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Abstract

We introduce a novel variant of the JKO scheme to approximate Darcy’s law
with a pressure dependent source term.By introducing a newvariable that implicitly
controls the source term, our scheme is still able to use the standard Wasserstein-
2-metric even though the total mass changes over time. Leveraging the dual for-
mulation of our scheme, we show that the discrete-in-time approximations satisfy
many useful properties expected for the continuum solutions, such as a comparison
principle and uniform L1-equicontinuity. Many of these properties are new, even in
the well-understood case where the growth term is absent. Finally, we show that our
discrete approximations converge to a solution of the corresponding PDE system,
including a tumor growth model with a general nonlinear source term.

1. Introduction

In this paper, we study Darcy’s law with a pressure-dependent growth term, or,
more precisely, the following equations:

(P) ρt − ∇ · (ρ∇ p)=ρG(p, x) and p ∈ ∂s(ρ) in Rd × [0, T ],

with initial data ρ0. Here ρ = ρ(x, t) represents the density of a flowing material,
p is the pressure generated by the internal energy

E(ρ) =
∫

Rd
s(ρ(x)) dx, (1.1)

andG(p, x) is a pressure dependent growth termwhich is assumed to be decreasing
in p. (P) can be used to describe tumor growthmodels, where themalignant growth
is limited only by the buildup of pressure when cells become too densely packed
[24]. In order to capture this behavior, it is natural to restrict s to be a convex,
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increasing and superlinear function. Examples that we have in mind include the
Rényi energy given by

sm(ρ) :=
1

m − 1
ρm when ρ ≥ 0, otherwise + ∞

for m > 1, and its singular limit obtained as m → ∞ given by

s∞(ρ) := 0 when 0 ≤ ρ ≤ 1, otherwise + ∞.

s = s∞ is a natural choice of internal energy for incompressible tumor growth
models (see for instance [25]). Precise assumptions on s and G will be stated in
Section 1.2.

Our goal is to introduce a discrete-in-timevariational scheme (minimizingmove-
ments) to approximate solutions of (P). When the growth term G is absent, the
system of equations (P) can be formally written as the gradient flow of the internal
energy in 2-Wasserstein space (see [23] for the case s = sm and [1,22] for s = s∞).
With the presence of G, it is no longer clear whether the equation can be realized
as a gradient flow. First of all, in most scenarios, the energy E increases along the
flow. As such, any gradient flow formulation must locate a different “energy” that
is actually dissipated along the flow. Secondly, one must also deal with the fact that
the total mass of the density is not constant in time. This obstructs a straightfor-
ward application of a 2-Wassersteinminimizingmovements scheme (a.k.a. the JKO
scheme [15]), as the standard notion of optimal transport is only defined between
densities with the same mass. While it is possible to consider a modified version
of Wasserstein distance to allow for changing mass (see for instance [3,7,13]), the
resulting gradient flow cannot capture the full generality of (P). For instance, in
the case of the specific choice of s = s∞, the gradient flow formulation restricts the
growth term to be linear and homogenous with respect to the pressure (see [5,12]).

In this paper, we introduce a new discrete-in-time variational scheme for ap-
proximating the equation (P). In contrast to previous results (e.g. [5,12,20]), we
do not modify the Wasserstein metric. Instead, we introduce an additional varia-
tional term that allows us to implicitly solve for the growth rate at each time step.
The advantage of this perspective is that our scheme can approximate any flow of
the form (P). Furthermore, the dual problem associated to our scheme has a very
efficient numerical implementation using the recently introduced back-and-forth
method [17,18]. In particular, the numerical implementation via the back-and-forth
method does not require introducing an additional time dimension, which allows
for a faster computation time than schemes based around the Benamou-Brenier
formula. In addition, our scheme has no difficulty with the singular energy s∞ and
produces a sharp boundary (see Proposition 3.9).

In what follows, we will also show that our scheme captures many of the
favorable properties of the underlying PDE (P), such as the comparison princi-
ple, finite propagation properties, and various uniform bounds, as well as an L1-
equicontinuity property that generalizes the BV bounds obtained in [25]. Let us
emphasize that some of these properties for discrete-time solutions are new even
when G = 0. Using these properties, we then show that the scheme converges to a
solution of the continuum PDE (P) as the time step tends to zero.
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1.1. The Discrete-in-Time Scheme

The discussion that follows is a quick introduction of our scheme and its dual
formulation. A detailed analysis, involving the existence and uniqueness of the
extreme values, will be delayed until Sect. 3.

Given a time horizon T > 0, we choose a smooth, convex, and bounded domain
# that is sufficiently large to contain the the flow in the time window [0, T ] (see
Section 1.2, Theorem 1.3 and the discussion in the beginning of Section 6 for more
information on the choice of#).We then construct a discrete-in-time approximation
to (P) as follows: for a fixed time step size τ > 0, we define ρ0,τ := ρ0 and then
iterate the variational problem

(ρn+1,τ , µn+1,τ ) := argmin
ρ∈X,µ∈AC(ρn,τ )

J (ρ, µ, ρn,τ ), (1.2)

where X := {ρ ∈ L1(#) : E(ρ) < ∞} and AC(ρ) denotes the space of measures
absolutely continuous with respect to ρ,

J (ρ, µ, ρn,τ ) := E(ρ)+ τ F(µ, ρn,τ )+ 1
2τ

W 2
2 (ρ, ρ

n,τ + τµ), (1.3)

and

F(µ, ρn,τ ) :=
{∫

# ρn,τ (x) f
(

µ(x)
ρn,τ (x) , x

)
dx if µ ∈ AC(ρn,τ ),

+∞ else.

Here f = f (z, x) is the unique function defined by
{
f
(
G(0, x), x

)
= 0;

∂z f (z, x) = {−b : z = G(b, x)} when the set is nonempty, otherwise + ∞.
(1.4)

The definition of f is natural from the perspective of convex analysis. Indeed, (1.4)
is equivalent to defining f (z, x) = −Ḡ∗(z, x) where Ḡ is the anti-derivative of G
with respect to z such that Ḡ(0, x) = 0, and Ḡ∗(z, x) := infb∈R(bz − Ḡ(b, x)) is
the concave conjugate of Ḡ with respect to z (note that Ḡ(b, x)must be concave in b
since G(b, x) is decreasing in b). Hence, it is relatively straightforward to compute
f from G. For example, if G(b, x) = c − tanh(b) for some constant c ∈ (0, 1),
then f (z, x) = 1

2 log(1− (z − c)2)+ (z − c)atanh(z − c) if |z − c| ≤ 1, and +∞
otherwise.

Our scheme differs from the usual JKO scheme due to the terms involving the
variableµ. Indeed,µ(x) represents the amount of additional mass added at location
x , and f is a term that encourages growth at the locations where ρn,τ (x) *= 0.
Due to the growth term, we no longer expect to have the dissipation property
E(ρn+1,τ ) ≤ E(ρn,τ ).

We can recover the discrete analogue of the pressure variable in (P) by applying
convex duality to our scheme. Indeed, the pressure at the (n+ 1)-th step solves the
dual problem to (1.2),

pn+1,τ ∈ argmax
p∈X∗

J ∗(p, ρn,τ ). (1.5)
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Here,

J ∗(p, ρn,τ ) =
∫

#
ρn,τ (x)

(
pc(x)+ τ Ḡ

(
pc(x), x

))
dx −

∫

#
s∗(p(x))dx, (1.6)

where ∂z Ḡ(z, x) = G(z, x), s∗ is the Legendre transform of s, and

pc(x) := inf
y

p(y)+ 1
2τ

|y − x |2

is the quadratic c-transform which plays an essential role in optimal transport. In
Section 3, we will derive the connection between the primal and dual problems,
including the relation pn+1 ∈ ∂s(ρn+1) (see Proposition 3.2).

Much of our subsequent analysis will focus on the dual problem (1.5), which
in many ways is easier to study than the primal problem. This is due to the fact that
variations of the c-transform are easier to study than variations of the 2-Wasserstein
distance (which essentially requires introducing a dual variable anyway). Of course,
one could have also chosen problem (1.5) as the starting point for the scheme,
however, the physical interpretation of the primal problem is much clearer than
that of the dual problem. Note that when s and s∗ are differentiable, the second
condition in (P) yields

p = s′(ρ), ρ = (s∗)′(p).

Hence (P) can be written in a weak form as

((s∗)′(p))t − %s∗(p) = ρG(p, x). (1.7)

This is a nonlinear parabolic equation in terms of p, whose particular structure is
discussed in the classical paper [2]. This perspective further clarifies why it is easier
to work with the dual problem. Indeed, many of the beneficial properties that we
develop from the dual problem are related to the parabolic structure of the pressure
equation.

1.2. Assumptions and Main Results

Although (P) is set up on Rd , we first run the schemes (1.2) and (1.5) on a
smooth open convex bounded domain # ⊂ Rd to construct approximate solu-
tions. Here # is introduced only as an auxiliary domain to avoid some technical
annoyances of working on Rd . Since we will be studying equations with a finite
propagation speed (see Theorem 1.3 and Section 5), the choice of # will not af-
fect the discrete-in-time solutions as long as it is taken to be sufficiently large for
the given time range. Under our assumptions, if ρ0 is compactly supported and
bounded, ρτ stays compactly supported and bounded (see Theorem 1.3 and the
discussion in the beginning of Section 6); in particular, it would be supported away
from ∂# if # is sufficiently large. Therefore, even though a no-flux condition of ρ

is implicitly enforced along ∂# in the scheme (1.2), it makes no difference to the
discrete solutions.
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We will require the energy density function s : R → R ∪ {+∞} to be proper,
convex, lower semi-continuous, superlinear, and to satisfy

s(y) = +∞ if {y < 0}, s(0) = 0, s(ρ) is increasing in [0,∞), and

lim
z→0+

s(z) − s(0)
z

= 0.

The first condition forces the density function to be nonnegative, while the second
and third conditions, s(0) = 0 and s(ρ) increasing, are physically natural for
tumor growth models. In addition, these two conditions ensure that solutions stay
compactly supported if initially so (see Section 5). The last condition is only for
simplicity of the presentation. This condition ensures that the density variable is
positive whenever the pressure is positive. Without this assumption, one would
have to constantly refer to pressure values in the set ∂s((0,∞)), which quickly
gets cumbersome.

As for G, we assume the following conditions:

(G1) G(0, x) is strictly positive for all x .
(G2) G(z, x) is Lipschitz continuouswith respect to (z, x) ∈ R×Rd anddecreasing

with respect to z.
(G3) for all x there exists b(x) such that G(b(x), x) = 0, and 0 ≤ b0 ≤ b(x) ≤

b1 < ∞ for all x ∈ Rd .
(G4) B := sup(z,x)∈R+×Rd |G(z, x)| < ∞ .

Assumptions (G1)–(G3) are physically natural and correspond to the assumptions
that growth occurs when the pressure is zero, growth slows continuously as the
pressure increases, and at each location there is a threshold value where growth
will cease if the pressure becomes too high. Let us note that assumption (G1) is
used to prove monotonicity properties (c.f. Lemma 3.8 and Proposition 3.9), which
are only needed in the case of singular energy density s = s∞ (e.g., Theorem 1.2).
For the results on generic s in this paper, (G1) is unnecessary. (G4) is a technical
condition bounding the growth rate, which will streamline our subsequent analysis.
This condition could almost certainly be weakened, for instance to local bounds
within the range of pressure. However, in the context of tumor growth models,
we do not believe unbounded growth is relevant enough to justify the additional
complication.

To approximate the equation (P), we define the piecewise-constant-in-time
interpolations

ρτ (x, t) := ρn+1,τ (x) if t ∈ [nτ, (n + 1)τ ),

µτ (x, t) := µn+1,τ (x) if t ∈ [nτ, (n + 1)τ ),

pτ (x, t) := pn+1,τ (x) if t ∈ [nτ, (n + 1)τ ),

(1.8)

starting with some given nonnegative initial data ρ0,τ = ρ0. We assume that ρ0 is
compactly supported with

inf ∂s(M̂0) < ∞ where M̂0 := ‖ρ0‖∞. (1.9)

Note that, in particular, M̂0 < ∞.
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In the next two theorems, we will denote Q := Rd × [0, T ]. We identify
(ρτ , µτ , pτ )with their zero extensions to the entireRd .Wewill show that (ρτ , µτ , pτ )

converge to a continuum solutions of (P) as we take τ → 0. To be more precise,
we have

Theorem 1.1. Let M0 := max(b1, inf ∂s(‖ρ0‖L∞(Rd ))), where b1 is given in (G3).
Suppose either s ∈ C1

loc([0,∞)) or G(·, x) is affine in [0,M0] for all x ∈ Rd . Then
for any T > 0,

(a) For all τ ≤ (2B)−1, ρτ , µτ , pτ
+ are uniformly bounded in L∞(Q).

There exists ρ, p ∈ L∞(Q) such that, as τ → 0, up to a subsequence,

(b) µτ ⇀ ρG(p, x) in L1([0, T ];W−1,1(Rd));
(c) ρτ → ρ in L1(Q);
(d) pτ

+ ⇀ p and s∗(pτ ) ⇀ s∗(p) in L1(Q). They also a.e. converge provided
s ∈ C1

loc([0,∞)).

Moreover,

(e) (ρ, p) is a very weak solution of (P) in the sense that p ∈ ∂s(ρ) a.e. and
∫ t0

0

∫

Rd
ρφt+s∗(p)%φ+G(p, x)ρφ dxdt=

∫

Rd
(ρφ)(x, t0)−(ρφ)(x, 0) dx,

for any φ ∈ C∞(Q) and for a.e. t0 ∈ [0, T ].
(f) If ρ0 ∈ BV , we also have ρ(t, ·) ∈ BV with its BV norm growing at most

exponentially in time.

When s = s∞, despite the irregular nature of the energy functional, strong
monotonicity properties holds for ρτ and pτ , which leads to convergence results.
In this case the initial data we consider is a compactly supported function ρ0 in Rd

with ρ0 ≤ 1.

Theorem 1.2. Let s = s∞. For any T > 0, there exists ρ ∈ L∞(Q) and p ∈
L2
loc([0, T ]; H1

loc(Rd)) such that (a), (b) and ( f ) in Theorem 1.1. Moreover,

(c’) ρτ ∈ [0, 1] is monotone increasing in time, and converges to ρ in L1(Q). If
ρ0 ∈ {0, 1} a.e., then ρτ , ρ ∈ {0, 1} a.e..

(d’) pτ
+ is monotone increasing in time, and converges to p in L2(Q). Moreover

∇ pτ
+ ⇀ ∇ p in L2(Q).

(e’) (ρ, p) is a weak solution of (P) in the sense that p(1 − ρ) = 0 a.e. and
∫ t0

0

∫

Rd
ρ∂tφ−∇ p·∇φ+G(p, x)ρφ dxdt=

∫

Rd
(ρφ)(x, t0)dx−(ρφ)(x, 0) dx,

for any φ ∈ C∞(Q) and for a.e. t0 ∈ [0, T ].

One of the key ingredients in establishing the above results is the comparison
principle among the discrete solutions, which is of independent interest. Similar
results have been obtained for the case of E = Em in [1], but our argument gen-
eralizes and simplifies the original proof by arguing through the dual formulation
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of the scheme. As a consequence, we can construct barriers to show the density
propagates with finite speed. In particular, this allows us to ensure that the evolution
remains bounded in any finite time horizon. Another main ingredient used to es-
tablish the convergence result is the spatial equicontinuity of the density variables.
The equicontinuity estimate is motivated from [16], but requires a substantially
different argument in this setting due to the presence of the growth term.We collect
these results in the following theorem:

Theorem 1.3. (a) (Comparison principle) If (ρ1)n,τ ≤ (ρ2)
n,τ both satisfying

(3.2), then (ρ1)
n+1,τ ≤ (ρ2)

n+1,τ and (p1)n+1,τ ≤ (p2)n+1,τ .

(b) (Finite-speed propagation) If ρ0 is supported in BR0 satisfying (1.9), then there
exists R1, R2 > 0 indepedent of τ such that

spt ρτ (·, t) ⊂ BR0+R1+R2t .

(c) (L1-equicontinuity) For any y ∈ Rd and sufficiently small τ we have

lim
ε→0

∫ T

0

∫

Rd
|ρτ (x + εy, t) − ρτ (x, t)|dxdt = 0.

Further characteristics of R1, R2 and its dependence on ρ0, G and s are given in
Section 5 as well as in the “Appendix A”.

Lastly, we briefly study coincidence of our continuum solutions with other
notions of solutions. Both weak solutions and viscosity solutions approach are
available for the well-posedness of the tumor model with s = s∞ [1,6,19,21,25].
There its well-posedness and coincidence are established, as well as its characteri-
zation as the limit of weak solutions with s = sm as m → ∞. Given the extensive
analysis on the continuum solutions in aforementioned references, we do not pursue
a qualitative analysis at the continuum level.

Theorem 1.4. (Coincidence)

(a) Suppose s ∈ C1
loc([0,∞)). Then under a condition (8.1) that includes s =

sm for 1 < m < ∞, the continuum pair (ρ, p) obtained in Theorem 1.1 is
the unique weak solution of (P). In particular they are the limit of the entire
sequence (ρτ , pτ ) as τ → 0.

(b) When s = s∞ the pair (ρ, p) obtained in Theorem 1.2 coincides with the
unique weak solution obtained in [25]. In particular they are the limit of the
entire sequence (ρτ , pτ ) as τ → 0.

1.3. Organization of the Paper

The remainder of the paper is organized as follows: in Section 2, we recall
basic properties of optimal transport and convex duality. In Section 3, we develop
properties of the primal and dual variational problems. In particular, we show that
the primal and dual problems are linked by strong duality, and we establish uniform
bounds for discrete densities. In Section 4, we show the comparison principle, The-
orem 1.3a, based on properties of the dual problem. This generalizes and simplifies
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the comparison principle proof developed in [1]. Next, Section 5 establishes the
finite propagation property, Theorem 1.3b, based on the comparison principle and
barrier constructions. Interestingly, the barriers are constructed using the dual prob-
lem and are backwards-in-time, which is natural in view of the duality approach.
The last two sections, Sects. 6 and 7, establish the compactness properties of dis-
crete solutions and then show their convergence to the continuum limit as τ tends
to zero. Section 6 focuses on strong compactness of the density variable in L1. The
arguments in this section follow the ideas from [16], however, we need to introduce
significantly new ingredients, as the growth term prevents the use of L1-contraction
argument from [16]. Section 7 collects the results from the previous sections to de-
rive the main convergence theorems Theorems 1.1 and 1.2. Section 8 discusses
coincidence of our weak solutions with other existing notions of solution stated in
Theorem 1.4. Finally, we construct in the “Appendix A” a more refined version of
barriers from Section 5, which give a finer characterization of the propagation of
the density support.

2. Preliminary Results

We begin with recalling some essential properties of optimal transport and dual
functions. Since we primarily work with optimal transport in its dual formulation,
we shall work extensively with the c-transform. Here we focus on the specific cost
c(x, y) := |x−y|2

2τ for some τ > 0. We follow the notations given in [16].

Definition 2.1. Given a function p : # → R the c-transform of p is given by

pc(y) = inf
x∈#

p(x)+ c(x, y).

Given a function q : # → R the conjugate c-transform is given by

qc̄(x) := sup
y∈#

q(y) − c(x, y).

Lemma 2.2. ([26]) Given functions p, q : # → R, we have

pcc̄ ≤ p, q ≤ qc̄c,

and

pcc̄c = pc, qc̄cc̄ = qc̄.

Definition 2.3. We say that a function p : # → R is c-concave if pcc̄ = p, and
we say a pair of functions p, q : # → R are c-conjugate if pc = q and qc̄ = p.

The following regularity result is a well-known consequence of the c-transform
definition:

Lemma 2.4. If p is c-concave, then p is Lipschitz and the Lipschitz constant de-
pends only on c and #.
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The next two lemmas establish the fundamental relationship between optimal
transport and the c-transform.

Lemma 2.5. If µ is a nonnegative measure, then for any bounded function p :
# → R,

inf
ρ∈L1(#),ρ(#)=µ(#)

∫

#
p(x)ρ(x) dx + 1

2τ
W 2

2 (ρ, µ) =
∫

#
pc(y) dµ(y).

Lemma 2.6. ([10,11,14]) Let p : # → R be c-concave with c(x, y) = |x−y|2
2τ .

Define Tp : # → # be the unique solution to

Tp(y) = y − τ∇ pc(y). (2.1)

Then Tp is invertible a.e., and T−1
p is the unique solution to

T−1
p (x) = x + τ∇ p(x).

Moreover, if µ is a nonnegative measure and if φ : # → R is a continuous
function, then

lim
t→0+

∫

#

(p + tφ)c(y) − pc(y)
t

dµ(y) =
∫

#
φ(Tp(y)) dµ(y)

Remark 2.7. The maps Tp and T−1
p can additionally be characterized as the unique

solutions to the optimization problems

Tp(y) = argmin
x∈#

p(x)+ c(x, y), T−1
p (x) = argmax

y∈#
pc(y) − c(x, y).

Now we can finally state the fundamental result guaranteeing the existence and
uniqueness of optimal transport maps.

Theorem 2.8. ([4,11,14]) Ifµ, ν ∈ L1(#) are nonnegative densities with the same
mass, then there exists a c-concave function p∗ : # → R such that

p∗ ∈ argmax
p

∫

#
pc(y)µ(y) dy −

∫

#
p(x)ν(x) dx,

W 2
2 (µ, ν) =

∫

#
(p∗)c(y)µ(y) dy −

∫

#
p∗(x)ν(x) dx,

Moreover Tp∗ is the unique optimal map transportingµ to ν, and T−1
p∗ is the unique

optimal map transporting ν to µ. Conversely, if p̃ is a c-concave function such that
Tp̃ #µ = ν then Tp̃ is the unique optimal map transporting µ to ν and T−1

p̃ is the
unique optimal map transporting ν to µ.

We conclude this section with some results from convex duality theory that we
will use extensively in our arguments.

Lemma 2.9. ([16]) For any proper, lower semi-continuous, convex function h :
R → R∪ {+∞}, we have p ∈ ∂h(z) if and only if pz = h(z)+ h∗(p). Here h∗ is
the convex dual of h defined by s∗(p) := supρ∈R{ρp − s(ρ)}.
Lemma 2.10. ([16]) Suppose h : R → R∪{+∞} is proper, lower semi-continuous,
convex, and h(z) ≡ +∞ if z < 0. Then h∗ is increasing, and it is strictly increasing
on ∂h((0,∞)).
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3. Properties of the Primal and Dual Problems

In this section, we study properties of solutions (ρn,τ , µn,τ ) to the primal prob-
lem (1.2), and their relationship to the dual pressure variables pn,τ that maximize
the dual problem (1.5). Since τ is fixed for the results of this section, we denote
ρn := ρn,τ , for simplicity.

3.1. Equivalence and Well-Posedness

Webegin by showing the existence of a uniqueminimizer for the primal problem
(1.3). Recall that X := {ρ ∈ L1(#) : E(ρ) < ∞}. For ρ ∈ X and * ⊂ #, define

ρ(*) :=
∫

*
ρ dx .

Define the dual energy E∗ : X∗ → R such that

E∗(p) :=
∫

#
s∗(p(x))dx, s∗(p) := sup

y∈R
{py − s(y)},

where X∗ is the convex dual of X with respect to E , namely

X∗ := {p : # → [−∞,+∞] : p is measurable, E∗(p) < +∞}.

We begin with a simple lemma, which establishes weak duality between the
primal and dual problems.

Lemma 3.1. Suppose ρn ∈ X. Then

inf
(ρ,µ)∈X×AC(ρn)

J (ρ, µ, ρn) ≥ sup
p∈X∗

J ∗(p, ρn).

Proof. The energy E is convex, proper and lower semi-continuous, so

E(ρ) = (E∗)∗(ρ) = sup
p∈X∗

(ρ, p) − E∗(p).

It is thus immediately apparent that the primal problem (1.2) is equal in value to
the primal-dual problem

inf
ρ∈X, µ∈AC(ρn)

sup
p∈X∗

(
(ρ, p)+ 1

2τ
W 2

2 (ρ, ρ
n + τµ) − E∗(p)+

∫

#
τρn(x) f

(
µ(x)
ρn(x)

, x
))

.

By switching the inf and sup, the value only decreases, and after further en-
larging the search space for ρ the above quantity is bounded from below by

sup
p∈X∗

inf
ρ∈L1(#), µ∈AC(ρn)

(
(ρ, p)+ 1

2τ
W 2

2 (ρ, ρ
n + τµ) − E∗(p)

+
∫

#
τρn(x) f

( µ(x)
ρn(x)

, x
))

,
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which, by Lemma 2.5, leads to

sup
p∈X∗

inf
µ∈AC(ρn)

(ρn + τµ, pc) − E∗(p)+
∫

#
τρn(x) f

( µ(x)
ρn(x)

, x
)
.

Now it is clear that µ should be chosen so that

pc(x) ∈ −∂z f
( µ(x)
ρn(x)

, x
)
,

which, by (1.4), is equivalent to

µ(x) = ρn(x)G(pc(x), x).

If we plug in this choice, we obtain the maximization problem

sup
p∈X∗

∫

#
ρn(x)

(
pc(x)+τpc(x)G

(
pc(x), x)+τ f

(
G

(
pc(x), x

)
, x

))
dx−E∗(p).

Note that from (1.4),

∂z

(
zG

(
z, x)+ f

(
G

(
z, x

)
, x

))
= G(z, x),

and thus
zG(z, x)+ f

(
G(z, x), x

)
= Ḡ(z, x), (3.1)

and we conclude. 01

Next we upgrade the previous proposition and show that the primal and dual
problems satisfy a strong duality principle. This guarantees that the problems attain
the same optimal value and links the primal and dual variables through necessary
optimality conditions.

Proposition 3.2. Suppose that ρn ∈ X and satisfies

0 = lim sup
b→−∞

∂s∗(b) <
1
|#|

∫

#
ρndx < lim inf

b→∞
∂s∗(b). (3.2)

Then the primal problem (1.2) has a uniqueminimizer (ρn+1, µn+1) ∈ X×AC(ρn)

and the dual problem (1.5) has a c-concave maximizer pn+1 ∈ X∗ and

inf
(ρ,µ)∈X×AC(ρn)

J (ρ, µ, ρn) = sup
p∈X∗

J ∗(p, ρn).

Moreover, for a.e. x ∈ #,

pn+1 ∈ ∂s(ρn+1), ρn+1 ∈ ∂s∗(pn+1), (3.3)

Tpn+1 #(ρ
n + τµn+1) = ρn+1 with T−1

pn+1
(x) = x + τ∇ pn+1, (3.4)

and
µn+1(x) = ρn(x)G(pcn+1(x), x). (3.5)



1360 M. Jacobs, I. Kim & J. Tong

Remark 3.3. In this paper, we will mostly concern ourselves with compactly sup-
ported initial data in Rd . In this case, we can choose an arbitrarily large domain
where (3.2) always holds for any given time range (see Corollary 5.3). However, if
one wishes to consider a version of the problem where the density is restricted #,
(3.2) can only fail in trivial cases. Indeed, if (3.2) does not hold, then ρn must al-
ready be theminimizer of the primal problem (i.e. ρn+1 = ρn), and so the evolution
has already reached a stationary state.

Proof. Let J ∗ be as given in (1.6). Given some function p : X∗ → R, we can
compute

J ∗(pcc̄, ρn) =
∫

#
ρn(x)

(
pcc̄c(x)+ τ Ḡ(pcc̄c(x), x)

)
dx − E∗(pcc̄).

From Lemmas 2.2 and 2.10, we have
∫

#
ρn(x)

(
pcc̄c(x)+ τ Ḡ(pcc̄c(x), x)

)
dx =

∫

#
ρn(x)

(
pc(x)+ τ Ḡ(pc(x), x)

)
dx

and

E(pcc̄) ≤ E(p).

Thus J (pcc̄, ρn) ≥ J (p, ρn) and we have

sup
p∈X∗

J ∗(p, ρn) = sup
p∈X∗, pcc̄=p

J ∗(p, ρn),

which allows the search to be restricted to the space of c-concave functions.
Let pk be a sequence of bounded c-concave functions such that

lim
k→∞

J ∗(pk, ρn) = sup
p∈X∗, pcc̄=p

J ∗(p, ρn).

If we set αk = 1
|#|

∫
# pk(x) dx , then p̃k = pk −αk is c-concave and has zero mean.

Thanks to Lemma 2.4, it follows that p̃k is uniformly bounded in W 1,∞(#). Thus,
we can assume without loss of generality that p̃k converges uniformly to a zero
mean function p̃. Next, we chose

βk ∈ argmax
β∈[−∞,∞]

F(β) := J ∗( p̃k + β, ρn).

Since ( p̃k(x)+ β)c = p̃ck(x)+ β for any β ∈ [−∞,∞], we see that

F ′(β) =
∫

#
ρn(x)(1+ τG( p̃ck(x)+ β, x)) dx −

∫

#
∂s∗( p̃k(x)+ β, x) dx,

which decreaseswith respect toβ. Therefore J ∗( p̃k+β, ρn) is concavewith respect
to β. Since p̃k is uniformly bounded, the assumption (3.2) yields some M > 0 that
depends on ρn , G, c and #, such that F ′ is negative if β > M and is positive if
β < −M . Hence βk exists and must be bounded uniformly in R. Hence, we can
assume without loss of generality that the βk converge to a finite limit β̃.
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Define p∗ := ( p̃ + β̃)cc̄. We then have

J ∗(p∗, ρn) ≥ J ∗( p̃ + β̃, ρn) ≥ lim sup
k→∞

J ∗( p̃k + βk, ρ
n)

where the last inequality follows from the fact that the c-transform, G(·, x), and
−s∗ are upper semi-continuous with respect to pointwise convergence. Thanks to
our choice of βk , we see that

lim sup
k→∞

J ∗( p̃k + βk, ρ
n) ≥ lim sup

k→∞
J ∗( p̃k + αk, ρ

n) = sup
p∈X∗, pcc̄=p

J ∗(p, ρn).

Therefore, we can conclude that p∗ is a c-concave maximizer of the dual problem.
Define

µ∗(x) := ρn(x)G((p∗)c(x), x), and ρ∗ := Tp∗ #(ρ
n + τµ∗). (3.6)

We would like to show that (ρ∗, µ∗) minimizes J (ρ, µ, ρn).
Using Lemma 2.6, the optimality condition for p∗ implies that there exists

ω ∈ ∂s∗(p∗) such that, for every continuous function φ : # → R,
∫

#
φ(Tp∗(y))(1+ τG((p∗)c(x), x))ρn(y) dy −

∫

#
ω(x)φ(x) dx = 0.

Thus, we must have
ρ∗ ∈ ∂s∗(p∗) a.e. in #. (3.7)

Therefore, from Lemma 2.9 we have the duality relation
∫

#
ρ∗(x)p∗(x) dx = E(ρ∗)+ E∗(p∗). (3.8)

From (3.1) and (3.8), as well as the definition of µ∗ in (3.6), we have

J ∗(p∗, ρn) −
∫

#
τρn f

(
µ∗

ρn , x
)

dx =
∫

#
(p∗)c(y)(ρn + τµ∗)(y) dy

−
∫

#
p∗(x)ρ∗(x) dx + E(ρ∗)

= 1
2τ

W 2
2 (ρ

∗, ρn + τµn)+ E(ρ∗),

where the last equality follows from Theorem 2.8. This allows us to conclude that

J ∗(p∗, ρn) = J (ρ∗, µn, ρn) ≥ inf
ρ∈X

J (ρ, µ, ρn).

On the other hand we have, from Lemma 3.1,

inf
(ρ,µ)∈X×AC(ρn)

J (ρ, µ, ρn) ≥ sup
p∈X∗

J ∗(p, ρn) = J ∗(p∗, ρn).

Therefore, it follows that (ρ∗, µ∗) is a minimizer of the primal problem. Denoting
p∗ = pn+1, ρ∗ = ρn+1 and µ∗ = µn+1, (3.3)–(3.5) follow from (3.6), (3.7) and
Lemma 2.6.
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Now let us establish uniqueness of (ρ∗, µ∗). Suppose that we have two mini-
mizers (ρ0, µ0) and (ρ1, µ1). Let Ti be the optimal transport map from ρn+τµi to
ρi (note that Ti must exist since we have established that minimizers are absolutely
continuous with respect to the Lebesgue measure). Let πi : # × # → [0,∞) be
the transportation plan associated to the map Ti , and define

(ρt , µt ,πt ) := t (ρ0, µ0,π0)+ (1 − t)(ρ1, µ1,π1) for t ∈ [0, 1].

By convexity, (ρt , µt ) must be a minimizer for all t ∈ [0, 1], hence t 2→
J (ρt , µt , ρ

n)must be constant. If πt is not an optimal transportation plan for some
t ∈ (0, 1), then

W 2
2 (ρt , ρ

n + τµt ) < tW 2
2 (ρ1, ρ

n + τµ1)+ (1 − t)W 2
2 (ρ0, ρ

n + τµ0),

and thus,

J (ρt , µt , ρ
n) < t J (ρ1, µ1, ρ

n)+ (1 − t)J (ρ0, µ0, ρ
n),

contradicting the optimality of (ρ1, µ1) and (ρ0, µ0). Therefore, πt must be an
optimal plan for all t ∈ [0, 1]. ρt and ρn + τµt are absolutely continuous, so πt
must be induced by a map Tt pushing ρn + τµt to ρt . For x ∈ spt ρn we have

πt (x, y) = tδ(T0(x) − y)+ (1 − t)δ(T1(x) − y) = δ(Tt (x) − y),

which is only possible if there is a single map T such that T (x) = T0(x) = T1(x)
for almost all x in spt ρn . It remains to show that µ1 = µ0, which would yield that
ρ1 = T#(ρn + τµ1) = T#(ρn + τµ0) = ρ0.

Once again using the fact that t 2→ J (ρt , µt , ρ
n) is constant, we can conclude

that for all t ∈ (0, 1) there exists ηt (x) ∈ ∂z f (
µt (x)
ρn(x) , x) and ζt ∈ ∂s(ρt ) such that

(ηt , µ1 − µ0)+ (ζt , ρ1 − ρ0)+
1
2
(|T − id|2, µ1 − µ0) = 0.

In particular, we see that, for 0 < t1 < t2 < 1,

(ηt2 − ηt1 , µ1 − µ0)+ (ζt2 − ζt1 , ρ1 − ρ0) = 0.

Since ∂z f (·, x) is strictly increasing for all x in the range of G(·, x) due to the
continuity of G, and since ∂s(y) is increasing,

(ηt2 − ηt1, µ1 − µ0)+ (ζt2 − ζt1 , ρ1 − ρ0) > 0

if µ1 *= µ0 almost everywhere, yielding a contradiction. Thus we can conclude. 01

In general, we do not expect that there is a unique pressure that maximizes
the dual problem. Luckily, the next Lemma guarantees that the set of maximizers
argmax

p∈X∗, pcc̄=p
J ∗(p, ρn), has a minimal element. Thus, we can always make a consis-

tent choice of pressure in the scheme by setting pn+1 to be the smallest maximizer.
Note that the proof of the lemma is parallel to the corresponding result, Lemma
4.4, of [16].
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Lemma 3.4. (Existence of minimal pressure) There exists a c-concave function

p∗ ∈ argmax
p∈X∗, pcc̄=p

J ∗(p, ρ̄)

such that p∗ ≤ p̃ for any p̃ ∈ argmax
p∈X∗, pcc̄=p

J ∗(p, ρ̄).

3.2. Uniform Bounds

Next we proceed to establish uniform bounds on both density and pressure
variables. We begin by showing that the pressure stays bounded from above when
the growth function G is strictly decreasing.

Lemma 3.5. Let b(x), b0 and b1 be as given in (G3), and in addition suppose that
G(·, x) is strictly decreasing for all x ∈ #. Let M̂ = sup ∂s∗(b1), M̄ = inf ∂s∗(b0).
For p0 chosen from (1.9), define for n = 0, 1, · · · ,

M̂n := ess sup
x∈#

ρn(x), M̄n := ess inf
x∈#

ρn(x), and vn := inf ∂s(M̂n).

Then the following holds:

(a) pn+1 ≤ Pn+1 := max(vn, b1), and Pn+1 decreases with respect to n.
(b) max(M̂, M̂n) is non-increasing and min(M̄, M̄n) is non-decreasing with re-

spect to n.

In particular, if ρ0 satisfies (1.9), then so is ρn, and the bound is independent
of n and τ .

Proof. First let us define

U := {x : pn+1(x) > max(vn, b1)}.
From(3.3)wehave that up to ameasure zero set, {x ∈ # : ρn+1(x) > max(M̂n, M̂)} ⊂
U , and thus it is enough to show that |U | = 0 to conclude both (a) and the first
claim in (b). Note that pn+1 is continuous, so |U | = 0 implies U = ∅.

If x ∈ T−1
pn+1

(U ), pcn+1(x) ≥ pn+1(Tpn+1(x)) > b1.Moreover fromRemark 2.7
it follows that pn+1(x) ≥ pn+1(Tpn+1(x)). Since G(·, x) is strictly decreasing, we
have

T−1
pn+1

(U ) ⊂ U and G(pcn+1(x), x) < 0 in T−1
pn+1

(U ) (3.9)

Now let φ be the characteristic function ofU . If |U | *= 0, we can use (3.4) and
(3.9) to conclude that

∫

U
ρn+1(x) dx =

∫

#
ρn(x)

(
1+ τG(pcn+1(x), x)

)
φ
(
Tpn+1(x)

)
dx

<

∫

#
ρn(x)φ(Tpn+1(x)) dx ≤

∫

U
ρn(x) dx .

Lastly, note that from the definition of vn and the dual relation we have ρn+1 ≥
M̂n ≥ ρn a.e. in U . It follows that |U | = 0.
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Next let V = {x ∈ # : ρn+1(x) < min(M̄n, M̄)}. It is immediate from (3.5)
that µn+1(x) ≥ 0 in V . Moreover, since b0 > pn+1(x) ≥ pn+1(Tpn+1(x)) in V , it
follows that V ⊂ T−1

pn+1
(V ). Thus,

∫

V
ρn+1(x) dx ≥

∫

T−1
pn+1 (V )

ρn(x)+ τµn+1(x) dx ≥ min(M̄, M̄n)|V |,

which yields |V | = 0. 01

We can now extend the pressure bound to general G by working with the
minimal pressure from Lemma 3.4.

Corollary 3.6. If we choose pn+1 to be the minimal pressure, the statements of
Lemma 3.5 hold without the strict monotonicity assumption on G.

Proof. It is enough to show that pn+1 ≤ Pn+1, since the rest of the proof does
not use the strict monotonicity of G. Let us approximate G by strictly decreasing
functions Gδ(p, x) := G(p, x) + δ(e−p − 1), and let J ∗

δ be the corresponding
dual energy and let pn+1,δ be the minimal element of argmax

p∈X∗, pcc̄=p
J ∗
δ (p, ρ

n) chosen

by Lemma 3.4. Then Lemma 3.5 applies to pn+1,δ to yield pn+1,δ ≤ Pn+1. Due
to the uniform Lipschitz continuity, pn+1,δ uniformly converges to an element
p∗ ∈ Sn = argmax

p∈X∗, pcc̄=p
J ∗(p, ρn) along a subsequence as δ → 0. Since pn+1 is

the minimal element of Sn , we can conclude that pn+1 ≤ p∗ ≤ Pn+1. 01

Lastly we discuss BV estimates for the density variable. The following lemma
will yield exponential growth of the BV norm over time (see Corollary 6.3):

Lemma 3.7. Let # be convex and bounded and let Pn be given as in Lemma 3.5.
If g0 := ‖G‖

W 1,∞
(
[0,P1]×Rd

) < ∞ and ρn ∈ BV (#), then for τ < 1/B we have

ρn+1 ∈ BV (#) with the bound
∫

#
|∇ρn+1|dx ≤ (1+ τ B)

∫

#
|∇ρn(x)|dx

+τ

(
1

2(1 − τ B)

∫

#
|∇ pn+1|2ρn+1dx +

(g20
2

+ g0
)
ρn(#)

)

.

Proof. From (1.2) we have ρn+1 = argmin
ρ∈L1(#)

W2(ρ, ρ
n + τµn+1)+ E(ρ). Thanks

to the useful estimate derived in [8], it follows that
∫

#
|∇ρn+1| ≤

∫

#
|∇(ρn + τµn+1)|.
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Using (3.5), we obtain
∫

#
|∇ρn+1| ≤

∫

#
|∇ρn(x)(1+ τG(pcn+1, x))| + τρn(x)|∂zG(pcn+1, x)∇ pcn+1|

+τρn(x)|∂xG(pcn+1(x), x)|.

For the first term we have
∫

#
|∇ρn(x)(1+ τG(pcn+1, x))| ≤ (1+ τ B)

∫

#
|∇ρn|.

We estimate the second term with the Cauchy-Schwarz inequality to get

τ

∫

#
ρn |∂zG(pcn+1, x)∇ pcn+1| ≤ τ

2

(∫

#
ρn |∂zG(pcn+1, x)|2dx +

∫

#
ρn |∇ pcn+1|2dx

)
.

From (2.1) and (3.4), for τ < 1/B,
∫

#
ρn|∇ pcn+1|2 ≤ (1 − τ B)−1

∫

#
(ρn + τµn+1)|∇ pcn+1|2

= (1 − τ B)−1τ−1W 2
2 (ρ

n+1, ρn + τµn+1)

=(1 − τ B)−1
∫

#
ρn+1|∇ pn+1|2.

Now the stated estimate follows from the definition of g0. 01

3.3. Monotonicity Properties

Here we study monotonicity properties of the density variable. We first show
that the support of the density variable only expands over time. Note that throughout
this subsection we are assumming that ρn satisfies (3.2).

Lemma 3.8. Up to a set of measure zero, {x ∈ # : ρn(x) > 0} ⊂ {x ∈ # :
ρn+1(x) > 0}.

Proof. If D = {x ∈ # : ρn(x) > 0, ρn+1(x) = 0}, then pn+1(x) ≤ 0 for almost
all x ∈ D. Thanks to assumption (G1), it then follows that

µn+1(x) = ρn(x)G(pcn+1(x), x) ≥ ρn(x)G(0, x) > 0 a.e. x ∈ D.

Choose some point x ∈ D and note that if Tpn+1(x) *= x , then we must have
pn+1(Tpn+1(x)) < pn+1(x). Therefore, for almost every x ∈ D, it follows that
ρn+1(Tpn+1(x)) ≤ ρn+1(x). Now we can compute

∫

D
ρn(x)+ τµn+1(x) dx =

∫

Tpn+1 (D)
ρn+1(y) dy ≤ 0.

This is only possible if D has measure zero. 01
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When we consider the singular energy E∞(ρ), we can strengthen the previous
proposition to a powerful monotonicity statement. In addition, we show that if the
density starts out as a characteristic function it remains a characteristic function for
all time. Recall that in this case

X = {ρ ∈ L1(#) : E(ρ) < ∞} = {ρ ∈ L1(#) : 0 ≤ ρ ≤ 1 a.e.}.
Proposition 3.9. Let s = s∞ with ρn ∈ X. Then ρn+1 ≥ ρn almost everywhere.
Moreover if ρn(x) ∈ {0, 1} a.e. in #, then we have ρn+1 ∈ {0, 1} a.e. in #.

Proof. From Lemma 3.8, it follows that D = {x ∈ # : ρn(x) > 0, ρn+1(x) = 0}
has measure zero. Let us now consider the set E = {x ∈ # : 0 < ρn+1(x) <

ρn(x)}. This in particular means that ρn+1(x) ∈ (0, 1) on E , and thus from the
relation ρn+1 ∈ ∂s∗

∞(pn+1) it follows that pn+1 = 0 almost everywhere on E .
pn+1 is Lipschitz, so we also have ∇ pn+1 = 0 almost everywhere on E (see
for instance [9, Theorem 4.4]). T−1

pn+1
(x) = x + τ∇ pn+1(x) is the optimal map

from ρn+1(x) to ρn(x) + τµn+1(x). Therefore, for almost every x ∈ E , we have
Tpn+1(x) = T−1

pn+1
(x) = x . Since pcn+1(x) ≤ pn+1(x), we can conclude that

µn+1(x) ≥ ρnG(0, x) for almost all x ∈ E . Now we can compute
∫

E
ρn+1(x)dx =

∫

E
ρn(x)+ τµn+1(x) dx ≥

∫

E
ρn(x)

(
1+ τG(0, x)

)
dx

≥
∫

E
ρn(x) dx .

The above is only possible if E has measure zero.
It remains to show that if ρn ∈ {0, 1} almost everywhere, then ρn+1 ∈ {0, 1}

almost everywhere. Let A = {x ∈ # : ρn+1(x) ∈ (0, 1)}. Arguing as before,
we conclude that pn+1(x) = 0 and Tpn+1(x) = T−1

pn+1
(x) = x for almost all

x ∈ A. Furthermore, we have ρn(x) ≤ ρn+1(x) < 1 for almost all x ∈ A, thus,
ρn(x) ∈ {0, 1} implies ρn(x) = 0 for almost all x ∈ A. Now we see that
∫

A
ρn+1(x) dx =

∫

A
ρn(x)+ τµn+1(x) dx ≥

∫

A
ρn(x)

(
1+ τG(0, x)

)
dx = 0.

Thus, A must have zero measure. 01

4. Comparison Principles

In this section we establish a comparison principle for both the density and
pressure variables. One main ingredient in the proof is (4.4), a property of optimal
maps which played a central role in the L1-contraction result in [16]. In the case
of s = sm , the comparison principle was shown in [1] where (4.4) was implicitly
used.

We begin by establishing a comparison principle for the pressure variables.
Note that we only compare the positive parts of the pressure. This is because we
can only guarantee the comparison property on regions where the density variables
do not vanish.
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Proposition 4.1. For i ∈ {0, 1} let ρi ∈ X and Gi (p, x) be growth functions
satisfying assumptions (G1)–(G4) with G0 strictly decreasing in p. Define

J ∗
i (p) :=

∫

#
ρi (x)

(
pc(x)+ τ Ḡi (pc(x), x)

)
− s∗(p(x)) dx,

and suppose that the following properties hold:

(1) 0 ≤ ρ0 ≤ ρ1 a.e. in # and they satisfy (3.2);
(2) G0(z, x) ≤ G1(z, x) for all (z, x) ∈ R × #.

If

pi ∈ argmax
{p∈X∗, p=pcc̄}

J ∗
i (p),

then (p0)+ ≤ (p1)+.

Proof. Lemma 2.6 and the optimality of pi ’s imply that there exists ηi ∈ ∂s∗(pi )
such that

∫

#
ρi (x)

(
1+ τGi (pci (x), x)

)
φ(Tpi (x)) − ηi (x)φ(x) dx = 0, (4.1)

for any bounded function φ. Since ηi ≥ 0, we have

ρi (x)
(
1+ τGi (pci (x), x)

)
≥ 0 a.e. in #. (4.2)

Let U = {x ∈ # : p0(x) > p1(x)} and choose φ to be the characteristic
function ofU . If we subtract (4.1) with i = 0 from (4.1) with i = 1 and rearrange,
we see that∫

#
ρ1(x)

(
1+ τG1

(
pc1(x), x

))
φ
(
Tp1(x)

)
− ρ0(x)

(
1+ τG0

(
pc0(x), x

))
φ
(
Tp0(x)

)
dx

=
∫

#

(
η1(x) − η0(x)

)
φ(x) dx .

Since ∂s∗ is increasing, it is clear that η0(x) ≥ η1(x) on U . Hence,
∫

#
ρ1(x)

(
1+ τG1

(
pc1(x), x

))
φ
(
Tp1(x)

)
dx

≤
∫

#
ρ0(x)

(
1+ τG0

(
pc0(x), x

))
φ
(
Tp0(x)

)
dx . (4.3)

By Lemma 4.1 in [16], we know that

if Tp0(x) ∈ U, then Tp1(x) ∈ U, (4.4)

which gives φ(Tp0(x)) ≤ φ(Tp1(x)). Moreover, if Tp0(x) ∈ U , then

pc1(x) = p1(Tp1(x))+
1
2τ

|Tp1(x) − x |2 ≤ p1(Tp0(x))+
1
2τ

|Tp0(x) − x |2 < pc0(x),

where the second inequality uses the definition of pc1 and the third uses the fact that
p1 < p0 at Tp0(x). Due to the strict monotonicity of G0, we obtain that

G0
(
pc0(x), x

)
< G1

(
pc1(x), x

)
if Tp0(x) ∈ U. (4.5)
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Thus we derive by (4.2) that
∫

#
ρ1(x)

(
1+ τG1

(
pc1(x), x

))
φ
(
Tp1(x)

)

− ρ0(x)
(
1+ τG0

(
pc0(x), x

))
φ
(
Tp0(x)

)
dx

≥
∫

#

(
ρ1(x)

(
1+ τG1

(
pc1(x), x

))
− ρ0(x)

(
1+ τG0

(
pc0(x), x

)))
φ
(
Tp0(x)

)
dx

≥ τ

∫

#

(
G1

(
pc1(x), x

)
− G0

(
pc0(x), x

))
ρ0(x)φ

(
Tp0(x)

)
dx ≥ 0.

In the last line, we used (4.2) and the assumption that ρ0 ≤ ρ1 a.e. in #. This
together with (4.3) and (4.5) implies that ρ0(x)φ(Tp0(x)) = 0 a.e. in #. Let ρ∗

i :=
Tpi#(ρi (1+ τGi (pci (x), x))) are the optimal densities in the corresponding primal
problem.the proof. Then

∫

U
ρ∗
0 (x) dx =

∫

#
ρ0(x)(1+ τG0(pc0(x), x))φ(Tp0(x)) dx = 0.

Recall that Proposition 3.2 shows ρ∗
i ∈ ∂s∗(pi ) a.e.. Since ∂s∗ is increasing, we

have ρ∗
1 ≤ ρ∗

0 a.e. on U , which implies
∫

U
ρ∗
1 (x) dx ≤

∫

U
ρ∗
0 (x) dx = 0.

This allows us to conclude that p0(x) ≤ p1(x) for (ρ∗
1 + ρ∗

0 )-a.e. x . From the dual
relation pi ∈ ∂s(ρ∗

i ) it follows that if pi > 0 then ρ∗
i > 0. Taking the positive part

of the pressures the result now follows. 01

Corollary 4.2. The statement of Proposition 4.1 holds without the strict monotonic-
ity assumption on G0.

Proof. We proceed using an argument similar to the proof of Corollary 3.6. We
approximate G from below by setting Gδ(p, x) := G0(p, x) + δ(e−p − 1).
Let J ∗

δ be the corresponding dual energy and let pδ be the minimal element of
argmax

p∈X∗, pcc̄=p
J ∗
δ (p, ρ0) chosen by Lemma 3.4. Then Proposition 4.1 applies to Gδ to

yield pδ ≤ p1. Due to the uniform Lipschitz continuity, pδ uniformly converges to
an element p∗ ∈ S0 = argmax

p∈X∗, pcc̄=p
J ∗(p, ρ0) along a subsequence as δ → 0. Since

p0 is the minimal element of S0, we can conclude that (p0)+ ≤ (p∗)+ ≤ (p1)+. 01

Next we extend the comparison principle to the density variable.

Proposition 4.3. For i ∈ {0, 1} let Ji : X × AC(ρi ) be the functional

Ji (ρ, µ) = E(ρ)+ 1
2τ

W 2
2 (ρ, ρi + τµ)+

∫

#
τρi fi

(
µ(x)
ρi (x)

, x
)

dx

and suppose that the following properties hold
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(1) 0 ≤ ρ0 ≤ ρ1 a.e. and they satisfy (3.2);
(2) ∂z f1(z, x) ≤ ∂z f0(z, x) for all (z, x) ∈ R × #.

If

(ρ∗
i , µ

∗
i ) = argmin

(ρ,µ)∈X×AC(ρi )
Ji (ρ, µ)

then ρ∗
0 ≤ ρ∗

1 a.e. in #.

Proof. Note that our primal problems correspond to the dual problems J ∗
i : X∗ →

R where

J ∗
i (p) =

∫

#
ρi (x)

(
pc(x)+ τ Ḡi (pc(x), x)

)
− s∗(p(x)) dx .

Since Gi (−z, x) = ∂z f ∗(z, x), G0(z, x) ≤ G1(z, x) for all (z, x) ∈ R × #. Due
to Proposition 3.2 and Corollary 4.2, there exist p0, p1 ∈ argmax

{p∈X∗, p=pcc̄}
J ∗
i (p) such

that p0 ≤ p1 on spt ρ∗
0 ∪ spt ρ∗

1 and

ρ∗
i ∈ ∂s∗(pi ), Tpi#(ρi + τµ∗

i ) = ρ∗
i , µ∗

i (x) = ρi (x)G(pci (x), x).

Now let E = {y ∈ # : ρ∗
1 (y) < ρ∗

0 (y)}. Since E ⊂ spt ρ∗
0 and ∂s is increasing,

we must have p0 = p1 almost everywhere on E . Therefore, ∇ p0 = ∇ p1 a.e in E
(see e.g. Section 4.2 of [9]), which gives E = T−1

p1 (E) = T−1
p0 (E) (up to sets of

measure zero) and µ∗
0(x) ≤ µ∗

1(x) for almost all x ∈ E . Therefore,

∫

E
ρ∗
1 (y) − ρ∗

0 (y) dy =
∫

E
ρ1(x) − ρ0(x)+ τ (µ∗

1(x) − µ∗
0(x)) ≥ 0.

Thus, ρ∗
0 (x) ≤ ρ∗

1 (x) for almost all x ∈ #. 01

Iterating Proposition 4.1 and Proposition 4.3, we have the following:

Corollary 4.4. Let ρ0, ρ1 and G0,G1 as given in Proposition 4.1. Let us denote
{ρn

i }n and {pn,i }n as the sequence of solutions generated respectively by (1.2) and
(1.5) with initial data ρi . Then for n = 1, . . . , N we have

ρn
0 ≤ ρn

1 and (pn,0)+ ≤ (pn,1)+,

as long as {ρn
i }Nn=1 satisfy (3.2).

Combining this with Proposition 3.9, we obtain

Corollary 4.5. Let s = s∞ and let ρ0 ∈ X. Then both ρn and (pn)+ increase a.e.
with respect to n as long as ρ1, · · · , ρn all satisfy (3.2).
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5. Finite-speed Propagation Property

Based on the comparison principle,wewill show that the support of the densities
propagate with finite speed, see Proposition 5.2. Since the support only expands in
time (Lemma 3.8), it is enough to obtain an upper bound on the expansion rate. This
result in particular allows us to obtain our unique discrete solutions independently
on the choice of domain #, as long as it is sufficiently large. See Corollary 5.3.

The main step in this section is the following construction of radial barriers:

Proposition 5.1. Fix τ > 0 and a finite number ρ+ ∈ ∂s∗([0,+∞)). There exist
universal positive constants R∗ and c∗, whose upper bounds depend on G, ∂s∗ and
ρ+, and a family of densities {ρR}R≥R∗ , which additionally depends on τ , such that

(1) ρR is radially symmetric and supported on BR, with ρR ≥ ρ+ on BR−R∗;
(2) The new optimal density ρ obtained by (1.2) with ρn replaced by ρR satisfies

ρ ≤ ρR+c∗τ a.e., provided that BR+c∗τ ⊂ #.

Note that given ρ0 ∈ X satisfying (1.9), we must have ‖ρ0‖L∞(#) be finite and
lie in ∂s∗([0,+∞)). Thanks to Proposition 4.3, this immediately implies

Corollary 5.2. (Densities propagate with finite speed) Given ρ0 ∈ X satisfying
(1.9), let R∗, c∗ and {ρR} be as in Lemma 5.1 with ρ+ := ‖ρ0‖L∞(#). For fixed
τ > 0, let ρn = ρn,τ be as given in (1.2) starting from ρ0. If ρ0 ≤ ρR0 a.e. for
some R0 ≥ R∗, then we have

ρn ≤ ρRn where Rn := R0 + nc∗τ, as long as BRn ⊂ #.

In particular, suppose that spt ρ0 ⊂ BR(0) for some R > 0. Then spt ρn ⊂
BRn (0) with Rn := R + R∗ + nc∗τ provided that the latter ball is contained in #.

Due to the uniqueness of ρn (Proposition 3.2), the following holds:

Corollary 5.3. Suppose that ρ0 ∈ X satisfies (1.9) with spt ρ0 ⊂ BR(0). Then for
nτ ≤ T the sequence {ρn} is independent of the choice of domain #, as long as #

contains BR+R∗+c∗T (0).

In the rest of this section we work toward the proof of Proposition 5.1.
We start by taking a smooth decreasing function G̃ = G̃(p), such that

(1) supx∈# G(z, x) ≤ G̃(z) for all z ∈ R.
(2) G̃(0) < +∞ and satisfies G̃(zM ) = 0, s∗ is differentiable at zM and (s∗)′(zM ) ≥

ρ+ for some zM > 0.

Indeed, thanks to (G3) and (G4), such G̃ exists and only depends on G and ρ+.
Let f̃ = f̃ (z) be defined by G̃(z) by (1.4) as f is determined byG, and consider

the modified dual problem with an x-independent growth term,

sup
qc̄∈X∗, qc̄c=q

∫

#
ρ0(x)

(
q(x)+ τ ¯̃G(q(x))

)
dx − s∗(qc̄), (5.1)
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where ¯̃G(z) := zG̃(z) + f̃ (G̃(z)) is an anti-derivative of G̃. By Proposition 3.2,
(5.1) admits a maximizer, since we may introduce p = qc̄ and then p ∈ X∗ and
p is c-concave satisfying that q = pc. With abuse of notations, we still denote the
maximizer by q.

Instead of treating q to be determined by ρ0, we shall first propose the optimal
q and then derive the corresponding ρ0. For this purpose, let us assume that

(i) ρ0 is radially symmetric, supported on BR ⊂ #;
(ii) ρ0 > 0 on BR and ρ0 3 Ld ;
(iii) The optimal q is radially symmetric and q ∈ C2(BR).

By radial symmetry, we may write ρ0 = ρ0(r) and q = q(r). By definition,
qc̄(r − τq ′(r)) = q(r) − τ

2 |q ′(r)|2. Taking q-variation in (5.1), we obtain the
optimality condition for q

ρ0(r) ·
1+ τ G̃(q(r))

(1 − τq ′′(r))(1 − τr−1q ′(r))d−1 ∈ ∂s∗
(
q(r) − τ

2
|q ′(r)|2

)
a.e. r ∈ [0, R).

(5.2)
Note that this is also implied by (3.3)–(3.5).
Let Q = Q(w) solve the following ODE on w ≥ 0,

−Q′′(w) = G̃(Q(w))+ w, Q(0) = zM , Q′(0) = 0. (5.3)

It is then straightforward to show the following:

Lemma 5.4. (1) There exists a unique w0 > 0 only depending on G̃, such that
Q(w0) = 0.

(2) Q is smooth and Q′(w), Q′′(w) ≤ 0 for w ∈ [0, w0];
(3) There exists a uniquew1 ∈ [0, w0], such that Q(w1) = τ

2 |Q′(w1)|2. Moreover,
c∗ := |Q′(w1)| is bounded by some universal constant that only depends on G̃.

Let R∗ = w1 + 1. For any R ≥ R∗, we define

qR(r) =






zM if r ≤ R − w1,

Q(r − (R − w1)) if r ∈ (R − w1, R],
−∞ otherwise.

(5.4)

Note that (5.3) and Lemma 5.1 guarantees qR ∈ C2(BR). We also define according
to (5.2) that

ρR(r)






= (s∗)′(zM ) if r ≤ R − w1,

∈ (1−τq ′′
R(r))(1−τr−1q ′

R(r))
d−1

1+τ G̃(qR(r))
· ∂s∗ (

qR(r) − τ
2 |q ′

R(r)|2
)

if r ∈ (R − w1, R],
= 0 otherwise.

(5.5)
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We need to justify that ρR is well-defined a.e. in Rd , in particular in the annular
region {y ∈ Rd : |y| ∈ [R−w1, R]}. Take arbitrary R′ ∈ (R−w1, R], and define

SR′ :=
{
r ∈ [R′, R] : s∗(·) is not differentiable at qR(r) − τ

2
|q ′

R(r)|2
}
.

It is enough to show that SR′ has measure zero. Note that qR(r)− τ
2 |q ′

R(r)|2 is C1

and strictly decreasing on [R′, R], satisfying that
d
dr

(
qR(r) − τ

2
|q ′

R(r)|2
)

≤ C(R′) < 0 ∀ r ∈ [R′, R].

Then SR′ must have measure zero by virtue of the area formula [27] and the fact
that s∗(·) is convex and thus a.e. differentiable. Since R′ can be arbitrarily close to
R −w1, we conclude that ρR is well-defined a.e. in Rd . Hence, it is valid to write

ρR(r) =
(1 − τq ′′

R(r))(1 − τr−1q ′
R(r))

d−1

1+ τ G̃(qR(r))
· (s∗)′

(
qR(r) − τ

2
|q ′

R(r)|2
)

a.e. r ∈ [0, R]. (5.6)

ρR satisfies the assumptions (i)–(ii).
Define ρ̃ by

ρ̃(r + τ |q ′
R(r)|)






= (s∗)′(zM ) if r ≤ R − w1,

∈ ∂s∗ (
qR(r) − τ

2 |q ′
R(r)|2

)
if r ∈ (R − w1, R],

= 0 otherwise.

(5.7)

By a similar argument as above, ρ̃ is well-defined a.e. in Rd . Let us note that if we
consider the following modified dual problem,

sup
p∈X∗, pcc̄=p

∫

#
ρR(x)

(
pc(x)+ τ ¯̃G

(
pc(x)

))
dx −

∫

#
s∗(p(x))dx,

which is equivalent to (5.1) via c- and c̄-transforms, by Proposition 3.2, the optimal
p is uniquely given by qc̄R on spt ρ̃, while ρ̃ defined in (5.7) is exactly the optimal
new density.

For ρ̃, we can additionally show the following:

Lemma 5.5. ρ̃ ≤ ρR̃ almost everywhere, where R̃ := R + τ |q ′
R(R)|.

Proof. By Lemma 5.4 and (5.4), q ′
R̃
(r), q ′′

R̃
(r) ≤ 0 for r ∈ [0, R̃]. By (5.3) and

(5.6),

ρR̃(r) ≥
1 − τq ′′

R̃
(r)

1+ τ G̃(qR̃(r))
· (s∗)′

(
qR̃(r) − τ

2
|q ′

R̃
(r)|2

)

≥ (s∗)′
(
qR̃(r) − τ

2
|q ′

R̃
(r)|2

)
.

Since ρ̃ is defined by (5.7) and (s∗)′ is non-decreasing, it suffices to show that for
all r ∈ [0, R],

qR̃(r + τ |q ′
R(r)|) − τ

2
|q ′

R̃
(r + τ |q ′

R(r)|)|2 ≥ qR(r) − τ

2
|q ′

R(r)|2.
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By Lemma 5.4, qR̃ is a decreasing function while |q ′
R̃
| and |q ′

R | are increasing.
Hence,

qR̃(r + τ |q ′
R(r)|) − τ

2
|q ′

R̃
(r + τ |q ′

R(r)|)|2

≥ qR̃(r + τ |q ′
R(R)|) − τ

2
|q ′

R̃
(r + τ |q ′

R(R)|)|2

= qR(r) − τ

2
|q ′

R(r)|2.

The last step is derived from (5.4) and the definition of R̃. 01

Now the proof of Proposition 5.1 is around the corner.

Proof of Proposition 5.1. Let ρ be the new optimal density corresponding to ρR
obtained by the original discrete scheme (1.2), while ρ̃ is obtained from the primal
problem associated with (5.1).

By the definition of G̃ and themonotonicity ofG(·, x), it is not difficult to verify
that ∂z f̃ (z) ≤ ∂z f (z, x). Thanks to Proposition 4.3, ρ ≤ ρ̃ almost everywhere.
Hence, ρ ≤ ρR+c∗τ follows from Lemma 5.5 and the fact that |q ′

R(R)| = c∗. 01
◦ Finer construction of barriers

It is possible to construct a refined family of barriers {ρR,A}, which describes
finer features of the density propagation. Roughly speaking, ρR,A has a radial,
plateau-shaped profile with support BR , but the boundary transition of ρR,A from 0
to its maximum value takes place in an annular region of width O(A−1). With these
barriers we obtain the following proposition, describing relaxation of the spreading
speed for densities which with initially steep profiles near the boundary (since this
result does not affect the rest of the paper, we postpone its proof as well as more
detailed discussions in the “Appendix A”):

Proposition 5.6. (Relaxation of the propagation speed) Suppose ρ0 ∈ L∞(#)∩ X
satisfies (1.9). Fix τ ∈ (0, 1]. Let {ρn} be the sequence of densities obtained by the
discrete scheme (1.2) starting from ρ0. Take ρ+ = ‖ρ0‖L∞(#) and let R∗ and c∗
be defined as in Lemma 5.1.

With A ≥ 1, let ρR,A be defined in (A.2). Suppose ρ0 ≤ ρR0,A0 for some A0 ≥ 1
and suitable R0. Then there is a sequence {Rn}∞n=0 with Rn − Rn−1 → τc∗, such
that spt ρn ⊂ BRn for all n ∈ N which satisfies BRn ⊂ #.

6. Equicontinuity for the Densities

In the remainder of this paper, we will focus on showing that the interpolations
ρτ , µτ and pτ defined in (1.8) converge to a solution of the tumor growth PDE
when τ goes to zero.

We shall suppose that the initial data ρ0 ∈ X , satisfies (1.9). For such ρ0, we
will choose the domain # in the following way. For a given time horizon T > 0,
we choose # sufficiently large so that

BR0+CT ⊂ #,
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with R0 and C only depending on ρ0, G and s, so that (i) the interpolations
(ρτ , µτ , pτ ) given in (1.8) stay compactly supported in BR0+CT and (ii) ρτ satis-
fies (3.2) for 0 ≤ t ≤ T . This is possible due to Proposition 5.2. We then extend the
values of the discrete-time solutions to zero outside of#. Due to Corollary 5.3, any
# satisfying the above requirements produces the same discrete-in-time solutions
for 0 ≤ t ≤ T . In the discussion below, we will use the extended notion of discrete
solutions in Rd × [0, T ].

Now we can turn to the main focus of this section, establishing spatial and
temporal equicontinuity estimates for the densities. These equicontinuity estimates
will be used to obtain strong convergence of densities (see Corollary 6.7) using an
Arzelà-Ascoli-type argument given in [16]. Although our arguments unfold along
similar lines to [16], we require substantially new arguments to handle the growth
term and the lack of continuous differentiability for s∗.

6.1. The Energy Dissipation Inequality, BV Bounds, and Equicontinuity in Time

We begin with the standard “energy dissipation inequality”, which will allow
us to obtain both BV and equicontinuity-in-time estimates for the densities.

Lemma 6.1. Given a time horizon T > 0, let ρτ , µτ and pτ be defined as in (1.8).
Then for T ′ :=

(
7 T

τ 8 + 1
)
τ we have

E(ρτ (·, T ))+ 1
2

∫ T ′

0

∫

Rd
|∇ pτ |2ρτ dx dt ≤ E(ρ0)+

∫ T ′

0

∫

Rd
pτµτ dx dt.

Proof. By Lemma 2.9 applied to (ρn,τ , pn+1,τ ) and the inequality ρp ≤ s(ρ) +
s∗(p),

E(ρn+1,τ ) − E(ρn,τ ) ≤
∫

Rd
pn+1,τ (x)

(
ρn+1,τ (x) − ρn,τ (x)) dx .

Using the first formula in (3.4) we can rewrite the right hand side of the previous
formula as

∫

Rd
ρn+1,τ

(
pn+1,τ (x) − pn+1,τ

(
T−1
pn+1,τ

(x)
))

+ τµn+1,τ (x)pn+1,τ (x) dx .

The convexity of the map y 2→ pn+1,τ (y)+ 1
2τ |y − x |2 gives us

pn+1,τ
(
T−1
pn+1,τ

(x)
)
+ 1

2τ

∣∣T−1
pn+1,τ

(x) − x
∣∣2 ≥ pn+1,τ (x)

+
(
∇ pn+1,τ (x), T−1

pn+1,τ
(x) − x

)
.

From the second formula in (3.4) it follows that

pn+1,τ (x) − pn+1,τ
(
T−1
pn+1,τ

(x)
)

≤ −τ

2
|∇ pn+1,τ (x)|2.
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Therefore

E(ρn+1,τ ) − E(ρn,τ )+ τ

2

∫

Rd
ρn+1,τ |∇ pn+1,τ (x)|2 dx

≤ τ

∫

Rd
µn+1,τ (x)pn+1,τ (x) dx .

Summing over n from 0 to 7 T
τ 8 we conclude. 01

Forρ0 ∈ X satisfying (1.9), pτ is uniformlyboundedby P1 defined inLemma3.5.
By the assumption (G4), for any t ∈ [0, T ], ρτ (t,Rd) ≤ eB(t+τ )ρ0(Rd). Hence,
∫ T ′

0

∫

Rd
pτµτ dx dt ≤ P1B

(

τρ0(Rd)+
∫ T ′−τ

0
ρτ (Rd , t) dt

)

≤ P1eBT
′
ρ0(Rd).

Combining this with Lemma 6.1 and the fact T ′ ≤ T + τ , we get

Corollary 6.2. Assume τ ≤ 1/B and let T ′ be defined as in Lemma 6.1. Then

1
2

∫ T ′

0

∫

Rd
|∇ pτ |2ρτ dx dt ≤ E(ρ0)+ Mρ0(Rd), (6.1)

where M depends on T , G, s and ‖ρ0‖L∞(Rd ).

Based on Lemma 3.7 and (6.1), we can estimate the growth of the BV norm
for the density. The BV estimate will play a crucial role in establishing the spatial
equicontinuity of the densities in the next subsection.

Corollary 6.3. Assume τ ≤ (2B)−1. Suppose ρ0 ∈ BV . There exists a constant M
depending on T , G, s and ‖ρ0‖L∞(Rd ), such that for all t ∈ [0, T ],

F(t) :=
∫

Rd
|∇ρτ |(x, t) dx ≤ eBt

(
(1+ τ B)F(0)+ 2E(ρ0)+ Mρ0(Rd)

)
.

Proof. Let T ′ be defined as in Lemma 6.1. Due to Lemma 3.7 and (6.2), for any
t ∈ [0, T ],

∫

Rd
|∇ρτ (x, t)| dx ≤ B

∫ t

0

∫

Rd
|∇ρτ (x, s)| dx ds + (1+ τ B)

∫

Rd
|∇ρ0| dx

+
∫ T ′

0

∫

Rd
|∇ pτ |2ρτ dx ds

+ M2

(∫ t

0
ρτ (Rd , s) ds + τρ0(Rd)

)

≤ B
∫ t

0

∫

Rd
|∇ρτ (x, s)| dx ds + (1+ τ B)

∫

Rd
|∇ρ0| dx

+ 2M1 + M2B−1eB(t+τ )ρ0(Rd),

where M1 := E(ρ0)+ Mρ0(Rd) and M2 := 1
2g

2
0 + g0.

Here we used the fact that ρτ (Rd , t) ≤ eB(t+τ )ρ0(Rd). Then we conclude by
the use of Gronwall’s inequality. 01
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Next we obtain an equicontinuity-in-time estimate for the discrete densities.

Lemma 6.4. Assume τ ≤ 1/B and define ρτ (x, t) := ρ0(x) for t < 0. Then for
any T > 0

∫ T

0

∥∥∥
ρτ (·, t) − ρτ (·, t − τ )

τ

∥∥∥
2

H−1(Rd )
≤ M,

where M depends only on T , G, s and ρ0.

Proof. Let φ be a smooth function, and consider
∫

Rd

ρn+1,τ (x) − ρn,τ (x)
τ

φ(x) dx =
∫

Rd

φ(x) − φ
(
x + τ∇ pn+1,τ (x)

)

τ
ρn+1,τ (x)

+µn+1,τ (x)φ(x) dx .

Applying the fundamental theorem of calculus, the previous line is equal to

∫

Rd

∫ 1

0
∇φ

(
x + τθ∇ pn+1,τ (x)

)
· ∇ pn+1,τ (x)ρn+1(x)+ µn+1,τ (x)φ(x) dθ dx .

Applying Cauchy-Schwarz, we then have the bound

‖∇φ‖L2(ρ̃n+1,τ )‖∇ pn+1,τ‖L2(ρn+1) + ‖φ‖L2(Rd )B‖ρn,τ‖1/2L∞(Rd )
ρn,τ (Rd)1/2,

where

ρ̃n+1,τ :=
∫ 1

0
ρn+1,τ

θ dθ and ρn+1,τ
θ := (id + τθ∇ pn+1,τ )#ρ

n+1,τ .

L p-norms are displacement convex [26], so

‖ρ̃n+1,τ‖L∞(Rd ) ≤ max
(
‖ρn,τ + τµn+1,τ‖L∞(Rd ), ‖ρn+1,τ‖L∞(Rd )

)
.

Hence,

∥∥∥
ρn+1,τ − ρn,τ

τ

∥∥∥
H−1(Rd )

≤ max
(
‖ρn,τ + τµn+1,τ‖L∞(Rd ), ‖ρn+1,τ‖L∞(Rd )

)1/2
‖∇ pn+1,τ‖L2(ρn+1)

+
(
‖ρn,τ‖L∞(Rd )ρ

n,τ (Rd)
)1/2

B.

Now we can conclude by Lemma 3.5 and Corollary 6.2. 01
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6.2. Equicontinuity in Space

Based on the comparison principles from the previous section and the BV
estimate in Lemma 3.7, we establish a spatial equicontinuity property for ρτ .

Proposition 6.5. Let ρ0 and ρτ as given above. For any y ∈ Rd we have

lim
ε→0

sup
0<τ≤(2B)−1

∫ T

0

∫

Rd
|ρτ (x + εy, t) − ρτ (x, t)| dx dt = 0.

Observe that when ρ0 ∈ BV , the result is immediate as {ρτ }τ has uniform
BV bound on [0, T ] due to Corollary 6.3. In the general case, we will obtain
equicontinuity by approximating the initial data ρ0 with BV densities. In order
for this strategy to work, we will need to be able to extend this approximation to
all times. This is accomplished in the following lemma, which states that the L1-
difference of two discrete solutions can be controlled in terms of their L1-difference
at the initial time:

Lemma 6.6. Let ρ0, ρ1 ∈ X satisfy (1.9), and let ρτ
i be given by (1.8) with initial

data ρi for i = 0, 1. Then, for all 0 ≤ t ≤ T ,
∫ t

0

∫

Rd
|ρτ

1 (x, s)−ρτ
0 (x, s)| dx ds ≤ 1

B
(eBt −1)(1+τ B)‖ρ1−ρ0‖L1(Rd ), (6.2)

where B is given in (G4).

Proof. First we suppose ρ0 ≤ ρ1. For i ∈ {0, 1}, let (ρn
i , µ

n
i ) and pni be generated

respectively from (1.2) and (1.5) by the initial data ρi . By Proposition 4.3, for all
1 ≤ k ≤ T/τ , we have ρk

0 ≤ ρk
1 almost everywhere. Thus,

∫

Rd
|ρn+1

1 (x) − ρn+1
0 (x)| =

∫

Rd
ρn+1
1 (x) − ρn+1

0 (x)

=
∫

Rd
ρ1(x) − ρ0(x)+ τ

n∑

k=0

∫

Rd
(µk+1

1 (x) − µk+1
0 (x)) dx .

Due to (3.5), we have

µk+1
1 (x) − µk+1

0 (x) = ρk
1 (x)G(qk+1

1 (x), x) − ρk
0 (x)G(qk+1

0 (x), x),

where qk+1
i = (pk+1

i )c.We now claim that

qk+1
0 (y) ≤ qk+1

1 (y) a.e. y ∈ spt ρk
1 . (6.3)

Indeed, if this were not the case, then for some y ∈ spt ρk
1 , we would have

qk+1
1 (y) = pk+1

1 (Tpk+1
1

(y))+ 1
2τ

|Tpk+1
1

(y) − y|2 < pk+1
0 (Tpk+1

0
(y))

+ 1
2τ

|Tpk+1
0

(y) − y|2 = qk+1
0 (y).
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By the comparison principle, pk+1
0 (x) ≤ pk+1

1 (x) for almost all x ∈ spt ρk+1
1 . Since

Tpk+1
1

(y) ∈ spt ρk+1
1 for every y ∈ spt ρk

1 , we can conclude that p
k+1
0 (Tpk+1

1
(y)) ≤

pk+1
1 (Tpk+1

1
(y)) for almost every y ∈ spt ρk

1 . Now we can compute

pk+1
0 (Tpk+1

1
(y))+ 1

2τ
|Tpk+1

1
(y) − y|2 ≤ pk+1

1 (Tpk+1
1

(y))+ 1
2τ

|Tpk+1
1

(y) − y|2

< pk+1
0 (Tpk+1

0
(y))+ 1

2τ
|Tpk+1

0
(y) − y|2,

which contradicts the optimality of Tpk+1
0

. Thus (6.3) holds, and since G is non-
increasing,

ρk
1 (x)G(qk+1

1 (x), x) − ρk
0 (x)G(qk+1

0 (x), x) ≤
(
ρk
1 (x) − ρk

0 (x)
)
G(qk+1

1 (x), x).

Finally, we obtain
∫

Rd
|ρn+1

1 (x) − ρn+1
0 (x)| ≤

∫

Rd
|ρ1(x) − ρ0(x)| + τ B

n∑

k=0

∫

Rd
|ρk

1 (x) − ρk
0 (x)|,

or, in terms of ρτ
i ,∫

Rd
|ρτ

1 (x, t) − ρτ
0 (x, t)| dx ≤ (1+ τ B)‖ρ1 − ρ0‖L1(Rd )

+B
∫ t

0

∫

Rd
|ρτ

1 (x, s) − ρτ
0 (x, s)| dx ds.

Now one can conclude via Gronwall’s inequality.
In general, let ρ†(x) := min(ρ0(x), ρ1(x)). By the assumption of s, ρ† satisfies

(1.9) and ρ† ∈ X . Hence, applying (6.2) to the pairs ρi and ρ† yields that
∫ t

0

∫

Rd
|ρτ

1 (x, s) − ρτ
0 (x, s)| dx ds ≤ 1

B
(eBt − 1)(1+ τ B)

×
(
‖ρ1 − ρ†‖L1(Rd ) + ‖ρ0 − ρ†‖L1(Rd )

)
.

Thanks to the definition of ρ†, the right hand side exactly gives the desired bound.
01

Proof of Proposition 6.5. For any δ > 0, we may mollify ρ0 to obtain a ρ1 ∈
BV (Rd), such that ρ1 ∈ X satisfies (1.9) and ‖ρ0 − ρ1‖L1(Rd ) ≤ δ.

Let ρτ and ρτ
1 be as given in (1.8) with initial data ρ0 and ρ1, respectively. By

Lemma 6.6,
∫ T

0

∫

Rd
|ρτ (x + εy, t) − ρτ (x, t)| dx dt

≤ 2
∫ T

0

∫

Rd
|ρτ (x, t) − ρτ

1 (x, t)| dx dt

+
∫ T

0

∫

Rd
|ρτ

1 (x + εy, t) − ρτ
1 (x, t)| dx dt

≤ 2
B
(eBT − 1)(1+ τ B)‖ρ0 − ρ1‖L1(Rd ) + T ε|y| sup

0≤t≤T
‖ρτ

1 (·, t)‖BV (Rd ).
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In the last inequality, we applied the standard L1-Lipschitz property of BV func-
tions. Thanks to Corollary 6.3,

lim
ε→0

sup
0<τ≤(2B)−1

∫ T

0

∫

Rd
|ρτ (x + εy, t) − ρτ (x, t)| dx dt ≤ Cδ,

where C depends on B and T . Since δ is arbitrary, we can now conclude. 01

Lemma 6.4 and Proposition 6.5 together yield the strong convergence of ρτ in
L1([Rd × [0, T ]).

Corollary 6.7. Along a subsequence, ρτ strongly converges to some ρ in L1(Rd ×
[0, T ]).

Proof. The convergence result follows from Proposition 5.6 in [16], which is based
on the equicontinuity estimates Lemma 6.4 and Proposition 6.5. 01

7. Continuum Limit

Our goal here is to show that these sequences converge to a very weak solution
of the continuous-in-time problem (P).Wewill fix the time horizon T > 0 and keep
the assumptions on ρ0 and# given in Section 6. To emphasize the independence of
solutions on the choice of#, we use the extended notion of the compactly supported
solutions (ρτ , pτ ) in Rd × [0, T ] with zero value for x outside of #.

We begin by showing that the discrete solutions approximately solve the con-
tinuity equation.

Lemma 7.1. Fix T > 0. Assume τ ≤ min{1/B, T/2}. The pair (ρτ , pτ ) ap-
proximately solves the continuity equation in the weak sense, i.e., for all φ ∈
C2
0 (Rd × [0, T ]) and t0 ∈ [2τ, T ],

∫ t0

0

∫

Rd
ρτ ∂tφ dx dt +

∫ t0

0

∫

Rd
µτ φ − ρτ∇ pτ · ∇φ dx dt

=
∫

Rd
ρτ (x, t0)φ(x, t0) − ρ0(x)φ(x, 0) dx + ετ .

(7.1)

Here the error ετ satisfies |ετ | ≤ τ 1/2M, where M is a constant depending on T ,
G, s, ρ0 and φ.

Proof. From the definition of our interpolations, we have
∫ t0−τ

0

∫

Rd
ρτ (x, t)

φ(x, t + τ ) − φ(x, t)
τ

dx dt

= −
∫ t0−τ

τ

∫

Rd

ρτ (x, t) − ρτ (x, t − τ )

τ
φ(x, t) dx dt

+ 1
τ

∫ t0

t0−τ

∫

Rd
ρτ (x, t − τ )φ(x, t) dx dt − 1

τ

∫ τ

0

∫

Rd
ρτφ dx dt.

(7.2)
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For the left hand side, by Taylor expansion,

∣∣∣∣

∫ t0−τ

0

∫

Rd
ρτ (x, t)

φ(x, t + τ ) − φ(x, t)
τ

dx dt −
∫ t0

0

∫

Rd
ρτ ∂tφ dx dt

∣∣∣∣

≤
∫ t0−τ

0
ρτ (Rd , t) · τ

2
‖∂2t φ‖L∞(Rd×[0,T ]) dt

+
∫ t0

t0−τ
ρτ (Rd , t)‖∂tφ‖L∞(Rd×[0,T ]) dt

≤ τeB(T+τ )ρ0(Rd)‖φ‖C2(Rd×[0,T ]).

For the first term on the right hand side of (7.2), by the pushforward formula,

∫ t0−τ

τ

∫

Rd

ρτ (x, t) − ρτ (x, t − τ )

τ
φ(x, t) dx dt

=
∫ t0−τ

τ

∫

Rd
ρτ (x, t)

φ(x, t) − φ
(
x + τ∇ pτ (x, t), t

)

τ

+ µτ (x, t)φ(x, t) dx dt.

Thanks to the Taylor expansion of φ
(
x + τ∇ pτ (x, t), t

)
and Corollary 6.2,

∣∣∣∣

∫ t0−τ

τ

∫

Rd

ρτ (x, t) − ρτ (x, t − τ )

τ
φ(x, t) dx dt

−
∫ t0−τ

τ

∫

Rd
−ρτ∇ pτ · ∇φ + µτ φ dx dt

∣∣∣∣

≤ ‖φ‖C2(Rd×[0,T ])

∫ T

0

∫

Rd

τ

2
ρτ |∇ pτ |2

≤ τM‖φ‖C2(Rd×[0,T ]),

where M is a constant depending on T , G, s and ρ0. From the Cauchy-Schwarz
inequality and Corollary 6.2,

∣∣∣∣

(∫ τ

0
+

∫ t0

t0−τ

)∫

Rd
−ρτ∇ pτ · ∇φ + µτ φ dx dt

∣∣∣∣

≤
[(∫ τ

0
+

∫ t0

t0−τ

)
ρτ (Rd , t) dt ·

∫ T

0

∫

Rd
ρτ |∇ pτ |2 dx dt

]1/2
‖φ‖C1(Rd×[0,T ])

+ B‖φ‖C(Rd×[0,T ])

(∫ 0

−τ
+

∫ t0−τ

t0−2τ

)
ρτ (Rd , t) dt

≤ τ 1/2M‖φ‖C1(Rd×[0,T ].
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For the last two terms in (7.2), we derive that
∣∣∣∣
1
τ

∫ t0

t0−τ

∫

Rd
ρτ (x, t − τ )φ(x, t) dx dt −

∫

Rd
ρτ (x, t0)φ(x, t0) dx

∣∣∣∣

≤ 1
τ

∫ t0

t0−τ
ρτ (Rd , t − τ )‖φ(·, t) − φ(·, t0)‖C(Rd ) dt

+ 1
τ

∫ t0

t0−τ
‖ρτ (·, t − τ ) − ρτ (·, t0)‖H−1(Rd )‖φ(·, t0)‖H1(Rd ) dt.

The first term above is bounded by τeBT ρ0(Rd)‖φ‖C1(Rd×[0,T ]). By the Cauchy-
Schwarz inequality and the definition of ρτ , the second term is bounded by

C‖φ‖C1(Rd×[0,T ])τ
−1/2

(∫ t0

t0−τ
‖ρτ (·, t − τ ) − ρτ (·, t0)‖2H−1(Rd )

dt
)1/2

≤ C‖φ‖C1(Rd×[0,T ])
(
‖ρτ (·, t0 − 2τ ) − ρτ (·, t0 − τ )‖2H−1(Rd )

+ ‖ρτ (t0 − τ, ·) − ρτ (t0, ·)‖2H−1(Rd )

)1/2
.

HereC depends on the size of sptφ. By Lemma 6.4 (with T there taken to be greater
than or equal to t0+τ , say 2T ), this is further bounded byCM‖φ‖C1(Rd×[0,T ])τ

1/2,
where M depends on T , G, s and ρ0. Hence,

∣∣∣∣
1
τ

∫ t0

t0−τ

∫

Rd
ρτ (x, t − τ )φ(x, t) dx dt −

∫

Rd
ρτ (x, t0)φ(x, t0) dx

∣∣∣∣

≤ CM‖φ‖C1(Rd×[0,T ])τ
1/2.

Similarly, the last term in (7.2) satisfies
∣∣∣∣
1
τ

∫ τ

0

∫

Rd
ρτ (x, t)φ(x, t) dx dt −

∫

Rd
ρ0(x)φ(x, 0) dx

∣∣∣∣

≤ CM‖φ‖C1(Rd×[0,T ])τ
1/2.

Summarizing all the above estimates, we complete the proof. 01

To send τ → 0 in (7.1) to obtain the continuum weak equation, we need to
discuss the convergence of µτ as τ → 0.

Lemma 7.2. Fix T > 0. For any φ ∈ L∞([0, T ];W 1,∞(Rd)),

lim
τ→0

∫ T

0

∫

Rd

(
µτ (x, t) − ρτ (x, t)G(pτ (x, t), x)

)
φ(x, t) dx dt = 0.
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Proof. Assume τ ≤ 1/B and let 0 ≤ n ≤ 7 T
τ 8. Take an arbitrary test function

ϕ ∈ W 1,∞(Rd). Due to (3.4) and (3.5), we have
∫

Rd
ϕ(x)(ρn + τµn+1)G(pcn+1(x), x) dx

=
∫

Rd
ρn+1(x)ϕ(T−1

pn+1
(x))G

(
pcn+1(T

−1
pn+1

(x)), T−1
pn+1

(x)
)
dx .

Hence,
∫

Rd
ϕ(x)

(
ρn(x)G(pcn+1(x), x) − ρn+1(x)G(pn+1(x), x)

)
dx

=
∫

Rd
ρn+1(x)

(
ϕ(T−1

pn+1
(x))G

(
pcn+1(T

−1
pn+1

(x)), T−1
pn+1

(x)
)
− ϕ(x)G

(
pn+1(x), x

))
dx

− τ

∫

Rd
ϕ(x)µn+1(x)G(pcn+1(x), x) dx

(7.3)
The last term is trivially bounded by τ B2eB(T+τ )ρ0(Rd)‖ϕ‖L∞(Rd ).

To handle the first term, we have by the definition of Tpn+1 and the c-transform
that

pcn+1(T
−1
pn+1

(x)) = pn+1(x)+
1
2τ

|x − T−1
pn+1

(x)|2 = pn+1(x)+
τ

2
|∇ pn+1(x)|2.

Recall that g0 := ‖G‖
W 1,∞

(
[0,P1]×Rd

) is defined in Lemma 3.7. Hence,
∣∣∣
∫

Rd
ρn+1(x)

(
ϕ(T−1

pn+1
(x))G

(
pcn+1(T

−1
pn+1

(x)), T−1
pn+1

(x)
)
− ϕ(x)G

(
pn+1(x), x

))∣∣∣

≤ τ
(
B‖∇ϕ‖L∞(Rd ) + g0‖ϕ‖L∞(Rd )

)
(ρn+1(Rd ))1/2‖∇ pn+1‖L2(ρn+1)

+ τ

2
g0‖ϕ‖C(Rd )‖∇ pn+1‖2L2(ρn+1)

.

Combining this with (7.3), we obtain by the Cauchy-Schwarz inequality that
∣∣∣∣

∫

Rd
ϕ(x)

(
µn+1(x) − ρn+1(x)G(pn+1(x), x)

)
dx

∣∣∣∣

≤ τM‖ϕ‖W 1,∞(Rd )

(
1+ ‖∇ pn+1‖2L2(ρn+1)

)
,

where M is a constant depending on T , G, s and ρ0.
Rewriting the above inequality in terms of ρτ , µτ and pτ , and replacing ϕ(x)

into φ(x, t), we take time integral over [0, T ] to find that
∣∣∣∣

∫ T

0

∫

Rd
(µτ (x, t) − ρτ (x, t)G(pτ (x, t), x))φ(x, t) dx dt

∣∣∣∣

≤ τM‖φ(t, ·)‖L∞([0,T ];W 1,∞(Rd ))

(

T +
∫ T ′

0

∫

Rd
ρτ |∇ pτ |2 dx dt

)

,

where T ′ =
(
7 T

τ 8 + 1
)
τ is defined as in Lemma 6.1. Now we may conclude the

proof by Corollary 6.2. 01
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Now we are ready to prove the convergence result as τ → 0. It should be noted
that the convergence of the pressure variable is established only with the positive
part of pτ . This is due to the lack of information on the pressure away from the
support of ρτ . On the other hand pτ is nonnegative on the support of ρτ , and thus
we do not lose information by this reduction.

Proposition 7.3. Letρ0 ∈ X satisfy (1.9). Thenρτ is uniformly bounded in L∞(Rd×
[0, T ]) and strongly converges in L1(Rd × [0, T ]) along a subsequence to some
ρ in L∞(Rd × [0, T ]). Furthermore, pτ

+ = max(pτ , 0) is uniformly bounded
in L∞(Rd × [0, T ]), and weak-∗ converges along a subsequence to some p in
L∞(Rd × [0, T ]). Moreover, along a subsequence, ρτ pτ and s∗(pτ ) converge
weakly in L1(Rd × [0, T ]) to ρp and s∗(p), respectively.

Proof. Since pτ has a uniform upper bound inRd×[0, T ], by (3.3), ρτ is uniformly
bounded in L∞(Rd × [0, T ]), and so is ρτ pτ . Hence, along a subsequence, pτ

+
converges to some p ∈ L∞(

Rd × [0, T ]
)
in the weak-∗ topology.

By Corollary 6.7, it follows that ρτ pτ = ρτ pτ
+ converges weakly to ρp in

L1(Rd × [0, T ]) up to a further subsequence.
Next we show that p ∈ ∂s(ρ). By Lemma 2.9, it suffices to show that

ρ(x, t)p(x, t) = s(ρ(x, t))+ s∗(p(x, t)) for a.e. (x, t) ∈ Rd × [0, T ]. (7.4)

It is enough to show that the left hand side is greater or equal to the right, since the
other inequality is always true by definition. From the discrete scheme and the fact
s∗(p) = 0 for all p ≤ 0, we have

ρτ (x, t)pτ (x, t) = s(ρτ (x, t))+ s∗(pτ
+(x, t)) a.e. (x, t) ∈ Rd × [0, T ]. (7.5)

Since along a subsequence ρτ → ρ in L1(Rd × [0, T ]), the same holds for
s(ρτ ) due to the continuity of s. The desired inequality follows by combining this
fact with the weak convergence of ρτ pτ to ρp in L1(Rd × [0, T ]), the weak-∗
convergence of pτ

+ in L∞(Rd × [0, T ]) (both along a subsequence), and the weak
lower semi-continuity of s∗.

It remains to show that s∗(pτ ), or equivalently s∗(pτ
+), weakly converges to

s∗(p) along a subsequence in L1(Rd × [0, T ]). This immediately follows from
(7.4) and (7.5), noting that ρτ pτ ⇀ ρp and s(ρτ ) → s(ρ) in Rd × [0, T ] along a
subsequence. 01

Now we are ready to characterize the continuum limit as a very weak solu-
tion of the diffusion equation (1.7). Recall from Lemma 3.5 that pτ ≤ M0 :=
max(b1, inf ∂s(‖ρ0‖L∞(Rd ))) for all τ > 0.

Theorem 7.4. Suppose that either s ∈ C1
loc([0,+∞)), or G(·, x) is affine on

[0,M0] for all x ∈ Rd . Then for any T > 0, the limit density and pressure (ρ, p)
given in Proposition 7.3 satisfy
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∫ t0

0

∫

Rd
ρ∂tφ + s∗(p)%φ + G(p, x)ρφ dx dτ =

∫

Rd
ρ(x, t0)φ(x, t0) dx

−
∫

Rd
ρ0(x)φ(x, 0) dx . (7.6)

for any φ ∈ C∞([0,∞) × Rd) and a.e. t0 ∈ [0, T ].

Proof. We first show that, along a subsequence as τ → 0,
∫ t0

0

∫

Rd
G(pτ , x)ρτφ dx dt →

∫ t0

0

∫

Rd
G(p, x)ρφ dx dt (7.7)

for any φ ∈ C∞
0 ([0,∞) × Rd) and any t0 ∈ [0, T ]. If s ∈ C1

loc([0,∞)), we
have pτ

+ = s′(ρτ ) almost everywhere. By Corollary 6.7, along a subsequence, pτ
+

a.e. converges to p on Rd × [0, T ]. Since G is continuous, ρτG(pτ (x, t), x) a.e.
converges to ρ(x, t)G(p(x, t), x). Moreover, since G is uniformly bounded, we
can conclude (7.7) by the dominated convergence theorem. Otherwise, if G(·, x)
is affine, (7.7) holds because of L1-convergence of ρτ to ρ and the weak-∗ conver-
gence of pτ

+ to p in L∞(Rd × [0, T ]).
We then claim that

∫

Rd
ρτ∇ pτ · ∇φ dx = −

∫

Rd
s∗(pτ )%φ dx . (7.8)

Given (3.3), if s∗ ∈ C1
loc(R), this is trivial by integration by parts. Suppose not.

We construct {s∗
ε }ε>0 to be a non-negative sequence of C1-approximation of s∗ as

follows. Take ζ ∈ C∞
0 (R), such that ζ ≥ 0,

∫
R ζ = 1 and spt ζ ∈ [0, 1]. Define

ζε(x) := ε−1ζ(x/ε) and let s∗
ε = s∗ ∗ ζε . Since s∗ is non-decreasing on R and

locally Lipschitz, {s∗
ε }ε satisfies that s∗

ε is decreasing in ε and s∗
ε → s∗ locally

uniformly as ε → 0. Moreover, since s∗ in convex, (s∗
ε )

′(·) is decreasing in ε, and
at any differentiable point of s∗, (s∗

ε )
′ ↗ (s∗)′ as ε → 0. Let ρτ

ε := (s∗
ε )

′(pτ ).
Then with # being the sufficiently large convex smooth domain used to construct
(ρτ , pτ ), which contains spt ρτ and spt ρτ

ε ,
∫

#
ρτ

ε ∇ pτ∇φ dx = −
∫

Rd
s∗
ε (p

τ )%φ dx → −
∫

Rd
s∗(pτ )%φ dx (7.9)

as ε → 0.
The convergence is because of the local uniform convergence from s∗

ε to s∗. On
the other hand, since s∗ is convex, it has countably many non-differentiable points,
which are denoted as {ai }∞i=1. Let Ai = {x ∈ # : pτ = ai } and A = ∪∞

i=1Ai . It is
known that ∇ pτ = 0 a.e. in Ai for all i . Hence,

∣∣∣∣

∫

#
(ρτ

ε − ρτ )∇ pτ∇φ dx
∣∣∣∣ ≤

∫

#\A
|ρτ

ε − ρτ ||∇ pτ ||∇φ| dx

≤ ‖∇ pτ‖L∞(#)‖∇φ‖L∞(Rd )

∫

#\A
|(s∗

ε )
′(pτ ) − (s∗)′(pτ )| dx .
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Since pτ is c-concave, ‖∇ pτ‖L∞(#) admits a uniform bound. Hence, by the mono-
tone convergence (s∗

ε )
′(pτ ) ↗ (s∗)′(pτ ) on #\A, the right hand side above goes

to 0 as ε → 0. Combining this with (7.9), we finish the proof of (7.8).
Now by Proposition 7.3, for any 0 < t0 ≤ T and any φ ∈ C∞

0 (Rd × [0, T ]),
∫ t0

0

∫

Rd
ρτ∇ pτ · ∇φ dx dt → −

∫ t0

0

∫

Rd
s∗(p)%φ dx dt (7.10)

along a subsequence as τ → 0.
Furthermore, by Corollary 6.7 and Fubini’s theorem, ρτ (t0, ·) → ρ(t0, ·) in

L1(Rd) for a.e. t0 ∈ [0, T ].
Therefore, (7.6) follows from Lemma 7.1, Lemma 7.2, Proposition 7.3, (7.7)

and (7.10). 01

Remark 7.5. CombiningLemma7.2with (7.7),weobtain that, along a subsequence,
µτ ⇀ ρG(p, x) in L1([0, T ];W−1,1(Rd)) as τ → 0.

When s = s∞, similar to [25], we obtain strong convergence of pτ using the
monotonicity property established in Corollary 4.5.

Theorem 7.6. Let s = s∞ and let ρ0(x) ∈ [0, 1]. Then {ρτ }τ>0 is uniformly
bounded in L∞(Rd × [0, T ]) and converges to some ρ in L1(Rd × [0, T ]) along
a subsequence. Moreover, there exists p ∈ ∂s(ρ) such that pτ

+ → p in L1(Rd ×
[0, T ]) and pτ

+ ⇀ p in L2([0, T ]; H1(Rd)) along a subsequence. Lastly, (ρ, p)
satisfies (ρ − 1)p = 0 a.e. and

∫ t0

0

∫

Rd
ρ∂tφ − ∇ p · ∇φ + G(p, x)ρφ dx dt =

∫

Rd
ρ(t0, x)φ(t0, x) dx

−
∫

Rd
ρ0(x)φ(0, x) dx (7.11)

for any φ ∈ C∞([0,∞) × Rd) and a.e. t0 ∈ [0, T ].

Proof. As before, pτ
+ is uniformly bounded in L∞(Rd × [0, T ]) (see Lemma 3.5).

Also, since (ρτ − 1)pτ
+ = 0 a.e. from their dual relation, for t ∈ [0, T ], pτ

+ is
supported on a compact set that is uniform in τ (see Section 5). Moreover for any
t0 ∈ [0, T ], ∫ t0

0

∫

Rd
|∇ pτ

+|2dx =
∫ t0

0

∫

Rd
ρτ |∇ pτ

+|2dx, (7.12)

which is uniformly bounded with respect to τ due to Corollary 6.2.
The convergenceof pτ

+ in L1(Rd×[0, T ]) is a consequence the time-monotonicity
in Corollary 4.5. In fact, if we consider the linear interpolation

p̃τ (x, (n − 1+ θ)τ ) := θpτ
+(x, nτ )+ (1 − θ)pτ

+(x, (n − 1)τ ) for

0 ≤ θ < 1 and n ∈ N+,



1386 M. Jacobs, I. Kim & J. Tong

then for any N ≤ T/τ + 1,

∫ Nτ

0

∫

Rd
|∂t p̃τ | dx dt =

N∑

n=1

τ

∫

Rd

∣∣∣∣
pτ
+(x, nτ ) − pτ

+(x, (n − 1)τ )
τ

∣∣∣∣ dx

=
∫

Rd
(pτ

+(x, Nτ ) − pτ
+(x, 0)) dx,

and thus ∂t p̃τ ∈ L1(Rd × [0, T ]) for any T > 0. Combined with (7.12) we
conclude that p̃τ , and thus pτ

+, strongly converges to p in L1(Rd × [0, T ]) along a
subsequence. Since pτ

+ and thus p are uniformly bounded in L∞(Rd × [0, T ]), this
convergence also holds in L2(Rd × [0, T ]). Combined with the uniform L2-bound
of ∇ pτ

+ by (7.12), it follows that ∇ pτ
+ ⇀ ∇ p in L2(Rd × [0, T ]).

Lastly, the dual relation p(ρ − 1) = 0 is obtained from the discrete version
pτ
+ρτ = pτ

+, from the strong convergence of pτ
+ and ρτ in L1 ∩ L2(Rd × [0, T ]).

Finally, (7.11) can be justified as in the proof of Theorem 7.4. 01

8. Coincidence of Solutions

In this section we show that our continuum limit solutions in many cases,
including those for s = sm and s = s∞ with general G, are sufficiently regular to
coincide with the existing notion of unique solutions.

8.1. Regular Energy

Definition 8.1. (ρ, p) is a very weak solution of (1.7) if they are nonnegative,
compactly supported and bounded functions in Rd × [0, T ] such that s∗(p) ∈
L2(Rd × [0, T ]) and satisfies (7.4) and (7.6).

Theorem 8.2. Let s ∈ C1
loc([0,∞)) and suppose that for any C > 0 there exists a

constant M = MC such that

x |s′(x) − s′(y)| ≤ M |x − y| for any x, y ∈ [0,C]. (8.1)

Then the continuum pair (ρ, p) as given in Theorem 7.4 is the unique very weak
solution of (1.7).

Remark 8.3. Note that the assumptions are satisfied for s(ρ) = ρm with m > 1.

Proof. From parallel arguments to Theorem 6.5 and Theorem 6.6 in [28] that uses
the Hilbert duality method, where the same outline of proof applies when the
Dirichlet data is replaced by the Neumann data, we obtain the inequality
∫

Rd
(ρ1(t0, x) − ρ2(t0, x))+ dx ≤

∫ t0

0

∫

Rd
(ρ1G(p1, x) − ρ2G(p2, x))+ dx dt.

where pi = s′(ρi ). Since G(z, x) is bounded and is Lipschitz in z, we have
∫

Rd
|ρ1(t0, x) − ρ2(t0, x)| dx ≤ A

∫ t0

0

∫

Rd

(
ρ1|p1 − p2| + |ρ1 − ρ2|

)
dx dt,
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where A := supz≤‖p1+p2‖∞ G ′(z). Hence if we know that
∫

Rd
ρ1(x, t)|p1(x, t) − p2(x, t)| dx ≤ M

∫

Rd
|ρ1(x, t) − ρ2(x, t)| dx,

where M is a uniform constant for 0 ≤ t ≤ T , then we can conclude by Gronwall’s
inequality. This is true due to Lemma 3.5 and (8.1). 01

8.2. Tumor Growth Model

When s = s∞, the above argument does not apply since the pressure difference
can no longer be bounded by the density difference. Instead, we resort to a stronger
notion of weak solutions with information on their time derivatives.

Definition 8.4. (ρ, p) is a weak solution of (P) with s = s∞ if they are compactly
supported functions in Rd × [0, T ] such that 0 ≤ ρ ≤ 1, p ∈ L∞(Rd × [0, T ]) ∩
L2([0, T ]; H1(Rd)), (7.4) and (7.11) hold, and, in addition,

ρt , pt ∈ L1(Rd × [0, T ]). (8.2)

The continuum limit pair (ρ, p) obtained in Theorem 7.6 is a weak solution of
(P), with (8.2) satisfied due to the monotonicity of ρ and p in time by virtue of
Corollary 4.5.

The following theorem is obtained in [25], however we sketch their proof to
highlight the necessary properties of weak solutions we need in the proof:

Theorem 8.5. Suppose G(·, x) is locally uniformly C2. Then the continuum limit
pair (ρ, p) given in Theorem 7.6 is the unique weak solution of (1.7) with s = s∞.

Proof. Let us consider twopairs ofweak solutions (ρi , pi )i=1,2 of (P)with s = s∞.
Denote #T := # × [0, T ], where # is sufficiently large so that #T contains the
support of (ρi , pi ) for i = 1, 2. Following [25, Section 3], we write (7.11) in terms
of the dual equation for ψ , i.e.
∫ ∫

#T

(ρ1 − ρ2 + p1 − p2)[A∂tψ + B%ψ + AG(p1, x)ψ − CBψ] = 0, (8.3)

where, since ρi = 1 whenever pi > 0 and otherwise ρi ≤ 1,

A = ρ1 − ρ2

(ρ1 − ρ2)+ (p1 − p2)
, B = p1 − p2

(ρ1 − ρ2)+ (p1 − p2)
∈ [0, 1],

and

0 ≤ C = −ρ2
G(p1, x) − G(p2, x)

p1 − p2
≤ M < ∞.

Here A is defined zero when ρ1 = ρ2, and B is defined zero when p1 = p2. In [25]
one applies Hilbert’s duality method for the dual equation in (8.3). More precisely
the idea is to solve the dual problem

{
A∂ψ + B%ψ + AG(p)ψ − CBψ = A5 in #T ,

ψ = 0 in ∂# × (0, T ), ψ(·, T ) = 0 in #,
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for smooth 5, and use ψ as test function in (8.3). This would yield uniqueness
since 5 can be chosen arbitrarily however the coefficients of the dual problem are
neither smooth nor strictly positive, hence we need approximation arguments to
derive uniqueness.

For the approximation to create small error terms, we need some regularity
assumptions on the coefficients. First the coefficients to be in L2(#T ), which is fine
since they are bounded. In addition we need ∇[G(pi , x)] ∈ L2(#T ), G(pi , x) ∈
L∞(#T ), and ∂tC ∈ L1(#T ). Since pi ’s are bounded, it remains for us to check
that

∇[G(pi , x)] ∈ L2(#T ) and ∂tC ∈ L1(#T ). (8.4)

The first bound follows from the fact that G is locally Lipschitz, as well as the
fact that ∇ pi ∈ L2(#T ). To check the second condition we write

G(p1, x) − G(p2, x)
p1 − p2

=
∫ 1

0
Gp((1 − s)p1 + sp2, x) ds.

Thus

Ct = −ρt

∫ 1

0
Gp((1 − s)p1 + sp2, x) ds − ρ

∫ 1

0
Gpp((1 − s)p1 + sp2, x)

((1 − s)(p1)t + s(p2)t ) ds.

The first term is integrable since ρt ∈ L1(#T ) and
∫ 1
0 Gpp((1− s)p1 + sp2, x) ds

is bounded due to the bound on pi ’s.
Since (p1)t , (p2)t ≥ 0, we conclude by Fubini’s theorem that

∫

#T

|Ct | ≤ M
∫

#T

[(p1)t + (p2)t ] ≤ 2M
∑

i=1,2

‖pi‖L1(#),

where

M = sup
|p|≤max{‖p1‖∞,‖p2‖∞},x∈#

(|∂pG(p, x)| + |∂ppG(p, x)|).

01
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Appendix A: An Improved Family of Barrier Densities

We shall construct a refined version of barrier density ρR discussed in Section 5,
to prove Proposition 5.6.
Fix parameter A ≥ 1; it will be clear later that A roughly characterizes how steep
the boundary transition of the density can be. Let Q be defined in (5.3), and let w1
and c∗ be defined in Lemma 5.4. We show that

Lemma A.1. (1) For all A ≥ 1, there exists a uniquewA ∈ (0, w1] only depending
on G̃, such that

Q(wA) =
A2τ

2
|Q′(wA)|2.

(2) wA is decreasing in A and A|Q′(wA)| is increasing in A.
(3)

|Q′(wA)| ≤ min

{

c∗,

√
2zM
A2τ

}

.

Proof. The first two claim easily follow from the monotonicity of Q and |Q′| by
Lemma 5.4.
The last one follows from Lemma 5.4 and the fact that Q(wA) ≤ zM . . 01

Take R ≥ wA/A + 1, and define

qR,A(r) =






zM if r ≤ R − wA/A,
Q(A(r − R + wA/A)) if r ∈ (R − wA/A, R],
−∞ otherwise.

(A.1)

Clearly, this generalizes (5.4). Let ρR,A be defined by (c.f. (5.5))

ρR,A(r)






= (s∗)′(zM ) if r ≤ R − wA/A,

∈ (1−τq ′′
R,A(r))(1−τr−1q ′

R,A(r))
d−1

1+τ G̃(qR,A(r))
· ∂s∗

(
qR,A(r)− τ

2 |q ′
R,A(r)|2

)
if r ∈ (R−wA/A, R],

= 0 otherwise.
(A.2)

We know that ρR,A is in a plateau-like shape, with the boundary transition from 0
to the height of the plateau taking place within an annular region of width wA/A.
Let ρ† be the optimal new density corresponding to ρR,A (see (5.7)) in the modified
problem (5.1). Then ρR,A is supported on BR , while ρ† is supported on BR̃ , where
we define R̃ := R + τ A|Q′(wA)| with abuse of notations.
In the spirit of Lemma 5.5, one can readily show that ρ† ≤ ρR̃,A almost everywhere.

However, we shall improve this by showing that ρ† ≤ ρR̃, Ã a.e. for some Ã < A.
Note that ρR̃, Ã has less steep boundary behavior than ρR̃,A. We need an auxiliary
result.
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Lemma A.2. Define yA ∈ [0, wA] to solve

|Q′(yA)| =
1
2
|Q′(wA)|. (A.3)

Then there exists a universal c̃, which only depends on G̃, such that for all Ã ∈
[ A
1+c̃τ , A],

A ≤ Ã(1 − τ Ã2Q′′(yA)) (A.4)

and

R − wA

A
≤ R̃ − w Ã

Ã
− τ A

2
|Q′(wA)|. (A.5)

Proof. We first consider (A.5). Recall that Q is concave. By the monotonicity of
wA, Q(wA) and |Q′(wA)| in A due to Lemma 5.4 and Lemma A.1,
|wA − w Ã||Q

′(wA)| ≤ Q(wA) − Q(w Ã)

= τ A2

2
|Q′(wA)|2 − τ Ã2

2
|Q′(w Ã)|

2 ≤ τ

2
(A2 − Ã2)|Q′(wA)|2.

In the equality above, we used the definition of wA and w Ã. Hence,

w Ã − wA

Ã
≤ τ

2 Ã
(A2 − Ã2)|Q′(wA)| ≤ τ A

Ã
(A − Ã)|Q′(wA)|.

In order that (A.5) holds, it suffices to have

τ A

Ã
(A − Ã)|Q′(wA)| + wA

A − Ã

ÃA
≤ τ A

2
|Q′(wA)|,

which is true if
Ã
A

≥
1+ τ A2|Q′(wA)|

wA

1+ 3τ A2|Q′(wA)|
2wA

. (A.6)

By Lemma A.1, for all A ≥ 1 and τ ≤ 1,

A|Q′(wA)|
wA

≥ |Q′(w1)|
w1

≥ C(G̃).

Therefore, there exists a universal constant C(G̃), such that Ã ≥ A
1+C(G̃)τ

implies
(A.6). As a result, (A.5) is also true.
For (A.4), it suffices to show that Ã|Q′′(yA)| ≥ C(G̃). Since |Q′′| is an increasing
function and Q′(0) = 0, by (A.3) and the result proved above,

Ã|Q′′(yA)| ≥ Ã
A
· A · |Q

′(yA)|
yA

≥ Ã
A
· A|Q

′(wA)|
2wA

≥ C(G̃).

Therefore, by suitably choosing c̃ that only depends on G̃, we have (A.4) and (A.5)
hold. 01

Now we generalize Lemma 5.5.
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Lemma A.3. Suppose τ ∈ (0, 1]. Let ρ† and R̃ be defined as above, and let Ã ∈
[1, A] satisfy (A.4) and (A.5). Then ρ† ≤ ρR̃, Ã.

Proof. Since Ã ≥ 1, arguing as in Lemma 5.5, it suffices to show W̃ (r) ≥ W (r)
for all r ∈ [0, R], where

W̃ (r) := qR̃, Ã(r + τ |q ′
R,A(r)|) − τ

2
|q ′

R̃, Ã
(r + τ |q ′

R,A(r)|)|2,

W (r) := qR,A(r) − τ

2
|q ′

R,A(r)|2.

By definition, W (r) = zM for all r ≤ (R − wA/A), but W (r) < zM if r >

(R−wA/A). On the other hand, by (A.5), we have W̃ (r) = zM on [0, r∗] for some
r∗ > (R − wA/A). Moreover, W (R) = W̃ (R) = 0.
Let S = {r ∈ [0, R] : W̃ (r) < W (r)}. Suppose S *= ∅. We take r0 = inf S. Since
W and W̃ are continuous, W (r0) = W̃ (r0), i.e.,

Q(y(r0)) − A2τ

2
|Q′(y(r0))|2 = Q(ỹ(r0)) − Ã2τ

2
|Q′(ỹ(r0))|2. (A.7)

Here, for brevity, we denote

y(r) := A(r − (R − wA/A)),

ỹ(r) := Ã
(
r + τ |q ′

R,A(r)| −
(
R̃ − w Ã

Ã

))
.

Here it is also understood that Q ≡ zM on (−∞, 0]. Since Ã ≤ A, (A.7) implies
y(r0) ≤ ỹ(r0), which further gives

r0 + τ A|Q′(y(r0))| −
(
R̃ − w Ã

Ã

)
≥ r0 −

(
R − wA

A

)
.

By (A.5), we find y(r0) ≥ yA, where yA is defined in Lemma A.2. Then by (A.4)
and the monotonicity of Q′′, for all r ≥ r0,

A ≤ Ã(1 − τ Ã2Q′′(y(r))). (A.8)

We claim that W̃ ′(r) ≤ W ′(r) for all r ≥ r0. We calculate that

W̃ ′(r) = q ′
R̃, Ã

(r + τ |q ′
R,A(r)|)

(
1 − τq ′′

R̃, Ã
(r + τ |q ′

R,A(r)|)
)
(1 − τq ′′

R,A(r)),

W ′(r) = q ′
R,A(r)(1 − τq ′′

R,A(r)).

By (A.1), W̃ ′(r) ≤ W ′(r) is equivalent to

ÃQ′(ỹ(r))(1 − τ Ã2Q′′(ỹ(r))) ≤ AQ′(y(r)),

By virtue of (A.8) and the monotonicity of Q′ and Q′′, it suffices to show that
y(r) ≤ ỹ(r) for all r ≥ r0. Since this is true for r = r0, we shall prove y′(r) ≤ ỹ′(r)
for all r ≥ r0, i.e.,

A ≤ Ã(1 − τ A2Q′′(y(r))).
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This clearly follows from (A.8).
Recall that W (R) = W̃ (R) = 0 and W (r0) = W̃ (r0). So if r0 < R, we must
have W̃ ′(r) = W ′(r) for all r ≥ r0. This implies W̃ (r) = W (r), which leads to a
contradiction. On the other hand, r0 *= R, since S is open in [0, R].
This proves S = ∅, so W̃ (r) ≥ W (r) on [0, R]. This completes the proof. 01

Combining these two Lemmas with Proposition 4.3, we argue as in Lemma 5.1 to
conclude with the following result, from which Proposition 5.6 follows:

Proposition A.4. Suppose ρ0 ∈ L∞(#)∩ X satisfies (1.9). Fix τ ∈ (0, 1]. Let {ρn}
be the sequence of densities obtained by the discrete scheme (1.2) starting from ρ0.
Take ρ+ = ‖ρ0‖L∞(#) and let R∗ and c∗ be defined as in Lemma 5.1.
With A ≥ 1, let qR,A and ρR,A be defined in (A.1) and (A.2), respectively. Suppose
ρ0 ≤ ρR0,A0 for some A0 ≥ 1 and R0 ≥ wA0/A0+1. With c̃ defined in Lemma A.2,
define {An}∞n=0 and {Rn}∞n=0 as follows:

An = max
{
1,

A0

(1+ c̃τ )n

}
, Rn = Rn−1 + τ An−1|Q′(wAn−1)|.

Then ρn ≤ ρRn ,An for all n ∈ N, which satisfies BRn ⊂ #. In particular, spt ρn ⊂
BRn .
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