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Abstract

We introduce a novel variant of the JKO scheme to approximate Darcy’s law
with a pressure dependent source term. By introducing a new variable that implicitly
controls the source term, our scheme is still able to use the standard Wasserstein-
2-metric even though the total mass changes over time. Leveraging the dual for-
mulation of our scheme, we show that the discrete-in-time approximations satisfy
many useful properties expected for the continuum solutions, such as a comparison
principle and uniform L !-equicontinuity. Many of these properties are new, even in
the well-understood case where the growth term is absent. Finally, we show that our
discrete approximations converge to a solution of the corresponding PDE system,
including a tumor growth model with a general nonlinear source term.

1. Introduction

In this paper, we study Darcy’s law with a pressure-dependent growth term, or,
more precisely, the following equations:

(P) pr — V- (pVp)=pG(p,x) and p € ds(p) inR? x [0, T],

with initial data pg. Here p = p(x, t) represents the density of a flowing material,
p is the pressure generated by the internal energy

E(p) =/ s(p(x))dx, (1.1)
R4

and G (p, x) is a pressure dependent growth term which is assumed to be decreasing
in p. (P) can be used to describe tumor growth models, where the malignant growth
is limited only by the buildup of pressure when cells become too densely packed
[24]. In order to capture this behavior, it is natural to restrict s to be a convex,
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increasing and superlinear function. Examples that we have in mind include the
Rényi energy given by

1
sm(p) = Tlp”’ when p > 0, otherwise + oo

for m > 1, and its singular limit obtained as m — oo given by
Soo(p) :=0 when0 < p <1, otherwise + co.

§ = Soo 1S a natural choice of internal energy for incompressible tumor growth
models (see for instance [25]). Precise assumptions on s and G will be stated in
Section 1.2.

Our goal is to introduce a discrete-in-time variational scheme (minimizing move-
ments) to approximate solutions of (P). When the growth term G is absent, the
system of equations (P) can be formally written as the gradient flow of the internal
energy in 2-Wasserstein space (see [23] for the case s = s, and [1,22] for s = 5o).
With the presence of G, it is no longer clear whether the equation can be realized
as a gradient flow. First of all, in most scenarios, the energy E increases along the
flow. As such, any gradient flow formulation must locate a different “energy” that
is actually dissipated along the flow. Secondly, one must also deal with the fact that
the total mass of the density is not constant in time. This obstructs a straightfor-
ward application of a 2-Wasserstein minimizing movements scheme (a.k.a. the JKO
scheme [15]), as the standard notion of optimal transport is only defined between
densities with the same mass. While it is possible to consider a modified version
of Wasserstein distance to allow for changing mass (see for instance [3,7,13]), the
resulting gradient flow cannot capture the full generality of (P). For instance, in
the case of the specific choice of s = s, the gradient flow formulation restricts the
growth term to be linear and homogenous with respect to the pressure (see [5,12]).

In this paper, we introduce a new discrete-in-time variational scheme for ap-
proximating the equation (P). In contrast to previous results (e.g. [5,12,20]), we
do not modify the Wasserstein metric. Instead, we introduce an additional varia-
tional term that allows us to implicitly solve for the growth rate at each time step.
The advantage of this perspective is that our scheme can approximate any flow of
the form (P). Furthermore, the dual problem associated to our scheme has a very
efficient numerical implementation using the recently introduced back-and-forth
method [17,18]. In particular, the numerical implementation via the back-and-forth
method does not require introducing an additional time dimension, which allows
for a faster computation time than schemes based around the Benamou-Brenier
formula. In addition, our scheme has no difficulty with the singular energy s, and
produces a sharp boundary (see Proposition 3.9).

In what follows, we will also show that our scheme captures many of the
favorable properties of the underlying PDE (P), such as the comparison princi-
ple, finite propagation properties, and various uniform bounds, as well as an L!-
equicontinuity property that generalizes the BV bounds obtained in [25]. Let us
emphasize that some of these properties for discrete-time solutions are new even
when G = 0. Using these properties, we then show that the scheme converges to a
solution of the continuum PDE (P) as the time step tends to zero.
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1.1. The Discrete-in-Time Scheme

The discussion that follows is a quick introduction of our scheme and its dual
formulation. A detailed analysis, involving the existence and uniqueness of the
extreme values, will be delayed until Sect. 3.

Given a time horizon T > 0, we choose a smooth, convex, and bounded domain
2 that is sufficiently large to contain the the flow in the time window [0, T'] (see
Section 1.2, Theorem 1.3 and the discussion in the beginning of Section 6 for more
information on the choice of €2). We then construct a discrete-in-time approximation
to (P) as follows: for a fixed time step size T > 0, we define p* := pg and then
iterate the variational problem

mELT Ty = argmin T (p, p, p™0), (1.2)

peX,neAC(p™T)

(o

where X := {p € L'(Q) : E(p) < oo} and AC(p) denotes the space of measures
absolutely continuous with respect to p,

1
J(o, 1 P"7) = E(p) + TF(u, p"1) + W3 (p, p"T 7). (13)
and
Fap iy o [Jo P70 (8. x) dr it w e ACG!),
+00 else.

Here f = f(z, x) is the unique function defined by

f(G(0,x),x) =0;
0, f(z,x) = {—=b : z = G(b, x)} when the set is nonempty, otherwise + oo.

(1.4)
The definition of f is natural from the perspective of convex analysis. Indeed, (1.4)
is equivalent to defining f(z, x) = —G.(z, x) where G is the anti-derivative of G

with respect to z such that G(0,x) =0, and G (z, x) := infper(bz — G(b, x)) is
the concave conjugate of G with respect to z (note that G (b, x) must be concave in b
since G (b, x) is decreasing in b). Hence, it is relatively straightforward to compute
f from G. For example, if G(b, x) = ¢ — tanh(b) for some constant ¢ € (0, 1),
then f(z,x) = 1 log(1 — (z — ©)?) + (z — ¢)atanh(z — ¢) if |z —c| <1, and 400
otherwise.

Our scheme differs from the usual JKO scheme due to the terms involving the
variable u. Indeed, i (x) represents the amount of additional mass added at location
x, and f is a term that encourages growth at the locations where p™%(x) # 0.
Due to the growth term, we no longer expect to have the dissipation property
E(p"th7) < E(p™).

We can recover the discrete analogue of the pressure variable in (P) by applying
convex duality to our scheme. Indeed, the pressure at the (n + 1)-th step solves the
dual problem to (1.2),

Pn+1,7r € argmax J*(p, p""). (1.5)
peX*
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Here,
T (p.p") = / P T (@) + TG (p (), x) ) dx - / s*(p()dx, (1.6)
Q Q
where az(_;(z, x) = G(z, x), s* is the Legendre transform of s, and
c . 1 2
p(x) :==inf p(y) + —|y — x|
y 2T

is the quadratic c-transform which plays an essential role in optimal transport. In
Section 3, we will derive the connection between the primal and dual problems,
including the relation p,y; € 9s(pn+1) (see Proposition 3.2).

Much of our subsequent analysis will focus on the dual problem (1.5), which
in many ways is easier to study than the primal problem. This is due to the fact that
variations of the c-transform are easier to study than variations of the 2-Wasserstein
distance (which essentially requires introducing a dual variable anyway). Of course,
one could have also chosen problem (1.5) as the starting point for the scheme,
however, the physical interpretation of the primal problem is much clearer than
that of the dual problem. Note that when s and s* are differentiable, the second
condition in (P) yields

p=s'()., p=G"(p.

Hence (P) can be written in a weak form as

(™) (P)e = As™(p) = pG(p, X). (1.7

This is a nonlinear parabolic equation in terms of p, whose particular structure is
discussed in the classical paper [2]. This perspective further clarifies why it is easier
to work with the dual problem. Indeed, many of the beneficial properties that we
develop from the dual problem are related to the parabolic structure of the pressure
equation.

1.2. Assumptions and Main Results

Although (P) is set up on R4, we first run the schemes (1.2) and (1.5) on a
smooth open convex bounded domain & C R? to construct approximate solu-
tions. Here €2 is introduced only as an auxiliary domain to avoid some technical
annoyances of working on R?. Since we will be studying equations with a finite
propagation speed (see Theorem 1.3 and Section 5), the choice of 2 will not af-
fect the discrete-in-time solutions as long as it is taken to be sufficiently large for
the given time range. Under our assumptions, if pg is compactly supported and
bounded, p* stays compactly supported and bounded (see Theorem 1.3 and the
discussion in the beginning of Section 6); in particular, it would be supported away
from €2 if 2 is sufficiently large. Therefore, even though a no-flux condition of p
is implicitly enforced along 9<2 in the scheme (1.2), it makes no difference to the
discrete solutions.
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We will require the energy density function s : R — R U {+00} to be proper,
convex, lower semi-continuous, superlinear, and to satisfy

s(y) = +ooif {y < 0}, s(0) =0, s(p) is increasing in [0, c0), and

. 8(2) —s(0)
lim ————~ =

z—0+ Z

0.

The first condition forces the density function to be nonnegative, while the second
and third conditions, s(0) = 0 and s(p) increasing, are physically natural for
tumor growth models. In addition, these two conditions ensure that solutions stay
compactly supported if initially so (see Section 5). The last condition is only for
simplicity of the presentation. This condition ensures that the density variable is
positive whenever the pressure is positive. Without this assumption, one would
have to constantly refer to pressure values in the set ds((0, 00)), which quickly
gets cumbersome.
As for G, we assume the following conditions:

(G1) G(0, x) is strictly positive for all x.

(G2) G(z, x)isLipschitz continuous with respectto (z, x) € RxR? and decreasing
with respect to z.

(G3) for all x there exists b(x) such that G(b(x),x) = 0,and 0 < by < b(x) <
by < oo forall x € RY.

(G4) B :=sup(, y)er+xprd |G(z,X)] <o00.

Assumptions (G1)—(G3) are physically natural and correspond to the assumptions
that growth occurs when the pressure is zero, growth slows continuously as the
pressure increases, and at each location there is a threshold value where growth
will cease if the pressure becomes too high. Let us note that assumption (G1) is
used to prove monotonicity properties (c.f. Lemma 3.8 and Proposition 3.9), which
are only needed in the case of singular energy density s = s (e.g., Theorem 1.2).
For the results on generic s in this paper, (G1) is unnecessary. (G4) is a technical
condition bounding the growth rate, which will streamline our subsequent analysis.
This condition could almost certainly be weakened, for instance to local bounds
within the range of pressure. However, in the context of tumor growth models,
we do not believe unbounded growth is relevant enough to justify the additional
complication.

To approximate the equation (P), we define the piecewise-constant-in-time
interpolations

ot (x, 1) := p" T (x) ifr € [nT, (n + D7),

W (x, 1) = p" 0 (x) ifr € [nt, (n + D), (1.8)
pr(x, 1) = ppy1,:(x) ift € [nt, (n+ D7),

starting with some given nonnegative initial data p*7 = po. We assume that py is
compactly supported with

inf 9s(Mg) < oo where Mo := |00 lso- (1.9)

Note that, in particular, Mo < 00.
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In the next two theorems, we will denote Q = R x [0, T]. We identify
(p", ut, p¥) with their zero extensions to the entire R4, We will show that (%, u*, phH)
converge to a continuum solutions of (P) as we take  — 0. To be more precise,
we have

Theorem 1.1. Let My := max(by, inf 35(|| ool 1.0 ra))), where by is given in (G3).
Suppose either s € Clloc([O, 00)) or G(+, x) is affine in [0, My] forall x € R?. Then
forany T > 0,

(@) Forallt < 2B)™!, p7, u®, pYy are uniformly bounded in L*°(Q).
There exists p, p € L°°(Q) such that, as T — 0, up to a subsequence,

(b) u* = pG(p, x) in L'([0, T]; W11 (RY));

(© p" — pinL'(Q);

(d) pt. — pand s*(p") — s*(p) in L'(Q). They also a.e. converge provided
s € CL ([0, 00)).

Moreover,

(e) (p, p) is a very weak solution of (P) in the sense that p € ds(p) a.e. and

0]
/ / p¢z+S*(p)A¢+G(p,x)p¢>dxdt=/ (p9)(x, 10)—(p¢)(x, 0) dx,
0 R4 Rd

forany ¢ € C*°(Q) and for a.e. ty € [0, T].
® If po € BV, we also have p(t,-) € BV with its BV norm growing at most
exponentially in time.

When s = s, despite the irregular nature of the energy functional, strong
monotonicity properties holds for p* and p*, which leads to convergence results.
In this case the initial data we consider is a compactly supported function pg in R?
with pg < 1.

Theorem 1.2. Let s = so0. For any T > 0, there exists p € L°°(Q) and p €
L% ([0, T1; HE (RY)) such that (a), (b) and (f) in Theorem 1.1. Moreover,

loc loc

(¢’) p* € [0, 1] is monotone increasing in time, and converges to p in LI(Q). If
po € {0, 1} a.e., then p*, p € {0, 1} a.e..

(&) p% is monotone increasing in time, and converges to p in LZ(Q). Moreover
Vpr — Vpin L2(Q).

) (p, p) is a weak solution of (P) in the sense that p(1 — p) = 0 a.e. and

0]
/ f p3z¢—VP~V¢+G(p,X)prbdxdt:/ (p9)(x, to)dx—(pe)(x, 0) dx,
0 R4 R4

for any ¢ € C*°(Q) and for a.e. ty € [0, T].

One of the key ingredients in establishing the above results is the comparison
principle among the discrete solutions, which is of independent interest. Similar
results have been obtained for the case of E = E,, in [1], but our argument gen-
eralizes and simplifies the original proof by arguing through the dual formulation
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of the scheme. As a consequence, we can construct barriers to show the density
propagates with finite speed. In particular, this allows us to ensure that the evolution
remains bounded in any finite time horizon. Another main ingredient used to es-
tablish the convergence result is the spatial equicontinuity of the density variables.
The equicontinuity estimate is motivated from [16], but requires a substantially
different argument in this setting due to the presence of the growth term. We collect
these results in the following theorem:

Theorem 1.3. (a) (Comparison principle) If (p1)™" < (p2)"" both satisfying
(3.2), then (p)" " < (p2)"™'F and (p1)ng1,c < (P)ns1.r-

(b) (Finite-speed propagation) If pg is supported in Bg, satisfying (1.9), then there
exists Ry, Ry > 0 indepedent of T such that

sptp’ (-, 1) C BRo+R +Ryt-

(¢) (L'-equicontinuity) For any y € R? and sufficiently small T we have

T
lim / / o (x + ey, 1) — p(x, t)|dxdr = 0.
=0 Jo Rd

Further characteristics of Ry, R, and its dependence on pg, G and s are given in
Section 5 as well as in the “Appendix A”.

Lastly, we briefly study coincidence of our continuum solutions with other
notions of solutions. Both weak solutions and viscosity solutions approach are
available for the well-posedness of the tumor model with s = s+, [1,6,19,21,25].
There its well-posedness and coincidence are established, as well as its characteri-
zation as the limit of weak solutions with s = s,, as m — o0. Given the extensive
analysis on the continuum solutions in aforementioned references, we do not pursue
a qualitative analysis at the continuum level.

Theorem 1.4. (Coincidence)

(a) Suppose s € Clloc([O, o0)). Then under a condition (8.1) that includes s =
sm for 1 < m < 00, the continuum pair (p, p) obtained in Theorem 1.1 is
the unique weak solution of (P). In particular they are the limit of the entire
sequence (p*, p¥)ast — 0.

(b) When s = s« the pair (p, p) obtained in Theorem 1.2 coincides with the
unique weak solution obtained in [25]. In particular they are the limit of the
entire sequence (p°, p*) as t — 0.

1.3. Organization of the Paper

The remainder of the paper is organized as follows: in Section 2, we recall
basic properties of optimal transport and convex duality. In Section 3, we develop
properties of the primal and dual variational problems. In particular, we show that
the primal and dual problems are linked by strong duality, and we establish uniform
bounds for discrete densities. In Section 4, we show the comparison principle, The-
orem 1.3a, based on properties of the dual problem. This generalizes and simplifies
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the comparison principle proof developed in [1]. Next, Section 5 establishes the
finite propagation property, Theorem 1.3b, based on the comparison principle and
barrier constructions. Interestingly, the barriers are constructed using the dual prob-
lem and are backwards-in-time, which is natural in view of the duality approach.
The last two sections, Sects. 6 and 7, establish the compactness properties of dis-
crete solutions and then show their convergence to the continuum limit as 7 tends
to zero. Section 6 focuses on strong compactness of the density variable in L'. The
arguments in this section follow the ideas from [16], however, we need to introduce
significantly new ingredients, as the growth term prevents the use of L!-contraction
argument from [16]. Section 7 collects the results from the previous sections to de-
rive the main convergence theorems Theorems 1.1 and 1.2. Section 8 discusses
coincidence of our weak solutions with other existing notions of solution stated in
Theorem 1.4. Finally, we construct in the “Appendix A” a more refined version of
barriers from Section 5, which give a finer characterization of the propagation of
the density support.

2. Preliminary Results

We begin with recalling some essential properties of optimal transport and dual
functions. Since we primarily work with optimal transport in its dual formulation,
we shall work extensively with the c-transform. Here we focus on the specific cost

12
cx,y) = % for some t > 0. We follow the notations given in [16].
Definition 2.1. Given a function p : 2 — R the c-transform of p is given by
p(y) = inf p(x) +c(x, y).
xe
Given a function ¢g : Q — R the conjugate c-transform is given by

g°(x) == sup q(y) — c(x, y).
ye

Lemma 2.2. ([26]) Given functions p, q : 2 — R, we have

cc

pC<p, q<q*,

and

chc — pc’ qccE — qE.

Definition 2.3. We say that a function p : Q@ — R is c-concave if pc¢ = p, and
we say a pair of functions p, g : Q@ — R are c-conjugate if p° = q and ¢° = p.

The following regularity result is a well-known consequence of the c-transform
definition:

Lemma 2.4. If p is c-concave, then p is Lipschitz and the Lipschitz constant de-
pends only on ¢ and <.
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The next two lemmas establish the fundamental relationship between optimal
transport and the c-transform.

Lemma 2.5. If 11 is a nonnegative measure, then for any bounded function p :
Q — R,

. 1 .
in /E@WMM+TWWM=/#wmm>
peELN(Q),p()=p(Q) JQ T Q

Lemma 2.6. ([10,11,14]) Let p : Q@ — R be c-concave with c(x, y) = 2521
Define T), : Q — 2 be the unique solution to

Tp(y) =y —1Vp(y). 2.1
Then Ty is invertible a.e., and T, Uis the unique solution to
Tp_l(x) =x+1tVph).

Moreover, if 1 is a nonnegative measure and if ¢ : Q — R is a continuous
function, then

lim
t—0t

(p+1)(y) —p°(y)

| dn = [ ST dn)
Q ! Q
Remark 2.7. The maps T}, and T, ! can additionally be characterized as the unique
solutions to the optimization problems
Tp(y) = argmin p(x) + c(x, y), T, '(x) = argmax p(y) — c(x, y).
xe2 yeQ

Now we can finally state the fundamental result guaranteeing the existence and

uniqueness of optimal transport maps.

Theorem 2.8. ([4,11,14]) If u, v € LY(Q)are nonnegative densities with the same
mass, then there exists a c-concave function p* : Q — R such that

pte argmaJC/ PCyn(y)dy —/ p(x)v(x)dx,
p Q Q

W3 (w, v) =/Q(p*)”(y)u(y)dy—/Qp*(X)V(x)dx,

Moreover T+ is the unique optimal map transporting (u to v, and T is the unique
optimal map transporting v to w. Conversely, if p is a c-concave function such that
Tpui = v then T is the unique optimal map transporting 1 to v and T,s_l is the
unique optimal map transporting v to (L.

We conclude this section with some results from convex duality theory that we
will use extensively in our arguments.

Lemma 2.9. ([16]) For any proper, lower semi-continuous, convex function h :
R — R U {400}, we have p € dh(z) if and only if pz = h(z) + h*(p). Here h* is
the convex dual of h defined by s*(p) := sup,er{op —s(p)}

Lemma 2.10. ([16]) Suppose h : R — RU{+o00} is proper; lower semi-continuous,
convex, and h(z) = +ooifz < 0. Then h* is increasing, and it is strictly increasing
on dh((0, 00)).
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3. Properties of the Primal and Dual Problems

In this section, we study properties of solutions (p"7, u'>7) to the primal prob-
lem (1.2), and their relationship to the dual pressure variables p, ; that maximize
the dual problem (1.5). Since 7 is fixed for the results of this section, we denote
p" = p™7, for simplicity.

3.1. Equivalence and Well-Posedness

We begin by showing the existence of a unique minimizer for the primal problem
(1.3). Recall that X := {p € L'(Q) : E(p) < oo}. For p € X and £ C , define

p(2) ::/ pdx.
b

Define the dual energy E* : X* — R such that

E*(p) = /QS*(p(X))dx, s*(p) = suﬂg{py —s(Mh
e

where X™* is the convex dual of X with respect to E, namely
X" :={p:Q— [~00, +o0] : pismeasurable, E*(p) < +00}.

We begin with a simple lemma, which establishes weak duality between the
primal and dual problems.

Lemma 3.1. Suppose p" € X. Then

inf J(p, ., p") = sup J*(p, p").
(P, WEXXAC(p™) pe}l(:')* P

Proof. The energy E is convex, proper and lower semi-continuous, so

E(p) = (E")*(p) = sup (p, p) — E*(p).
peX*

It is thus immediately apparent that the primal problem (1.2) is equal in value to
the primal-dual problem

1 2 n * n M(x)
sup (p,p)+EWz(0,p +T) — E*(p) + Qrp ) f .

inf X
pEX,MEAC(p”)pex* pn (.X)

By switching the inf and sup, the value only decreases, and after further en-
larging the search space for p the above quantity is bounded from below by

: 1
sup inf ((p, p)+ —Wi(p. p" + i) — E*(p)
pex* peL!(Q), peAC(p") 2t

+ [t (B,
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which, by Lemma 2.5, leads to

m(x) )

sup inf (" + T, p°) —E*(P)+/ T,O"(X)f( X
Q p"(x)

peXx* LEAC(p")
Now it is clear that i should be chosen so that

w(x) )

P e f (s

which, by (1.4), is equivalent to

px) = p" ()G (p*(x), x).

If we plug in this choice, we obtain the maximization problem

sup /Q p"(x)(p“(x>+rp”<x)G(p°‘(x),x)+rf(G(p“<x),x),x)) dx — E*(p).

peX*

Note that from (1.4),

3Z(ZG(Z,)C) + f(G(z,x),x)) = G(z, x),

and thus )
2G(z,x) + f(G(z,x), x) = G(z, x), (3.1

and we conclude. O

Next we upgrade the previous proposition and show that the primal and dual
problems satisfy a strong duality principle. This guarantees that the problems attain
the same optimal value and links the primal and dual variables through necessary
optimality conditions.

Proposition 3.2. Suppose that p" € X and satisfies

1
0 =limsupds*(b) < — [ p"dx < liminf ds*(b). (3.2)
h——00 €2 b—o0

Then the primal problem (1.2) has a unique minimizer (0" !, u"*1) € X x AC(p™)
and the dual problem (1.5) has a c-concave maximizer pp,4+1 € X* and

inf J(p, , p") = sup J*(p, p").
(p,m)EXXAC(p") Pt pe)I()* pp

Moreover, for a.e. x € Q,

Put1 € 3s(0"™), pay1 € as (p"“) (33)
Ty (0" + 1" = "M with T, (x) =x +tVpup1, (34

and
1) = p" ()G (phy (%), x). 3.5)
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Remark 3.3. In this paper, we will mostly concern ourselves with compactly sup-
ported initial data in R?. In this case, we can choose an arbitrarily large domain
where (3.2) always holds for any given time range (see Corollary 5.3). However, if
one wishes to consider a version of the problem where the density is restricted €2,
(3.2) can only fail in trivial cases. Indeed, if (3.2) does not hold, then p" must al-
ready be the minimizer of the primal problem (i.e. p"*! = p"), and so the evolution
has already reached a stationary state.

Proof. Let J* be as given in (1.6). Given some function p : X* — R, we can
compute

TP o) = fg p" @) (PP + TG (P, 1)) dx — E*(pC).
From Lemmas 2.2 and 2.10, we have
[ (pEew + 6w ) ar = [ 0500+ 16w, 1) ax
Q Q

and

E(p°®) < E(p).

Thus J(p¢, p") = J(p, p") and we have

sup J*(p, p") = sup  J*(p,p"),
peX” peEX*, pe=p
which allows the search to be restricted to the space of c-concave functions.
Let pi be a sequence of bounded c-concave functions such that

lim J*(pr, p") = sup  J*(p,p").
k—o00 peX*, pa":p

Ifwesetay = ‘1@ fQ Pk (x) dx, then px = pg — oy is c-concave and has zero mean.

Thanks to Lemma 2.4, it follows that pj is uniformly bounded in wloeo (2). Thus,
we can assume without loss of generality that p; converges uniformly to a zero
mean function p. Next, we chose

Bi € argmax F(B) := J*(pr + B, p").

Be[—00,00]

Since (pi(x) + B)¢ = p;(x) + B forany B € [—00, oo], we see that

F'(B) = /Q PO+ TG(FE) + B ) dx — /Q 95" (e (x) + B, x) dx,

which decreases with respect to 8. Therefore J*(pi+ 8, p™) is concave with respect
to B. Since py is uniformly bounded, the assumption (3.2) yields some M > 0 that
depends on p", G, ¢ and 2, such that F’ is negative if 8 > M and is positive if
B < —M. Hence B exists and must be bounded uniformly in R. Hence, we can
assume without loss of generality that the B converge to a finite limit 3.
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Define p* := (p + B)°°. We then have

J¥(p*, p") = J*(p + B, p") = limsup J*(pr + Br, ")

k— 00

where the last inequality follows from the fact that the c-transform, G (-, x), and
—s™* are upper semi-continuous with respect to pointwise convergence. Thanks to
our choice of B, we see that

limsup J*(px + Bi, p") = limsup J*(px + o, p") = sup  J*(p, p").

k— o0 k— 00 peX*, pC=p

Therefore, we can conclude that p* is a c-concave maximizer of the dual problem.
Define

pwr(x) == p"()G((p")(x), x), and p* := Tprp(p" 4+ TUu™). (3.6)

We would like to show that (p*, «*) minimizes J(p, i, p").
Using Lemma 2.6, the optimality condition for p* implies that there exists
w € Is™(p™) such that, for every continuous function ¢ : 2 — R,

/Q¢>(Tp*(y))(1 +TG((pH) (), ))p" (y) dy — /Qw(X)fb(X)dx =0.

Thus, we must have
p* € ds*(p*) ae.in Q. (3.7)

Therefore, from Lemma 2.9 we have the duality relation

pr*(X)p*(X) dx = E(p*) + E*(p"). (3.8)

From (3.1) and (3.8), as well as the definition of ;* in (3.6), we have
:U«*
JE(p*, p") —/ " f (—,,,x) dx = f PH MW" + ")) dy
Q P Q
—/Qp*(x)p*(X)dx + E(p")

1
= 2= W3 (", p" + i) + E(p"),

where the last equality follows from Theorem 2.8. This allows us to conclude that
JH(p*, p") = J(p* 1", p") = inf J(p, p, p").
peX
On the other hand we have, from Lemma 3.1,

inf J(p, w, p") = sup J*(p, p") = J*(p*, p").
(p.EX X AC(p") ,,ef*

Therefore, it follows that (p*, ©*) is a minimizer of the primal problem. Denoting
P = pugt, p* = p"land p* = "t (3.3)=(3.5) follow from (3.6), (3.7) and
Lemma 2.6.
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Now let us establish uniqueness of (p*, u*). Suppose that we have two mini-
mizers (pg, (o) and (o1, p1). Let T; be the optimal transport map from p” + tu; to
pi (note that 7; must exist since we have established that minimizers are absolutely
continuous with respect to the Lebesgue measure). Let 7; : 2 x Q — [0, 00) be
the transportation plan associated to the map 7;, and define

(pl‘a I’Ll‘vnl) = t(,O(), Mo, 77:0) + (1 - t)(pl’ Mlanl) fort € [Oa 1]

By convexity, (pr, ;) must be a minimizer for all ¢+ € [0, 1], hence t
J(p¢, e, ™) must be constant. If 7r; is not an optimal transportation plan for some
t € (0, 1), then

W3 (o1, p" + Tie) < tW3(p1, p" 4 Ti1) + (1 = W3 (0o, " + Tp0),

and thus,

J(pl" Mt lon) < tJ(P]’ M1, lon) + (1 - t)J(,OO, Mo, ,On)»

contradicting the optimality of (o1, 1) and (po, io). Therefore, 7; must be an
optimal plan for all ¢ € [0, 1]. p; and p" + Tu, are absolutely continuous, so 7,
must be induced by a map T; pushing p” + tu; to p;. For x € spt p" we have

7 (x,y) = 18(To(x) = y) + (1 = 0)é(T1(x) — y) = 8(T; (x) — y),

which is only possible if there is a single map T such that 7' (x) = To(x) = T1(x)
for almost all x in spt p". It remains to show that ;11 = g, which would yield that
p1 = Tu(p" + T1) = Ty(p" + T0) = po.

Once again using the fact that 7 — J (pr, ir, p") is constant, we can conclude

that for all ¢ € (0, 1) there exists n;(x) € azf(/’f,,’—g;, x) and ¢ € ds(p;) such that

1 .
(> 1 = 10) + (G, p1 = po) + 5 (IT = id|*, 11 — po) = 0.
In particular, we see that, for 0 < #; <t < 1,

M, — Ny s 1 — o) + (G, — &1y 1 — po) = 0.

Since 9; f (-, x) is strictly increasing for all x in the range of G(-, x) due to the
continuity of G, and since ds(y) is increasing,

My = M1y s 1 — o) + (G, — &y p1 — po) > 0
if u1 # o almost everywhere, yielding a contradiction. Thus we can conclude. O

In general, we do not expect that there is a unique pressure that maximizes
the dual problem. Luckily, the next Lemma guarantees that the set of maximizers
argmax J*(p, pn), has a minimal element. Thus, we can always make a consis-
peX*, p“=p
tent choice of pressure in the scheme by setting p"+! to be the smallest maximizer.
Note that the proof of the lemma is parallel to the corresponding result, Lemma
4.4, of [16].
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Lemma 3.4. (Existence of minimal pressure) There exists a c-concave function

p* e argmax J*(p,p)
peEX*, pe=p

such that p* < p forany p € argmax J*(p, p).
pEX*, pe=p

3.2. Uniform Bounds

Next we proceed to establish uniform bounds on both density and pressure
variables. We begin by showing that the pressure stays bounded from above when
the growth function G is strictly decreasing.

Lemma 3.5. Let b(x), by and by be as given inA(G3), and in addit_ion suppose that
G (-, x) is strictly decreasing for all x € Q. Let M = sup ds*(b1), M = inf ds*(bg).
For pg chosen from (1.9), define forn =0, 1, ---,

M, = ess sup p"(x), M, = essinfp"(x), and v, := inf ds(M,).
xe xeQ

Then the following holds:

(@ pnt1 < Pyy1 1= max(vy, by1), and P41 decreases with respect to n.
(b) max(M M, n) IS non-increasing and min(M, M,) is non- decreasing with re-
spect to n.

In particular, if po satisfies (1.9), then so is p", and the bound is independent
ofnandr.

Proof. First let us define
U = {x: ppt1(x) > max(vy, b1)}.

From (3.3) we have thatup to a measure zeroset, {x € Q : p"T!(x) > max(Mn, M)} C
U, and thus it is enough to show that [U| = 0 to conclude both (a) and the first
claim in (b). Note that p, is continuous, so |U| = 0 implies U = &.
Ifx e Tp_n-lf—l (U),p;H(x) > puy1(Tp,.  (x)) > by. Moreover from Remark 2.7
it follows that p,11(x) > pyy1(Tp,,, (x)). Since G(-, x) is strictly decreasing, we
have
T, +1(U) CUand G(p, (x),x) <0inT S +1(U) (3.9

Now let ¢ be the characteristic function of U. If |U| # 0, we can use (3.4) and
(3.9) to conclude that

/pn+l(x)dx:/pn(x)(l+rG(p;Jrl(x),x))qﬁ(Tp”H(x))dx
U Q
< / PG (T,,,, (1)) dx < / P (x) dx.
Q U

LAastly, note that from the definition of v, and the dual relation we have p”“ >
M, > p" a.e.in U. It follows that |U| = 0.
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Nextlet V = {x € @ : p"t1(x) < min(M,, M)}. It is immediate from (3.5)
that u”*l(x) > 01in V. Moreover, since by > pp41(x) > ppy1(Tp,,(x))in V, it
follows that V C T,,'! (V). Thus,

/ P (x) dx > / P"(x) 4+ T (x) dx > min(M, M,)| V|,
v Tol (V)

which yields [V| = 0. ]

We can now extend the pressure bound to general G by working with the
minimal pressure from Lemma 3.4.

Corollary 3.6. If we choose p"*! to be the minimal pressure, the statements of
Lemma 3.5 hold without the strict monotonicity assumption on G.

Proof. 1t is enough to show that p,+1 < P,41, since the rest of the proof does

not use the strict monotonicity of G. Let us approximate G by strictly decreasing

functions Gs(p, x) := G(p,x) + 8(e”? — 1), and let J§ be the corresponding

dual energy and let p, ;1 s be the minimal element of argmax J§(p, p") chosen
eX*, pc=

by Lemma 3.4. Then Lemma 3.5 applies to p,11.s tpo yielI:i p,i_l’g < Py41. Due

to the uniform Lipschitz continuity, p,41 s uniformly converges to an element

p* € S, = argmax J*(p,p") along a subsequence as § — 0. Since pj4] is
peEX*, pe=p
the minimal element of S,,, we can conclude that p,+; < p* < Py41. O

Lastly we discuss BV estimates for the density variable. The following lemma
will yield exponential growth of the BV norm over time (see Corollary 6.3):

Lemma 3.7. Let Q2 be convex and bounded and let P, be given as in Lemma 3.5.
If go := ”G”Wl.oo([o P1]><R"') < 0o and p" € BV (), then for t < 1/B we have

"t e BV () with the bound

/|Vp”“|dxs<1+r8>f V" () dx
Q Q

1 g2
V 2 n+ld (_0 ) nQ .
+r<—2(1_13)/ﬂ| P20 dx + (3 + 20) 0" ()

Proof. From (1.2) we have p"*! = argmin W»(p, p" + tu" 1) + E(p). Thanks
peLl(Q)
to the useful estimate derived in [8], it follows that

/|Vp"“|§/ V(" + .
Q Q
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Using (3.5), we obtain

/Q Vo < /Q V0" ()14 TG (g D] + 70" (N0 G (P sy IV P
o ()10, (Pl (), 1)1

For the first term we have
/Q V" () + G (pyyy, XN = (1 + TB)/Q [Vp".
We estimate the second term with the Cauchy-Schwarz inequality to get
. /Q PGP 1 OV < 5 (/Q P0G (S 1. 1) Pdx + /Q PV DL, |2dx) .

From (2.1) and (3.4), for t < 1/B,

/p"|Vp;+1|2 < —rB)*‘/(p"+m”+‘)|Vp;‘+1|2
Q Q

=(1—1tB)"" / P" TV pgr 12,
Q

Now the stated estimate follows from the definition of gg. O

3.3. Monotonicity Properties

Here we study monotonicity properties of the density variable. We first show
that the support of the density variable only expands over time. Note that throughout
this subsection we are assumming that p” satisfies (3.2).

Lemma 3.8. Up o a set of measure zero, {x € Q : p"(x) > 0} C {x € Q:
ot (x) > 0).

Proof. If D = {x € Q: p"(x) > 0, p"T!(x) = 0}, then p,41(x) < O for almost
all x € D. Thanks to assumption (G1), it then follows that

W) = P"(X)G(pyp (), x) = p"(x)G(0,x) >0 ae.x eD.

Choose some point x € D and note that if T}, (x) # x, then we must have
Pnt1(Tp, 1 (X)) < puy1(x). Therefore, for almost every x € D, it follows that
P"N(Tp,, (x) < p"F1(x). Now we can compute

/ p"(x) + T () dx = / p"(y)dy < 0.
D Tpyyy (D)

This is only possible if D has measure zero. O
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When we consider the singular energy E~(p), we can strengthen the previous
proposition to a powerful monotonicity statement. In addition, we show that if the
density starts out as a characteristic function it remains a characteristic function for
all time. Recall that in this case

X={pelL'(Q) :E(p)<oco}={pel(Q:0<p<laecl.

Proposition 3.9. Let s = 5o with p" € X. Then p"t! > p" almost everywhere.
Moreover if p"(x) € {0, 1} a.e. in 2, then we have p" ! € {0, 1} a.e. in Q.

Proof. From Lemma 3.8, it follows that D = {x € Q : p"(x) > 0, p" ! (x) = 0}
has measure zero. Let us now consider the set E = {x € Q : 0 < p"Tl(x) <
0" (x)}. This in particular means that p"*!(x) € (0, 1) on E, and thus from the
relation ,o"+1 € 05X (pn+1) it follows that p,; = O almost everywhere on E.
Pn+1 is Lipschitz, so we also have Vp,;; = 0 almost everywhere on E (see
for instance [9, Theorem 4.4]). T-! (x) = x + 7V Pn+1(x) is the optimal map

Pn+1
from p"*1(x) to p"(x) + Tu"F1(x). Therefore, for almost every x € E, we have
Ty, (x) = TI;L] (x) = x. Since pfl'ﬂ(x) < pn+1(x), we can conclude that

w1 (x) > p"G(0, x) for almost all x € E. Now we can compute

/p”“(x)dx:/p”(x)+m"+1(x)dxz/p"(x)(1+rG(0,x)) dx
E E E

> / P (x) dx.
E

The above is only possible if £ has measure zero.
It remains to show that if p” € {0, 1} almost everywhere, then p"*! € {0, 1}
almost everywhere. Let A = {x € Q : "t (x) € (0, D). Arguing as before,

we conclude that p,41(x) = 0 and T, (x) = Tl;lil(x) = x for almost all

x € A. Furthermore, we have p"(x) < p"t1(x) < 1 for almost all x € A, thus,
p"(x) € {0, 1} implies p" (x) = O for almost all x € A. Now we see that

/ ") dx = f () + T () dx > / p"(x)(1 4+ 7G(0, x)) dx = 0.
A A A

Thus, A must have zero measure. |

4. Comparison Principles

In this section we establish a comparison principle for both the density and
pressure variables. One main ingredient in the proof is (4.4), a property of optimal
maps which played a central role in the L'-contraction result in [16]. In the case
of s = s, the comparison principle was shown in [1] where (4.4) was implicitly
used.

We begin by establishing a comparison principle for the pressure variables.
Note that we only compare the positive parts of the pressure. This is because we
can only guarantee the comparison property on regions where the density variables
do not vanish.
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Proposition 4.1. For i € {0, 1} let p; € X and G;(p, x) be growth functions
satisfying assumptions (G1)—(G4) with G strictly decreasing in p. Define

Ji(p) = /Qpi @) (P ) + G (p(x), 1)) = s™(p(x)) dx,

and suppose that the following properties hold:

(1) 0 < pg < p1 a.e. in Q and they satisfy (3.2);
(2) Go(z,x) < G1(z,x) forall (z,x) € R x Q.

If

pi € argmax J7(p),
{peX*, p=pcc}

then (po)+ < (P1)+.

Proof. Lemma 2.6 and the optimality of p;’s imply that there exists n; € ds*(p;)
such that

pri ) (141G (pf (x), X)) p(Tp, (x)) — 1 ()¢ (x) dx =0, 4.1)
for any bounded function ¢. Since n; > 0, we have

pi(X)(1+1Gi(p{(x),x)) =0 ae.inQ. 4.2)

Let U = {x € Q : po(x) > p1(x)} and choose ¢ to be the characteristic
function of U. If we subtract (4.1) with i = O from (4.1) with i = 1 and rearrange,
we see that

fQ P10 (147G 1 (P50, %) )#(Tp, (1)) = po0) (14 TGP ), x) ) (T (1) d
=/Q(171(X)—no(X))¢(X) dx.

Since ds* is increasing, it is clear that no(x) > n{(x) on U. Hence,
/ pl(x)<1 +1G1(pi(x), x))¢(Tp] (x))dx
Q

< /Q,oo(x)(l +1Go(p (), x))qb(TpO(x)) dx. 4.3)
By Lemma 4.1 in [16], we know that
if Tp, (x) € U, then T, (x) € U, (4.4)
which gives ¢ (T (x)) < ¢ (T}, (x)). Moreover, if Ty (x) € U, then
PR = P1 (T )+ 51Ty, (0 = 22 = 1 (T () 5Ty (0 — P < pfi0),

where the second inequality uses the definition of p{ and the third uses the fact that
P1 < po at Tp,(x). Due to the strict monotonicity of G¢, we obtain that

Go(pg(x),x) < G](pf(x),x) if Tpy(x) e U. (4.5)
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Thus we derive by (4.2) that
| (14 761 (0. ) )0 (73, )
Q
— p0) (1 +TGo(px). %) ) (Tp () dx
fQ (1) (14 G (P (0), %)) = o (1 + TGo(p0), %)) ) (T () dx

v

v

[ (G1(pi00.5) = Gl ) Ty ) = 0.

In the last line, we used (4.2) and the assumption that pg < p; a.e. in 2. This
together with (4.3) and (4.5) implies that po(x)¢ (T),(x)) = 0 a.e. in Q. Let pl.* =
Tpu(pi(1+1Gi( pf (x), x))) are the optimal densities in the corresponding primal
problem.the proof. Then

/U;OS(X)dx = /QPO(X)U + 7Go(ph(x), X)) (Tp (x)) dx = 0.

Recall that Proposition 3.2 shows p € ds*(p;) a.e.. Since ds™ is increasing, we
have p{ < p; a.e. on U, which implies

/pf(x)dxf/ P (x)dx = 0.
U U

This allows us to conclude that po(x) < pi1(x) for (o] + p;)-a.e. x. From the dual
relation p; € ds(p;) it follows that if p; > 0 then p}* > 0. Taking the positive part
of the pressures the result now follows. O

Corollary 4.2. The statement of Proposition 4.1 holds without the strict monotonic-
ity assumption on G.

Proof. We proceed using an argument similar to the proof of Corollary 3.6. We

approximate G from below by setting Gs(p,x) = Go(p,x) + 8(e™? — 1).

Let J§ be the corresponding dual energy and let ps be the minimal element of
argmax J§(p, po) chosen by Lemma 3.4. Then Proposition 4.1 applies to G to

peX*, p=p

yield ps < pi1. Due to the uniform Lipschitz continuity, ps uniformly converges to

an element p* € Sp = argmax J*(p, po) along a subsequence as § — 0. Since

peX*, pz,'(':p
po is the minimal element of Sy, we can conclude that (pg)+ < (p*)+ < (p1)+.0O

Next we extend the comparison principle to the density variable.

Proposition 4.3. Fori € {0, 1} let J; : X x AC(p;) be the functional

1
5010 = By + 3 Weo ot + [ ouf (H5x) an
" @

and suppose that the following properties hold
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(1) 0 < pg < p1 a.e. and they satisfy (3.2),
(2) 3; f1(z,x) < 9. fo(z, x) forall (z,x) € R x Q.

If

(o], i) = argmin  Ji(p, )
(0. EX xAC(p;)

then p§ < pj a.e. in Q.

Proof. Note that our primal problems correspond to the dual problems J;* : X* —
R where

J(p) = /Qpi(x)(pc(x) +1Gi(p(x),x)) — s*(p(x)) dx.

Since G;(—z,x) = 3, f*(z, x), Go(z,x) < G1(z, x) for all (z, x) € R x Q. Due

to Proposition 3.2 and Corollary 4.2, there exist pg, p1 € argmax J*(p) such
{peXx*, p=p<}

that po < p1 on spt p; U spt p} and

pi €0s™(pi),  Tpw(pi + i) = pfs 17 (x) = pi(x)G(p; (x), x).
Now let E = {y € Q: pf(y) < p5(»)}. Since E C sptp; and ds is increasing,
we must have pg = p; almost everywhere on E. Therefore, Vpyg = Vpj aein E

(see e.g. Section 4.2 of [9]), which gives E = Tp_ll(E) = T[;)l(E) (up to sets of
measure zero) and ju(x) < p}(x) for almost all x € E. Therefore,

/Epf(y)—pé‘(y)dy=/Ep1(x)—po(x)+r(MT(X)—Mé(x))20-

Thus, pi(x) < pj (x) for almost all x € Q. O
Iterating Proposition 4.1 and Proposition 4.3, we have the following:

Corollary 4.4. Let pg, p1 and Go, G| as given in Proposition 4.1. Let us denote
{0/} and {py.i}n as the sequence of solutions generated respectively by (1.2) and
(1.5) with initial data p;. Then forn =1, ..., N we have

po < pi and (pp0)+ < (Pn,1)+

as long as {p}' }flv:l satisfy (3.2).
Combining this with Proposition 3.9, we obtain

Corollary 4.5. Let s = soo and let pg € X. Then both p" and (py,)+ increase a.e.
with respect to n as long as p', - - -, p" all satisfy (3.2).
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5. Finite-speed Propagation Property

Based on the comparison principle, we will show that the support of the densities
propagate with finite speed, see Proposition 5.2. Since the support only expands in
time (Lemma 3.8), it is enough to obtain an upper bound on the expansion rate. This
result in particular allows us to obtain our unique discrete solutions independently
on the choice of domain €2, as long as it is sufficiently large. See Corollary 5.3.

The main step in this section is the following construction of radial barriers:

Proposition 5.1. Fix T > 0 and a finite number p™ € 3s*([0, +00)). There exist
universal positive constants R, and c,, whose upper bounds depend on G, ds* and
o, and a family of densities { pr}r>r,, which additionally depends on t, such that

(1) pr is radially symmetric and supported on Bg, with pg > p* on Br_g,;
(2) The new optimal density p obtained by (1.2) with p" replaced by pg satisfies
0 < PR+4c,t a.e., provided that By, C Q.

Note that given pg € X satisfying (1.9), we must have || po|| (@) be finite and
lie in d5* ([0, +00)). Thanks to Proposition 4.3, this immediately implies

Corollary 5.2. (Densities propagate with finite speed) Given py € X satisfying
(1.9), let Ry, ¢ and {pr} be as in Lemma 5.1 with p* := | poll L (). For fixed
T > 0, let p" = p™7 be as given in (1.2) starting from po. If po < pr, a.e. for
some Ry > Ry, then we have

p" < pr, where R, := R + nc.t, aslong as Bg, C Q2.

In particular, suppose that sptpy C Bg(0) for some R > 0. Then sptp" C
Bg,(0) with R, := R + Ry + nc,t provided that the latter ball is contained in 2.

Due to the uniqueness of p" (Proposition 3.2), the following holds:

Corollary 5.3. Suppose that py € X satisfies (1.9) with spt po C Bg(0). Then for
nt < T the sequence {p"} is independent of the choice of domain 2, as long as 2
contains Bryr,+¢,1(0).

In the rest of this section we work toward the proof of Proposition 5.1.
We start by taking a smooth decreasing function G = G(p), such that

(1) SUp, e G(z,x) < G(z) forall z € R.
(2) G(0) < 400 and satisfies G (z7) = 0, s* is differentiable at zy; and (s*)' (z7) >
pT for some z7 > 0.

Indeed, thanks to (G3) and (G4) such G exists and only depends on G and p*
Let f f (z) be defined by G(2) by (1.4) as f is determined by G, and con51der
the modified dual problem with an x-independent growth term,

sup / po(x) (g (x) + T(:?(q(x))) dx —s*(¢"), 6.1
qux*ﬁqEr:q Q
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where G(z) := zG(2) + f (G(z)) is an anti-derivative of G. By Proposition 3.2,
(5.1) admits a maximizer, since we may introduce p = ¢¢ and then p € X* and
p is c-concave satisfying that g = p°. With abuse of notations, we still denote the
maximizer by q.

Instead of treating ¢ to be determined by pg, we shall first propose the optimal
g and then derive the corresponding pg. For this purpose, let us assume that

(i) po is radially symmetric, supported on B C ;

(i) po > 0 on Bg and pg < L%; o
(iii) The optimal g is radially symmetric and ¢ € C?(Bg).

_ By radial symmetry, we may write p9 = po(r) and g = g (r). By definition,
q‘(r —1q'(r)) = q@r) — %|q’(r)|2. Taking g-variation in (5.1), we obtain the
optimality condition for g

1+ 1G(q(r)
(1 —7q" () —tr=1q/ (r))4!

00(r) - € ds* (q(r) - %|q/(r)|2) a.e.r €0, R).

(5.2)
Note that this is also implied by (3.3)—(3.5).
Let O = Q(w) solve the following ODE on w > 0,

—0"(w) =G(QW) +w, QO) =zy, Q'(0)=0. (5.3)
It is then straightforward to show the following:

Lemma 5.4. (1) There exists a unique wo > 0 only depending on G, such that
Q(wo) = 0.

(2) Q is smooth and Q' (w), Q" (w) < 0 for w € [0, wp);

(3) There exists a unique wy € [0, wol, such that Q(wy) = 3| Q' (w1)|%. Moreover,

¢y := |Q'(w1)] is bounded by some universal constant that only depends on G.

Let R, = w; + 1. For any R > R,, we define

M ifr <R-—wy,
gr(r) = Q0@ —(R—wy)) ifr € (R—wi, R], (5.4)
—00 otherwise.

Note that (5.3) and Lemma 5.1 guarantees gg € C 2(Bg). We also define according
to (5.2) that

= (s*)(zm) ifr <R—wy,
[ 1— -1, d—1 .
pr(r) § & UHECT SO s (gr(r) = SlaiOP) 7 € (R = wi, R],
=0 otherwise.

(5.5)
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We need to justify that pg is well-defined a.e. in R?, in particular in the annular
region {y € RY . |y| € [R—wj, R]}. Take arbitrary R’ € (R — wy, R], and define

Spr = {r € [R', R] : s*(-) is not differentiable at gz (r) — %lq}e(rﬂz}.

It is enough to show that Sg' has measure zero. Note that g (r) — %lq}e N|*is C!
and strictly decreasing on [R’, R], satisfying that

d T 2 / /
= (ar() = S1ap)P) < C(R) <0 Vr e[RRI

Then Sk’ must have measure zero by virtue of the area formula [27] and the fact
that s*(-) is convex and thus a.e. differentiable. Since R’ can be arbitrarily close to
R — w;, we conclude that pg is well-defined a.e. in R?. Hence, it is valid to write

(1 — gl ()1 — tr g, )"

T
(r) = - (M) (gr() = SR (NI?
PR 1+ cG@r) (qR 2IqR I )
a.e.r € [0, R]. (5.6)
PR satisfies the assumptions (i)—(ii).
Define p by
= (") (zm) ifr <R-—wy,
p(r +Tlgp(r) § € 3s* (qr(r) — 5lar(?) ifr € (R —wi, R, (5.7)
=0 otherwise.

By a similar argument as above, / is well-defined a.e. in R?. Let us note that if we
consider the following modified dual problem,

sp [ or () + 76 ) ) ax = [ 5 (oo,
pGX*,p"’E:p Q Q

which is equivalent to (5.1) via c- and c-transforms, by Proposition 3.2, the optimal
p is uniquely given by q,c; on spt p, while p defined in (5.7) is exactly the optimal
new density.

For p, we can additionally show the following:

Lemma 5.5. p < pj almost everywhere, where R:=R+ TlgR(R)|.
Proof. By Lemma 5.4 and (5.4), q;é(r), q;%(r) < 0 for r € [0, R]. By (5.3) and

(5.6,
1 —1q3(r)

Z - ~
1+ 7Gaz0)
> 6 (420 = 314z )7).

Since § is defined by (5.7) and (s*) is non-decreasing, it suffices to show that for
all r € [0, R],

PR(r) <% (420 = 3145 1)

/ T / 2 L 2
q,a(r+flqR(r)|)—Elq,é(rJrflqR(r)l)l ZQR(”)_EVIR(VN .
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By Lemma 5.4, g is a decreasing function while |q;§| and |g| are increasing.
Hence,

T
90+ TlarD) = S1gz 0 + Tlgr)D I
T /
> qp(r + Tlap(R)) = S0 + Tlgp(R)DI?
_ T 2
= qr(r) — EICIR(F)I .
The last step is derived from (5.4) and the definition of R. O

Now the proof of Proposition 5.1 is around the corner.

Proof of Proposition 5.1. Let p be the new optimal density corresponding to pg
obtained by the original discrete scheme (1.2), while p is obtained from the primal
problem associated with (5.1).

By the definition of G and the monotonicity of G (-, x), itis not difficult to verify
that 9, f (z) < 9, f(z,x). Thanks to Proposition 4.3, p < p almost everywhere.
Hence, p < pr4c,r follows from Lemma 5.5 and the fact that |¢ (R)| = cx. DO

o Finer construction of barriers

It is possible to construct a refined family of barriers {pg, 4}, which describes
finer features of the density propagation. Roughly speaking, pgr 4 has a radial,
plateau-shaped profile with support B, but the boundary transition of pg_4 from 0
to its maximum value takes place in an annular region of width O (A~"). With these
barriers we obtain the following proposition, describing relaxation of the spreading
speed for densities which with initially steep profiles near the boundary (since this
result does not affect the rest of the paper, we postpone its proof as well as more
detailed discussions in the “Appendix A”):

Proposition 5.6. (Relaxation of the propagation speed) Suppose pg € L (Q)N X
satisfies (1.9). Fix T € (0, 1]. Let {p"} be the sequence of densities obtained by the
discrete scheme (1.2) starting from po. Take pT = looll Loo (@) and let Ry and c
be defined as in Lemma 5.1.

With A > 1, let pg, A be definedin (A.2). Suppose po < pRry, A, for some Ag > 1
and suitable Ry. Then there is a sequence {Rn}f;o:o with R, — R,_| — Ty, such

that spt p" C Bg, for all n € N which satisfies Bg, C Q.

6. Equicontinuity for the Densities

In the remainder of this paper, we will focus on showing that the interpolations
p%, ut and p’ defined in (1.8) converge to a solution of the tumor growth PDE
when T goes to zero.

We shall suppose that the initial data py € X, satisfies (1.9). For such pg, we
will choose the domain €2 in the following way. For a given time horizon T > 0,
we choose 2 sufficiently large so that

BR0+CT C Qa
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with Ry and C only depending on pg, G and s, so that (i) the interpolations
(p*, ut, p*) given in (1.8) stay compactly supported in Bg,+cr and (ii) p* satis-
fies (3.2) for 0 < ¢t < T. This is possible due to Proposition 5.2. We then extend the
values of the discrete-time solutions to zero outside of 2. Due to Corollary 5.3, any
Q satisfying the above requirements produces the same discrete-in-time solutions
for 0 <t < T.In the discussion below, we will use the extended notion of discrete
solutions in R? x [0, T'].

Now we can turn to the main focus of this section, establishing spatial and
temporal equicontinuity estimates for the densities. These equicontinuity estimates
will be used to obtain strong convergence of densities (see Corollary 6.7) using an
Arzela-Ascoli-type argument given in [16]. Although our arguments unfold along
similar lines to [16], we require substantially new arguments to handle the growth
term and the lack of continuous differentiability for s*.

6.1. The Energy Dissipation Inequality, BV Bounds, and Equicontinuity in Time

We begin with the standard “energy dissipation inequality”, which will allow
us to obtain both BV and equicontinuity-in-time estimates for the densities.

Lemma 6.1. Given a time horizon T > 0, let p*, u* and p® be defined as in (1.8).
Then for T' := (L%J —+ 1)1 we have

1 T/ 14
E(o°(-. T)>+—f / Vp* Pt dxdr < E(,Oo)-i-/ / P dxdr.
2 Jo Jpd o Jrd

Proof. By Lemma 2.9 applied to (p™%, pn+1,¢) and the inequality pp < s(p) +
s*(p)s

E(pn+l,r) _ E(pn,r) < /Rd pn_i_lﬁr(x)(pn_‘_l’T(X) - PH’T(X)) dx.

Using the first formula in (3.4) we can rewrite the right hand side of the previous
formula as

f A (pane @) = parne (T4, 00) ) + 70T @) e () .
3 |

The convexity of the map y — pp41.:(y) + %|y — x|? gives us

—1 1 —1 2
pn+1,r(Tpn+l'T (x)) + E|Tpn+l,r (x) — x| > Pnt1,0(X)
H(VPur1c(0), T, () —x).

n+1,t

From the second formula in (3.4) it follows that

() — (T () < =<1V pup1c ()
Pn+1,7(X Pn+1,1 Prtlc X)) = ) Pn+1,t(X)| .
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Therefore
n+1,t n,t T n+1,t 2
E(p""") — E(p" )+5 P IV pnt1,0(x)]”dx
R
<t / () g (1) dx.
]Rd
Summing over n from 0 to L%J we conclude. m|

For pg € X satisfying (1.9), p® is uniformly bounded by P; defined in Lemma 3.5.
By the assumption (G4), for any 7 € [0, T], p* (t, R?) < B¢+ py(RY). Hence,

! T -t
/0 /R  pTutdxdr < PiB (T,OO(Rd) + /0 Pt (R, r)dr) < PieBT pp(RY).

Combining this with Lemma 6.1 and the fact T’ < T + 7, we get
Corollary 6.2. Assume T < 1/B and let T' be defined as in Lemma 6.1. Then

1 (7
5/0 /Rd IVpT1>p" dx dr < E(po) + Mpo(R?), 6.1)

where M depends on T, G, s and ||,00||LDC(Rd).

Based on Lemma 3.7 and (6.1), we can estimate the growth of the BV norm
for the density. The BV estimate will play a crucial role in establishing the spatial
equicontinuity of the densities in the next subsection.

Corollary 6.3. Assume T < (2B)~\. Suppose py € BV. There exists a constant M
depending on T, G, s and | po|l oo ra), such that for all t € [0, T'],

Fyi= [ 1957100 dx £ e (1 4+ B)FO) + 28 () + Mpo(RD).
R

Proof. Let T’ be defined as in Lemma 6.1. Due to Lemma 3.7 and (6.2), for any
1€[0,T],

t
/ [Vp®(x, 1) dx SB/ / V¥ (x,s)| dxds + (1 +tB)/ |V ol dx
R4 0 JR4 R4

+/ / IVpT|?pT dx ds
0 R4

t
+ M, ( / Pt (R?, s5)ds + rpo(Rd>)
0

t
58/ / |fo(x,s)|dxds+(1~|—tB)/ |V po| dx
0 JRrd Rd
+2M + My B~ BT po(RY),

where M| := E(po) + Mpo(R?) and M, := %gé + go.
Here we used the fact that p*(R?, 1) < eBU+) po(R?). Then we conclude by
the use of Gronwall’s inequality. O
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Next we obtain an equicontinuity-in-time estimate for the discrete densities.

Lemma 6.4. Assume t < 1/B and define p*(x,t) := po(x) fort < 0. Then for
anyT >0

fT H pT(, 1) —pT( 1 — 1)
0

2
[y <
T H-1(Rd) —
where M depends only on T, G, s and py.

Proof. Let ¢ be a smooth function, and consider

/ PO = M) e = / $(0) = $(x + TV pur1(x))
Rd T R4

T

,On-H’t(x)

+u" T ()¢ (x) dix.

Applying the fundamental theorem of calculus, the previous line is equal to

1
/R ) f Vo (x + 70V pug1.r (X)) - Vpusrr ()" @) + 1" ()¢ (x) d6 dix.
0
Applying Cauchy-Schwarz, we then have the bound

1/2
IVl 2y IV Pt ll 2oty + Il 2y BIO™ I 2 gy 07 (RN,

where
1
ﬁn-ﬁ—l,r — / pg+1,rd0 and ngrl,r — (id + T@Vpn+1,r)#/0n+l’r-
0
L?-norms are displacement convex [26], so

~n+1 1 1
17l oty < max (107 + TV oy 16" ey )-

Hence,

n+l,7 n,t

—p

|
T

H-1(RY)
n,t n+l,t n+l,t 172
< max <||,0 C T ey, 17T ||L°°(Rd)> IV Pn1,cll 2oty

n,t n,t Rd 1/2
+ (110" oo mayp™ " (RY) ) B.

Now we can conclude by Lemma 3.5 and Corollary 6.2. O
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6.2. Equicontinuity in Space

Based on the comparison principles from the previous section and the BV
estimate in Lemma 3.7, we establish a spatial equicontinuity property for p’.

Proposition 6.5. Let pg and p* as given above. For any y € RY we have
T
lim sup / / o (x + ey, t) — p"(x,t)|dxdt = 0.
€0 gr<@p)! R4

Observe that when pg € BV, the result is immediate as {p*}; has uniform
BV bound on [0, T] due to Corollary 6.3. In the general case, we will obtain
equicontinuity by approximating the initial data pg with BV densities. In order
for this strategy to work, we will need to be able to extend this approximation to
all times. This is accomplished in the following lemma, which states that the L!-
difference of two discrete solutions can be controlled in terms of their L !-difference
at the initial time:

Lemma 6.6. Let pg, p1 € X satisfy (1.9), and let ,of be given by (1.8) with initial
data p; fori =0, 1. Then, forall0 <t <T,

t
1
fo /ﬂ;d 1P (e, ) = p§ (x. ) dx ds < 2 = D(A+TB) o1 = poll ey (62)

where B is given in (G4).

Proof. First we suppose pg < p1. Fori € {0, 1}, let (o}, u%) and p} be generated
respectively from (1.2) and (1.5) by the initial data p;. By Proposition 4.3, for all
1 <k <T/t,wehave pg < pi‘ almost everywhere. Thus,

/|p"“(x) oot = / P ) — i (x)
R4
= /R p1(x) — po(x>+rZ / (i) — g™ () dix

Due to (3.5), we have
) = wb T (x) = pf DG ), 1) — pE (DG i (), x),

where ‘L’ (pk“)c We now claim that

k+1 k+1

0 =gt (y) ae.yesptpf. (6.3)

Indeed, if this were not the case, then for some y € spt ,o’f, we would have
1
k+1 k+1 , 2 k+1
O =p17 T O + ATt 0) = 317 < pg " (T ()

1 k+1
o T ) = v =g ).



1378 M. Jacoss, I. Kim & J. ToNG

By the comparison principle, pé“ x) < p]f“ (x) foralmostall x € spt p’f“ . Since

Tpk+1 (y) € spt p’f“ for every y € spt pll‘, we can conclude that pé“ (Tpk+l ) <
1 1

p]f +l (Tpk+1 (y)) for almost every y € spt pll‘. Now we can compute
1

1 1
k+1 2 k+1 Y
PO (T ) + -1 T g () = 3P < pEH (T (00) + 1T (0) = 1

1
< A6 T ) + 1T ) =y

which contradicts the optimality of Tpk+l. Thus (6.3) holds, and since G is non-
0
increasing,

PF )G (g™ (x), ) — pE )G (ge ™ (), x) < (o (x) — Pk ()G (gf ™ (x), x).

Finally, we obtain

/Rd 1P ) — pp )| < /R 1p1(x) — po(x)| + IB,(Z:(:)/W P} (x) — pf ()1,

or, in terms of p,
/Rd 0T (x, 1) — p§ (x, Dl dx < (1+TB)llp1 — poll 1 g

t
+B// lp] (x,8) — pg(x, s)dx ds.
0 JRY

Now one can conclude via Gronwall’s inequality.
In general, let p+(x) := min(pp(x), p1(x)). By the assumption of s, oy satisfies
(1.9) and p; € X. Hence, applying (6.2) to the pairs p; and py yields that

t
1
/ / lpf (x,5) — pg(x, s)|dxds < — (" -1 +1B)
0 R4 B

x(llor = pill L1 ey + 1100 = pill L1 ray)-

Thanks to the definition of p;, the right hand side exactly gives the desired bound.
]

Proof of Proposition 6.5. For any § > 0, we may mollify py to obtain a p; €
BV (R?), such that p; € X satisfies (1.9) and [|po — o1l 1 (ga) < 9.

Let p* and pf be as given in (1.8) with initial data po and py, respectively. By
Lemma 6.6,

T
[ [rasen-pania
0 R4
T
<2 [ et - pfniavar
0 R4
T
[ [ e e = s niarar
0 R4

< =T = DA+ B)llpo — pill L1 gay + Telyl sup llof ¢ Ol gy -

0<t<T

SIS
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In the last inequality, we applied the standard L!-Lipschitz property of BV func-
tions. Thanks to Corollary 6.3,

T

lim sup / / [p (x + ey, 1) — p"(x,t)|dxdr < C§,
=0 g r<p)-1 Jo JRI

where C depends on B and T'. Since § is arbitrary, we can now conclude. O

Lemma 6.4 and Proposition 6.5 together yield the strong convergence of p? in
L'([R? x [0, T]).

Corollary 6.7. Along a subsequence, p* strongly converges to some p in L' (R x
[0, T]).

Proof. The convergence result follows from Proposition 5.6 in [16], which is based
on the equicontinuity estimates Lemma 6.4 and Proposition 6.5. O

7. Continuum Limit

Our goal here is to show that these sequences converge to a very weak solution
of the continuous-in-time problem ( P). We will fix the time horizon 7 > 0 and keep
the assumptions on pg and €2 given in Section 6. To emphasize the independence of
solutions on the choice of €2, we use the extended notion of the compactly supported
solutions (p%, p¥) in R x [0, T'] with zero value for x outside of Q.

We begin by showing that the discrete solutions approximately solve the con-
tinuity equation.

Lemma 7.1. Fix T > 0. Assume t < min{l/B, T/2}. The pair (p*, p*) ap-
proximately solves the continuity equation in the weak sense, i.e., for all ¢ €
C3(R? x [0, T]) and ty € [27, T],

10 10
/ / ptatqbdxdt—i—/ / ut¢ — p*Vp' - Veodxde
0 R4 0 R4

(7.1)
= /Rd P (x, 1)@ (x, o) — po(x)p(x,0)dx + €.

Here the error €; satisfies |e;| < V2 M, where M is a constant depending on T,
G, s, po and ¢.

Proof. From the definition of our interpolations, we have

fo—1 _
/o / pr(x’t)¢(x,t+r) ¢(x,t) dx ds
0 R4 T

0—T T . 4 _
— _/O / PO =PI oy dxde (7.2)
T R4 T

1 [ 1 T
+—/ / pt(x,t—t)¢(x,t)dxdt——/ / ptpdxdr.
T Jig—1 JRA T Jo JR4
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For the left hand side, by Taylor expansion,

to—T _ t
/0 / pf(x,t)d)(x’t—i_r) d(x,1) dxdt—/O/ pT8,¢ dx d
0 R4 T 0 R4

T T2
< ; p (R at)'E”at(b”LOO(]Rdx[O,T])dt

0]
+ f TR, D19, oo gt o,y 4
1

0—T
< BT oo RN |9l o2 e xj0.77)-

For the first term on the right hand side of (7.2), by the pushforward formula,

fo—t ,Or(x,t)—,of(x,t—‘[)
/T /I‘Rd . ¢(x,t)dxdr

fo—T — T
= /O /ﬂ;d ey 2D P+ TV D), 1)

T

+ ut(x, e (x, 1) dx dz.

Thanks to the Taylor expansion of ¢(x +TVpT(x,t), t) and Corollary 6.2,

fo—t ,of(x,t)—pr(x,t—r)
[T /Rd - ¢(x,t)dxdt

I0—71
—/ / —p'Vp* Vo + u*pdxdr
T R4

T
T . 72
—p*|V
II¢|Ic2<Rdx[o,T1>/0 fRdzM P

M@l c2rd x[0,7])5

IA

IA

where M is a constant depending on 7', G, s and pg. From the Cauchy-Schwarz
inequality and Corollary 6.2,

T 1o
‘(/ +/ )/ 0TV pT Ve + T dxdr
0 ty—T1 R4
T 1o 4 T 1/2
< [(/ +f )pf(R,wdr-f f ,OT|VPT|2dde] Iéllet @i npo.r)
0 to—t 0 R4

0 Io—7
+ Bll®llcwd xjo,11) (/ +/ >pT(Rd,I)dt
-7 to—2t

< 71/2M||¢||cl(Rdx[o,T]~
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For the last two terms in (7.2), we derive that

1
1/0 / pf(x,t—t)qﬁ(x,t)dxdt—/ Pt (x,10)¢ (x, 1) dx
T Jiy—t JRY R4

1 [ho
< —/ P Rt =) P (1) — P (. t0) o qray dt
0]

T -7

1 [
+ = / 1p7Cot = 1) = p"Coto) |l 1 ey 1D G 1) | 1 ey
0]

-7

The first term above is bounded by Te®7 pg(R) ||l ¢1 (g x[0.77)- By the Cauchy-
Schwarz inequality and the definition of p?, the second term is bounded by

0]
C||<l5Ilcl(ﬂzadx[o,r])fil/2 (/
0]

-7

1/2
”)OT('v r— 7:) - pt(" tO)”ilfl(Rd) dt)
< C”¢”C1(Rd><[0,T])(”pr('» 1o —27) —p' (- t0 — T)”i]—l(Rd)
T T 2 172
+lp™ (0 =7, ) = " (10 )1 ) -
Here C depends on the size of spt ¢. By Lemma 6.4 (with T there taken to be greater

than or equal to 7o+ 7, say 27'), this is further bounded by CM ||$ || ¢1(ra X[O’T])rl/z,
where M depends on T, G, s and pg. Hence,

1
1/0 / pr(x,t—f)cb(x,t)dxdt—/ p"(x, 10)p (x, 19) dx
T Jiy—1 JRA Rd

< CM||¢||c1(Rdx[0,T])fl/2'

Similarly, the last term in (7.2) satisfies

1// p’(x,r>¢<x,r>dxdt—f po(x) (x, 0) dx
T 0 Rd R4

1/2
< CM||¢||C1(Rd><[O,T])T / .
Summarizing all the above estimates, we complete the proof. O

To send T — 0 in (7.1) to obtain the continuum weak equation, we need to
discuss the convergence of u* as t — 0.

Lemma 7.2. Fix T > 0. For any ¢ € L*®([0, T]; W-°(R?)),

t—>0

T
lim/ / (LT, 1) = p"(x, DG (PpT(x,1),x))¢p(x, 1) dx dr = 0.
0 R4
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Proof. Assume 7 < 1/Bandlet0 < n < L%J. Take an arbitrary test function
@ € WH(R?). Due to (3.4) and (3.5), we have

/Rd p(x)(p" + TM"H)G(PZH(X), x)dx
= fR PO, L NG (Pl (T, (), Ty (1) di.
Hence,
/Rd () (P ()G (P51 (X), %) — p" 1) G (py1(x), X)) dx
- /R A (0T G (P (T ), Ty, () = 0IG (pasa (), %) ) de

-t /R PEOU TG (Pl (), 1) da
(7.3)
The last term is trivially bounded by 7 BZe8T+7) p, (RY) @l oo (rdy-
To handle the first term, we have by the definition of 7, ,, and the c-transform
that

_ 1 _ T
Py (T)h () = puy1(x) + k- T, (O = pup1(x) + 5|Vpn+1<x>|2.

Recall that go := |G| is defined in Lemma 3.7. Hence,

wiee ([0, P1]xR4)
] /R ) p”“(x)(w(r,;nil NG (P (Tyh ). Ty () - w(x)G(pn+1<x),x))]

PRIV pugill 2 gpny

< o(BIVOl oo gy + 80l0ll o ey ) 0
T 2
+ Eg()”(p“C(Rd) “Vpn-l—l ||L2(pn+l)~

Combining this with (7.3), we obtain by the Cauchy-Schwarz inequality that

‘ /R , @) (1" (x) = p"THX) G (prs1 (1), 1)) dx

= TM”(P”WLOO(Rd)(l + IV Ppti ”i2(pn+l))’

where M is a constant depending on 7', G, s and pg.
Rewriting the above inequality in terms of p¥, u” and p7, and replacing ¢(x)
into ¢ (x, t), we take time integral over [0, 7] to find that

T
‘/ / (1 (. 1) = p"(x, G (" (x, 1), )P (x, 1) dx dt
0 Jrd

= TM||¢(t7 .)”LOO([O’T];WI.OO(R{[)) (T +/ /Rd pr|VpT|2 dx dt) s
0

where 77 = (|Z] + 1)1 is defined as in Lemma 6.1. Now we may conclude the
proof by Corollary 6.2. O
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Now we are ready to prove the convergence result as T — 0. It should be noted
that the convergence of the pressure variable is established only with the positive
part of p®. This is due to the lack of information on the pressure away from the
support of p*. On the other hand pT® is nonnegative on the support of p7, and thus
we do not lose information by this reduction.

Proposition 7.3. Let py € X satisfy (1.9). Then p® is uniformly bounded in L°° (R? x
[0, T'1) and strongly converges in L'(R¢ x [0, T) along a subsequence to some
p in L®(RY x [0, T]). Furthermore, pi = max(p?, 0) is uniformly bounded
in L°(R? x [0, T1), and weak-% converges along a subsequence to some p in
L®@®R? x [0, T]). Moreover, along a subsequence, p* p® and s*(p®) converge
weakly in L'(R? x [0, T) to pp and s*(p), respectively.

Proof. Since p® has a uniform upper bound in R¢ x [0, T'], by (3.3), p7 is uniformly
bounded in LOO(Rd x [0, T]), and so is p* p*. Hence, along a subsequence, p}
converges to some p € LOO(Rd x [0, T]) in the weak-* topology.

By Corollary 6.7, it follows that p* p* = p® p} converges weakly to pp in
L'(R? x [0, T1) up to a further subsequence.

Next we show that p € ds(p). By Lemma 2.9, it suffices to show that

p(x, )p(x, 1) =s(p(x, 1) +s*(p(x, 1)) forae. (x,t) e R x [0, T]. (7.4)

It is enough to show that the left hand side is greater or equal to the right, since the
other inequality is always true by definition. From the discrete scheme and the fact
s*(p) =0 forall p <0, we have

P (x, )pT(x, 1) =s(p"(x, 1) + 5" (p(x,1) a.e.(x,1)€ R? x [0, T]. (7.5)

Since along a subsequence p* — p in Ll(Rd x [0, T']), the same holds for
s(p") due to the continuity of s. The desired inequality follows by combining this
fact with the weak convergence of p? p® to pp in L'(R? x [0, T]), the weak-x
convergence of pY in LOO(Rd x [0, T']) (both along a subsequence), and the weak
lower semi-continuity of s*.

It remains to show that s*(p?®), or equivalently s*(p ), weakly converges to
s*(p) along a subsequence in L'(R? x [0, T]). This immediately follows from
(7.4) and (7.5), noting that p* p* — pp and s(p) — s(p) in RY x [0, T'] along a
subsequence. O

Now we are ready to characterize the continuum limit as a very weak solu-
tion of the diffusion equation (1.7). Recall from Lemma 3.5 that p* < My :=
max (b, inf 8S(||p()||L:>O(Rd))) forall T > 0.

Theorem 7.4. Suppose that either s € Clloc([O, +00)), or G(-,x) is affine on
[0, Mo] for all x € RY. Then for any T > 0, the limit density and pressure (p, p)
given in Proposition 7.3 satisfy
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0
/ / 3y + 5" (P) A + G(p. x)pg dx dr = f p(x, 10 (x, 10) dx
0 R4 R4
- f po(X) (x, 0) dx. (7.6)
Rd

for any ¢ € C*®([0, 00) x RY) and a.e. 1y € [0, T].

Proof. We first show that, along a subsequence as T — 0,

f p
/O/ G(p'.x)p'pdxdr — /0/ G(p,x)ppdx dr (7.7)
0 R4 0 R4

for any ¢ € C(‘)’O([O, o0) X Rd) and any 19 € [0, T]. If s € Clloc([O, 00)), we
have pi = s'(p") almost everywhere. By Corollary 6.7, along a subsequence, pT.
a.e. converges to p on R? x [0, T]. Since G is continuous, p* G(p¥(x, 1), x) a.e.
converges to p(x, t)G(p(x,t), x). Moreover, since G is uniformly bounded, we
can conclude (7.7) by the dominated convergence theorem. Otherwise, if G (-, x)
is affine, (7.7) holds because of L'-convergence of p* to p and the weak-s conver-
gence of p7 to pin LR x [0, T]).
We then claim that

[ p'Vpt -Vodx = —/ s*(pHAgdx. (7.8)
R4 R4

Given (3.3), if s* € C lluc (R), this is trivial by integration by parts. Suppose not.
We construct {s;}¢-o to be a non-negative sequence of C !_approximation of s* as
follows. Take ¢ € C3°(R), such that ¢ > 0, fR ¢ = 1 and spt¢ € [0, 1]. Define
Ce(x) = e 1¢(x/€) and let s¥ = s % ¢c. Since s* is non-decreasing on R and
locally Lipschitz, {s}}c satisfies that s is decreasing in € and s} — s* locally
uniformly as € — 0. Moreover, since s* in convex, (s)'(-) is decreasing in €, and
at any differentiable point of s*, (s¥)" 7 (s*) as € — 0. Let pf = (s})'(p").
Then with Q being the sufficiently large convex smooth domain used to construct
(p*, p?), which contains spt p* and spt p;,

/p:Vp’V(j)dx = —f sp(pP)A¢ dx — —/ s*(pT)A¢p dx (7.9)
Q R4 R4

ase — 0.

The convergence is because of the local uniform convergence from s} to s*. On
the other hand, since s* is convex, it has countably many non-differentiable points,
which are denoted as {a;}7° . Let A; = {x € Q: p" =a;}and A = U2 | A;. Itis
known that Vp® = 0 a.e. in A; for all i. Hence,

‘ / (T — POV Vb dx
Q

< / IoF — oIV IV ] dx
Q\A

= VP @ IVl Lo may /Q\Al(s:)’(lf)— (™)' (p")ldx.
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Since p* is c-concave, ||V pT| 1) admits a uniform bound. Hence, by the mono-
tone convergence (s))'(p®) / (s*) (p") on Q\A, the right hand side above goes
to 0 as € — 0. Combining this with (7.9), we finish the proof of (7.8).

Now by Proposition 7.3, for any 0 < t9p < T and any ¢ € C(C)’O(Rd x [0, T]),

1o 1o
/ / p'Vpt - Vodxdr — —/ / s (p)A¢ dx dt (7.10)
0 R4 0 R4

along a subsequence as T — 0.

Furthermore, by Corollary 6.7 and Fubini’s theorem, p*(fo, -) — p(fo, -) in
L' (RY) for ae. to € [0, T].

Therefore, (7.6) follows from Lemma 7.1, Lemma 7.2, Proposition 7.3, (7.7)
and (7.10). |

Remark 7.5. Combining Lemma 7.2 with (7.7), we obtain that, along a subsequence,
ut — pG(p,x)in L1([0, T]; WL (RY)) as T — 0.

When s = s, similar to [25], we obtain strong convergence of p® using the
monotonicity property established in Corollary 4.5.

Theorem 7.6. Let s = soo and let po(x) € [0, 1]. Then {p*};~¢ is uniformly
bounded in L*®(R? x [0, T1) and converges to some p in L' (RY x [0, TY) along
a subsequence. Moreover, there exists p € ds(p) such that p — p in LY(RY x
[0, T]) and p5 — pin L2([0, T1; HY(R?)) along a subsequence. Lastly, (p, p)
satisfies (p — 1)p = 0 a.e. and

0]
/0 /d P —Vp-Vo+G(p,x)ppdxdr = /H;d p(to, x)P (10, x) dx
—f po(x)$ (0, x) dx (7.11)
Rd

for any ¢ € C®([0, 00) x R?) and a.e. ty € [0, T

Proof. As before, p}r is uniformly bounded in L®(R4 x [0, T]) (see Lemma 3.5).
Also, since (p* — 1)p% = 0 a.e. from their dual relation, for ¢ € [0, T], pT_ is
supported on a compact set that is uniform in t (see Section 5). Moreover for any

to € [0, T], . .
0 0
/ / IVpL|*dx = / f PV pY|2dx, (7.12)
0 JRd 0 JRd

which is uniformly bounded with respect to T due to Corollary 6.2.
The convergence of pf in L 1 (Rd x [0, T]) is aconsequence the time-monotonicity
in Corollary 4.5. In fact, if we consider the linear interpolation

prx,(n—1+0)1) :=0p.(x,nt) + (1 —0)pl(x,(n— 1)7) for
0<6 <landn e N4,
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then forany N < T/t + 1,

Nt N
|0; pT|dx dt = r/
| ftmrtea =32 [

= / (p%(x, NT) — pL.(x,0))dx,
R4

T T
, - ,(n—1
pL(x,nt) — pi(x, (n— D7) dx

T

and thus 8, p7 € L'(RY x [0, T]) for any 7 > 0. Combined with (7.12) we
conclude that p*, and thus pY , strongly converges to p in LY (R? x [0, T]) along a
subsequence. Since pf and thus p are uniformly bounded in Loo(Rd x [0, T']), this
convergence also holds in L2(R? x [0, T]). Combined with the uniform L2-bound
of VpT by (7.12), it follows that VpT. — Vpin L2(RY x [0, T]).

Lastly, the dual relation p(p — 1) = 0 is obtained from the discrete version
pLpt = pi, from the strong convergence of p} and p* in L'NL2R? x [0, T)).
Finally, (7.11) can be justified as in the proof of Theorem 7.4. O

8. Coincidence of Solutions

In this section we show that our continuum limit solutions in many cases,
including those for s = s, and s = s with general G, are sufficiently regular to
coincide with the existing notion of unique solutions.

8.1. Regular Energy

Definition 8.1. (p, p) is a very weak solution of (1.7) if they are nonnegative,
compactly supported and bounded functions in R? x [0, T'] such that s*(p) €
L2(R? x [0, T) and satisfies (7.4) and (7.6).

Theorem 8.2. Let s € C llo ([0, 00)) and suppose that for any C > 0 there exists a
constant M = M¢ such that

x|s'(x) — s/(y)| < Ml|x —y| foranyx,y €[0,C]. (8.1)

Then the continuum pair (p, p) as given in Theorem 7.4 is the unique very weak
solution of (1.7).

Remark 8.3. Note that the assumptions are satisfied for s(p) = p” withm > 1.

Proof. From parallel arguments to Theorem 6.5 and Theorem 6.6 in [28] that uses
the Hilbert duality method, where the same outline of proof applies when the
Dirichlet data is replaced by the Neumann data, we obtain the inequality

to
/(m(to,x)—pz(to,X))+dXS/ /(mG(pl,X)—sz(pz,x))+dxdt-
R4 0 R4

where p; = s'(p;). Since G(z, x) is bounded and is Lipschitz in z, we have

fo
f 10110, %) — paio, x| dx < A/ / (p11p1 — pal + lo1 — pal) dx dr,
R4 0 R4
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where A = SUP_ 4 p G’(z). Hence if we know that

/Rl p1(x, )|p1(x, 1) — pa(x, )| dx < M/l;{d lo1(x,1) — pa(x, 1)] dx,

where M is a uniform constant for 0 < ¢ < T, then we can conclude by Gronwall’s
inequality. This is true due to Lemma 3.5 and (8.1). O

8.2. Tumor Growth Model

When s = s, the above argument does not apply since the pressure difference
can no longer be bounded by the density difference. Instead, we resort to a stronger
notion of weak solutions with information on their time derivatives.

Definition 8.4. (p, p) is a weak solution of (P) with s = s, if they are compactly
supported functions in R4 x [0, T] such that 0 < p<l1l,pe L®(RY x [0, T]) N
L%([0, T]; H'(R?)), (7.4) and (7.11) hold, and, in addition,

i, pr € LYR? x [0, T1). (8.2)

The continuum limit pair (p, p) obtained in Theorem 7.6 is a weak solution of
(P), with (8.2) satisfied due to the monotonicity of p and p in time by virtue of
Corollary 4.5.

The following theorem is obtained in [25], however we sketch their proof to
highlight the necessary properties of weak solutions we need in the proof:

Theorem 8.5. Suppose G (-, x) is locally uniformly C%. Then the continuum limit
pair (p, p) given in Theorem 7.6 is the unique weak solution of (1.7) with s = Scc.

Proof. Letus consider two pairs of weak solutions (p;, p;)i=1,2 of (P) withs = 5.
Denote Q7 := Q x [0, T'], where 2 is sufficiently large so that 27 contains the
support of (p;, p;) fori = 1, 2. Following [25, Section 3], we write (7.11) in terms
of the dual equation for v, i.e.

f o (o1 = p2 4 p1 = pIIAR Y + BAY + AG(p1, )Y —CBY] =0, (8.3)

where, since p; = |1 whenever p; > 0 and otherwise p; < 1,

_ P1— P2 B— P1L—p2
(o1 —p2) + (p1 — p2)’ (p1 — p2) + (p1 — p2)

€ [0, 1],

and

2G(Pl,X) — G(p2, x)
P1— P2

Here A is defined zero when p; = p2, and B is defined zero when p; = p»>. In [25]

one applies Hilbert’s duality method for the dual equation in (8.3). More precisely
the idea is to solve the dual problem

{ AdY + BAY + AG(p)y — CBY = Ad in Qr,

0<C=-p

<M < 0.

Y =0indQ2x(0,T), ¥(,T)=0in€2,
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for smooth @, and use ¥ as test function in (8.3). This would yield uniqueness
since @ can be chosen arbitrarily however the coefficients of the dual problem are
neither smooth nor strictly positive, hence we need approximation arguments to
derive uniqueness.

For the approximation to create small error terms, we need some regularity
assumptions on the coefficients. First the coefficients to be in L(27), which is fine
since they are bounded. In addition we need V[G (p;, x)] € L2(Q7), G(pi,x) €
L%®(Q7), and 3,C € L' (Q7). Since pi’s are bounded, it remains for us to check
that

VIG(pi, x)] € L*(Q27) and 8,C € L' (Q7). (8.4)

The first bound follows from the fact that G is locally Lipschitz, as well as the
fact that Vp; € LZ(QT). To check the second condition we write

G(plﬂ-x) - G(PZ’X) _
P1— P2

1
/ Gp((1 —=s)p1 +sp2, x)ds.
0

Thus
1 1
Cr = —pt/O Gp((1=s)p1 +SP2,X)ds—pfO Gpp((L = 5)p1 +sp2, x)
(I =s)(p1)r +s(p2)) ds.

The first term is integrable since p; € L'(Q27) and fol Gpp((1 =s)p1 +sp2,x)ds
is bounded due to the bound on p;’s.
Since (p1)s, (p2)r = 0, we conclude by Fubini’s theorem that

| NCIEL Y N CAREEID S T
Qr Qr i=1,2
where

M = sup (19,G(p, x)| + 13ppG(p, X)|)-
[pl<max{[ p1llco,ll P2llcc}, x €2
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Appendix A: An Improved Family of Barrier Densities

We shall construct a refined version of barrier density pg discussed in Section 5,
to prove Proposition 5.6.

Fix parameter A > 1; it will be clear later that A roughly characterizes how steep
the boundary transition of the density can be. Let Q be defined in (5.3), and let w;
and c, be defined in Lemma 5.4. We show that

Lemma A.1. (1) Forall A > 1, there exists a unique wa € (0, wi] only depending
on G, such that

A2
O(wy) = T’|Q’(wA)|2.

(2) wy is decreasing in A and A|Q'(wa)| is increasing in A.

3)
10/ ()| < min!c*,,/iz—;z}.

Proof. The first two claim easily follow from the monotonicity of Q and |Q’| by
Lemma 5.4.
The last one follows from Lemma 5.4 and the fact that Q(wa) < zu. . O

Take R > w4 /A + 1, and define

qr.A(r) = Q(A(r — R+wa/A)) ifr e (R—-wa/A,R], (A.1)
—00 otherwise.

Clearly, this generalizes (5.4). Let pr 4 be defined by (c.f. (5.5))

=% (zy) ifr < R—wy/A,
(=g AN A—1r~ gy~ o N
PR.A(F) T +05* (ar A= 3lak 4P) ifr € (R—wa/A, R],
=0 otherwise.
(A2)

We know that pr_4 is in a plateau-like shape, with the boundary transition from 0
to the height of the plateau taking place within an annular region of width w4 /A.
Let p; be the optimal new density corresponding to pr 4 (see (5.7)) in the modified
problem (5.1). Then pg_4 is supported on Bg, while p+ is supported on B_R’ where
we define R := R + tA|Q'(wy4)| with abuse of notations.

In the spirit of Lemma 5.5, one can readily show that p; < p3 , almosteverywhere.
However, we shall improve this by showing that p; < p3 ; a.e. for some A < A.

Note that p; ; has less steep boundary behavior than p; ,. We need an auxiliary
result.
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Lemma A.2. Define y4 € [0, wa] to solve

1
10 (ya)l = §|Q/(U)A)|- (A.3)
Then there exists a universal ¢, which only depends on G, such that for all A €

[ Al ) ]
A <A -7A?Q"(ya)) (A4)

and

wa L wj;
R-ZA<R--A_I2 AS
21 = i IQ (wa)l. (A.5)

Proof. We first consider (A.5). Recall that Q is concave. By the monotonicity of
wa, Q(wy) and |Q’(w4)| in A due to Lemma 5.4 and Lemma A.1,

lwa —wzl1Q" (wa)l < Q(wa) — Q(wy)
= #IQ’(wA)IZ - §|Q’<wf;>|2 < %(A2 — ADH|Q (wy) .
In the equality above, we used the definition of w4 and w ;. Hence,
Wi — Wy

VATWA - T 42 0 wa)] < TR (A - D)Q wa).
A T 24 = A

In order that (A.5) holds, it suffices to have

TA - A—A 1A
T(A_AHQ(U)AN"‘WA = §7|Q(WA)|,

which is true if ,
- 14 A |Q'(wa)l
é +—A (A.6)
A7 14+ 3fA2|Q(wA)\

2wy

By Lemma A.1,forall A > land t < 1,
AIQ )l _ Q' (w)

WA Tow

> C(G).

Therefore, there exists a universal constant C(G) such that A > W implies
(A.6). As aresult, (A.5) is also true.

For (A.4), it suffices to show that A|Q” (y4)| = C(G). Since |Q”| is an increasing
function and Q’(0) = 0, by (A.3) and the result proved above,

Q' Gwl _ A AIQ'(wa)l

> > C(G).
YA A 2wz

1 " A
AlQ ()’A)|ZX‘A'

Therefore, by suitably choosing & that only depends on G, we have (A.4) and (A.5)
hold. -

Now we generalize Lemma 5.5.
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Lemma A.3. Suppose t € (0, 1]. Let p; and R be defined as above, and let A €
[1, A] satisfy (A.4) and (A.5). Then p;y < PR A

Proof. Since A > 1, arguing as in Lemma 5.5, it suffices to show W(r) > W(r)
for all r € [0, R], where

~ T

W) = qg i + Tlak o)) = 5147 10+ lgp 4D,
Ty 2

W) = gra(r) = Sldk (PP

By definition, W(r) = zy for all r < (R — wy/A), but W(r) < zpy if r >
(R—w4/A). On the other hand, by (A.5), we have W (r) = zp on [0, ry] for some
r« > (R —wy/A). Moreover, W(R) = W(R) =0.

LetS = {r € [0, R]: W(r) < W(r)}. Suppose S # @. We take rop = inf S. Since
W and W are continuous, W(rg) = W(ro), ie.,

AZT / 2 ~ AZT /o= 2
O (ro)) — TIQ YoNl” = 0y (ro)) — TIQ @oNl”. (A7)
Here, for brevity, we denote

y(r) = A@r — (R —wa/A)),

5(r) = A (r + Tlgp A (D] — (ﬁ - %)) .

Here it is also understood that Q = z;7 on (—o0, 0]. Since A < A, (A.7) implies
y(ro) < ¥(ro), which further gives

ro +TAIQ'(y(r0))| — (R - %) = - (R-"2).

By (A.5), we find y(r9) > ya, where y,4 is defined in Lemma A.2. Then by (A.4)
and the monotonicity of Q”, for all r > ry,

A <A1 —1A?Q"(y(r))). (A8)
We claim that W’(r) < W/(r) for all r > ry. We calculate that
W) = gl 10+ Tlak aID (1= 7a} 0+ Tlag (D) (1 = T 4 (),
W (r) = qr a1 =g 4 ().
By (A.1), W (r) < W'(r) is equivalent to
AQ'(G(rN(1 —TA*Q"(F(r)) < AQ'(Y(r)),

By virtue of (A.8) and the monotonicity of Q" and Q”, it suffices to show that
y(r) < ¥(r)forallr > rg. Since this is true for r = ry, we shall prove y'(r) < 3'(r)
forall r > rg, i.e.,

A< A0 —TA?Q"(y(r)).
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This clearly follows from (A.8).

Recall that W(R) = W(R) = 0 and W(ro) = W(ro). So if o < R, we must
have W/(r) = W/'(r) for all » > ro. This implies W (r) = W (r), which leads to a
contradiction. On the other hand, rg # R, since S is open in [0, R].

This proves S = &, so W(r) = W(r) on [0, R]. This completes the proof. |

Combining these two Lemmas with Proposition 4.3, we argue as in Lemma 5.1 to
conclude with the following result, from which Proposition 5.6 follows:

Proposition A.4. Suppose py € L°°(Q) N X satisfies (1.9). Fixt € (0, 1]. Let {p"}
be the sequence of densities obtained by the discrete scheme (1.2) starting from po.
Take p+ = || po |00 () and let Ry and c, be defined as in Lemma 5.1.

With A > 1, let gr A and pr 4 be defined in (A.1) and (A.2), respectively. Suppose
PO < PRy, Ao for some Ao > 1and Ry > wa,/Ao+ 1. With ¢ defined in Lemma A.2,
define {Ap}52 ) and {R,};° as follows:

Ap

A, =max{l, ————
(1 +ct)”

} , Ry=Ry 1+ TAn—l|Q/(wA,171)|-

Then p" < pg,.A, for alln € N, which satisfies Br, C Q2. In particular, spt p" C
Bg,.

n
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