we mean
that if some α ∈ R satisfies ρλ = ∂ps∗(α, x) a.e., then we must have α ≥ αλ.

(2) ρλ is non-decreasing with respect to λ.
(3) There exists 0 < aλ < bλ < ∞ such that ρλ(x) ∈ [aλ, bλ] for almost all x ∈ Ω.
(4) Given ρ̄ ∈ X satisfying (1.9), let

ρ∗ := argmin
ρ∈X

J(ρ, ρ̄),
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and let
p∗ ∈ argmax

p∈X∗, pcc̄=p
J∗(p, ρ̄)

be the smallest c-concave maximizing pressure as is constructed in Lemma 4.5. If for
some λ satisfying (4.5), we have ρ̄ ≥ ρλ (resp. ρ̄ ≤ ρλ) almost everywhere, then ρ∗ ≥ ρλ
(resp. ρ∗ ≤ ρλ) almost everywhere and p∗ ≥ αλ (resp. p∗ ≤ αλ).

Proof. By the assumption (s3), α *→ ∂ps∗(α, x) is continuous and non-decreasing for all x ∈ Ω.
Then (4.5) and (s4) imply that there exists a non-empty bounded closed interval [αλ,βλ] ⊂ R

such that
∫

Ω
∂ps

∗(α, x) dx = λ

if and only if α ∈ [αλ,βλ].
We claim that ρ̃λ := ∂ps∗(αλ, x) is a minimizer of (4.6). Firstly, ρ̃λ ∈ X. Indeed, Lemma 2.11

gives
∫

Ω
αλρ̃λ(x) dx =

∫

Ω
s
(

ρ̃λ(x), x
)

+ s∗(αλ, x) dx.

Recalling that s∗(αλ, x) ≥ 0, we have the bound

E(ρ̃λ) =

∫

Ω
s
(

ρ̃λ(x), x
)

dx ≤

∫

Ω
αλρ̃λ(x) dx = αλλ < +∞.

Now let ρ be some other density with mass λ. The convexity of the energy implies that

E(ρ) ≥ E(ρ̃λ) +

∫

Ω
αλ

(

ρ(x)− ρ̃λ(x)) dx = E(ρ̃λ).

Hence, ρ̃λ is a minimizer of (4.6).
Conversely, for any minimizer ρ̄ ∈ X of (4.6), let

ρ̄∗ = argmin
ρ∈X

J(ρ, ρ̄).

Then we should have ρ̄∗ = ρ̄ a.e., and the transport map from ρ̄ to ρ̄∗ is ρ̄-a.e. an identity map.
Let p̄ be an arbitrary maximizer of the dual problem

p̄ ∈ argmax
p∈X∗,pcc̄

J∗(p, ρ̄).

By Proposition 3.1, p̄ is Lipschitz with ∇p̄ = 0 for ρ̄-a.e. x ∈ Ω, and ρ̄(x) = ∂ps∗(p̄(x), x) a.e. in
Ω. Let Q = {b ∈ R : ess infx∈Ω ∂ps∗(b, x) > 0}; clearly, Q is an open set since Qc is closed
by (s3). Consider the set V := p̄−1(Q), which is also open in Ω as p̄(x) is continuous. Since
ρ̄(x) = ∂ps∗(p̄(x), x) a.e., we find by the definition of Q that ρ̄ > 0 a.e. in V . Hence, that
∇p̄(x) = 0 ρ̄-a.e. in V implies ∇p̄(x) = 0 a.e. in V . So p̄ is a constant on every connected
component of V . Since p̄ is continuous, this implies V is both open and closed in Ω, and thus
V = Ω, which means p̄ is a constant on Ω. Therefore, we conclude that any minimizer ρ̄ must
have the form ρ̄ = ∂ps∗(α, x) in the a.e. sense for some α ∈ R. Since α *→ ∂ps∗(α, x) is continuous
and non-decreasing for all x, ρ̃λ turns out the be the unique minimizer of (4.6). So from now on,
we shall write it as ρλ.

The minimality of αλ is then obvious given its definition and the argument above. Since αλ

is clearly increasing in λ, ρλ is non-decreasing with respect to λ.
By (s5), whenever λ > 0, we must have

aλ := ess inf
x∈Ω

∂ps
∗(αλ, x) > 0, and bλ := ess sup

x∈Ω
∂ps

∗(αλ, x) < +∞,

and vice versa.



22 M. JACOBS, I. KIM, AND J. TONG

Finally, the last claim follows from Theorem 4.6, the fact that

ρλ = argmin
ρ∈X

J(ρ, ρλ),

the minimality of αλ, as well as the argument above on the maximizers of the dual problem. "

5. The Minimizing Movement Scheme and L1-equicontinuity

In the rest of the paper, we aim at obtaining a weak solution of the problem (P ). From now
on, we assume s(z, x) satisfies (s1)-(s5) and we take c(x, y) to be the quadratic cost

c(x, y) =
1

2τ
|x− y|2, (5.1)

where the parameter τ > 0 plays the role of the time step. With ρ0,τ := ρ0 ∈ X satisfying (1.9),
thanks to Proposition 3.1, we may apply the minimizing movements scheme

ρn+1,τ = argmin
ρ∈X

J(ρ, ρn,τ ), (5.2)

pn+1,τ ∈ argmax
p∈X∗, pcc̄=p

J∗(p, ρn,τ ), (5.3)

iteratively. Since the maximizer of the dual problem may not be unique, pn+1,τ here is always
chosen to be the smallest c-concave one which is constructed in Lemma 4.5. Let (ρτ , pτ ) be the
time interpolation of the discrete solution defined in (1.13). We hope to obtain a weak solution
of (P ) in an appropriate sense by sending τ → 0.

In this section, we will focus on establishing compactness for the family of densities {ρτ}τ>0.
In particular, the L1-contraction principle enables us to prove a crucial L1-spatial equicontinuity
property for {ρτ}τ>0.

We begin with establishing the following energy dissipation inequality, which is a well-known
consequence of the minimizing movements scheme.

Lemma 5.1. Let ρ0 ∈ X satisfy (1.9). Let ρτ and pτ be given in (1.13) with initial data ρ0.
Then for any T > 0, we have

E(ρτ (·, T )) +
1

2

∫ T ′

0

∫

Ω
ρτ (x, t)|∇pτ (x, t)|2 dx dt ≤ E(ρ0). (5.4)

where T ′ := (Nτ + 1)τ and Nτ := 1Tτ 2. In particular,

1

2

∫ ∞

0

∫

Ω
ρτ (x, t)|∇pτ (x, t)|2 dx dt ≤ E(ρ0)− inf

ρ∈X
E(ρ) < +∞, (5.5)

where the bound only depends on s and E(ρ0).

Proof. The optimality condition for the primal problem implies that

J(ρn+1,τ , ρn,τ ) ≤ J(ρn,τ , ρn,τ ). (5.6)

For the quadratic cost (5.1), by (2.5), the optimal transport map from ρn+1,τ to ρn,τ is given by
T−1
pn+1,τ (x) = x+ τ∇pn+1,τ (x) in the ρn+1,τ -a.e.-sense. Hence,

1

2τ
W 2

2 (ρ
n+1,τ , ρn,τ ) =

∫

Ω

1

2τ
|T−1

pn+1,τ (x)− x|2ρn+1,τ (x) dx =
τ

2

∫

Ω
|∇pn+1,τ (x)|2ρn+1,τ (x) dx.

So (5.6) can be rewritten as

τ

2

∫

Ω
|∇pn+1,τ (x)|2ρn+1,τ (x) dx ≤ E(ρn,τ )− E(ρn+1,τ ).
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Summing over n from 0 to Nτ , we have

E(ρNτ+1,τ ) +
τ

2

Nτ
∑

n=0

∫

Ω
|∇pn+1,τ (x)|2ρn+1,τ (x) dx ≤ E(ρ0).

This together with the definition of ρτ and pτ yields (5.4). (5.5) follows from the fact that
infρ∈X E(ρ) > −∞ thanks to (s2). "

The energy dissipation inequality gives us a control on the gradients of the pressure, which
provides enough regularity for establishing the aforementioned L1-spatial equicontinuity of {ρτ}τ .

Proposition 5.2. Let s satisfy (s1)-(s5), and let ρ0 ∈ X satisfy (1.9). For ρτ as given in (1.13)
with initial data ρ0, extend ρτ by zero to all of Rd. Then for any T > 0 and y ∈ Rd we have

lim
ε→0

sup
0<τ*T

∫ T

0

∫

Ω
|ρτ (x+ εy, t)− ρτ (x, t)| dx dt = 0.

In order to prove Proposition 5.2, we need the following lemma that allows us to approximate
∂ps∗(p, x) by smooth functions.

Lemma 5.3. If f ∈ L1(Ω;Cloc(R)) such that p *→ f(p, x) is monotone for all x ∈ Ω, then there
exists a sequence of fm smooth on R× Ω such that for any compact interval I ⊂ R,

lim
m→∞

∫

Ω
sup
p∈I

|f(p, x)− fm(p, x)| dx = 0.

Proof. Let us extend f to L1(Rd;Cloc(R)) by setting f(p, x) = 0 if x /∈ Ω. Let η be a nonnegative
smooth mollifier supported in the unit ball of R× Rd, having integral 1. We define

fm(p, x) :=

∫

R×Rd
η(q, y)f

(

p+
1

m
q, x+

1

m
y

)

dy dq.

It then follows that
∫

Ω
sup
p∈I

|f(p, x)− fm(p, x)| dx ≤

∫

Ω

∫

R×Rd
η(q, y) sup

p∈I

∣

∣

∣

∣

f(p, x)− f

(

p+
1

m
q, x+

1

m
y

)∣

∣

∣

∣

.

With k ∈ Z+ to be chosen, we subdivide I into k disjoint intervals of equal length, say I =
⋃

0≤i≤k−1[ai,k, ai+1,k] with a0,k ≤ · · · ≤ ak,k. Thanks to the monotonicity of p *→ f(p, x), for any
fixed x ∈ Ω, |y| ≤ 1, |q| ≤ 1, and k ≤ m, we have

sup
p∈[ai,k,ai+1,k ]

∣

∣

∣

∣

f(p, x)− f

(

p+
1

m
q, x+

1

m
y

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

f(ai+1,k, x)− f

(

ai,k −
1

k
, x+

1

m
y

)∣

∣

∣

∣

+

∣

∣

∣

∣

f(ai,k, x)− f

(

ai+1,k +
1

k
, x+

1

m
y

)∣

∣

∣

∣

.

Hence, for each k ∈ Z+, we have
∫

Ω

∫

R×Rd
η(q, y) sup

z∈I

∣

∣

∣

∣

f(p, x)− f

(

p+
1

m
q, x+

1

m
y

)∣

∣

∣

∣

≤

∫

Ω

∫

R×Rd
η(q, y) max

0≤i≤k−1

∣

∣

∣

∣

f(ai+1,k, x)− f

(

ai,k −
1

k
, x+

1

m
y

)
∣

∣

∣

∣

+

∫

Ω

∫

R×Rd
η(q, y) max

0≤i≤k−1

∣

∣

∣

∣

f(ai,k, x)− f

(

ai+1,k +
1

k
, x+

1

m
y

)∣

∣

∣

∣

.

(5.7)
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We can then bound the first term above by splitting it into two terms

∫

Ω

∫

R×Rd
η(q, y) max

0≤i≤k−1

∣

∣

∣

∣

f(ai+1,k, x)− f

(

ai,k −
1

k
, x

)∣

∣

∣

∣

+
k−1
∑

i=0

∫

Rd

∫

R×Rd
η(q, y)

∣

∣

∣

∣

f

(

ai,k −
1

k
, x

)

− f

(

ai,k −
1

k
, x+

1

m
y

)
∣

∣

∣

∣

.

(5.8)

By assumption, for any fixed z ∈ R, x *→ f(z, x) is an L1(Rd) function. So

lim
m→∞

k−1
∑

i=0

∫

Rd

∫

R×Rd
η(q, y)

∣

∣

∣

∣

f

(

ai,k −
1

k
, x

)

− f

(

ai,k −
1

k
, x+

1

m
y

)
∣

∣

∣

∣

= 0

for any finite k. We also know that for almost every x ∈ Ω, by uniform continuity of f(·, x) on
bounded intervals,

lim
k→∞

max
0≤i≤k−1

∣

∣

∣

∣

f(ai+1,k, x)− f

(

ai,k −
1

k
, x

)
∣

∣

∣

∣

= 0.

Therefore, the first line in (5.8) will vanish as k → ∞ thanks to the dominated convergence
theorem. By letting m ≥ k 0 1, we can make the first term in (5.7) as small as we want. The
second term in (5.7) can be handled in exactly the same way. This completes the proof. "

Now we are ready to prove the L1-spatial equicontinuity of {ρτ}τ .

Proof of Proposition 5.2. We first approximate the initial data by densities that are bounded
away from zero and infinity

ρ0,k(x) := min
(

max
(

ρ0(x), ρ 1
k
(x)
)

, ∂ps
∗(k, x)

)

,

where ρ 1
k
is defined as in Lemma 4.7. By (s4), for k 0 1, ρ0,k(x) ∈ [ρ 1

k
(x), ∂ps∗(k, x)] is well-

defined. It is clear that ‖ρ0,k−ρ0‖L1(Ω) → 0 as k → ∞. Moreover, by the convexity of s, ρ0,k ∈ X
and it obviously satisfies (1.9) for fixed k. Let ρn,τk (n ≥ 1) be as given in (5.2) with initial data

ρ0,τk := ρ0,k. We extend ρn,τk by zero to the entire Rd. Let pn,τk (n ≥ 1) be obtained iteratively by
(5.3) with ρn,τ there replaced by ρn,τk . Here we take pn,τk to be the smallest c-concave maximizer
of (5.3) in all steps. Thanks to Lemma 4.7, for all n and τ , we have ρn,τk ≥ ρ 1

k
≥ a 1

k
> 0 a.e.,

and pn,τk ∈ [α 1
k
, k]. Let ρτk and pτk be the discontinuous time interpolations as given in (1.13).

Without loss of generality, assume y ∈ B1(0) ⊂ Rd. We have

sup
τ

∫

Ω
|ρn,τ (x+ εy)− ρn,τ (x)| dx

≤ 2 sup
τ

‖ρn,τk − ρn,τ‖L1(Ω) + sup
τ

∫

Ω
|ρn,τk (x+ εy)− ρn,τk (x)| dx.

By Theorem 4.4, supτ ‖ρ
n,τ
k − ρn,τ‖L1(Ω) ≤ ‖ρ0,k − ρ0‖L1(Ω), which converges to 0 as k → ∞.

Hence to conclude, it is enough to show that for every fixed k,

lim
ε→0

sup
τ

∫ T

0

∫

Ω
|ρτk(x+ εy, t)− ρτk(x, t)| dx dt = 0. (5.9)
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Define Ωε0 := {x ∈ Ω : Bε0(x) ⊂ Ω}. Then for any ε ∈ (0, ε0),
∫

Ωε0

a 1
k
|pn,τk (x+ εy)− pn,τk (x)| dx

≤ |εy|

∫

Ωε0

a 1
k

∫ 1

0
|∇pn,τk (x+ θεy)| dθ dx

≤ |εy|

∫ 1

0

(

a 1
k
|Ωε0 |

)1/2

(

∫

Ωε0

ρn,τk (x+ θεy)|∇pn,τk (x+ θεy)|2 dx

)1/2

dθ

≤ ε
(

a 1
k
|Ω|
)1/2

(
∫

Ω
ρn,τk (x)|∇pn,τk (x)|2 dx

)1/2

.

Note that pn,τk is unique on Ω up to an additive constant, so the quantity in the first line is
well-defined. Combining this with Lemma 5.1 yields

τ
Nτ+1
∑

n=1

∫

Ωε0

|pn,τk (x+ εy)− pn,τk (x)| dx ≤ C(k, |Ω|, T, s, E(ρ0))ε. (5.10)

Here given τ 3 T , we assumed τ(Nτ + 1) ≤ 2T . Recall that from Proposition 3.1 we have
ρn,τk = ∂ps∗(p

n,τ
k , x) a.e.. Next, we will use this relation as well as (5.10) to conclude.

Thanks to Lemma 5.3, we take Dδ,k(p, x) to be a smooth approximation of ∂ps∗(p, x) on
Σk := [α 1

k
, k]× Ω, such that

∫

Ω
‖∂ps

∗(·, x) −Dδ,k(·, x)‖C([α1/k ,k]) dx ≤ δ.

With ε ∈ (0, ε0) and Mδ,k := supΣk
|∇Dδ,k|, we derive that

∫

Ωε0

|ρn,τk (x+ εy)− ρn,τk (x)| dx

=

∫

Ωε0

|∂ps
∗(pn,τk (x+ εy), x+ εy)− ∂ps

∗(pn,τk (x), x)| dx

≤

∫

Ωε0

|Dδ,k(p
n,τ
k (x+ εy), x+ εy)−Dδ,k(p

n,τ
k (x), x)| dx +Cδ

≤ Mδ,k

∫

Ωε0

|pn,τk (x+ εy)− pn,τk (x)|+ |εy| dx+Cδ,

where in the first inequality, we used the fact that x+ εy ∈ Ω for all x ∈ Ωε0 . Due to (5.10), we
conclude that

sup
τ

∫ T

0

∫

Ωε0

|ρτk(x+ εy, t)− ρτk(x, t)| dx dt ≤ Mδ,kC(k, |Ω|, T, s, E(ρ0))ε+ CT δ.

To this end, we derive that

sup
τ

∫ T

0

∫

Ω
|ρτk(x+ εy, t)− ρτk(x, t)| dx dt

≤ sup
τ

∫ T

0

∫

Ωε0

|ρτk(x+ εy, t)− ρτk(x, t)| dx dt + C sup
τ

∫ T

0

∫

Ω\Ω2ε0

|ρτk(x, t)| dx dt

≤ Mδ,kC(k, |Ω|, T, s, E(ρ0))ε+ CT δ + CT

∫

Ω\Ω2ε0

|∂ps
∗(k, x)| dx.
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Now sending ε → 0, we find

lim sup
ε→0

sup
τ

∫ T

0

∫

Ω
|ρτk(x+ εy, t)− ρτk(x, t)| dx dt ≤ CT δ + CT

∫

Ω\Ω2ε0

|∂ps
∗(k, x)| dx.

Therefore, we can conclude (5.9) by sending δ and ε0 → 0. "

In the rest of this paper, we shall assume that ρ0 ∈ X satisfies (1.10), which is a stronger
assumption than (1.9). As we will see below, this gives rise to uniform upper bounds for both
the density and pressure variables over the iteration.

Lemma 5.4. Let ρ0 ∈ X satisfy (1.10). Then for all n and τ , ρn,τ satisfies (1.10),

‖ρn,τ‖L∞(Ω) ≤ C(s,M) and sup
x∈Ω

pn,τ (x) ≤ M,

where M is introduced in (1.10).

Proof. Let

λ =

∫

Ω
∂ps

∗(M,x) dx.

By (1.10), it satisfies (4.5). By Lemma 4.71, ρλ = ∂ps∗(M,x) a.e.. Using Lemma 4.74 iteratively,
for all n and τ , we have that ρn,τ ≤ ρλ a.e., so (1.10) is carried over. Beside, the smallest
c-concave maximizer pn,τ satisfies pn,τ ≤ αλ. Here αλ is introduced in Lemma 4.7. Then the
density bound follows from Lemma 2.14, and the pressure bound follows from the fact αλ ≤ M
due to the minimality of αλ. "

Now that we have a bound on the pressure gradient, we can bound discrete time derivatives
of the density in L2([0, T ];H−1(Rd)).

Lemma 5.5. Let ρ0 ∈ X satisfies (1.10). Let ρτ be extended by zero to the entire Rd and define
ρτ (x, t) := ρ0(x) for t < 0. Define σ−τρτ (x, t) := ρτ (x, t− τ). Then

∫ ∞

0
τ−2‖ρτ − σ−τρ

τ‖2H−1(Rd) dt ≤ C(s,E(ρ0),M),

where M is given in (1.10).

Proof. With f ∈ C∞
0 (Rd),

∫

Ω

ρn+1,τ (x)− ρn,τ (x)

τ
f(x) dx =

∫

Ω

f(x)− f
(

x+ τ∇pn+1,τ (x)
)

τ
ρn+1,τ (x) dx.

Applying the fundamental theorem of calculus and Cauchy-Schwarz inequality, we derive that
∫

Ω

ρn+1,τ (x)− ρn,τ (x)

τ
f(x) dx =

∫

Ω

∫ 1

0
∇f
(

x+ τθ∇pn+1,τ(x)
)

·∇pn+1,τ (x)ρn+1,τ (x) dθ dx

≤ ‖∇f‖L2(ρ̃n+1,τ )‖∇pn+1,τ‖L2(ρn+1,τ ),

where ρ̃n+1,τ :=
∫ 1
0 ρ

n+1,τ
θ dθ and ρn+1,τ

θ is the displacement interpolant (id+ τθ∇pn+1,τ )#ρn+1,τ .
Since Lp-norms are displacement convex [San15], we have by Lemma 5.4 that

‖ρ̃n+1,τ‖L∞(Ω) ≤ max
(

‖ρn,τ‖L∞(Ω), ‖ρ
n+1,τ‖L∞(Ω)

)

≤ C(s,M).

Hence,

τ−1‖ρτ − σ−τρ
τ‖H−1(Rd) ≤ C(s,M)‖∇pτ‖L2(ρτ ).

Taking square integral in time and using Lemma 5.1 yields the desired estimate. "
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Proposition 5.6. Suppose ρ0 ∈ X satisfying (1.10) and let ρτ be as given in (1.13) with initial
data ρ0. Then there exists ρ ∈ L∞(ΩT ), where ΩT := Ω× [0, T ], such that along a subsequence,
ρτ → ρ in Lq(ΩT ) as τ → 0 for all q ∈ [1,∞).

Remark 5.7. Given Proposition 5.2 and Lemma 5.5, the proof is an adaptation of that of the
Kolmogorov-M. Riesz-Fréchet Theorem [Bre10, §4.5].

Proof. Thanks to Lemma 5.4, {ρτ}τ is uniformly bounded in L∞(ΩT ). So there exists ρ ∈
L∞(ΩT ), such that along a subsequence, ρτ ⇀ ρ in Lq(ΩT ) as τ → 0 for all q ∈ [1,∞). It then
suffices to show the strong convergence for q = 1, as the other cases follow from the uniform
boundedness of {ρτ}τ in L∞(ΩT ) and interpolation.

Let ϕ ∈ C∞
0 (Rd) be a non-negative, radially symmetric mollifier in space, supported on B1(0)

and having integral 1. Let η ∈ C∞
0 (R) be a non-negative mollifier in time, supported on [0, 1]

and having integral 1. Denote ϕε(x) := ε−dϕ(x/ε) and ηδ(x) := δ−1η(x/δ). Then for any
ε, δ > 0, {ηδ ∗ ϕε ∗ ρτ}τ is uniformly bounded and they pointwise converge to ηδ ∗ ϕε ∗ ρ in the
space-time as τ → 0 along the subsequence. Then the dominated convergence theorem implies
ηδ ∗ ϕε ∗ ρτ → ηδ ∗ ϕε ∗ ρ in L1(ΩT ).

Then we deduce that for arbitrary 0 < τ 3 T ,

‖ρτ − ρ‖L1(ΩT ) ≤ ‖ρτ − ϕε ∗ ρ
τ‖L1(ΩT ) + ‖ϕε ∗ ρ

τ − ηδ ∗ ϕε ∗ ρ
τ‖L1(ΩT )

+ ‖ηδ ∗ ϕε ∗ ρ
τ − ηδ ∗ ϕε ∗ ρ‖L1(ΩT ) + ‖ρ− ηδ ∗ ϕε ∗ ρ‖L1(ΩT ).

Note that ‖ρ − ηδ ∗ ϕε ∗ ρ‖L1(ΩT ) → 0 as ε, δ → 0, since ρ ∈ L1(ΩT ). Hence in order to prove
‖ρτ − ρ‖L1(ΩT ) → 0 as τ → 0, it suffices to show that

(1) ‖ρτ − ϕε ∗ ρτ‖L1(ΩT ) → 0 as ε→ 0 uniformly in τ ;
(2) for any fixed ε > 0, ‖ϕε ∗ ρτ − ηδ ∗ ϕε ∗ ρτ‖L1(ΩT ) → 0 as δ → 0 uniformly in τ .

The first convergence can be justified by Proposition 5.2. Indeed,

sup
0<τ*T

‖ρτ − ϕε ∗ ρ
τ‖L1(ΩT ) ≤

∫

B1(1)
ϕ(y) sup

0<τ*T
‖ρτ (x, t)− ρτ (x− εy, t)‖L1(ΩT ) dy.

Then the dominated convergence theorem applies. To show the second one, we note that for
fixed ε > 0, τ 3 T , and ψ ∈ L∞(Rd),

∣

∣

∣

∣

∫

Rd
ϕε ∗ (ρ

τ − σ−τρ
τ ) · ψ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd
(ρτ − σ−τρ

τ ) · ϕε ∗ ψ dx

∣

∣

∣

∣

≤ C(ε)‖ρτ − σ−τρ
τ‖H−1(Rd)‖ψ‖L∞(Rd),

which implies

‖ϕε ∗ (ρ
τ − σ−τρ

τ )‖L1(Rd) ≤ C(ε)‖ρτ − σ−τρ
τ‖H−1(Rd).

Now we derive that

‖ϕε ∗ ρ
τ − ηδ ∗ ϕε ∗ ρ

τ‖L1(ΩT )

≤

∥

∥

∥

∥

∫ δ

0
ηδ(s)‖ϕε ∗ ρ

τ (x, t) − ϕε ∗ ρ
τ (x, t− s)‖L1(Rd) ds

∥

∥

∥

∥

L1([0,T ])

.

Assume δ 3 τ . The integrand here is non-zero only when t and (t − s) do not belong to the
same small interval of the form [nτ, (n + 1)τ). So t must lie in the right δ-neighborhood of at
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least one of {0, τ, · · · , Nτ τ}. Hence, with T ′ defined in Lemma 5.1,

‖ϕε ∗ ρ
τ − ηδ ∗ ϕε ∗ ρ

τ‖L1(ΩT )

≤
Nτ
∑

n=0

∫ nτ+δ

nτ

∫ δ

0
ηδ(s)‖ϕε ∗ ρ

τ (x, t)− ϕε ∗ ρ
τ (x, t− s)‖L1(Rd) ds dt

≤
Nτ
∑

n=0

Cδ‖ϕε ∗ ρ
n,τ − ϕε ∗ ρ

n+1,τ‖L1(Rd)

≤ C(ε)δ

∫ T ′

0
τ−1‖ρτ − σ−τρ

τ‖H−1(Rd) dt

≤ C(ε, T, s, E(ρ0),M)δ.

We used Lemma 5.5 in the last inequality. Thus the second convergence follows. "

6. Convergence to the Continuum Limit

In this section, we show that our discrete approximation (ρτ , pτ ) yields a weak solution of (P )
in the continuum limit τ → 0. We first address the case of strictly positive initial data.

Theorem 6.1. Let ρ0 ∈ X satisfies (1.10). In addition, suppose ρ0 ≥ ρλ for some λ > 0, where
ρλ is defined in Lemma 4.7. Fix T > 0. There exist ρ ∈ L∞(ΩT ) and p ∈ L2

(

[0, T ];H1(Ω)
)

∩
L∞(ΩT ) being a weak solution of (P ), such that the following holds.

(a) ρτ → ρ in L1(ΩT ) along a subsequence;
(b) along a subsequence, pτ ⇀ p weakly in L2([0, T ];H1(Ω)) and weak-∗ in L∞(ΩT ), and

ρτ∇pτ ⇀ ρ∇p in L2(ΩT ); moreover, ρ|∇p|2 ≤ lim infτ→0 ρτ |∇pτ |2 and p ≤ M in ΩT ;
(c) p(x, t) ∈ ∂s(ρ(x, t), x) a.e. and ρ(x, t) = ∂ps∗(p(x, t), x) a.e. in ΩT ; and
(d) For a.e. t0 ∈ [0, T ],

∫ t0

0

∫

Ω
ρ∂tφ− ρ∇p ·∇φ dx dt =

∫

Ω
ρ(x, t0)φ(x, t0)− ρ0(x)φ(0, x) dx (6.1)

any φ ∈ C∞(ΩT ).

For general initial data ρ0 ∈ X satisfying (1.10), continuum solutions of (P ) of a weaker sense
are obtained, which are similar to those given by [Car99].

Theorem 6.2. Let ρ0 ∈ X satisfies (1.10). Fix T > 0. There exists ρ ∈ L∞(ΩT ) and a
measurable p with p ≤ M in ΩT , such that

(a) ρτ → ρ in L1(ΩT ) along a subsequence;
(b) p(x, t) ∈ ∂s(ρ(x, t), x) a.e. and ρ(x, t) = ∂ps∗(p(x, t), x) a.e. in ΩT ;
(c) With m(x, t) := ∇[s∗(p(x, t), x)] − ∂xs∗(p(x, t), x) ∈ L2(ΩT ), we have for a.e. t0 ∈ [0, T ],

∫ t0

0

∫

Ω
ρ∂tφ−m ·∇φ dx dt =

∫

Ω
ρ(x, t0)φ(x, t0)− ρ0(x)φ(x, 0) dx (6.2)

for any φ ∈ C∞(ΩT ).
(d) m

ρ = ∇p in the support of ρ, in the sense that
∫ T

0

∫

Ω

m

ρ
· f = −

∫ T

0

∫

Ω
p∇ · f dx (6.3)

for any f ∈ T , where

T :=
{

f ∈ L2([0, T ];H1(Ω)) : f · n|∂Ω×[0,T ] = 0, ‖ρ−1f‖L2(ΩT ) + ‖ρ−1∇ · f‖L1(Ω) < +∞
}

.
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Remark 6.3. (1) Our formulation of the weak solutions in Theorem 6.2 by (c) coincides with
the one in [Car99]. We give an additional description of the transport velocity −∇p by
(d), albeit with limited class of test functions.

(2) The continuum pressure p in Theorem 6.2 is obtained by an approximation argument
using the pressure corresponding to a strictly positive initial density that is obtained in
Theorem 6.1. It is not clear whether it is always possible to recover p from the discrete
solution pτ .

(3) The set T of test functions in (d) is non-empty. See the proof of Theorem 6.2.

To prove these theorems, let us first show that the discrete solutions approximately satisfy the
weak form of the continuum PDE (P ).

Lemma 6.4. Fix T > 0. (ρτ , pτ ) satisfies
∫ t0

0

∫

Ω
ρτ∂tφ− ρτ∇pτ ·∇φ dx dt =

∫

Ω
ρτ (x, t0)φ(x, t0)− ρ0(x)φ(x, 0) dx + ετ‖φ‖C2(ΩT ), (6.4)

for all φ ∈ C2
0 (ΩT ) and t0 ∈ [2τ, T ]. Here ετ satisfies |ετ | ≤ C(T, |Ω|, s, ρ0,M)τ1/2.

Proof. We derive that
∫ t0−τ

0

∫

Ω
ρτ (x, t)

φ(x, t+ τ)− φ(x, t)

τ
dx dt

= −

∫ t0−τ

τ

∫

Ω

ρτ (x, t)− ρτ (x, t− τ)

τ
φ(x, t) dx dt

+
1

τ

∫ t0

t0−τ

∫

Ω
ρτ (x, t− τ)φ(x, t) dx dt −

1

τ

∫ τ

0

∫

Ω
ρτφ dx dt.

(6.5)

For the left hand side, by Taylor expansion,
∣

∣

∣

∣

∫ t0−τ

0

∫

Ω
ρτ (x, t)

φ(x, t+ τ)− φ(x, t)

τ
dx dt−

∫ t0

0

∫

Rd
ρτ∂tφ dx dt

∣

∣

∣

∣

≤

∫ t0−τ

0
ρτ (Ω, t) ·

τ

2
‖∂2t φ‖L∞(ΩT ) dt+

∫ t0

t0−τ
ρτ (Ω, t)‖∂tφ‖L∞(ΩT ) dt

≤ C(T, ρ0)τ‖φ‖C2(ΩT ).

To handle the first term on the right hand side of (6.5), we use the pushforward formula to
derive that

∫

Ω

ρτ (x, t)− ρτ (x, t− τ)

τ
φ(x, t) dx =

∫

Ω
ρτ (x, t)

φ(x, t) − φ
(

x+ τ∇pτ (x, t), t
)

τ
dx.

Thanks to the Taylor expansion of φ
(

x+ τ∇pτ (x, t), t
)

and Lemma 5.1,
∣

∣

∣

∣

∫ t0−τ

τ

∫

Ω

ρτ (x, t)− ρτ (x, t− τ)

τ
φ(x, t) dx dt +

∫ t0−τ

τ

∫

Ω
ρτ∇pτ ·∇φ dx dt

∣

∣

∣

∣

≤ ‖φ‖C2(ΩT )

∫ T

0

∫

Ω

τ

2
ρτ |∇pτ |2 dx dt

≤ C(s, ρ0)τ‖φ‖C2(ΩT ).

Besides, by the Cauchy-Schwarz inequality and Lemma 5.1,
∣

∣

∣

∣

(
∫ τ

0
+

∫ t0

t0−τ

)
∫

Ω
ρτ∇pτ ·∇φ dx dt

∣

∣

∣

∣

≤ C(s, ρ0)τ
1/2‖φ‖C1(ΩT ).
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For the last two terms in (6.5), we derive that
∣

∣

∣

∣

1

τ

∫ t0

t0−τ

∫

Ω
ρτ (x, t− τ)φ(x, t) dx dt −

∫

Ω
ρτ (x, t0)φ(x, t0) dx

∣

∣

∣

∣

≤
1

τ

∫ t0

t0−τ
ρτ (Ω, t− τ)‖φ(·, t) − φ(·, t0)‖C(Ω) dt

+
1

τ

∫ t0

t0−τ
‖ρτ (·, t− τ)− ρτ (·, t0)‖H−1(Rd)‖φ(·, t0)‖H1(Rd) dt.

The first term is bounded by τρ0(Ω)‖φ‖C1(ΩT ). By the Cauchy-Schwarz inequality and the
definition of ρτ , the second term is bounded by

C(|Ω|)‖φ‖C1(ΩT )τ
−1/2

(
∫ t0

t0−τ
‖ρτ (·, t− τ)− ρτ (·, t0)‖

2
H−1(Rd) dt

)1/2

≤ C(|Ω|)‖φ‖C1(ΩT )

(

‖ρτ (·, t0 − 2τ)− ρτ (·, t0 − τ)‖2H−1(Rd) + ‖ρτ (t0 − τ, ·)− ρτ (t0, ·)‖
2
H−1(Rd)

)1/2
.

By Lemma 5.5, this is further bounded by C(|Ω|, s, ρ0,M)τ1/2‖φ‖C1(ΩT ). Hence,
∣

∣

∣

∣

1

τ

∫ t0

t0−τ

∫

Ω
ρτ (x, t− τ)φ(x, t) dx dt −

∫

Ω
ρτ (x, t0)φ(x, t0) dx

∣

∣

∣

∣

≤ C(|Ω|, s, ρ0,M)τ1/2‖φ‖C1(ΩT ).

Similarly, the last term in (6.5) satisfies the same bound. Summarizing all the above estimates,
we complete the proof. "

We first show Theorem 6.1.

Proof of Theorem 6.1. (a) is proved in Proposition 5.6.
By Lemma 4.7, we have uniform-in-τ lower bounds for ρτ and pτ , namely, ρτ ≥ ρλ ≥ aλ > 0

a.e. and pτ ≥ αλ. Here aλ and αλ are defined in Lemma 4.7. Then Lemma 5.1 implies ∇pτ

is uniformly bounded in L2(ΩT ). By Lemma 5.4, they are also uniformly bounded from above.
Hence, there exists p ∈ L2([0, T ];H1(Ω))∩L∞(ΩT ), such that ∇pτ ⇀ ∇p in L2(ΩT ) and pτ ⇀ p
weak-∗ in L∞(ΩT ) along a subsequence. We may additionally assume p(x, t) ≤ M in ΩT because
pτ ≤ M . The convergence of pτ together with Proposition 5.6 and the uniform boundedness of ρτ

in L∞(ΩT ) implies that ρτ∇pτ ⇀ ρ∇p in L2(ΩT ) along a subsequence, and that (ρτ )1/2∇pτ ⇀
ρ1/2∇p in L2(ΩT ). Hence, ρ|∇p|2 ≤ lim infτ→0 ρτ |∇pτ |2 a.e. in ΩT .

By Fubini’s theorem, for a.e. t0 ∈ [0, T ], ρτ (·, t0) → ρ(·, t0) in L1(Ω). So (d) follows from the
aforementioned convergence results and Lemma 6.4.

Lastly, to show (c), we derive by Lemma 2.11 and the dual relation of (ρτ , pτ ) that, for any
non-negative φ ∈ L∞(ΩT ),

∫ T

0

∫

Ω
ρτpτφ dx dt =

∫ T

0

∫

Ω

(

s(ρτ (x, t), x) + s∗(pτ (x, t), x)
)

φ(x, t) dx dt.

Since ρτ → ρ in L1(ΩT ) by Proposition 5.6 and pτ ⇀ p weak-∗ in L∞(ΩT ) along a subsequence,
we have

∫ T

0

∫

Ω
ρτpτφ dx dt →

∫ T

0

∫

Ω
ρpφ dx dt.

On the other hand, since ρτ → ρ a.e. in ΩT up to a further subsequence, we use (s1) to derive
that

lim inf
τ→0

s(ρτ (x, t), x) ≥ s(ρ(x, t), x) a.e. in ΩT .
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By (s2) and Fatou’s lemma,

lim inf
τ→0

∫ T

0

∫

Ω
s(ρτ (x, t), x)φ(x, t) dx dt ≥

∫ T

0

∫

Ω
s(ρ(x, t), x)φ(x, t) dx dt.

Note that Fatou’s lemma is applicable here since s(z, x) admits a lower bound thanks to (s2).
Moreover, since s∗(·, x) is convex and φ ≥ 0,

∫ T

0

∫

Ω
s∗(pτ , x)φ dx dt ≥

∫ T

0

∫

Ω

(

s∗(p, x) + ∂ps
∗(p, x)(pτ − p)

)

φ dx dt.

By the convexity of s∗(·, x) and Lemma 2.14,

0 ≤ ∂ps
∗(p(x, t), x) ≤ sup

x∈Ω
∂ps

∗(M,x) < +∞.

Since pτ ⇀ p weak-∗ in L∞(ΩT ), we obtain that

lim inf
τ→0

∫ T

0

∫

Ω
s∗(pτ , x)φ dx dt ≥

∫ T

0

∫

Ω
s∗(p, x)φ dx dt.

Combining all the convergence, we obtain that for any non-negative φ ∈ L∞(ΩT ),
∫ T

0

∫

Ω
ρpφ dx dt ≥

∫ T

0

∫

Ω

(

s(ρ, x) + s∗(p, x)
)

φ(x, t) dx dt.

Therefore, ρp ≥ s(ρ, x) + s∗(p, x) a.e. in ΩT . Then (c) follows from the Young’s inequality and
Lemma 2.11. "

Next we proceed to prove Theorem 6.2. The main idea is to construct a decreasing sequence
of strictly positive densities {ρk} by Theorem 6.1 to approximates ρ from above, and then take
the limit k → ∞.

◦ Construction of a monotone approximation

Let ρ0,k := max{ρ0, ρ 1
k
}, where ρ 1

k
is defined as in Lemma 4.7. It is straightfrward to check

that ρ0,k (with k sufficiently large) all satisfy (1.10) with a uniform M , and E(ρ0,k) are uniformly
bounded. Besides, ρ0,k is non-increasing in k with ρ0,k → ρ0 a.e. in Ω.

Let ρτk and pτk denote the discrete density and pressure pair corresponding to the initial density
ρ0,k. Then Theorem 6.1 applies to (ρτk, p

τ
k). Let (ρk, pk) be a corresponding continuum limit

obtained along a subsequence of τ → 0; here for all k we assume the convergence holds along a
common subsequence of τ , which can be extracted by a diagonalization argument.

Since ρτk(·, t) ∈ X satisfies (1.10) (and thus (1.9)) for all k and t ≥ 0, Theorem 4.6 yields
that ρτk and pτk are monotone decreasing with respect to k, and Lemma 5.4 implies that ρτk are
uniformly bounded in L∞(ΩT ). Hence, the same properties hold for ρk and pk thanks to Theorem
6.1. Furthermore, from Lemma 5.1 we have

sup
k

∫ ∞

0

∫

Ω
ρτk(x, t)|∇pτk(x, t)|

2 dx dt < ∞.

By Theorem 6.1(b),

sup
k

∫ ∞

0

∫

Ω
ρk(x, t)|∇pk(x, t)|

2 dx dt < ∞. (6.6)

By virtue of Proposition 5.6, let ρ ∈ L∞(ΩT ) be the L1(ΩT )-limit of ρτ along a further
subsequence. Since Theorem 4.4 gives that, for all t ≥ 0,

‖(ρτ − ρτk)(·, t)‖L1(Ω) ≤
1

k
,
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using the strong L1-convergence of ρτ and ρτk as τ → 0, we conclude that

‖ρ− ρk‖L1(ΩT ) ≤
T

k
,

which implies ρk → ρ a.e. in ΩT . Lastly, we let p in ΩT be the pointwise limit of the decreasing
sequence pk. Since pk are uniformly bounded from above thanks to Theorem 6.1, p+ ∈ L∞(ΩT ).

When proving Theorem 6.2, we shall denote m(x, t) to be a weak limit of ρk∇pk as k → ∞.
In order to justify the characterization of m in Theorem 6.2(d), we need to further study the
convergence of ρk∇pk.

Lemma 6.5. Let ρk, pk and ρ be as above. Then ρk∇pk is uniformly bounded in L2(ΩT ) and
converges weakly along a subsequence to a vector field m ∈ L2(Ω) as k → ∞. Moreover, m is
absolutely continuous with respect to ρ, and satisfies (6.3).

Proof. Let mk = ρk∇pk. Since ρk is uniformly bounded in L∞(ΩT ), it follows from (6.6) that
mk is uniformly bounded in L2(ΩT ). So there exists m ∈ L2(ΩT ) and a subsequence of {mk},
which is still denoted by mk with abuse of notations, such that mk ⇀ m weakly in L2(ΩT ). So
|m|2 ≤ lim infk→∞ |mk|2 a.e. in ΩT . Then by the fact ρk → ρ a.e. in ΩT and the Fatou’s lemma,

∫

ΩT

|m|2

ρ
≤ lim inf

k→∞

∫

ΩT

|mk|2

ρk
< ∞.

Hence, by the Cauchy-Schwarz inequality, m is absolutely continuous with respect to ρ in ΩT .
Let f ∈ L2([0, T ];H1(Ω)) be a vector field with zero normal component on ∂Ω × [0, T ], such

that fρ−1 ∈ L∞(ΩT ) and ρ−1∇ · f ∈ L1(ΩT ). Indeed, such f exists. For instance, let ηδ : R → R

be a smooth function such that

ηδ(q) =

{

1 if ess infx∈Ω ∂ps∗(q, x) ≥ δ,

0 if ess infx∈Ω ∂ps∗(q, x) ≤ δ/2.

We claim that f(x, t) := ηδ(p)F (x, t) satisfies the desired properties, where F (x, t) is an arbitrary
smooth vector field in ΩT with zero normal component on ∂Ω × [0, T ]. By definition, ηδ(pk) →
ηδ(p) pointwise in ΩT and ηδ(p) ∈ L∞(ΩT ). Next, by the relation ρk(x, t) = ∂ps∗(pk(x, t), x)
a.e., we see that {ρk(x, t) ≤ δ

2} ⊂ {ηδ(pk) = η′δ(pk) ≡ 0} up to a measure zero set in ΩT , so
|ρ−1

k ηδ(pk)| ≤ 2δ−1 a.e.. This implies ρ−1ηδ(p) ≤ 2δ−1 a.e. in ΩT and thus fρ−1 ∈ L∞(ΩT ).
Moreover,

∫

ΩT

|∇
(

ηδ(pk)
)

|2 ≤
2

δ
‖η′δ‖L∞(R)

∫

ΩT

ρk|∇pk|
2,

which is uniformly bounded. Hence, combined with ηδ(pk) → ηδ(p), we know that ∇(ηδ(pk)) ⇀
∇(ηδ(p)) in L2(ΩT ). It is then clear f ∈ L2([0, T ];H1(Ω)). Since

∫

ΩT

ρ−2
k |∇(ηδ(pk))|

2 ≤

(

2

δ

)3

‖η′δ‖L∞(R)

∫

ΩT

ρk|∇pk|
2,

we apply Fatou’s lemma to find that ρ−1∇(ηδ(p)) ∈ L2(ΩT ) ⊂ L1(ΩT ). Therefore, we can
conclude that ρ−1∇ · f ∈ L1(ΩT ).

We can then estimate

lim
k→∞

∣

∣

∣

∫

ΩT

(ρk
ρ

− 1
)

∇pk · f
∣

∣

∣
≤ lim

k→∞
‖fρ−1‖L∞(ΩT )‖(ρk − ρ)1/2∇pk‖L2(ΩT )‖ρk − ρ‖1/2L1(ΩT )

≤ ‖fρ−1‖L∞(ΩT ) lim
k→∞

‖ρ1/2k ∇pk‖L2(ΩT )‖ρk − ρ‖1/2L1(ΩT ) = 0.
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Thus,
∫

ΩT

m

ρ
· f = lim

k→∞

∫

ΩT

ρk∇pk
ρ

· f = lim
k→∞

∫

ΩT

∇pk · f.

Recall that by Theorem 6.1, pk ∈ L2([0, T ];H1(Ω)). It is then legitimate to integrate by parts
to obtain

∫

ΩT

m

ρ
· f = − lim

k→∞

∫

ΩT

pk∇ · f = − lim
k→∞

∫

ΩT

ρpk · ρ
−1∇ · f.

By Lemma 5.4, ρp ∈ L∞(ΩT ) and ρkpk ∈ L∞(ΩT ) where the bound only depends on s and M
in (1.10). Since ρ ≤ ρk, it also follows that ρpk are uniformly bounded in L∞(ΩT ) and ρpk → ρp
pointwise. By the dominated convergence theorem,

∫

ΩT

m

ρ
· f = −

∫

ΩT

p∇ · f. (6.7)

Note that the left hand side is well defined as long as ρ−1f ∈ L2(ΩT ), while the right hand side
is well defined as long as ρ−1∇ · f ∈ L1(ΩT ). Thus, by a limiting argument, we see that (6.7)
holds for all f ∈ T . "

Proof of Theorem 6.2. From Theorem 6.1 and Lemma 6.5, we can send k → ∞ in (6.1) applied
to (ρk, pk) to obtain (6.2), where m ∈ L2(ΩT ) satisfies (6.3).

It remains to show (b) and

m = ∇s∗(p(x, t), x) − ∂xs
∗(p(x, t), x). (6.8)

Indeed, applying Theorem 6.1(c) to (ρk, pk) yields

(ρk∇pk)(x, t) = ∇s∗(pk(x, t), x) − ∂xs
∗(pk(x, t), x), (6.9)

which is uniformly bounded in L2(ΩT ). We claim that s∗(pk(x, t), x) is uniformly bounded in
L2([0, T ];H1(Ω)). Indeed, on one hand, the L2-bound of ∇s∗(pk(x, t), x) is from (6.9) and the
assumption (s3). On the other hand, s∗(pk(x, t), x) is uniformly bounded from above because of
the fact pk ≤ M (Theorem 6.1) and Lemma 2.14. By Lemma 2.12, s∗(pk(x, t), x) is also non-
negtive. This justifies the claim. Therefore, up to a subsequence, s∗(pk(x, t), x) converges weakly
to some w in L2([0, T ];H1(Ω)). Since pk → p pointwise, it follows that w = s∗(p(x, t), x), and
∇s∗(pk(x, t), x) ⇀ ∇s∗(p(x), x) in L2(ΩT ). Lastly, due to the pointwise convergence of pk → p
and (s3), we can conclude that ∂xs∗(pk(x, t), x) weakly converges to ∂xs∗(p(x, t), x) in L2(ΩT ).
Now sending k → ∞ in (6.9) yields (6.8).

Lastly, (b) follows from sending k → ∞ in the dual realtion

(ρkpk)(x, t) = s(ρk(x, t), x) + s∗(pk(x, t), x) a.e. in ΩT ,

using a.e. convergence in each term and Lemma 2.11. "

7. Uniqueness of Weak Solutions

In this section we discuss uniqueness of the weak solutions constructed in the previous section.
Our proof largely follows that of the x-independent case (see [Car99, Váz07]).

Definition 7.1. (ρ, p) is a weak solution of (P ) if for any T > 0, ρ ∈ L∞
(

ΩT
)

, p is measurable
with p+ ∈ L∞(ΩT ), and they satisfy (b) and (c) in Theorem 6.2.

In Theorem 6.2, we have shown the existence of weak solutions under the assumption that
∂xs∗(·, x) is continuous and satisfies (s3). To discuss the uniqueness of the weak solution, we
need a stronger assumption on the continuity of ∂xs∗: there exists a constant C > 0 such that
for all x ∈ Ω,

|∂xs
∗(p1, x)− ∂xs

∗(p2, x)|
2 ≤ C|∂ps

∗(p1, x)− ∂ps
∗(p2, x)||s

∗(p1, x)− s∗(p2, x)|. (7.1)
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Remark 7.2. The notion of weak solution in Definition 7.1 is the same as the one given in [Car99]
for the case s∗ = s∗(p), where (7.1) is automatically satisfied.

Theorem 7.3 (Uniqueness). Under the assumption (7.1) in addition to (s1)-(s5), there exists
at most one weak solution of (P ), in the sense that if (ρ1, p1) and (ρ2, p2) are two pairs of weak
solutions for (P ), then we have that ρ1 = ρ2 a.e. in ΩT and m1 = m2 a.e. in ΩT . Here mi are
defined in Theorem 6.2(c) with pi.

Remark 7.4. (1) When s∗ has the special form s∗(p, x) = f(x)w(p) with positive f , then the
assumption (7.1) is not needed. Indeed, if one changes the choice of test function in the
proof to φ(x) = w(p1(x)) − w(p2(x)), the “bad” term ∂xs∗(p1, x) − ∂xs∗(p2, x) does not
appear and the remaining terms have the correct sign.

(2) Note that uniqueness of weak solutions implies that the convergence results in Theorems
6.1 and 6.2 must hold along the full sequence ρτ . As a result, one can use the dis-
crete scheme to conclude that solutions to the continuum PDE satisfy the L1-contraction
principle.

Proof. Let (ρi, pi), i = 1, 2 as given above. Then by a density argument, for any φ ∈ H1(Ω) and
for a.e. t > 0 we have the weak formulation

∫ t

0

∫

Ω
mi∇φ dx ds =

∫

Ω
(ρ0(x)− ρi(x, t))φ(x) dx,

where mi(x, t) := ∇s∗(pi(x, t), x)− ∂xs∗(pi(x, t), x). Taking the difference of the respective weak
formulations of i = 1 and i = 2, we have

∫

Ω
(ρ1(x, t)− ρ2(x, t))φ(x) dx = −

∫ t

0

∫

Ω
(m1 −m2) ·∇φ dx ds. (7.2)

Take φ(x) := s∗(p1(x, t), x) − s∗(p2(x, t), x), which is in H1(Ω) for a.e. t > 0 (see the proof of
Theorem 6.2). Then

∇φ = (m1 −m2)(x, t) + ∂xs
∗(p1(x, t), x) − ∂xs

∗(p2(x, t), x).

Define h(x, t) :=
∫ t
0 (m1 −m2)(x, s) ds, and we may rewrite (7.2) as

∫

Ω
(ρ1 − ρ2)(x, t)φ(x) dx = −

∫

Ω
h(x, t)

(

∂th(x, t) + ∂xs
∗(p1(x, t), x) − ∂xs

∗(p2(x, t), x)
)

dx.

By Cauchy-Schwarz,
∫

Ω
(ρ1 − ρ2)(x, t)φ(x) dx +

∫

Ω
h(x, t)∂th(x, t)dx ≤

1

2δ

∫

Ω
h2(x, t)dx+

δ

2

∫

Ω
g2(x, t) dx.

where g(x, t) := ∂xs∗(p1(x, t), x)− ∂xs∗(p2(x, t), x) and δ > 0 is to be determined. Integrating in
time, we obtain
∫ T

0

∫

Ω
(ρ1−ρ2)(x, t)φ(x) dx+

1

2

∫

Ω
h2(x, T ) dx ≤

1

2δ

∫ T

0

∫

Ω
h2(x, t) dx dt+

δ

2

∫ T

0

∫

Ω
g2(x, t) dx dt.

From the dual relation ρi(x, t) = ∂ps∗(pi(x, t), x) and the fact that s∗ is monotone increasing
and convex in p (Lemma 2.12), we have

(ρ1 − ρ2)(x, t)φ(x) = |ρ1(x, t)− ρ2(x, t)||s
∗(p1(x, t), x)− s∗(p2(x, t), x)|.

Also, (7.1) and the dual relation imply that for some C∗ > 0,

g2(x, t) ≤ C∗|ρ1(x, t)− ρ2(x, t)||s
∗(p1, x)− s∗(p2, x)|.
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Hence by choosing δ = C−1
∗ , we have

∫ T

0

∫

Ω
|(ρ1 − ρ2)(x, t)||s

∗(p1, x)− s∗(p2, x)| dx dt +

∫

Ω
h2(x, T ) dx ≤ C∗

∫ T

0

∫

Ω
h2(x, t) dx dt.

By Gronwall’s inequality, for all T > 0,

∫ T

0

∫

Ω
h2(x, t) dx dt = 0.

This implies h(x, t) = 0 a.e. in ΩT and hence m1 = m2 almost everywhere. Now it follows from
equation (7.2) that ρ1 = ρ2 almost everywhere. "
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