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Interface dynamics in a two-phase tumor growth model
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We study a tumor growth model in two space dimensions, where proliferation of the tumor cells
leads to expansion of the tumor domain and migration of surrounding normal tissues into the exterior
vacuum. The model features two moving interfaces separating the tumor, the normal tissue, and
the exterior vacuum. We prove local-in-time existence and uniqueness of strong solutions for their
evolution starting from a nearly radial initial configuration. It is assumed that the tumor has lower
mobility than the normal tissue, which is in line with the well-known Saffman–Taylor condition in
viscous fingering.
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1. Introduction

In this paper, we study free boundary dynamics arising in a model of avascular tumor growth which
is adapted from [37].

1.1 A two-species model of tumor growth

Consider two species of cells in R2, one being actively growing tumor cell and the other being
inactive normal cell. Spatial densities of tumor and normal cells, each denoted by m and n, satisfy

@tm � div .�mrp/ D mG.p/; (1.1)
@tn � div .⌫nrp/ D 0; (1.2)

mC n 6 1: (1.3)

Here �; ⌫ > 0 denote mobilities of the tumor and normal cells. p is the pressure generated by the
cells, serving as a Lagrange multiplier for the constraint mC n 6 1. It satisfies

�div
�
.�mC ⌫n/rp

�
D mG.p/ if mC n D 1; (1.4)

p D 0 if mC n < 1: (1.5)

See, e.g., [6, 40, 42]. In (1.1) and (1.4),G.p/ represents pressure-dependent proliferation rate of the
tumor cell. In the spirit of [37], we assume that

https://creativecommons.org/licenses/by/4.0/
mailto:ikim@math.ucla.edu
mailto:jiajun@math.ucla.edu


192 I. KIM AND J. TONG

1. G 2 C 1Œ0;C1/.
2. G.�/ is decreasing.
3. G.0/ > 0 and G.pM / D 0 for some pM > 0.

In short, (1.1)–(1.5) models the scenario where the tumor keeps growing and where two species
of cells migrate with different mobilities, according to the Darcy’s law [7], under the pressure they
generate together.

Mathematical analysis of strongly-coupled competitive systems such as (1.1)–(1.5) can be
challenging [3, 4, 6, 11, 29, 33]. To the best of our knowledge, existing analyses of such problems
are carried out either in one space dimension or with equal mobility of the two species. In contrast,
it is suggested in [37] that the cells moving with different mobilities is an important feature of the
model (1.1)–(1.5). Indeed, the numerical results in [37] show that when � < ⌫, certain radially
symmetric solution is stable, while when � > ⌫ a Saffman–Taylor type instability [44] can occur.

1.2 A free boundary problem

In this paper, we study (1.1)–(1.5) with the restriction thatm and n are segregated and fully saturated
in their regions. Namely, we assume that m D �˝ and n D � Q̋ n˝ , where ˝ ⇢⇢ Q̋ are two time-
varying bounded domains. This gives rise to a free boundary problem that concerns dynamics of
both � WD @˝ and Q� WD @ Q̋ , which are interfaces separating the tumor, the normal tissue, and the
exterior vacuum.

First, the equation for p reduces to

�div
�
.��˝ C ⌫� Q̋ n˝/rp

�
D �˝G.p/ in Q̋ ; pj@ Q̋ D 0; (1.6)

p D 0 in Q̋ c : (1.7)

Then the motion law of the free boundaries are given as follows. From (1.1), we may derive the
normal velocity for � :

Vn;� D �� @p

@�˝
: (1.8)

Here �˝ denotes the unit outward normal vector of � with respect to ˝. This is true heuristically
because in (1.1),mmigrates with the velocity field ��rp. Formally, it can be derived by following
the classic approach of studying singularity propagation in conservation laws (see, e.g., [25,
ê 3.4.1]). See also [34, 40, 42]. Similarly, the normal speed of Q� can be derived from (1.2):

Vn; Q� D �⌫ @p
@� Q̋

; (1.9)

where � Q̋ denotes the unit outward normal vector of Q� with respect to Q̋ .
Our main result is the local-in-time well-posedness of the free boundary problem (1.6)–(1.9).

Inspired by the numerical results in [37], we assume � < ⌫ for the well-posedness. Interestingly,
we will illustrate later that even with this assumption, instabilities may still occur along � without
further geometric assumptions on ˝ and Q̋ (see Remark 2.5). We thus need to restrict ourselves to
the case where the initial configuration is nearly radial (see Figure 1). More precise statement of our
main results can be found in Theorem 2.1 and Theorem 2.3 in Section 2.3.
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1.3 Related works and our approach

The evolution of the inner interface � is similar to the 2-D Muskat problem [2, 41] with viscosity
jump [39, 45], which is concerned with a close-to-flat interface between two fluids driven by the
Darcy’s law. In the case when the more viscous fluid is pushed towards the less viscous one, [45]
establishes global well-posedness for small initial data; in the opposite case, ill-posedness is
shown. With generalized Rayleigh–Taylor condition [23], [39] formulates similar result on the well-
posedness in a more general setup allowing density-viscosity jumps. Note that these rigorous results
agree very well with [44] and the aforementioned numerical results in [37]. They are obtained by
exploring the inherent parabolicity in the interface motion with complex analysis [45] and functional
analytic [39] approaches. However, it is not clear if these approaches can be directly applied here as
our model involves a geometry-dependent source term, whose support touches � .

Notably there is a lot more literature concerning the Muskat problem with density jump [1, 16–
19] or density-viscosity jumps [13–15, 26, 39]. In both of these cases, the smoothing mechanism
is essentially provided by the fact that a heavier fluid sits below a lighter one, where the gravity
naturally damps the oscillation of the interface. In contrast, the smoothing mechanism is much less
explicit when there is only jump in the viscosity across the interface [39, 45].

Motion of the outer interface Q� is reminiscent of the free boundary arising in the one-phase
Hele–Shaw problem [43], where a blob of fluid is injected into a Hele–Shaw cell or a porous
medium and expands according to the Darcy’s law. Despite its similarity with the Muskat problem
in some aspects, it admits a few other treatments. We direct the readers to [12, 20, 22, 24, 30, 31]
and the references therein. Once again, in our problem, the presence of the source term depending
nonlocally on Q� and � may hinder direct applications of these approaches.

In this paper, we study the dynamics of both interfaces � and Q� in a unified framework, adapted
from the study of contour equations in the Muskat problem [15, 26]. We first reduce (1.6)–(1.9),
which involves an elliptic equation for p in a time-varying domain, partially into contour equations
for the interface configurations and quantities along them; see (2.16), (2.17), (2.33) and (2.34). A key
step in this reduction is to represent the transporting velocity over Q̋ as a sum of three parts, which
arise from the discontinuity of the cell mobilities across � , the zero Dirichlet boundary condition of
p along Q� , and the source term in˝, respectively; see (2.12) and also (2.3). Then by linearizing these
contour equations around radially symmetric configurations, we show their parabolic nature under
suitable conditions (cf. Section 2.4). In particular, the interfaces can smooth themselves according
to a fractional-heat-type equation with source terms. After deriving good estimates for these source
terms, we prove well-posedness of the interface motion by a fixed-point argument. Smallness of the
geometric deviation of � and Q� from radially symmetric configurations helps close the estimates
needed in this argument. See Section 2 for more details.

1.4 Difficulties arising from the source term

This problem features a geometry-dependent source term �˝G.p/ in (1.6) that is supported up to
the inner interface. It may be tempting to think of it as an innocuous regular term, but in fact, it
changes the dynamics in a crucial way compared to the related problems discussed above.

Firstly, on the technical level, the source term seems to prevent the complex analysis approach
in [45] from being applied here. Secondly, the parabolicity of � relies on the fact that the cell with
lower mobility is displacing the other species, i.e., .� � ⌫/ @p@�˝

j� > 0 (cf. (1.8) and Remark 2.4),
in line with the classic Saffman–Taylor condition [44]. Since �˝G.p/ depends on the domain
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geometry, one can manufacture such˝ and Q̋ , so that the tumor is pushed by the normal tissue along
some part of � under the assumption � < ⌫. This is possible even when both � and Q� are required to
be graphs of functions over T in the polar coordinate; see Remark 2.5. In this sense, simply assuming
� < ⌫ is not enough for proving well-posedness, and it is reasonable to additionally require that �
and Q� are close to concentric circles (see Figure 1). Then characterization of the parabolicity of � is
based on a good understanding of p. In Section 3, we apply elliptic regularity theory to justify that
given the domain geometry close to a radially symmetric one, the corresponding p should not be far
away from a radially solution. That would be sufficient to guarantee parabolicity in the motion of
� as � < ⌫. Furthermore, these elliptic estimates together with the results in Section 4 and Section
5 will help justify that such parabolicity can be characterized by a fractional heat operator with
exponent 12 , which plays a central role in our analysis. See Section 2.4 and Section 8.

The source term also poses new difficulty in studying global well-posedness and stability
properties near the radially symmetric solutions. Indeed, as the tumor grows larger, the pressure
becomes more sensitive to the interface geometry. We demonstrate this by a scaling argument.
Suppose at given time T > 0, ˝ and Q̋ are close to two concentric discs, and Q̋ has radius of
order R � 1. Define pR.x; t/ WD p.Rx;R.t � T // and let Q̋

R and ˝R denote the corresponding
dilated version of Q̋ and ˝ according to the scaling. Then (1.6) becomes

� div
�
.��˝R

C ⌫� Q̋
Rn˝R

/rpR
�

D �˝R
R2G.pR/; (1.10)

with zero boundary data on @ Q̋
R, while the boundary motion laws (1.8) and (1.9) remain the same.

In this new problem, the proliferation rateR2G.�/ can have a large magnitude where pR is small and
it is sensitive to the pressure. This results in concentration of the source term near the inner interface
and a steep growth of pR there. On the other hand, the total mass of the normal tissue is preserved
due to (1.2), and thus Q̋

Rn˝R is extremely thin as R � 1. So in the rescaled problem the source
term is close to both the inner and outer interfaces. It is then conceivable that pR will be highly
sensitive to the domain geometry in the sense that even when the domain is pretty close to being
radial, pR may be highly oscillatory and far from being radially symmetric. Therefore, because of
the source term, nonlinear stability of the interface configurations around radially symmetric ones
becomes a much more subtle issue when it comes to long time asymptotics.

2. Interface motion in an almost radially symmetric geometry

In this section, we will derive equations for the moving interfaces � and Q� in the case when they
are close to concentric circles. Our main result will be established in terms of these equations.
Parabolicity of these equations will be revealed, which plays a key role in proving the well-
posedness.

2.1 Problem reformulation

Define a potential ' to be
' WD �p in ˝; ' WD ⌫p in ˝c : (2.1)

So ' solves
��' D G.p/�˝ in Q̋ n�; 'j Q� D 0;
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and ' ⌘ 0 on Q̋ c . When � 6D ⌫, ' has discontinuity across � , denoted by

Œ'ç� .x/ WD 'j�;˝.x/ � 'j�;˝c .x/; x 2 �:
(1.8) and (1.9) yield that each cell phase is transported by the velocity field u D �r'. It has
discontinuity across � in the tangential component, but not in its normal component.

Let � denote the fundamental solution of the Laplace equation in R2,

� .x/ WD � 1

2⇡
ln jxj:

Let D� denote the double layer potential operator associated with � . Namely, with a boundary
potential  defined on � , we define D� on R2 to be

D� .x/ WD
Z
�

�y � ry
�
� .x � y/

�
 .y/ dy: (2.2)

Note that here the gradient is taken with respect to y. It is well-known that for � and  sufficiently
smooth, say C 1;˛.T/, ŒD� ç� D � and D� is harmonic in R2n� . Then ' admits the following
representation:

' D �D� Œ'ç � D Q�� C � ⇤ g in Q̋ n�; (2.3)
where � is some boundary potential defined along Q� to be determined in order for the boundary
condition 'j Q� D 0, and where

g D G.p/�˝ D G.��1'/�˝ > 0: (2.4)

Assume C 1;˛.T/-regularity of � and Œ'ç. Then the representation (2.3) along � takes the average
of ' on two sides of � , i.e.,

.�D� Œ'ç � D Q�� C � ⇤ g/
ˇ̌
�

D 1

2
.'j�;˝ C 'j�;˝c / D �C ⌫

2
p D �C ⌫

2.� � ⌫/
Œ'ç:

This implies
Œ'ç D 2A.�D� Œ'ç � D Q�� C � ⇤ g/j� ; (2.5)

where
A D � � ⌫

�C ⌫
:

On the other hand, the zero Dirichlet boundary condition of ' along Q� requires that

lim
x! Q�.✓/

x2 Q̋
.�D Q��/.x/ D .D� Œ'ç � � ⇤ g/j Q�.✓/:

Assuming C 1;˛.T/-regularity of Q� and �, by the property of the double layer potential, � should
solve

�.D Q��/j Q� C 1

2
� D .D� Œ'ç � � ⇤ g/j Q�

along Q� , i.e.,
� D 2.D Q�� C D� Œ'ç � � ⇤ g/j Q� : (2.6)

Finally, (1.8) and (1.9) become

Vn;� D � @'

@�˝
; Vn; Q� D � @'

@� Q̋
: (2.7)

(2.3)–(2.7) form a closed system.
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2.2 Derivation of contour equations

We consider the case when � and Q� are close to two concentric circles centered at the origin, with
some radii r < R, respectively. See Figure 1. We parameterize � and Q� using the polar coordinate,

�.✓; t / D f .✓; t /.cos ✓; sin ✓/; (2.8)
Q�.✓; t / D F.✓; t /.cos ✓; sin ✓/; (2.9)

where ✓ 2 T D R=.2⇡Z/ D Œ�⇡;⇡/. Then Œ'ç and � can be naturally understood as functions
of ✓ 2 T. Next we shall derive equations for � and Q� (or equivalently, for f and F ). Since the
derivation will be carried out at a fixed time t , for brevity, we will omit the time dependence of
functions in most places.

Note that �˝.✓/ D �� 0.✓/?=j� 0.✓/j, where v? denote a vector v 2 R2 rotated counter-
clockwise by ⇡=2. By (2.2), all x 2 Q̋ n� ,

D� Œ'ç.x/ D 1

2⇡

Z
T

�
x � �.✓ 0/

�
�
�
�� 0.✓ 0/

�?

jx � �.✓ 0/j2 Œ'ç.✓ 0/ d✓ 0: (2.10)

By assuming Œ'ç 2 C 1.T/,

rD� Œ'ç.x/ D 1

2⇡

Z
T

@

@✓ 0

 
�
�
x � �.✓ 0/

�?

jx � �.✓ 0/j2

!
Œ'ç.✓ 0/ d✓ 0

D 1

2⇡

Z
T

�
x � �.✓ 0/

�?

jx � �.✓ 0/j2 Œ'ç
0.✓ 0/ d✓ 0: (2.11)

which is a Birkhoff–Rott-type integral [38]. Hence,

u.x/ D �r'.x/

D 1

2⇡

Z
T

�
x � �.✓ 0/

�?

jx � �.✓ 0/j2 Œ'ç
0.✓ 0/ d✓ 0 C 1

2⇡

Z
T

�
x � Q�.✓ 0/

�?

jx � Q�.✓ 0/j2 �
0.✓ 0/ d✓ 0 � r.� ⇤ g/.x/:

(2.12)

FIG. 1. An illustration of the geometry. The grey region represents the domain of the tumor cells, while the white region
surrounding it is occupied by the normal cells. The solid curves � and Q� are moving boundaries of the domains. The dashed
circles indicate that � and Q� are close to two concentric circles with radii r and R, respectively. � and Q� are parameterized
in the polar coordinate as functions of ✓ 2 T D R=.2⇡Z/.
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On the other hand, by (2.7) and (2.8),

@tf .✓/ D u
�
�.✓/

�
� �˝.✓/ � j� 0.✓/j

f .✓/
D � 1

f
� u

�
�.✓/

�
� � 0.✓/?: (2.13)

Although u.�.✓// here should be understood as the limit of (2.12) when letting x ! �.✓/ from
the inside of � , it is safe to simply take x D �.✓/ since the normal component of u does not have
discontinuity across � . Define

K� .✓/ WD 1

2⇡
p:v:

Z
T

�.✓/ � �.✓ 0/
j�.✓/ � �.✓ 0/j2 �  .✓ 0/ d✓ 0; (2.14)

K�; Q� .✓/ WD 1

2⇡

Z
T

�.✓/ � Q�.✓ 0/
j�.✓/ � Q�.✓ 0/j2 �  .✓ 0/ d✓ 0: (2.15)

Let K Q� ;� .✓/ be defined symmetrically by interchanging � and Q� in (2.15). Thanks to (2.11)
and (2.12), (2.13) can be rewritten as

@tf D � 1

f
� 0.✓/ � K� Œ'ç0 � 1

f
� 0.✓/ � K�; Q��0 C 1

f
r.� ⇤ g/j� .✓/ � � 0.✓/?: (2.16)

Similarly,

@tF D � 1

F
Q� 0.✓/ � K Q��0 � 1

F
Q� 0.✓/ � K Q� ;� Œ'ç0 C 1

F
r.� ⇤ g/j Q� .✓/ � Q� 0.✓/?: (2.17)

These equations are coupled with initial conditions

f .t D 0/ D f0.✓/; F .t D 0/ D F0.✓/: (2.18)

For future use, we introduce

h.✓; t / D f .✓; t /

r
� 1; H.✓; t / D F.✓; t /

R
� 1: (2.19)

They are relative deviations of � and Q� from radially symmetric configurations.

2.3 Main results

We first introduce some norms that will be used in the rest of the paper.
For this moment, let f D f .✓/ denote a general function defined on T. With ˛ 2 .0; 1/, denote

kf k PC˛.T/ WD sup
✓1;✓22T; ✓1¤✓2

jf .✓1/ � f .✓2/j
j✓1 � ✓2j˛

:

For k 2 N, let f .k/ denote the k-th derivative of f with respect to ✓ . Then define

kf k PCk;˛.T/ WD kf .k/k PC˛.T/; and kf kCk;˛.T/ WD
kX

jD0
kf .j /kC.T/ C kf k PCk;˛.T/:

We say that f 2 C k;˛.T/ if and only if kf kCk;˛.T/ < C1.
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For k 2 ZC and p 2 .1;1/, we define

kf k PW k;p.T/ WD kf .k/kLp.T/; and kf kW k;p.T/ WD
kX

jD0
kf .j /kLp.T/:

We say that f 2 W k;p.T/ if and only if kf kW k;p.T/ < C1.

We also define W k� 1
p ;p.T/-space for k 2 ZC and p 2 .1;1/ [47, ê 2.12.2]. Let

fe�t.��/1=2gt>0 denote the Poisson semi-group on T with generator �.��/1=2. For f 2 Lp.T/,
let

kf k PW k� 1
p ;p

.T/
WD

���e�t.��/1=2
f
���
Lp

Œ0;1/
PW k;p.T/

: (2.20)

We say that f 2 W k� 1
p ;p.T/ if and only if f 2 Lp.T/ such that kf k PW k� 1

p ;p
.T/
< C1.

Our main results are as follows.

Theorem 2.1 Suppose 0 < � < ⌫. Let G satisfy the assumptions in Section 1. Suppose f0; F0 2
W 2� 1

p ;p.T/ for some p 2 .2;1/. Let

r D 1

2⇡

Z
T
f0.✓/ d✓; R D 1

2⇡

Z
T
F0.✓/ d✓: (2.21)

With p⇤ be defined by (3.8), let c⇤ and Qc⇤ be negative constants

c⇤ D � 1

2⇡r

Z
Br

G
�
p⇤.X/

�
dX; Qc⇤ D r

R
c⇤; (2.22)

which are negative speeds of interfaces when they turn out to be concentric circles with radii r and
R respectively (see, e.g., (3.13)). Take ı such that

R � r
100R

6 ı 6 R � r
10R

: (2.23)

Define h0 and H0 as in (2.19).
Suppose h0 and H0 satisfy that, with ˛ D 1 � 2

p and for some " > 0,

M WD ı�1.kh0kL1.T/ C kH0kL1.T//C ı˛�"
✓

kh0k PW 2� 1
p ;p

.T/
C kH0k PW 2� 1

p ;p
.T/

◆
6 M⇤;

(2.24)
where M⇤ is a small constant depending on p, ", �, ⌫, R=j Qc⇤j, G and ıR2, but not directly on ı.
Then there exists T > 0 depending on the above quantities and additionally on ı, such that the
system (2.16)–(2.18) admits a strong solution

f; F 2 CŒ0;T çC 1;˛.T/ \ LpŒ0;T çW
2;p.T/; (2.25)

with @tf; @tF 2 CŒ0;T çC
˛00
.T/ for any ˛00 < minf14 ; ˛g. The solution satisfies that, with h and H

defined in (2.19),

ı�1.khkCŒ0;T çL1 C kHkCŒ0;T çL1/C ı˛�"
⇣
khkCŒ0;T ç

PC1;˛ C kHkCŒ0;T ç
PC1;˛

⌘
6 C.p;G/M;

(2.26)
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ı˛�"
⇣
k@thkLp

Œ0;T ç
PW 1;p C k@tHkLp

Œ0;T ç
PW 1;p

⌘
6 C.p;�; ⌫; G/M; (2.27)

and
ı˛�"

⇣
khkLp

Œ0;T ç
PW 2;p C kHkLp

Œ0;T ç
PW 2;p

⌘
6 C.p;�; ⌫; R=j Qc⇤j; G/M: (2.28)

REMARK 2.1 In the claim @tf; @tF 2 CŒ0;T çC
˛00
.T/ .˛00 < min

˚
1
4 ; ˛

 
/, we did not pursue the

optimal range of the Hölder exponent ˛00.

REMARK 2.2 We use ı to characterize the relative thinness of the gap between � and Q� . The
smallness condition (2.24) simply means that h0 andH0 need to be small in certain sense compared
with ı. Note that requiring ı�1.kh0kL1 CkH0kL1/ ⌧ 1 in (2.24) seems very natural, as otherwise
the two interfaces may touch or cross each other. It is worthwhile to remark that the right hand side
of (2.24) does not deteriorate as ı becomes smaller, in the sense that if all the model parameters
and R are fixed and we let r ! R (so that ı ! 0), then the right hand side does not decrease to 0.
Though ı also shows up on the right hand side in the form of ıR2, it will be clear later (see (8.43)
in the proof of Theorem 2.1) that M⇤ increases as ıR2 decreases.

In contrast, the smallness of T has to depend on ı directly: when ı ⌧ 1, we may need T ⌧ 1.

REMARK 2.3 In the 2-D Muskat problem, PW 1;1 and PH 3=2 are considered to be critical and scaling-
invariant semi-norms [26]. Although our problem does not admit any scaling law, considering its
similarity with the Muskat problem, the best thing one can do seems to be proving well-posedness
with initial data being small in W 1;1.T/- or H 3=2.T/-norms. We note that in Theorem 2.1, the
condition (2.24) on the initial data is proposed in the way that, by interpolation, C 1;ˇ 0 -semi-norms
of h0 and H0 are small for some ˇ0 > 0 depending on p and " (see (8.25) and (8.31)). In other
words, although we are not able to prove well-posedness of our problem with smallness in the
“critical” spaces, partly because of the source term, we manage to do that in all the “sub-critical”
cases, which can be arbitrarily close to the “critical” one – note that p > 2 and " > 0 are arbitrary.

Thanks to the estimates for the local solution, one can apply Theorem 2.1 iteratively and show
that local solutions exist for an arbitrary time period QT > 0 as long as h0 andH0 are correspondingly
sufficiently small.

COROLLARY 2.2 Under the assumptions of Theorem 2.1, for any QT > 0, if h0;H0 2 W 2� 1
p ;p.T/

satisfyM ⌧ 1, where the smallness depends on p, ", �, ⌫, G, r , R and QT , the local strong solution
exists up to time QT .

Uniqueness of local solutions can be shown if G is more regular.

Theorem 2.3 Under the assumptions of Theorem 2.1, if in addition, G 2 C 1;1Œ0;C1/, then the
solution is unique.

2.4 Parabolic nature of the interface motion and scheme of the proof

To elucidate the hidden parabolicity of (2.16)–(2.18), we linearize the system around the radially
symmetric configurations.

It is convenient to first derive equations for Œ'ç0 and �0 by taking derivative in (2.5) and (2.6).
Assuming �; Œ'ç 2 C 1.T/, we have

d

d✓
.D� Œ'ç/j� .✓/ D �� 0.✓/? � K� Œ'ç0: (2.29)
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Indeed, by integration by parts,

.D� Œ'ç/j� .✓/ D � 1

2⇡
p:v:

Z
T
@✓ 0

⇥
arg

��
�.✓/ � �.✓ 0/

�
1

C i
�
�.✓/ � �.✓ 0/

�
2

�⇤
� Œ'ç.✓ 0/ d✓ 0

D � 1

2⇡
� ⇡ Œ'ç.✓/C 1

2⇡

Z
T

arg
��
�.✓/ � �.✓ 0/

�
1

C i
�
�.✓/ � �.✓ 0/

�
2

�
� Œ'ç0.✓ 0/ d✓ 0:

(2.30)

Here the argument is defined such that its values at ✓ D ˙⇡ coincide. In the last equality, we need
the assumption � 2 C 1.T/. Hence, using the fact that Œ'ç 2 C 1.T/,
d

d✓
.D� Œ'ç/j� D �1

2
Œ'ç0 C 1

2⇡

d

d✓

Z
T

arg
⇣�
�.✓/ � �.✓ 0/

�
1

C i
�
�.✓/ � �.✓ 0/

�
2

⌘
� Œ'ç0.✓ 0/ d✓ 0

D 1

2⇡
p:v:

Z
T

d

d✓

⇣
arg

⇣�
�.✓/ � �.✓ 0/

�
1

C i
�
�.✓/ � �.✓ 0/

�
2

⌘⌘
� Œ'ç0.✓ 0/ d✓ 0:

(2.31)

This justifies (2.29). Next let

er WD .cos ✓; sin ✓/; e✓ WD .� sin ✓; cos ✓/: (2.32)

Then Œ'ç0 and �0 satisfy

Œ'ç0 D 2A
�
.f 0.✓/er C f .✓/e✓ / � r.� ⇤ g/j� C � 0.✓/? � K� Œ'ç0 C � 0.✓/? � K�; Q��0� ; (2.33)

�0 D �2
�
.F 0.✓/er C F.✓/e✓ / � r.� ⇤ g/j Q� C Q� 0.✓/? � K Q��0 C Q� 0.✓/? � K Q� ;� Œ'ç0

�
: (2.34)

Now we shall linearize the equations (2.16), (2.17), (2.33) and (2.34) around the radially symmetric
configurations, i.e., f ⌘ r , F ⌘ R, and Œ'ç0 D �0 ⌘ 0. The following discussion is only formal
and gives an overview of the analysis carried out in the rest of the paper. Let us begin by collecting
a few facts that will be justified in later sections.

✏ It will be clear in Section 4 and Section 7 that

er � r.� ⇤ g/j� ⇡ c⇤ and er � r.� ⇤ g/j Q� ⇡ Qc⇤ WD c⇤r
R
: (2.35)

Here c⇤ and Qc⇤ are constants defined in (2.22).
✏ Let H be the Hilbert transform on T [28], i.e.,

Hf .✓/ WD 1

2⇡
p:v:

Z
T

cot
✓
✓ � ✓ 0

2

◆
f .✓ 0/ d✓ 0: (2.36)

Then in Section 5 we shall show

� 0 � K� ⇡ 1

2
H and Q� 0 � K Q� ⇡ 1

2
H: (2.37)

✏ Define S to be a smoothing operator on T with a Poisson kernel,

S .✓/ D 1

2⇡
P r

R
⇤  .✓/ D 1

2⇡

Z
T

1 �
�
r
R

�2
1C

�
r
R

�2 � 2
�
r
R

�
cos ⇠

 .✓ � ⇠/ d⇠: (2.38)
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The notation P r
R

will be introduced in Section 6. Then in Section 6 we shall see

� 0 � K�; Q��0 ⇡ 1

2
HS�0; � 0? � K�; Q��0 ⇡ 1

2
S�0; (2.39)

Q� 0 � K Q� ;� Œ'ç0 ⇡ 1

2
HSŒ'ç0; Q� 0? � K Q� ;� Œ'ç0 ⇡ �1

2
SŒ'ç0: (2.40)

✏ The remaining terms in (2.16), (2.17), (2.33) and (2.34) and the error made above are considered
to be smaller or more regular, which will be omitted for this moment.

Putting these facts together, the linearized system can be written as

@tf C c⇤ D � 1

2r
H.Œ'ç0 C S�0/; (2.41)

@tF C c⇤r
R

D � 1

2R
H.�0 C SŒ'ç0/: (2.42)

Œ'ç0 D 2Ac⇤f 0 C AS�0; (2.43)

�0 D �2c⇤r
R

F 0 C SŒ'ç0: (2.44)

See Section 7 and Section 8 for the complete equations.
Combining (2.43) and (2.41), we obtain

@tf C c⇤ D �Ac⇤
r
.��/1=2f � 1C A

2r
HS�0: (2.45)

(2.45) is a fractional heat equation only when Ac⇤ > 0. Note that the last term in (2.45) and all
those omitted ones are supposed to be small or regular source terms. Since c⇤ < 0, it is natural to
believe that the motion of � can be well-posed only when A < 0, i.e., � < ⌫.

Similarly, by combining (2.42) with (2.44),

@tF C c⇤r
R

D c⇤r
R2

.��/1=2F � 1

R
HSŒ'ç0: (2.46)

Note that it shows the smoothing of the outer interface not to depend on A, but only on the fact
that c⇤r2

R < 0.

REMARK 2.4 The above formal derivation may be localized as long as the interfaces are locally
graphs and sufficiently smooth. By doing so we may be able to show that the local parabolicity
condition for the motion of � is .� � ⌫/ @p@�˝

j� > 0, while it is @p
@� Q̋

j Q� < 0 for the motion of Q� . The
former condition implies that when the less mobile cells are locally pushing the other one, we expect
well-posedness in the motion of that local segment of � . This is in the same spirit as the Saffman–
Taylor condition [44] (see also the condition for well-posedness in [45]), and it is formulated in a
more general setting in [39]. The parabolicity condition @p

@� Q̋
j Q� < 0 indicates that Q� may stay regular

when it is pushed towards the vacuum, but otherwise it may lose regularity. This fact echoes with
many well-posedness and ill-posedness results on a variety of free boundary problems arising in, for
instance, one-phase Hele–Shaw problems [12, 20, 22, 24, 30, 31] and porous medium equations [8–
10, 32, 48].

In our problem, under the assumption of the almost radial symmetry, the parabolicity
condition .� � ⌫/c⇤ > 0 derived for (2.45) is an approximation of .� � ⌫/ @p@�˝

j� > 0, while the
condition c⇤r2

R < 0 corresponding to (2.46) is an approximation of @p
@� Q̋

j Q� < 0.
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FIG. 2. A possible example exhibiting ill-posedness of motion of � when � < ⌫. Here˝ consists of a big chuck and a thin
branch; the latter is expected to move towards right. Along a part of � , more mobile normal cells are pushing less mobile
tumor cells, i.e., .� � ⌫/ @p

@�˝
j� < 0, making the local evolution of � ill-posed. Note that both ˝ and Q̋ are star-shaped

with respect to the origin, denoted byO , so � and Q� are still graphs of functions of ✓ in the polar coordinate at this moment.

REMARK 2.5 From the above discussion, we can tell that � < ⌫ is not sufficient for the parabolicity
of the motion of � , since the domain geometry determines how � moves in a nontrivial way. Even
if both ˝ and Q̋ are assumed to be star-shaped with respect to the same point, which means �
and Q� can be realized as graphs of functions of ✓ in the polar coordinate, we can still manufacture
such domains so that the parabolicity fails along some portion of � . A possible example is shown
in Figure 2, where both ˝ and Q̋ are star-shaped with respect to the origin, denoted by O in the
figure. The tumor domain ˝ consists of a big chunk and a thin branch, where the branch is so thin
that it does not significantly affect p. Then it is conceivable that the thin branch will be pushed
towards right under the expansion of the big chunk. So along the part of � where the thin branch
faces the main body of ˝, the more mobile normal cells are pushing the less mobile tumor cells
(since � < ⌫), which potentially gives rise to ill-posedness of the motion of � locally.

Given this, in order to guarantee well-posedness of the motion of � , it is then reasonable to
assume � and Q� are close to concentric circles, in which case the tumor cells should be always
pushing the normal ones.

The parabolicity of (2.45) and (2.46) is sufficient to prove existence of local solutions in
Section 8, and then uniqueness in Section 9. The proof of the local existence uses two layers of
fixed-point arguments. We sketch it as follows.

1. Fix a pair of interface dynamics f and F .
2. First we need to solve for Œ'ç0 and �0 associated with the domain defined by f and F . To

do that, in Section 7, we apply a fixed-point argument to static equations (7.1) and (7.2) (or
equivalently, (2.33) and (2.34)) with the variable .Œ'ç0;�0/. In this argument, we need estimates
for the remainder terms that are omitted in (2.43) and (2.44), which turn out to be small.

3. Once Œ'ç0 and �0 are well-defined and their estimates are derived, we use them to bound HS�0

and HSŒ'ç0 in (2.45) and (2.46) as well as all the remainder terms omitted there (see (8.1)
and (8.2) for the complete equations). They altogether will be put as the source terms in some
fractional heat equations similar to (2.45) and (2.46) in order to construct a new pair of interface
dynamics, Qf and QF . See (8.32)–(8.34). We then show in Section 8 that the map .f; F / 7! . Qf ; QF /
has a fixed-point, which is a local solution.

4. In this process, bounds for all the remainder terms will rely on estimates derived in Sections 3–6.
See Section 2.5 for what are exactly covered in them.
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The proof of the uniqueness boils down to showing that Œ'ç0, �0 and all the remainder terms above
depend in a Lipschitz manner on the interface configurations. Indeed, what we prove is a stability-
type estimate for f and F based on that of the fractional heat equation. We carry out this idea in
Section 9 with a twist in order to slightly reduce complexity of the proof.

2.5 Organization of the paper

In Section 3, we first study the pressure p in an almost radially symmetric geometry by elliptic
regularity theory. In Section 4, we derive estimates concerning gradients of the growth potential
� ⇤ g (cf. (2.3) and (2.4)) restricted to inner and outer interfaces. Section 5 is devoted to proving
estimates for singular integral operators K� and K Q� , while Section 6 establishes estimates for
integral operators K�; Q� and K Q� ;� . Section 7 shows well-definedness of Œ'ç and � as well as their
estimates. Finally, we prove existence of the local solution in Section 8, and uniqueness in Section 9.
Some auxiliary estimates and non-essential lengthy proofs are collected in Appendices.

3. Pressure in an almost radially symmetric geometry

In this section, we focus on the elliptic equation (1.6) and (1.7) for the pressure p in Q̋ . The goal
is to quantify the fact that if ˝ and Q̋ are close to two concentric discs then p should be almost
radially symmetric.

3.1 Geometric preliminaries

First we introduce a diffeomorphism to transform the physical domain into a reference domain
that is perfectly radially symmetric. Given ı satisfying (2.23), define a cut-off function ⌘ı 2
C1
0 .Œ0;C1//, such that ⌘ı 2 Œ0; 1ç is only supported on Œ1� 2ı; 1C 2ıç, ⌘ı D 1 on Œ1� ı; 1C ıç,

and for some universal constant C ,

ıj⌘0
ı j C ı2j⌘00

ı j 6 C: (3.1)

Let X D .⇢ cos!; ⇢ sin!/ 2 R2 be a point in the reference coordinate, with ⇢ D jX j. Define

x.X/ D
h
1C h.!/⌘ı

⇣⇢
r

⌘
CH.!/⌘ı

⇣ ⇢
R

⌘i
X DW ⇣.X/X; (3.2)

where h and H are given in (2.19). In other words, x deforms the reference domain in the
radial direction only in annuli around @Br and @BR. It depends only on � in the annulus
Br.1C2ı/nBr.1�2ı/, and only on Q� in BRnBR.1�2ı/; x.X/ D X elsewhere. We may also write
⇣.X/ as ⇣.⇢; !/. We know that x.X/ is a diffeomorphism from R2 to itself provided that ⇣.⇢; !/⇢
is strictly increasing in ⇢ for all ! 2 T. This is true if oscillations of � and Q� in the radial direction
are small with respect to the gap between them, i.e.,

ı�1�khkL1.T/ C kHkL1.T/
�

⌧ 1: (3.3)

Under this assumption, it is clear that x.X/ maps Br , BR, @Br and @BR to ˝, Q̋ , � and Q� ,
respectively. We denote its inverse to be X.x/.
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3.2 Pressure in the reference coordinate

Define
Qp.X/ WD p

�
x.X/

�
: (3.4)

By (1.6), Qp in the X -coordinate satisfies

� @Xk
@xi

rXk

✓
a
@Xj

@xi
rXj

Qp
◆

D G. Qp/�Br in BR; Qpj@BR
D 0: (3.5)

Here the summation convention applies to repeated indices. We also used the notations

a.X/ D ��Br .X/C ⌫�BRnBr
.X/ (3.6)

and
@Xk
@xi

D
✓
@X

@x

◆
ki

D
"✓

@x

@X

◆�1#

ki

; (3.7)

which are both functions in X . We may write a D a.⇢/.
In order to show Qp is almost radially symmetric, we shall compare it with a radially symmetric

solution p⇤ defined as follows.

Lemma 3.1 Let p⇤ be the H 1-weak solution of

� rXi

�
arXi

p⇤
�

D G.p⇤/�Br in BR; p⇤j@BR
D 0: (3.8)

Then

1. p⇤ is radially symmetric, i.e., p⇤ D p⇤.⇢/, and p⇤ 2 W 1;1.BR/.
2. p⇤ 2 Œ0; pM ç and p⇤ is decreasing in ⇢.
3. In BRnBr ,

p⇤.⇢/ D � ln
⇣ ⇢
R

⌘
� 1

2⇡⌫

Z
Br

G.p⇤/ dx: (3.9)

4. For ⇢ 2 Œ0; r ç, Z
B⇢

G.p⇤/ dx 6 C⇢2 min
˚
1;�1=2r�1 ; (3.10)

where C only depends on G.
5. For ⇢ 2 Œ0; r�ç,

jrp⇤j.⇢/ 6 C min
n
��1⇢;��1=2

o
: (3.11)

For ⇢ 2 ŒrC; Rç,
jrp⇤j.⇢/ 6 C⇢�1 min

n
⌫�1r2;�1=2⌫�1r

o
: (3.12)

Here the constants C only depend on G. Note that rp⇤ has discontinuity across @Br , so we use
jrp⇤j.r˙/ to distinguish the gradients taken from two sides of @Br .

Proof. The radial symmetry of p⇤ can be justified by a symmetrization argument in the variational
formulation of (3.8). W 1;1-regularity of p⇤ follows from [36]. The fact that p⇤ 2 Œ0; pM ç and
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monotonicity of p⇤ follows from the maximum principle. (3.9) is obvious since p⇤ is harmonic in
BRnBr .

The first bounds in (3.10)–(3.12) follow from the trivial fact jGj 6 C and

jrp⇤j.⇢/ D j@⇢p⇤.⇢/j D 1

2⇡a.⇢/⇢

Z
B⇢\Br

G.p⇤/ dx: (3.13)

To show the second bounds in (3.11) and (3.12), define G to be the anti-derivative of G with
G.0/ D 0. Obviously, G > 0 on Œ0; pM ç, attaining its maximum at pM . Since in the polar coordinate,
p⇤ solves ��@⇢.⇢@⇢p⇤/ D ⇢G.p⇤/ on Œ0; r/, by multiplying with ⇢�1@⇢p⇤,

�⇢�1j@⇢p⇤j2 C �@⇢p⇤@2⇢p⇤ CG.p⇤/@⇢p⇤ D 0: (3.14)

Taking integral in ⇢ from 0 to ⌧ 2 Œ0; r�ç yields

�

Z ⌧

0

⇢�1j@⇢p⇤j2 d⇢C �

2
j@⇢p⇤.⌧/j2 C G

�
p⇤.⌧/

�
D G

�
p⇤.0/

�
: (3.15)

Hence,
k@⇢p⇤k2L1.Br /

6 2��1
G.pM /: (3.16)

By the nature of discontinuity of @⇢p⇤ across @Br , a.⇢/@⇢p⇤ is continuous at ⇢ D r . Hence, for
⇢ 2 ŒrC; Rç, @⇢p⇤.⇢/ D �r

⌫⇢ @⇢p⇤j⇢Dr� . This gives the second bound in (3.12). Finally, the second
bound in (3.10) follow from (3.12), (3.13) and the fact that G.p⇤.⇢// is increasing in ⇢.

In order to derive a bound for . Qp � p⇤/, we need estimates concerning x.X/ and its inverse.
Denote

m0 WD ı�1khkL1.T/ C kh0kL1.T/; (3.17)

M0 WD ı�1kHkL1.T/ C kH 0kL1.T/: (3.18)

Lemma 3.2 Suppose h;H 2 W 1;1.T/ satisfy that m0 CM0 ⌧ 1. Then
����
@X

@x
� Id

����
L1.Br.1C2ı/nBr.1�2ı//

6 Cm0; (3.19)

����
@X

@x
� Id

����
L1.BRnBR.1�2ı//

6 CM0; (3.20)

and
����rXk

@Xk
@xi

����
L1.Br.1C2ı/nBr.1�2ı//

6 C.ır/�1m0; (3.21)

����rXk

@Xk
@xi

����
L1.BRnBR.1�2ı//

6 C.ıR/�1M0: (3.22)

The constants C are all universal.
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Proof. The proof is a straightforward calculation. By (3.2),
@x

@X
D ⇣ � Id CX ˝ r⇣: (3.23)

Its inverse is given by
@X

@x
D .⇣2 C ⇣⇢@⇢⇣/

�1�.⇣ C ⇢@⇢⇣/Id �X ˝ r⇣
�

D ⇣�1Id � .⇣2 C ⇣⇢@⇢⇣/
�1X ˝ r⇣: (3.24)

On the other hand, since rXk
. @Xk

@xi
� @xi

@Xj
/ D rXk

ıkj D 0, we deduce that

rXk

✓
@Xk
@xl

◆
D �@Xj

@xl

@Xk
@xi

� rXk

✓
@xi

@Xj

◆

D �@Xj
@xl

� .⇣2 C ⇣⇢@⇢⇣/
�1�.⇣ C ⇢@⇢⇣/ıki �Xk.r⇣/i

�
� rXk

.⇣ıij CXirXj
⇣/

D �@Xj
@xl

.⇣2 C ⇣⇢@⇢⇣/
�1rXj

.⇣2 C ⇣⇢@⇢⇣/: (3.25)

By (3.2),

⇣ � 1 D h⌘ı

⇣⇢
r

⌘
CH⌘ı

⇣ ⇢
R

⌘
; (3.26)

⇢@⇢⇣ D h.!/ � ⇢
r
⌘0
ı

⇣⇢
r

⌘
CH.!/ � ⇢

R
⌘0
ı

⇣ ⇢
R

⌘
: (3.27)

Thanks to the smallness of m0 and M0,

j⇣ � 1j C j.⇣2 C ⇣⇢@⇢⇣/ � 1j ⌧ 1: (3.28)

Hence, by the last line in (3.2), ˇ̌
ˇ̌@X
@x

� Id
ˇ̌
ˇ̌ 6 C.j1 � ⇣j C ⇢jr⇣j/: (3.29)

We calculate

r⇣ D

h.!/ � 1

r
⌘0
ı

⇣⇢
r

⌘
CH.!/ � 1

R
⌘0
ı

⇣ ⇢
R

⌘�
er C

h
h0.!/ � ⌘ı

⇣⇢
r

⌘
CH 0.!/ � ⌘ı

⇣ ⇢
R

⌘i
⇢�1e✓ ;

(3.30)
where er and e✓ are defined in (2.32). Then (3.19) and (3.20) follow easily.

Similarly, (3.25) implies thatˇ̌
ˇ̌rXk

✓
@Xk
@xl

◆ˇ̌
ˇ̌ 6 C jr.⇣2 C ⇣⇢@⇢⇣/j 6 C

�
jr⇣j C jr.⇢@⇢⇣/j

�
: (3.31)

Then (3.21) and (3.22) follow from (3.30) and the calculation

r.⇢@⇢⇣/ D
h
h.!/ � ⇢

r2
⌘00
ı

⇣⇢
r

⌘
CH.!/ � ⇢

R2
⌘00
ı

⇣ ⇢
R

⌘i
� er

C

h.!/ � 1

r
⌘0
ı

⇣⇢
r

⌘
CH.!/ � 1

R
⌘0
ı

⇣ ⇢
R

⌘�
� er

C
h
h0.!/ � ⇢

r
⌘0
ı

⇣⇢
r

⌘
CH 0.!/ � ⇢

R
⌘0
ı

⇣ ⇢
R

⌘i
� ⇢�1e✓ : (3.32)

This proves the lemma.
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By (3.5) and (3.8), . Qp � p⇤/ solves

� rXk

✓
a
@Xk
@xi

@Xj

@xi
rXj

. Qp � p⇤/
◆

C c. Qp � p⇤/

D rXk


a

✓
@Xk
@xi

@Xj

@xi
� ıkj

◆
rXj

p⇤

�
� rXk

@Xk
@xi

� a@Xj
@xi

rXj
Qp (3.33)

in the reference coordinate with boundary condition . Qp � p⇤/j@BR
D 0. Here

c.X/ WD �G. Qp/ �G.p⇤/
Qp � p⇤

�Br > 0 (3.34)

due to the assumptions onG. Then we can prove stability of the pressure with respect to the domain
geometry around the radially symmetric case.

Lemma 3.3 Under the assumptions of Lemma 3.2,

kr. Qp � p⇤/kL2.BR/
6 C.m0 CM0/.ıR

2/1=2; (3.35)

where C D C.�; ⌫; G/.

Proof. We take inner product of . Qp � p⇤/ and (3.33) and integrate by parts,

Z
BR

a

ˇ̌
ˇ̌@Xj
@xi

rXj
. Qp � p⇤/

ˇ̌
ˇ̌2 dX C

Z
Br

cj Qp � p⇤j2 dX

D �
Z
BR

rXk
. Qp � p⇤/ � a

✓
@Xk
@xi

@Xj

@xi
� ıkj

◆
rXj

p⇤ dX

�
Z
BR

. Qp � p⇤/rXk

@Xk
@xi

� a@Xj
@xi

ŒrXj
. Qp � p⇤/C rXj

p⇤ç dX: (3.36)

By the definition of a in (3.6), the assumptions on G, Lemma 3.2 and Hölder’s inequality,

kr. Qp � p⇤/k2L2.BR/
6 C Œm0.ır

2/1=2 CM0.ıR
2/1=2çkr. Qp � p⇤/kL2.BR/

krp⇤kL1.BR/

C C.ır/�1m0 � k Qp � p⇤kL2.Br.1C2ı/nBr.1�2ı//
kr. Qp � p⇤/kL2.BR/

C C.ıR/�1M0 � k Qp � p⇤kL2.BRnBR.1�2ı//
kr. Qp � p⇤/kL2.BR/

C C.ır/�1m0 � k Qp � p⇤kL2.Br.1C2ı/nBr.1�2ı//
� .ır2/1=2krp⇤kL1.BR/

C C.ıR/�1M0 � k Qp � p⇤kL2.BRnBR.1�2ı//
� .ıR2/1=2krp⇤kL1.BR/;

(3.37)

where C D C.�; ⌫; G/. We proceed in two different cases.

CASE 1 If R=2 6 r < R, by (2.23) and Poincaré inequality on thin domains,

k Qp � p⇤
��
L2.BRnBr.1�2ı//

6 C
�
R � r.1 � 2ı/

���r. Qp � p⇤/kL2.BR/

6 C.ır/kr. Qp � p⇤/kL2.BR/
: (3.38)
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Combining this with (3.37) yields

kr. Qp � p⇤/k2L2.BR/
6 C.m0 CM0/.ıR

2/1=2kr. Qp � p⇤/kL2.BR/
krp⇤kL1.BR/

C C.m0 CM0/kr. Qp � p⇤/k2L2.BR/
: (3.39)

By Young’s inequality, smallness of m0 and M0 and Lemma 3.1, the desired estimate follows.

CASE 2 If otherwise r < R=2, by (2.23), ı > C for some universal constant C > 0. We shall first
derive a bound for k Qp � p⇤kL1.BR/.

Recall that p solves (1.6) and (1.7). Taking inner product of (1.6) and p, we find that

krpk2
L2. Q̋ / 6 C

Z
˝

G.p/p dx 6 C j˝j 6 Cr2; (3.40)

where C D C.�; ⌫; G/. Hence, by Lemma 3.2, in the reference coordinate,����
@Xj

@xi
rXj

Qp
����
L2.BR/

6 Cr: (3.41)

Now consider (3.33). By boundedness of weak solutions [27, Theorem 8.16],

k Qp � p⇤kL1.BR/

6 C

 
R1=2

����a
✓
@Xk
@xi

@Xj

@xi
� ıkj

◆
rXj

p⇤

����
L4.BR/

CR

����rXk

@Xk
@xi

� a@Xj
@xi

rXj
Qp
����
L2.BR/

!
:

(3.42)

Applying Lemma 3.1, Lemma 3.2, (3.41) and the fact ı > C ,

k Qp � p⇤kL1.BR/ 6 CR1=2
�
m0.ır

2/1=4 CM0.ıR
2/1=4

�
krp⇤kL1.BR/

C CR
�
m0.ır/

�1 CM0.ıR/
�1� � r

6 C.m0 CM0/.ıR
2/1=2; (3.43)

where C D C.�; ⌫; G/.
With this estimate and Lemma 3.1, (3.37) becomes

kr. Qp � p⇤/k2L2.BR/
6 C.m0 CM0/.ıR

2/1=2kr. Qp � p⇤/kL2.BR/
krp⇤kL1.BR/

C C.m0 CM0/k Qp � p⇤kL1.BR/kr. Qp � p⇤/kL2.BR/

C C.m0 CM0/k Qp � p⇤kL1.BR/ � .ıR2/1=2krp⇤kL1.BR/

6 C.m0 CM0/.ıR
2/1=2kr. Qp � p⇤/kL2.BR/

C C.m0 CM0/
2ıR2: (3.44)

Then the desired estimate follows from Young’s inequality.

REMARK 3.1 The above estimate involves ıR2. If ı�1.khkL1 C kHkL1/ ⌧ 1, by (2.23), there
exist universal constants 0 < c1 < c2, such that

c1j Q̋
0n˝0j 6 ıR2 6 c2j Q̋

0n˝0j:
It is noteworthy that j Q̋

tn˝t j is constant in time provided that � and Q� have sufficient regularity.
This is because the transporting velocity field �r' in Q̋

tn˝t is divergence-free.
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3.3 More stability results

For later use, further stability results are presented here for the interface velocities and the pressure,
with respect to the interface configurations.

Fix 0 < r < R and take ı as in (2.23). Given two pairs of interface configurations .�1; Q�1/ and
.�2; Q�2/, let .h1;H1/; .h2;H2/ be defined as in (2.8)–(2.19). As in (3.17) and (3.18), we definem0;i
and M0;i that correspond to hi and Hi .i D 1; 2/. We additionally introduce for some ˛ 2 .0; 1/,

m˛;i WD ı�1khikL1 C ı˛kh0
ik PC˛ ; (3.45)

M˛;i WD ı�1kHikL1 C ı˛kH 0
i k PC˛ : (3.46)

Also denote

�m0 WD ı�1kh1 � h2kL1.T/ C kh0
1 � h0

2kL1.T/; (3.47)

�M0 WD ı�1kH1 �H2kL1.T/ C kH 0
1 �H 0

2kL1.T/; (3.48)

�m˛ WD ı�1kh1 � h2kL1.T/ C ı˛kh0
1 � h0

2k PC˛.T/; (3.49)

�M˛ WD ı�1kH1 �H2kL1.T/ C ı˛kH 0
1 �H 0

2k PC˛.T/: (3.50)

Then we can show

Lemma 3.4 Suppose .h1;H1/; .h2;H2/ 2 C 1;˛.T/⇥C 1;˛.T/ for some ˛ 2 .0; 14 /, satisfying that
for i D 1; 2, m˛;i CM˛;i ⌧ 1. Then

k@th1 � @th2kC˛.T/ C k@tH1 � @tH2kC˛.T/ 6 C⇤.�m˛ C�M˛/; (3.51)

where C⇤ D C⇤.˛;�; ⌫; r; R;G/. Here @thi and @tHi are the interface velocities in the radial
direction, normalized by r and R respectively (see (2.13).)

Let pi .i D 1; 2/ denote the pressure solving (1.6) and (1.7) on the physical domain that is
determined by �i and Q�i , while Qpi denotes its pull back into the reference coordinate as in (3.4).
An important intermediate result in proving Lemma 3.4 is the following lemma on C 1;˛-bound for
. Qp1 � Qp2/, which will be also used when proving uniqueness of the local solution in Section 9.

Lemma 3.5 Under the assumption of Lemma 3.4,

k Qp1 � Qp2kL1.BR/ 6 C⇤.�m0 C�M0/; (3.52)

and
k Qp1 � Qp2kC1;˛.Br /

C k Qp1 � Qp2kC1;˛.BRnBr /
6 C⇤.�m˛ C�M˛/; (3.53)

where C⇤ D C⇤.˛;�; ⌫; r; R;G/.

Their proofs involve lengthy calculation, while they are relatively independent from the rest of
the paper. So we leave them to Appendix B.

4. Gradient estimates for � ⇤ g along interfaces

In this section, we shall derive estimates concerning er � r.� ⇤ g/ and e✓ � r.� ⇤ g/ along �
and Q� , where er D .cos ✓; sin ✓/ and e✓ D .� sin ✓; cos ✓/. Aiming at greater generality, instead
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of working with g defined in (2.4), here we shall assume g WD g0.X.x// for some g0 defined in
the reference coordinate and supported on B.1C4ı/r , where X.x/ is the inverse of x.X/ defined
by (3.2). We remark that the support is a slightly larger than the one corresponding to (2.4) (Br in
that case). The motivation for this will be clear in Section 9. Also note that B.1C4ı/r ⇢ B.1�2ı/R.

4.1 Preliminaries

We introduce Poisson kernel P on the 2-D unit disc and its conjugate Q:

P.s; ⇠/ D 1 � s2
1C s2 � 2s cos ⇠

; (4.1)

Q.s; ⇠/ D 2s sin ⇠
1C s2 � 2s cos ⇠

: (4.2)

Elementary estimates for them as well as their derivatives are collected in Lemma A.1. Define

K.s; ⇠/ WD 2s2 sin ⇠
1C s2 � 2s cos ⇠

D sQ.s; ⇠/; (4.3)

J.s; ⇠/ WD 2.s cos ⇠ � 1/s
1C s2 � 2s cos ⇠

D �s
�
1C P.s; ⇠/

�
: (4.4)

See (4.43) and (4.44) for the motivation of defining these kernels. They have the following
properties.

Lemma 4.1 Let zi 2 Œ0; 2ç .i D 1; 2; 3; 4/. Suppose for some w 2 Œ0; 2ç and ⇠ 2 T, jzi � wj 6
c.j⇠jCj1�wj/. Here c is some universal small constant, whose smallness will be clear in the proof.
Then

jK.zi ; ⇠/j 6 C jzi j
.1C w2 � 2w cos ⇠/1=2

; (4.5)
ˇ̌
ˇ̌@K
@s
.zi ; ⇠/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌@K
@⇠
.zi ; ⇠/

ˇ̌
ˇ̌ 6 C

1C w2 � 2w cos ⇠
; (4.6)

jK.z1; ⇠/ �K.z2; ⇠/j 6 C jz1 � z2j
1C w2 � 2w cos ⇠

; (4.7)
ˇ̌
ˇ̌@K
@s
.z1; ⇠/ � @K

@s
.z2; ⇠/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌@K
@⇠
.z1; ⇠/ � @K

@⇠
.z2; ⇠/

ˇ̌
ˇ̌ 6 C jz1 � z2j

.1C w2 � 2w cos ⇠/3=2
; (4.8)

and
ˇ̌
ˇ̌@K
@s
.z1; ⇠/ � @K

@s
.z2; ⇠/ � @K

@s
.z3; ⇠/C @K

@s
.z4; ⇠/

ˇ̌
ˇ̌

6 C jz1 � z2 � z3 C z4j
.1C w2 � 2w cos ⇠/3=2

C C.jz1 � z2j C jz3 � z4j/.jz1 � z3j C jz2 � z4j/
.1C w2 � 2w cos ⇠/2

: (4.9)

Here C are all universal constants. These estimates also hold if K is replaced by J .



INTERFACE MOTION IN A TUMOR GROWTH MODEL 211

Proof. We derive that
ˇ̌
ˇ̌ 1C z2i � 2zi cos ⇠
1C w2 � 2w cos ⇠

� 1
ˇ̌
ˇ̌ 6 jzi � wj C 2jw � cos ⇠j

1C w2 � 2w cos ⇠
jzi � wj: (4.10)

When c is suitably small, the right hand side is bounded by 1
2 . This implies that .1C z2i � 2zi cos ⇠/

are comparable with .1Cw2� 2w cos ⇠/, and thus they are comparable with each other. Then (4.5)
and (4.6) follow from Lemma A.1 and the assumption zi 2 Œ0; 2ç. Using the same facts, we can also
derive that

jK.z1; ⇠/ �K.z2; ⇠/j D
ˇ̌
ˇ̌2 sin ⇠.z1 � z2/Œz1.1 � z2 cos ⇠/C z2.1 � z1 cos ⇠/ç

.1C z21 � 2z1 cos ⇠/.1C z22 � 2z2 cos ⇠/

ˇ̌
ˇ̌

6 C jz1 � z2j
1C w2 � 2w cos ⇠

: (4.11)

Moreover, by Lemma A.1,

@K

@s
D QC s@sQ D QC 2s sin ⇠.1 � s2/

.1C s2 � 2s cos ⇠/2
D Q.1C P /; (4.12)

@K

@⇠
D s@⇠Q D s2@sP D K

tan ⇠
�QK: (4.13)

Then (4.8) and (4.9) follow from

P.z1; ⇠/ � P.z2; ⇠/ D 2.z1 � z2/ � .1 � z1/.1 � z2/ � .1 � cos ⇠/.1C z1z2/

.1C z21 � 2z1 cos ⇠/.1C z22 � 2z2 cos ⇠/
; (4.14)

Q.z1; ⇠/ �Q.z2; ⇠/ D 2.z1 � z2/ � sin ⇠
�
.1 � z1/C z1.1 � z2/

�
.1C z21 � 2z1 cos ⇠/.1C z22 � 2z2 cos ⇠/

; (4.15)

and Lemma A.1 by a direct calculation as in (4.11).
The estimates for J can be justified similarly. Indeed,

J.z1; ⇠/ � J.z2; ⇠/ D 2.z1 � z2/ � z1z2 sin2 ⇠ � .1 � z1 cos ⇠/.1 � z2 cos ⇠/
.1C z21 � 2z1 cos ⇠/.1C z22 � 2z2 cos ⇠/

; (4.16)

and
@J

@s
D �.1C P / � s@sP D �1 � P � Q

tan ⇠
CQ2; (4.17)

@J

@⇠
D �s@⇠P D s2@sQ D PK: (4.18)

Suppose the inner interface � and the outer interface Q� are defined by h and H through (2.8)–
(2.19), respectively. Let ⌘ı be defined as in the beginning of Section 3. With ⇢ D rw, let

Qb.w; ✓; ⇠/ WD w
�
1C h.✓ C ⇠/⌘ı.w/

�
1C h.✓/

; (4.19)

QB.w; ✓; ⇠/ WD r

R
� w

�
1C h.✓ C ⇠/⌘ı.w/

�
1CH.✓/

: (4.20)
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Additionally, we define

b.w; ✓/ WD Qb.w; ✓; 0/ D w
�
1C h.✓/⌘ı.w/

�
1C h.✓/

; (4.21)

B.w; ✓/ WD QB.w; ✓; 0/ D r

R
� w

�
1C h.✓/⌘ı.w/

�
1CH.✓/

: (4.22)

The motivation of introducing these quantities will be clear later in (4.43) and (4.44). In what
follows, we will work with several different configurations of interfaces, determined by hi and
Hi .i D 1; 2/, respectively. We define the corresponding quantities Qbi , QBi , bi and Bi as above, with
h and H replaced by hi and Hi .

Recall that m0;i and M0;i are defined in (3.17) and (3.18), while �m0 and �M0 are defined
in (3.47) and (3.48). It is straightforward to show that:

Lemma 4.2 Suppose hi ;Hi 2 W 1;1.T/ .i D 1; 2/, with m0;i C M0;i ⌧ 1. Then with C being
universal constants, for all w 2 Œ0; 1C 4ıç and ⇠ 2 T,

j Qbi � bi j 6 C j⌘ı jj⇠jkh0
ikL1 ; (4.23)

j Qb1 � Qb2j 6 C.j⌘ı jj⇠j C ıj1 � ⌘ı j/�m0 6 C.j⇠j C j1 � wj/�m0; (4.24)
jb1 � b2j 6 C j1 � ⌘ı jkh1 � h2kL1 6 C j1 � wj�m0; (4.25)

j Qb1 � b1 � Qb2 C b2j 6 C j⌘ı jj⇠j�m0; (4.26)

j QBi � Bi j 6 Cr

R
j⌘ı jj⇠jkh0

ikL1 ; (4.27)

j QB1 � QB2j C jB1 � B2j 6 Cr

R
.j⌘ı jkh1 � h2kL1 C kH1 �H2kL1/ 6 Crı

R
.�m0 C�M0/;

(4.28)

j QB1 � B1 � QB2 C B2j 6 Cr

R
j⌘ı jj⇠j.kh0

1 � h0
2kL1 C kh0

2kL1kH1 �H2kL1/; (4.29)

ˇ̌
ˇ̌
ˇ
@ QBi
@✓

� @Bi

@✓

ˇ̌
ˇ̌
ˇ 6 Cr

R
j⌘ı j

�
kh0
ikL1 C kH 0

i kL1kh0
ikL1 j⇠j

�
6 Cr

R
j⌘ı jkh0

ikL1 ; (4.30)

ˇ̌
ˇ̌@B1
@✓

� @B2

@✓

ˇ̌
ˇ̌ 6 Cr

R
.�m0 C�M0/; (4.31)

and

ˇ̌
ˇ̌
ˇ
@ QB1
@✓

� @B1

@✓
� @ QB2
@✓

C @B2

@✓

ˇ̌
ˇ̌
ˇ

6 Cr

R
j⌘ı j.kh0

1 � h0
2kL1 C kh0

2kL1kH1 �H2kL1 C kH 0
1 �H 0

2kL1kh0
1kL1 j⇠j/: (4.32)
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If in addition, hi 2 C 1;ˇ .T/ for some ˇ 2 .0; 1/, then

ˇ̌
ˇ̌
ˇ
@ Qbi
@✓

� @bi

@✓

ˇ̌
ˇ̌
ˇ 6 C j⌘ı j.kh0

ik PCˇ j⇠jˇ C kh0
ik2L1 j⇠j/ 6 C j⌘ı jkh0

ik PCˇ j⇠jˇ ; (4.33)

ˇ̌
ˇ̌@b1
@✓

� @b2

@✓

ˇ̌
ˇ̌ 6 C j1 � ⌘ı j.kh0

1 � h0
2kL1 C kh0

2kL1kh1 � h2kL1/ 6 C j1 � ⌘ı j�m0; (4.34)

and

ˇ̌
ˇ̌
ˇ
@ Qb1
@✓

� @b1

@✓
� @ Qb2
@✓

C @b2

@✓

ˇ̌
ˇ̌
ˇ 6 C j⌘ı jj⇠jˇ .kh0

1 � h0
2k PCˇ C kh0

2k PCˇ kh1 � h2kL1/: (4.35)

Here all the constants C are universal.

Proof. These estimates follow directly from (4.19)–(4.22) and

@ Qbi
@✓

D wh0
i .✓ C ⇠/⌘ı.w/

�
1C hi .✓/

�
� h0

i .✓/w
�
1C hi .✓ C ⇠/⌘ı.w/

�
�
1C hi .✓/

�2 ; (4.36)

@bi

@✓
D wh0

i .✓/.⌘ı.w/ � 1/�
1C hi .✓/

�2 ; (4.37)

@ QBi
@✓

D r

R
� wh

0
i .✓ C ⇠/⌘ı.w/.1CHi .✓// �H 0

i .✓/w
�
1C hi .✓ C ⇠/⌘ı.w/

�
�
1CHi .✓/

�2 ; (4.38)

@Bi

@✓
D r

R
� wh

0
i .✓/⌘ı.w/

�
1CHi .✓/

�
�H 0

i .✓/w
�
1C hi .✓/⌘ı.w/

�
�
1CHi .✓/

�2 : (4.39)

We omit the details.

REMARK 4.1 Taking h1 D H1 D 0 (or h2 D H2 D 0), we find by (4.24), (4.25) and (4.28) that

j Qbi � wj C jbi � wj 6 C.j⇠j C j1 � wj/m0;i ; (4.40)
ˇ̌
ˇ QBi � rw

R

ˇ̌
ˇC

ˇ̌
ˇBi � rw

R

ˇ̌
ˇ 6 Crı

R
.m0;i CM0;i / 6 C

⇣
j⇠j C

ˇ̌
ˇ1 � rw

R

ˇ̌
ˇ
⌘
.m0;i CM0;i /: (4.41)

Here we used the fact that j1 � rw
R j > Cı for all w 2 Œ0; 1 C 4ıç (c.f. (2.23)). If m0;i C M0;i is

assumed to be suitably small, Qbi .w; ✓; ⇠/ and bi .w; ✓/ satisfy the assumption of Lemma 4.1, while
QBi .w; ✓; ⇠/ and Bi .w; ✓/ satisfy the assumption of Lemma 4.1 with w there replaced by rw

R .
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4.2 Estimates along �

Let x D f .✓/.cos ✓; sin ✓/ 2 � . With abuse of notations, let y D x
�
.⇢ cos.✓ C ⇠/; ⇢ sin.✓ C ⇠//

�
be an arbitrary point in R2, where the map x is defined in (3.2). Then

e✓ � r.� ⇤ g/ D 1

2⇡

Z
Q̋
.y � x/ � e✓

jx � yj2 g0
�
X.y/

�
dy

D 1

2⇡

Z
T
d⇠

Z r.1C4ı/

0

jyj sin ⇠ � g0.⇢; ✓ C ⇠/

f .✓/2 C jyj2 � 2jyjf .✓/ cos ⇠
� @jyj
@⇢

jyj d⇢

D 1

4⇡

Z
T
d⇠

Z r.1C4ı/

0

2
⇣

jyj
f .✓/

⌘2
sin ⇠

1C
⇣

jyj
f .✓/

⌘2
� 2 jyj

f .✓/ cos ⇠
� @jyj
@⇢

g0.⇢; ✓ C ⇠/ d⇢: (4.42)

For w 2 Œ0; 1C4ıç, jyj D jy.⇢; ✓C ⇠/j D rwŒ1Ch.✓C ⇠/⌘ı.w/ç. Note that the third term in (3.2)
does not show up since ⇢ D rw 6 R.1 � 2ı/. Then (4.42) becomes

�
e✓ � r.� ⇤ g/

�
�.✓/

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

K. Qb; ⇠/ � @jyj
@⇢

g0.rw; ✓ C ⇠/ dw: (4.43)

Similarly,

�
er � r.� ⇤ g/

�
�.✓/

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

J. Qb; ⇠/ � @jyj
@⇢

g0.rw; ✓ C ⇠/ dw: (4.44)

We first show:

Lemma 4.3 Suppose for i D 1; 2, hi 2 W 1;1.T/ such that m0;i ⌧ 1. Let �m0 be defined
in (3.47). Let xi .X/ be the map (3.2) determined by hi (H is irrelevant in this context, and one may
take H D 0 in (3.2) without loss of generality.) Let Xi .x/ be its inverse. Define gi D g0.Xi .x//.
Then

���e✓ � r.� ⇤ g1/
�
�1.✓/

�
�
e✓ � r.� ⇤ g2/

�
�2.✓/

��
L1.T/ 6 Crıj ln ıj�m0kg0kL1 ; (4.45)

where C is a universal constant.
In addition, k.er � r.� ⇤g1//�1.✓/� .er � r.� ⇤g2//�2.✓/kL1.T/ satisfies an identical estimate.

Proof. Let yi D xi .⇢; ✓ C ⇠/, with jyi j D ⇢Œ1C hi .✓ C ⇠/⌘ı.⇢=r/ç. We calculate

@jyi j
@⇢

.⇢; ✓ C ⇠/ � 1 D hi .✓ C ⇠/
�
⌘ı.w/C w⌘0

ı.w/
�
: (4.46)

By Lemma 4.1, Lemma 4.2 and Remark 4.1,
ˇ̌
ˇ̌
ˇ
Z
T
d⇠

Z 1C4ı

0

�
K. Qb1; ⇠/ �K. Qb2; ⇠/

�
� @jy1j
@⇢

g0.rw; ✓ C ⇠/ dw

ˇ̌
ˇ̌
ˇ

6 C�m0kg0kL1

Z
T
d⇠

Z 1C4ı

0

j⌘ı jj⇠j C j1 � ⌘ı jı
1C w2 � 2w cos ⇠

dw

6 Cıj ln ıj�m0kg0kL1 : (4.47)
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On the other hand, by (4.46),
ˇ̌
ˇ̌
ˇ
Z
T
d⇠

Z 1C4ı

0

K. Qb2; ⇠/ �
✓
@jy1j
@⇢

� @jy2j
@⇢

◆
g0.rw; ✓ C ⇠/ dw

ˇ̌
ˇ̌
ˇ

6 C

Z
T
d⇠

Z 1C2ı

1�2ı

1

j1 � wj C j⇠j � kh1 � h2kL1ı�1kg0kL1 dw

6 Cıj ln ıj�m0kg0kL1 : (4.48)

Combining these estimates with (4.43) yields (4.45). The estimate concerning .er � r.� ⇤ gi //�i .✓/

can be justified in the same way.

Lemma 4.4 Let h 2 W 1;1.T/ such that m0 ⌧ 1, which defines the map x in (3.2) and g D
g0.X.x//. Then

���e✓ � r.� ⇤ g/
�
�.✓/

��
L1.T/ C

���er � r.� ⇤ g/
�
�.✓/

� cg0

��
L1.T/

6 Cr
�
m0ıj ln ıjkg0kL1.B.1C4ı/r / C ke✓ � rg0kL2.Br.1C4ı//

�
; (4.49)

where C is a universal constant and

cg0
WD � 1

2⇡r

Z
Br

g0.X/ dX: (4.50)

Proof. We first derive an L1-estimate of

�
e✓ � r.� ⇤ g0/

�
@Br

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

K.w; ⇠/g0.rw; ✓ C ⇠/ dw; (4.51)

which corresponds to the case h D 0. Define Ng0.rw/ D .2⇡/�1
R
T g0.rw; ⇠/ d⇠ . Since K.w; �/ is

an odd kernel, by Hölder’s inequality and Sobolev embedding,

j
�
e✓ � r.� ⇤ g0/

�
@Br

j D r

4⇡

ˇ̌
ˇ̌
ˇ
Z
T
d⇠

Z 1C4ı

0

K.w; ⇠/
�
g0.rw; ✓ C ⇠/ � Ng0.rw/

�
dw

ˇ̌
ˇ̌
ˇ

6 Cr

Z 1C4ı

0

����
1

j1 � wj C j⇠j

����
L1
⇠
.T/

kg0.rw; �/ � Ng0.rw/kL1
⇠
.T/ dw

6 Cr

Z 1C4ı

0

.1C j ln j1 � wjj/k@✓g0.rw; �/kL2.T/ dw

6 Crk1C j ln j1 � wjjkL2.Œ0;1C4ıç/

 Z 1C4ı

0

rke✓ � rg0k2L2.@Brw/
dw

!1=2

6 Crke✓ � rg0kL2.Br.1C4ı//
: (4.52)

Now we take in Lemma 4.3 that h1 D h and h2 D 0, and derive
���e✓ � r.� ⇤ g/

�
�.✓/

��
L1.T/ 6

���e✓ � r.� ⇤ g/
�
�.✓/

�
�
e✓ � r.� ⇤ g0/

�
@Br

��
L1.T/

C
���e✓ � r.� ⇤ g0/

�
@Br

��
L1.T/

6 Crıj ln ıjm0kg0kL1 C Crke✓ � rg0kL2.Br.1C4ı//
: (4.53)
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Next we study

�
er � r.� ⇤ g0/

�
@Br

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

J.w; ⇠/
�
g0.rw; ✓ C ⇠/ � Ng0.rw/

�
dw

C r

4⇡

Z 1C4ı

0

Z
T
d⇠ J.w; ⇠/ Ng0.rw/ dw: (4.54)

The first term can be bounded exactly as in (4.52). We use the definition of J in (4.4) to simplify
the second term as

r

4⇡

Z 1C4ı

0

Z
T
d⇠ J.w; ⇠/ Ng0.rw/ dw D �r

Z 1

0

w Ng0.rw/ dw D � 1

2⇡r

Z
Br

g0.X/ dX: (4.55)

Then the desired estimate follows.

Next we derive W 1;p-estimates for
�
e✓ � r.� ⇤ g/

�
�.✓/

and
�
er � r.� ⇤ g/

�
�.✓/

.

Lemma 4.5 Assume h1; h2 2 C 1;ˇ .T/ for some ˇ 2 .0; 1/, such that m0;i ⌧ 1. Let �m0 be
defined in (3.47), and let gi .x/ D g0.Xi .x//. Then for all p 2 Œ2;1/,

k
�
e✓ � r.� ⇤ g1/

�
�1.✓/

�
�
e✓ � r.� ⇤ g2/

�
�2.✓/

k PW 1;p.T/

6 Crkg0kL1.B.1C4ı/r /

h�
1C ıˇ .kh0

1k PCˇ C kh0
2k PCˇ /

�
�m0 C ıˇkh0

1 � h0
2k PCˇ

i

C Cr�m0ke✓ � rg0kL2.B.1C4ı/r /
; (4.56)

where C D C.p; ˇ/.

Proof. Let yi D xi .⇢; ✓ C ⇠/. We take ✓ -derivative in (4.43).

d

d✓

�
e✓ � r.� ⇤ gi /

�
�i .✓/

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw
@

@✓


K. Qbi ; ⇠/ � @jyi j

@⇢
g0.rw; ⇠ C ✓/

�

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

"
@K

@s
. Qbi ; ⇠/

@ Qbi
@✓

� @K

@s
.bi ; ⇠/

@bi

@✓

# 
@jyi j
@⇢

g0

�
.rw;⇠C✓/

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw
@K

@s
.bi ; ⇠/

@bi

@✓

 
@jyi j
@⇢

g0

�
.rw;⇠C✓/

�

@jyi j
@⇢

g0

�
.rw;✓/

!

� r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

"
@K

@s
. Qbi ; ⇠/

@ Qbi
@⇠

C @K

@⇠
. Qbi ; ⇠/

#

 
@jyi j
@⇢

g0

�
.rw;⇠C✓/

�

@jyi j
@⇢

g0

�
.rw;✓/

!

DW J .i/✓;1 C J
.i/
✓;2 C J

.i/
✓;3: (4.57)
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Here we exchanged the integral with the ✓ -derivative, which can be justified rigorously by a limiting
argument. In J .i/✓;2, an extra term is inserted without changing its value, since @sK.bi ; ⇠/ is odd in ⇠ .
When deriving J .i/✓;3, we used the fact that

@

@✓


@jyi j
@⇢

g0

�
.rw;⇠C✓/

D @

@⇠


@jyi j
@⇢

g0

�
.rw;⇠C✓/

(4.58)

and then integrated by parts. Note that it is not clear a priori whether these integrands are integrable
at .w; ⇠/ D .1; 0/, so we need to write them as principal value integrals in the w-variable in the first
place. Yet, it will be clear in the following that all these integrands are absolutely integrable. For
this reason, we omitted the notations for the principal value integral.

We start with bounding J .1/✓;1 � J .2/✓;1 .

J
.1/
✓;1 � J .2/✓;1

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

✓
@K

@s
. Qb1; ⇠/ � @K

@s
. Qb2; ⇠/

◆ 
@ Qb1
@✓

� @b1

@✓

! 
@jy1j
@⇢

g0

�
.rw;⇠C✓/

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw
@K

@s
. Qb2; ⇠/

 
@ Qb1
@✓

� @b1

@✓
� @ Qb2
@✓

C @b2

@✓

! 
@jy1j
@⇢

g0

�
.rw;⇠C✓/

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

✓
@K

@s
. Qb1; ⇠/ � @K

@s
.b1; ⇠/ � @K

@s
. Qb2; ⇠/C @K

@s
.b2; ⇠/

◆
@b1

@✓
@jy1j
@⇢

g0

�
.rw;⇠C✓/

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

✓
@K

@s
. Qb2; ⇠/ � @K

@s
.b2; ⇠/

◆✓
@b1

@✓
� @b2

@✓

◆
@jy1j
@⇢

g0

�
.rw;⇠C✓/

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw
@K

@s
. Qb2; ⇠/

 
@ Qb2
@✓

� @b2

@✓

! ✓
@jy1j
@⇢

� @jy2j
@⇢

◆
g0

�
.rw;⇠C✓/

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

✓
@K

@s
. Qb2; ⇠/ � @K

@s
.b2; ⇠/

◆
@b2

@✓

✓
@jy1j
@⇢

� @jy2j
@⇢

◆
g0

�
.rw;⇠C✓/

:

(4.59)

By Lemma 4.1, Lemma 4.2, Lemma A.1 and (4.46),

jJ .1/✓;1 � J .2/✓;1 j

6 Crkg0kL1

Z
T
d⇠

Z 1C4ı

0

dw
j Qb1 � Qb2j

.j1 � wj C j⇠j/3 � j⌘ı jkh0
1k PCˇ j⇠jˇ

C Crkg0kL1

Z
T
d⇠

Z 1C4ı

0

dw
j⌘ı jj⇠jˇ .kh0

1 � h0
2k PCˇ C kh0

2k PCˇ kh1 � h2kL1/

.j1 � wj C j⇠j/2

C Crkg0kL1

Z
T
d⇠

Z 1C4ı

0

dw

 j Qb1 � b1 � Qb2 C b2j
.j1 � wj C j⇠j/3

C .j Qb1 � b1j C j Qb2 � b2j/.j Qb1 � Qb2j C jb1 � b2j/
.j1 � wj C j⇠j/4

�
kh0
1kL1 j1 � ⌘ı j
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C Crkg0kL1

Z
T
d⇠

Z 1C4ı

0

dw
j Qb2 � b2j

.j1 � wj C j⇠j/3 � j1 � ⌘ı j�m0

C Crkg0kL1

Z
T
d⇠

Z 1C4ı

0

dw
1

.j1 � wj C j⇠j/2 � j⌘ı jkh0
2k PCˇ j⇠jˇ � j⌘ı C w⌘0

ı jkh1 � h2kL1

C Crkg0kL1

Z
T
d⇠

Z 1C4ı

0

dw
j Qb2 � b2j

.j1 � wj C j⇠j/3 � kh0
2kL1 j1 � ⌘ı j � j⌘ı C w⌘0

ı jkh1 � h2kL1

6 Crkg0kL1
h
ıˇ .kh0

1k PCˇ C kh0
2k PCˇ /�m0 C ıˇkh0

1 � h0
2k PCˇ C .kh0

1kL1 C kh0
2kL1/�m0

i
:

(4.60)

In the last inequality, when calculating the integrals, we used the facts that ⌘ı is supported on
Œ1 � 2ı; 1C 2ıç and that ⌘ı.1 � ⌘ı/ is supported on Œ1 � 2ı; 1 � ıç [ Œ1C ı; 1C 2ıç.

For J .i/✓;2 and J .i/✓;3, by (4.57),

.J
.1/
✓;2 C J

.1/
✓;3 / � .J .2/✓;3 C J

.2/
✓;2 /

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

"
@K

@s
.b1; ⇠/

@b1

@✓
� @K

@s
. Qb1; ⇠/

@ Qb1
@⇠

� @K

@⇠
. Qb1; ⇠/

#

�
 ✓

@jy1j
@⇢

� @jy2j
@⇢

◆
g0

�
.rw;⇠C✓/

�
✓
@jy1j
@⇢

� @jy2j
@⇢

◆
g0

�
.rw;✓/

!

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

✓
@K

@s
.b1; ⇠/ � @K

@s
.b2; ⇠/

◆
@b1

@✓

�
 
@jy2j
@⇢

g0

�
.rw;⇠C✓/

�

@jy2j
@⇢

g0

�
.rw;✓/

!

� r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

"✓
@K

@s
. Qb1; ⇠/ � @K

@s
. Qb2; ⇠/

◆
@ Qb1
@⇠

C
✓
@K

@⇠
. Qb1; ⇠/ � @K

@⇠
. Qb2; ⇠/

◆#

�
 
@jy2j
@⇢

g0

�
.rw;⇠C✓/

�

@jy2j
@⇢

g0

�
.rw;✓/

!

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

"
@K

@s
.b2; ⇠/

@.b1 � b2/
@✓

� @K

@s
. Qb2; ⇠/

@. Qb1 � Qb2/
@⇠

#

�
 
@jy2j
@⇢

g0

�
.rw;⇠C✓/

�

@jy2j
@⇢

g0

�
.rw;✓/

!
: (4.61)

We derive in a similar manner.
ˇ̌
ˇ.J .1/✓;2 C J

.1/
✓;3 / � .J .2/✓;2 C J

.2/
✓;3 /

ˇ̌
ˇ

6 Cr

Z
T
d⇠

Z 1C4ı

0

dw

.j1 � wj C j⇠j/2 � j⌘ı C w⌘0
ı j

�
�
kh1 � h2kL1 jg0.rw; ⇠ C ✓/ � g0.rw; ✓/j C kh1 � h2k PCˇ j⇠jˇkg0kL1

�
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C Cr

Z
T
d⇠

Z 1C4ı

0

dw
jb1 � b2j

.j1 � wj C j⇠j/3 � j1 � ⌘ı jkh0
1kL1

�
�
jg0.rw; ⇠ C ✓/ � g0.rw; ✓/j C j⌘ı C w⌘0

ı jj⇠jˇkh2k PCˇ kg0kL1
�

C Cr

Z
T
d⇠

Z 1C4ı

0

dw
j Qb1 � Qb2j

.j1 � wj C j⇠j/3
�
�
jg0.rw; ⇠ C ✓/ � g0.rw; ✓/j C j⌘ı C w⌘0

ı jj⇠jˇkh2k PCˇ kg0kL1
�

C Cr

Z
T
d⇠

Z 1C4ı

0

dw

.j1 � wj C j⇠j/2 ��m0

�
�
jg0.rw; ⇠ C ✓/ � g0.rw; ✓/j C j⌘ı C w⌘0

ı jj⇠jˇkh2k PCˇ kg0kL1
�

6 Crkg0kL1ıˇ�1�kh1 � h2k PCˇ C�m0kh2k PCˇ

�

C Cr�m0

Z
T
d⇠

Z 1C4ı

0

dw
jg0.rw; ⇠ C ✓/ � g0.rw; ✓/j

.j1 � wj C j⇠j/2 : (4.62)

By Minkowski inequality and Hölder’s inequality, with arbitrary s 2
�
1
2 ;
1
2 C 1

p

�
(for definiteness,

take s D 1
2 C 1

2p ),

���.J .1/✓;2 C J
.1/
✓;3 / � .J .2/✓;2 C J

.2/
✓;3 /

���
Lp.T/

6 Crkg0kL1�m0

C Cr�m0

Z 1C4ı

0

dw

2
4
Z
T
d⇠

kg0.rw; ⇠ C �/ � g0.rw; �/k2Lp
✓
.T/

j⇠j1C2s

3
5
1=2 Z

T

j⇠j1C2s d⇠
.j1 � wj C j⇠j/4

�1=2

6 Crkg0kL1�m0 C Cr�m0

Z 1C4ı

0

dw
kg0.rw; �/k PBs

p;2.T/

j1 � wj1�s

6 Crkg0kL1�m0 C Cr�m0

Z 1C4ı

0

dw
k@✓g0.rw; �/kL2.T/

j1 � wj1�s

6 Cr�m0.kg0kL1 C ke✓ � rg0kL2.B.1C4ı/r /
/: (4.63)

See, e.g., [47, ê2.5.12 and ê2.7.1] for the definition of Bsp;2.T/-space and the embedding of H 1.T/
into it. Combining this with (4.57) and (4.60), we conclude with (4.56).

Lemma 4.6 Under the assumptions of Lemma 4.5,

k
�
er � r.� ⇤ g1/

�
�1.✓/

�
�
er � r.� ⇤ g2/

�
�2.✓/

k PW 1;p.T/

6 Crkg0kL1.B.1C4ı/r /

h�
1C ıˇ .kh0

1k PCˇ C kh0
2k PCˇ /

�
�m0 C ıˇkh0

1 � h0
2k PCˇ

i

C Cr�m0ke✓ � rg0kL2.B.1C4ı/r /
; (4.64)

where C D C.p; ˇ/.
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Proof. We proceed as the proof of Lemma 4.5. By (4.44) and integration by parts,

d

d✓

�
er � r.� ⇤ gi /

�
�i .✓/

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

"
@J

@s
. Qbi ; ⇠/

@ Qbi
@✓

� @J

@s
.bi ; ⇠/

@bi

@✓

# 
@jyi j
@⇢

g0

�
.rw;✓C⇠/

dw

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

@J

@s
.bi ; ⇠/

@bi

@✓

 
@jyi j
@⇢

g0

�
.rw;✓C⇠/

�

@jyi j
@⇢

g0

�
.rw;✓/

!
dw

� r

4⇡

Z
T
d⇠

Z 1C4ı

0

"
@J

@s
. Qbi ; ⇠/

@ Qbi
@⇠

C @J

@⇠
. Qbi ; ⇠/

# 
@jyi j
@⇢

g0

�
.rw;✓C⇠/

�

@jyi j
@⇢

g0

�
.rw;✓/

!
dw

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

@J

@s
.bi ; ⇠/

@bi

@✓


@jyi j
@⇢

g0

�
.rw;✓/

dw

DW J .i/r;1 C J
.i/
r;2 C J

.i/
r;3 C J

.i/
r;4 : (4.65)

Estimates concerning J .i/r;1 CJ .i/r;2 CJ .i/r;3 can be derived exactly as in Lemma 4.5. It remains to bound
J
.1/
r;4 � J .2/r;4 . By Lemma A.1,

Z
T

@J

@s
.s; ⇠/ d⇠ D

(
�4⇡; if s 2 Œ0; 1/;
0; if s > 1:

(4.66)

Hence, thanks to Lemma 4.2 and (4.46),

ˇ̌
J
.1/
r;4 � J .2/r;4

ˇ̌
D r

ˇ̌
ˇ̌
ˇ
Z 1

0

@b1

@✓


@jy1j
@⇢

g0

�
.rw;✓/

� @b2

@✓


@jy2j
@⇢

g0

�
.rw;✓/

dw

ˇ̌
ˇ̌
ˇ

6 Crkg0kL1

Z 1

0

ˇ̌
ˇ̌@b1
@✓

� @b2

@✓

ˇ̌
ˇ̌
ˇ̌
ˇ̌@jy1j
@⇢

ˇ̌
ˇ̌C

ˇ̌
ˇ̌@b2
@✓

ˇ̌
ˇ̌
ˇ̌
ˇ̌@jy1j
@⇢

� @jy2j
@⇢

ˇ̌
ˇ̌ dw

6 Crkg0kL1�m0: (4.67)

This completes the proof.

Lemma 4.7 Assume h 2 C 1;ˇ .T/ for some ˇ 2 .0; 1/, such that m0 ⌧ 1. Define g.x/ D
g0.X.x//. Then for all p 2 Œ2;1/,

���e✓ � r.� ⇤ g/
�
�.✓/

�� PW 1;p.T/ C
���er � r.� ⇤ g/

�
�.✓/

�� PW 1;p.T/

6 Cr
�
kg0kL1.B.1C4ı/r /mˇ C ke✓ � rg0kL2.B.1C4ı/r /

�
; (4.68)

where C D C.p; ˇ/. Here mˇ is defined as in (3.45).

Proof. As in Lemma 4.4, we first study the case with h D 0. By (4.57),

d

d✓

�
e✓ � r.� ⇤ g0/

�
@Br

� r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw
@K

@⇠
.w; ⇠/

�
g0.rw; ⇠ C ✓/ � g0.rw; ✓/

�
: (4.69)
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Hence, arguing as in (4.63),

���e✓ � r.� ⇤ g0/
�
@Br

�� PW 1;p 6 Cr

Z
T
d⇠

Z 1C4ı

0

dw
kg0.rw; ⇠ C �/ � g0.rw; �/kLp

✓
.T/

.j1 � wj C j⇠j/2
6 Crke✓ � rg0kL2.B.1C4ı/r /

: (4.70)

Now taking h1 D h and h2 D 0 in Lemma 4.5, we find that
���e✓ � r.� ⇤ g/

�
�.✓/

�� PW 1;p.T/

6
���e✓ � r.� ⇤ g/

�
�.✓/

�
�
e✓ � r.� ⇤ g0/

�
@Br

�� PW 1;p.T/ C
���e✓ � r.� ⇤ g0/

�
@Br

�� PW 1;p.T/

6 Crkg0kL1.B.1C4ı/r /.m0 C ıˇkh0k PCˇ /C Crke✓ � rg0kL2.B.1C4ı/r /
: (4.71)

The estimate for .er � r.� ⇤ g//�.✓/ can be derived in exactly the same way.

4.3 Estimates along Q�
Next, we derive estimates for er � r.� ⇤ g/ and e✓ � r.� ⇤ g/ along Q� , with g.x/ D g0.X.x//. We
calculate as in (4.42) that

�
e✓ � r.� ⇤ g/

�
Q�.✓/ D 1

2⇡

Z
T
d⇠

Z r.1C4ı/

0

jyj sin ⇠ � g0.⇢; ✓ C ⇠/

F.✓/2 C jyj2 � 2jyjF.✓/ cos ⇠
� @jyj
@⇢

jyj d⇢

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

K. QB; ⇠/ � @jyj
@⇢

g0.rw; ✓ C ⇠/ dw; (4.72)

and �
er � r.� ⇤ g/

�
Q�.✓/

r

4⇡

Z
T
d⇠

Z 1C4ı

0

J. QB; ⇠/ � @jyj
@⇢

g0.rw; ✓ C ⇠/ dw: (4.73)

Arguing as in Lemma 4.3, we can show:

Lemma 4.8 Under the assumptions of Lemma 4.3,

���e✓ �r.� ⇤g1/
�

Q�1.✓/
�
�
e✓ �r.� ⇤g2/

�
Q�2.✓/

��
L1.T/ 6 Cr2

R
ıj ln ıj.�m0C�M0/kg0kL1 ; (4.74)

where C is universal. Moreover, k.er � r.� ⇤ g1// Q�1.✓/ � .er � r.� ⇤ g2// Q�2.✓/kL1.T/ satisfies the
same estimate.

We omit its proof here, but only note that j QBi j 6 Cr
R and j ln.1 � .1C4ı/r

R /j 6 Cr
R j ln ıj.

Then we prove as in Lemma 4.4 that:

Lemma 4.9 Let h;H 2 W 1;1.T/ such that m0;M0 ⌧ 1, which define the map x in (3.2) and
g D g0.X.x//. Then

���e✓ � r.� ⇤ g/
�

Q�.✓/
��
L1.T/ C

���er � r.� ⇤ g/
�

Q�.✓/ � Qcg0

��
L1.T/

6 Cr2

R

�
.m0 CM0/ıj ln ıjkg0kL1.B.1C4ı/r / C ke✓ � rg0kL2.Br.1C4ı//

�
; (4.75)

where C is universal and
Qcg0

WD � 1

2⇡R

Z
Br.1C4ı/

g0.X/ dX: (4.76)
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Proof. Let Ng0 be as in Lemma 4.4. We proceed as in (4.52) by noticing that K. rwR ; �/ is an odd
kernel.

ˇ̌�
e✓ � r.� ⇤ g0/

�
@BR

ˇ̌
D r

4⇡

ˇ̌
ˇ̌
ˇ
Z
T
d⇠

Z 1C4ı

0

K
⇣rw
R
; ⇠

⌘ �
g0.rw; ✓ C ⇠/ � Ng0.rw/

�
dw

ˇ̌
ˇ̌
ˇ

6 Cr

Z 1C4ı

0

����
r
R

j1 � rw
R j C j⇠j

����
L1
⇠
.T/

kg0.rw; �/ � Ng0.rw/kL1
⇠
.T/ dw

6 Cr2

R
ke✓ � rg0kL2.Br.1C4ı//

: (4.77)

Combining this and Lemma 4.8 with h1 D h, H1 D H and h2 D H2 D 0, we argue as in (4.53) to
find that k.e✓ � r.� ⇤ g// Q�.✓/kL1.T/ satisfies the desired bound.

Similarly,

�
er � r.� ⇤ g0/

�
@BR

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

J
⇣rw
R
; ⇠

⌘ �
g0.rw; ✓ C ⇠/ � Ng0.rw/

�
dw

C r

4⇡

Z 1C4ı

0

Z
T
d⇠ J

⇣rw
R
; ⇠

⌘
Ng0.rw/ dw: (4.78)

The first term can be bounded exactly as in (4.77). For the second term, we notice that r.1C4ı/
R 6 1.

By (4.4),

r

4⇡

Z 1C4ı

0

Z
T
d⇠ J

⇣rw
R
; ⇠

⌘
Ng0.rw/ dw

D �r
2

R

Z 1C4ı

0

w Ng0.rw/ dw D � 1

2⇡R

Z
Br.1C4ı/

g0.X/ dX: (4.79)

Then the desired estimate follows.

We shall follow Lemma 4.5 and Lemma 4.6 to prove W 1;p-estimates concerning .e✓ � r.� ⇤
g// Q�.✓/ and .er � r.� ⇤ g// Q�.✓/.

Lemma 4.10 Assume hi ;Hi 2 W 1;1.T/ .i D 1; 2/ such that m0;i C M0;i ⌧ 1. Let �m0 and
�M0 be defined in (3.47) and (3.48), respectively. Define gi .x/ D g0.Xi .x// as before. Then for
all p 2 Œ2;1/,

���e✓ � r.� ⇤ g1/
�

Q�1.✓/
�

�
e✓ � r.� ⇤ g2/

�
Q�2.✓/

�� PW 1;p.T/

6 Cr2

R
kg0kL1.B.1C4ı/r /

�
�m0 C .m0;1 Cm0;2/�M0

�

C Cr2

R
.�m0 C�M0/ke✓ � rg0kL2.B.1C4ı/r /

; (4.80)

where C D C.p/.
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Proof. Following (4.57) and (4.72),

d

d✓

�
e✓ � r.� ⇤ gi /

�
Q�i .✓/

D r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

"
@K

@s
. QBi ; ⇠/

@ QBi
@✓

� @K

@s
.Bi ; ⇠/

@Bi

@✓

# 
@jyi j
@⇢

g0

�
.rw;⇠C✓/

C r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw
@K

@s
.Bi ; ⇠/

@Bi

@✓

 
@jyi j
@⇢

g0

�
.rw;⇠C✓/

�

@jyi j
@⇢

g0

�
.rw;✓/

!

� r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw

"
@K

@s
. QBi ; ⇠/

@ QBi
@⇠

C @K

@⇠
. QBi ; ⇠/

#

 
@jyi j
@⇢

g0

�
.rw;⇠C✓/

�

@jyi j
@⇢

g0

�
.rw;✓/

!

DW QJ .i/✓;1 C QJ .i/✓;2 C QJ .i/✓;3: (4.81)

Then we derive as in (4.59) and (4.60) to find that

ˇ̌ QJ .1/✓;1 � QJ .2/✓;1

ˇ̌

6 Cr2

R
kg0kL1.�m0 C�M0/

�
kh0
1kL1 C kh0

2kL1
�

C Cr2

R
kg0kL1kh0

1 � h0
2kL1 : (4.82)

Here we used the fact that j1� rw
R j > Cı for all w 2 Œ0; 1C 4ıç. Moreover, as in (4.61) and (4.62),

ˇ̌
ˇ. QJ .1/✓;2 C QJ .1/✓;3 / � . QJ .2/✓;2 C QJ .2/✓;3 /

ˇ̌
ˇ 6 Cr2

R
kg0kL1.�m0 C ıˇ�1kh2k PCˇ�M0/

C Cr2

R
.�m0 C�M0/

Z
T
d⇠

Z 1C4ı

0

dw
jg0.rw; ⇠ C ✓/ � g0.rw; ✓/j

.j1 � rw
R j C j⇠j/2 : (4.83)

We proceed as in (4.63) to obtain that

���. QJ .1/✓;2 C QJ .1/✓;3 / � . QJ .2/✓;2 C QJ .2/✓;3 /
���
Lp.T/

6 Cr2

R
kg0kL1

�
�m0 C ıˇ�1kh2k PCˇ�M0

�

C Cr2

R
.�m0 C�M0/ke✓ � rg0kL2.B.1C4ı/r /

: (4.84)

Combining this with (4.81) and (4.82), we prove (4.80).

Lemma 4.11 Under the assumptions of Lemma 4.10,
���er � r.� ⇤ g1/

�
Q�1.✓/

�
�
er � r.� ⇤ g2/

�
Q�2.✓/

�� PW 1;p.T/

6 Cr2

R
.�m0 C�M0/

�
kg0kL1.B.1C4ı/r / C ke✓ � rg0kL2.B.1C4ı/r /

�
; (4.85)

where C D C.p/.



224 I. KIM AND J. TONG

Proof. Following the proofs of Lemma 4.6 and Lemma 4.10, we know that it remains to bound
QJ .1/r;4 � QJ .2/r;4 , where

QJ .i/r;4 WD r

4⇡

Z
T
d⇠

Z 1C4ı

0

@J

@s
.Bi ; ⇠/

@Bi

@✓


@jyi j
@⇢

g0

�
.rw;✓/

dw: (4.86)

Since for all w 2 Œ0; 1C 4ıç and ⇠ 2 T, Bi 6 1. By Lemma 4.2, (4.46) and (4.66),

ˇ̌ QJ .1/r;4 � QJ .2/r;4

ˇ̌
6 Crkg0kL1

Z 1C4ı

0

ˇ̌
ˇ̌@B1
@✓

� @B2

@✓

ˇ̌
ˇ̌
ˇ̌
ˇ̌@jy1j
@⇢

ˇ̌
ˇ̌C

ˇ̌
ˇ̌@B2
@✓

ˇ̌
ˇ̌
ˇ̌
ˇ̌@jy1j
@⇢

� @jy2j
@⇢

ˇ̌
ˇ̌ dw

6 Cr2

R
kg0kL1.�m0 C�M0/: (4.87)

Then by Lemma 4.10, (4.85) follows.

Lemma 4.12 Assume h;H 2 W 1;1.T/, such that m0 CM0 ⌧ 1. Define g.x/ D g0.X.x//. Then
for all p 2 Œ2;1/,

���e✓ � r.� ⇤ g/
�

Q�.✓/
�� PW 1;p.T/ C

���er � r.� ⇤ g/
�

Q�.✓/
�� PW 1;p.T/

6 Cr2

R

�
.m0 CM0/kg0kL1.B.1C4ı/r / C ke✓ � rg0kL2.B.1C4ı/r /

�
; (4.88)

where C D C.p/.

Proof. We first study the case with h D H D 0. By (4.81),

d

d✓

�
e✓ � r.� ⇤ g0/

�
@BR

D � r

4⇡

Z
T
d⇠

Z 1C4ı

0

dw
@K

@⇠

⇣rw
R
; ⇠

⌘ �
g0.rw; ⇠ C ✓/ � g0.rw; ✓/

�
:

(4.89)
Hence, arguing as in (4.63),

���e✓ � r.� ⇤ g0/
�
@BR

�� PW 1;p 6 Cr

Z
T
d⇠

Z 1C4ı

0

dw
r

R
�

kg0.rw; ⇠ C �/ � g0.rw; �/kLp
✓
.T/

.j1 � rw
R j C j⇠j/2

6 Cr2

R
ke✓ � rg0kL2.B.1C4ı/r /

: (4.90)

The rest of the proof is the same as that of Lemma 4.7.

5. Estimates for singular integral operators K� and K Q�

In this section, we shall derive estimates for singular integrals of type � 0.✓/? �K� and � 0.✓/ �K� 
(see the definition in (2.14).) Singular integrals involving K Q� then follow similar estimates.

For convenience, for ⇠ 2 Tnf0g, denote

�f .✓/ WD f .✓ C ⇠/ � f .✓/
2 sin ⇠

2

; (5.1)
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and

l.✓; ✓ C ⇠/ WD .�f /2

f .✓/f .✓ C ⇠/
D .�h/2�

1C h.✓/
��
1C h.✓ C ⇠/

� : (5.2)

We first derive a Hölder estimate for � 0? � K� for future use.

Lemma 5.1 Fix ˇ 2 .0; 1/. Assume h 2 C 1;ˇ .T/, such that m0 ⌧ 1. Then

k� 0.✓/? � K� k PCˇ 6 Ckh0k PCˇ .k kCˇ C k kL1kh0k PCˇ kh0kL1/; (5.3)

where C D C.ˇ/.

Proof. Using �.✓/ D f .✓/.cos ✓; sin ✓/,

2⇡� 0.✓/? � K� D p:v:
Z
T

�f .✓/2 C f .✓/f .✓ C ⇠/ cos ⇠ � f 0.✓/f .✓ C ⇠/ sin ⇠
f .✓/2 C f .✓ C ⇠/2 � 2f .✓/f .✓ C ⇠/ cos ⇠

 .✓ C ⇠/ d⇠:

(5.4)
With f .✓/ D r.1C h.✓//, it can be rewritten as

2⇡� 0.✓/? � K� 

D �1
2

Z
T
 d⇠ � 1

2

Z
T

�
f .✓ C ⇠/ � f .✓/

�2
�
f .✓/ � f .✓ C ⇠/

�2 C f .✓/f .✓ C ⇠/ � 4 sin2 ⇠2
 .✓ C ⇠/ d⇠

C p:v:
Z
T

�
f .✓ C ⇠/ � f .✓/

�
f .✓ C ⇠/ � f 0.✓/f .✓ C ⇠/ sin ⇠�

f .✓/ � f .✓ C ⇠/
�2 C f .✓/f .✓ C ⇠/ � 4 sin2 ⇠2

 .✓ C ⇠/ d⇠

D �1
2

Z
T
 d⇠ � 1

2

Z
T

l.✓; ✓ C ⇠/

1C l.✓; ✓ C ⇠/
 .✓ C ⇠/ d⇠

C 1

1C h.✓/
p:v:

Z
T

�h

2 sin ⇠
2

�  .✓ C ⇠/

1C l.✓; ✓ C ⇠/
d⇠

C 1

1C h.✓/
p:v:

Z
T

� h0.✓/

2 tan ⇠
2

�  .✓ C ⇠/

1C l.✓; ✓ C ⇠/
d⇠

DW L0 C L1.✓/C L2.✓/C L3.✓/: (5.5)

Since kfgk PCˇ 6 kf k PCˇ kgkL1 C kf kL1kgk PCˇ ,

kL1k PCˇ 6 C sup
⇠2T

����
l

1C l
 .✓ C ⇠/

���� PCˇ
✓

6 C sup
⇠2T

����
l

1C l

���� PCˇ
✓

k kL1 C C sup
⇠2T

����
l

1C l

����
L1
✓

k k PCˇ : (5.6)

By the Lipschitz continuity of x
1Cx on Œ0;C1/ and the smallness of h,

kL1k PCˇ 6 C sup
⇠2T

�����
.�h/2�

1C h.✓/
��
1C h.✓ C ⇠/

�
����� PCˇ

✓

k kL1 C Ckh0k2L1k k PCˇ

6 C
�
kh0k PCˇ kh0kL1k kL1 C kh0k2L1k k PCˇ

�
: (5.7)
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Here we used

k�hk PCˇ
✓

D
kh.✓ C ⇠/ � h.✓/k PCˇ

✓ˇ̌
ˇ2 sin ⇠

2

ˇ̌
ˇ

6
ˇ̌
ˇ̌
ˇ

1

2 sin ⇠
2

Z ⇠

0

kh0.✓ C ⌘/k PCˇ
✓

d⌘

ˇ̌
ˇ̌
ˇ 6 Ckh0k PCˇ : (5.8)

Take " 2 T and " > 0 without loss of generality. Write

.L2 C L3/.✓ C "/ � .L2 C L3/.✓/

D
✓

1

1C h.✓ C "/
� 1

1C h.✓/

◆ Z
T

�h.✓ C "/ � cos ⇠2h
0.✓ C "/

2 sin ⇠
2

�  .✓ C "C ⇠/

1C l.✓ C "; ✓ C "C ⇠/
d⇠

C 1

1C h.✓/

Z
T

�h.✓ C "/ � cos ⇠2 � h0.✓ C "/

2 sin ⇠
2

�
✓

 .✓ C "C ⇠/

1C l.✓ C "; ✓ C "C ⇠/
�  .✓ C ⇠/

1C l.✓; ✓ C ⇠/

◆
d⇠

C 1

1C h.✓/

Z
T

�h.✓ C "/ ��h.✓/ � cos ⇠2 .h
0.✓ C "/ � h0.✓//

2 sin ⇠
2

 .✓/

1C h0.✓/2
.1Ch.✓//2

d⇠

C 1

1C h.✓/

Z
T

�h.✓ C "/ ��h.✓/ � cos ⇠2 .h
0.✓ C "/ � h0.✓//

2 sin ⇠
2

�

0
@  .✓ C ⇠/

1C l.✓; ✓ C ⇠/
�  .✓/

1C h0.✓/2
.1Ch.✓//2

1
A d⇠: (5.9)

We derive that

ˇ̌
ˇ̌�h.✓ C "/ � cos

⇠

2
� h0.✓ C "/

ˇ̌
ˇ̌ 6

ˇ̌
ˇ̌
ˇ
R ⇠
0 h

0.✓ C "C ⌘/ � h0.✓ C "/ d⌘

2 sin ⇠
2

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ
⇠ � sin ⇠

2 sin ⇠
2

h0.✓ C "/

ˇ̌
ˇ̌
ˇ

6 C j⇠jˇkh0k PCˇ ; (5.10)

and

ˇ̌
ˇ̌�h.✓ C "/ ��h.✓/ � cos

⇠

2

�
h0.✓ C "/ � h0.✓/

�ˇ̌ˇ̌

6
ˇ̌
ˇ̌
ˇ

1

2 sin ⇠
2

Z ⇠

0

h0.✓ C "C ⌘/ � h0.✓ C ⌘/ d⌘

ˇ̌
ˇ̌
ˇC jh0.✓ C "/ � h0.✓/j

6 C"ˇkh0k PCˇ : (5.11)
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Thanks to (5.7) and (5.8),
ˇ̌
ˇ̌  .✓ C "C ⇠/

1C l.✓ C "; ✓ C "C ⇠/
�  .✓ C ⇠/

1C l.✓; ✓ C ⇠/

ˇ̌
ˇ̌

6 C"ˇk k PCˇ C Ck kL1

ˇ̌
ˇ̌
ˇ

�
�h.✓ C "/

�2
�
1C h.✓ C "/

��
1C h.✓ C "C ⇠/

� � .�h/2�
1C h.✓/

��
1C h.✓ C ⇠/

�
ˇ̌
ˇ̌
ˇ

6 C"ˇ
�
k k PCˇ C k kL1kh0k PCˇ kh0kL1

�
; (5.12)

and similarly,
ˇ̌
ˇ̌
ˇ̌

 .✓ C ⇠/

1C l.✓; ✓ C ⇠/
�  .✓/

1C h0.✓/2
.1Ch.✓//2

ˇ̌
ˇ̌
ˇ̌ 6 C j⇠jˇ

�
k k PCˇ C k kL1kh0k PCˇ kh0kL1

�
: (5.13)

Lastly,
ˇ̌
ˇ̌
ˇ
Z
T

�h.✓ C "/ ��h.✓/ � cos ⇠2
�
h0.✓ C "/ � h0.✓/

�

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇp:v:

Z
T

h.✓ C "C ⇠/ � h.✓ C "/ � h.✓ C ⇠/C h.✓/

4 sin2 ⇠2
d⇠

ˇ̌
ˇ̌
ˇ

D C jHh0.✓ C "/ � Hh0.✓/j
6 C"ˇkh0k PCˇ : (5.14)

Note that Hilbert transform is bounded in C ˇ .T/.
Combining these estimates with (5.9), we obtain that

j.L2 C L3/.✓ C "/ � .L2 C L3/.✓/j 6 C"ˇkh0k PCˇ

�
k kCˇ C k kL1kh0k PCˇ kh0kL1

�
: (5.15)

Then (5.3) follows from (5.5), (5.7) and (5.15).

Now we turn to a PW 1;p-estimate of � 0? � K� .

Lemma 5.2 Fix p 2 Œ2;1/. Assume h 2 C 1;ˇ .T/ for some ˇ 2 .0; 1/, such that m0 ⌧ 1 with the
needed smallness depending on p. Then

k� 0.✓/? � K� k PW 1;p 6 Ckh00kLp k kL1.1C kh0k PCˇ /

C C
�
kh00kLp k k PCˇ C kh0kL1k 0kLp

�
; (5.16)

where C D C.p; ˇ/.

Proof. Let C⇤ and Cé be the constants introduced in Lemma A.2 and Lemma A.4, respectively,
both of which only depend on p. Without loss of generality, we may assume Cé > C⇤ > 1. We also
recall that l is defined in (5.2).
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Using the notation in (5.5), we take ✓ -derivative of L1 to derive that

kL1k PW 1;p 6 C

����
Z
T

kh0k2L1 j 0.✓ C ⇠/j d⇠
����
Lp

C C

����
Z
T
.kh0kL1 j�h0j C kh0k3L1/k kL1 d⇠

����
Lp

6 Ckh0k2L1k 0kLp C Ckh0kL1kh00kLp k kL1 : (5.17)

Thanks to the smallness of h, we may assume jl j < 1. Hence, by Taylor expanding .1C l/�1, we
may rewrite L2 in (5.5) as

L2 D
1X
jD0

.�1/j
�
1C h.✓/

��.jC1/p:v:
Z
T
.�h/2jC1�1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠ DW
1X
jD0

L2;j :

(5.18)
By virtue of Lemma A.2,�����p:v:

Z
T
.�h/2jC1�1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
Lp

6 C 2jC3
⇤ kh0k2jC1

L1 k.1C h/�j kLp

6 C
�
C 2⇤C2kh0k2L1

�j kh0kL1k kLp :
(5.19)

Here C2 is a universal constant such that k.1C h/�1kL1 6 C2. Similarly, by Lemma A.4,�����p:v:
Z
T
.�h/2jC1�1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

����� PW 1;p

6 .2j C 2/C
2jC2
é kh0k2jL1

⇣���.1C h/�j 
�0��

Lp kh0kL1 C k.1C h/�j kL1kh00kLp

⌘

6 C.j C 1/.C 2é C2kh0k2L1/j
�
j kh0k2L1k kLp C kh0kL1k 0kLp C k kL1kh00kLp

�
: (5.20)

Hence, with the assumption Cé > C⇤,

kL2;j k PW 1;p

6 k.1C h/�.jC1/k PW 1;1

�����p:v:
Z
T
.�h/2jC1�1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
Lp

C k.1C h/�.jC1/kL1

�����p:v:
Z
T
.�h/2jC1�1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

����� PW 1;p

6 C.j C 1/.CéC2kh0kL1/2j
�
.j C 1/kh0k2L1k kLp C kh0kL1k 0kLp C k kL1kh00kLp

�
:

(5.21)

To this end, by assuming kh0kL1 ⌧ 1, where the smallness depends on p, we derive from (5.18)
that

kL2k PW 1;p 6 C
�
kh0kL1k 0kLp C k kL1kh00kLp

�
: (5.22)

Similarly, we write

L3 D
1X
jD0

h0.✓/
�
�1 � h.✓/

��.jC1/p:v:
Z
T
.�h/2j

�
1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠ DW
1X
jD0

L3;j :

(5.23)



INTERFACE MOTION IN A TUMOR GROWTH MODEL 229

In order to bound PW 1;p-semi-norm of L3;j , we need an L1-bound of the integral above. This is
possible thanks to the Hölder regularity of h0 and  . Indeed, by the mean value theorem,

ˇ̌
ˇ̌
ˇp:v:

Z
T
.�h/2j

�
1C h.✓ C ⇠/

��j  .✓ C ⇠/

2 tan ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
Z
T
Œ.�h/2j

�
1C h.✓ C ⇠/

��j
 .✓ C ⇠/ � h0.✓/2j

�
1C h.✓/

��j
 .✓/ç

1

2 tan ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

6 C

Z
T
2j.C1kh0kL1/2j�1j�h � h0.✓/j � C j2 k kL1 j⇠j�1 d⇠

C C

Z
T

kh0k2jL1 � jC jC1
2 jh.✓ C ⇠/ � h.✓/j � k kL1 j⇠j�1 d⇠

C C

Z
T

kh0k2jL1 � C j2 j .✓ C ⇠/ �  .✓/jj⇠j�1 d⇠

6 C
�
2jC

2j
1 C

j
2 kh0k2j�1

L1 kh0k PCˇ k kL1 C C
j
2 kh0k2jL1k k PCˇ

�
: (5.24)

Here C1 D ⇡
2 introduced in the proof of Lemma A.2; note that j�hj 6 C1kh0kL1 . Arguing as

in (5.19)–(5.21),
�����p:v:

Z
T
.�h/2j

�
1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

6 C
�
C 2⇤C2kh0k2L1

�j k kLp ; (5.25)

�����p:v:
Z
T
.�h/2j

�
1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

6 C.2j C 1/
�
C 2é C2kh0k2L1

�j �
j kh0kL1k kLp C k 0kLp C 1fj>0gkh0k�1

L1kh00kLp k kL1
�
;

(5.26)

and hence,

kL3;j k PW 1;p

6 kh00kLp k
�
1C h.✓/

��.jC1/kL1

�����p:v:
Z
T
.�h/2j

�
1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
L1

C kh0kL1k
�
1C h.✓/

��.jC1/k PW 1;1

�����p:v:
Z
T
.�h/2j

�
1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

C kh0kL1k
�
1C h.✓/

��.jC1/kL1

�����p:v:
Z
T
.�h/2j

�
1C h.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

6 C � .C2kh0kL1/2j�1 � .jC 2j1 kh0k PCˇ k kL1 C kh0kL1k k PCˇ /kh00kLp

C C � .j C 1/.CéC2kh0kL1/2j

�
�
.j C 1/kh0k2L1k kLp C kh0kL1k 0kLp C 1fj>0gkh00kLp k kL1

�
: (5.27)



230 I. KIM AND J. TONG

By (5.23), provided that kh0kL1 ⌧ 1,

kL3k PW 1;p 6 C
�
kh00kLp kh0k PCˇ k kL1 C kh00kLp k k PCˇ C kh0kL1k 0kLp

�
: (5.28)

Combining (5.17), (5.22) and (5.28), we prove the desired estimate.

We also prove a PW 1;p-estimate for � 0 � K� � 1
2H .

Lemma 5.3 Under the assumptions of Lemma 5.2,
����� 0.✓/ � K� � 1

2
H 

���� PW 1;p

6 Ckh00kLp k kL1.1C kh0k PCˇ /

C C
�
kh0kL1kh00kLp k k PCˇ C kh0k2L1k 0kLp

�
; (5.29)

where C D C.p; ˇ/.

Proof. Using �.✓/ D f .✓/.cos ✓; sin ✓/, by definition,

2⇡� 0.✓/ � K� D p:v:
Z
T

f 0.✓/f .✓/ � f 0.✓/f .✓ C ⇠/ cos ⇠ � f .✓/f .✓ C ⇠/ sin ⇠
f .✓/2 C f .✓ C ⇠/2 � 2f .✓/f .✓ C ⇠/ cos ⇠

 .✓ C ⇠/ d⇠:

(5.30)
With f .✓/ D r.1C h.✓// and l.✓; ✓ C ⇠/ defined in (5.2), it can be rewritten as

2⇡� 0.✓/ � K� D f 0.✓/
Z
T

f .✓ C ⇠/ � 2 sin2 ⇠2�
f .✓ C ⇠/ � f .✓/

�2 C f .✓/f .✓ C ⇠/ � 4 sin2 ⇠2
 .✓ C ⇠/ d⇠

� f 0.✓/p:v:
Z
T

f .✓ C ⇠/ � f .✓/�
f .✓ C ⇠/ � f .✓/

�2 C f .✓/f .✓ C ⇠/ � 4 sin2 ⇠2
 .✓ C ⇠/ d⇠

� p:v:
Z
T

f .✓/f .✓ C ⇠/ sin ⇠�
f .✓ C ⇠/ � f .✓/

�2 C f .✓/f .✓ C ⇠/ � 4 sin2 ⇠2
 .✓ C ⇠/ d⇠

D h0.✓/
2.1C h.✓//

✓Z
T
 d⇠ �

Z
T

l.✓; ✓ C ⇠/

1C l.✓; ✓ C ⇠/
 .✓ C ⇠/ d⇠

◆

� h0.✓/
1C h.✓/

p:v:
Z
T

�h

2 sin ⇠2

1C l.✓; ✓ C ⇠/

 .✓ C ⇠/

1C h.✓ C ⇠/
d⇠

C p:v:
Z
T

l.✓; ✓ C ⇠/

1C l.✓; ✓ C ⇠/

 .✓ C ⇠/

2 tan ⇠
2

d⇠ C ⇡H 

DW QL1.✓/C QL2.✓/C QL3.✓/C ⇡H : (5.31)

Since
QL1 D h0.✓/

1C h.✓/

✓
1

2

Z
T
 d⇠ C L1

◆
; (5.32)

we derive by (5.17) that

k QL1k PW 1;p 6 C

����
h0

1C h

���� PW 1;p

k kL1 C Ckh0kL1kL1k PW 1;p

6 C
�
kh00kLp k kL1 C kh0k3L1k 0kLp

�
: (5.33)
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For QL2,

QL2 D
1X
jD0

h0.✓/
�
�1 � h.✓/

��.jC1/p:v:
Z
T
.�h/2jC1�1C h.✓ C ⇠/

��.jC1/ .✓ C ⇠/

2 sin ⇠
2

: (5.34)

Arguing as in (5.24),
�����p:v:

Z
T
.�h/2jC1�1C h.✓ C ⇠/

��.jC1/ .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
L1

6 C
�
C2kh0k2L1

�j �
.2j C 1/C

2j
1 kh0k PCˇ k kL1 C kh0kL1k k PCˇ

�
: (5.35)

Moreover, by Lemma A.2 and Lemma A.4,
�����p:v:

Z
T
.�h/2jC1�1C h.✓ C ⇠/

��.jC1/ .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
Lp

6 C
�
C 2⇤C2kh0k2L1

�j kh0kL1k kL1 ;

(5.36)
and

�����p:v:
Z
T
.�h/2jC1�1C h.✓ C ⇠/

��.jC1/ .✓ C ⇠/

2 sin ⇠
2

d⇠

����� PW 1;p

6 C.2j C 2/
�
C 2é C2kh0k2L1

�j �
.j C 1/kh0k2L1k kL1 C kh00kLp k kL1 C kh0kL1k 0kLp

�
:

(5.37)

Hence,

k QL2k PW 1;p 6 C.kh00kLp kh0k PCˇ k kL1 C kh0kL1kh00kLp k k PCˇ C kh0k2L1k 0kLp /: (5.38)

For QL3,

QL3 D
1X
jD0

.�1/j
�
1C h.✓/

��.jC1/p:v:
Z
T
.�h/2jC2�1C h.✓ C ⇠/

��.jC1/ .✓ C ⇠/

2 tan ⇠
2

d⇠: (5.39)

Since
�����p:v:

Z
T
.�h/2jC2�1C h.✓ C ⇠/

��.jC1/ .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

6 C.C 2⇤C2kh0k2L1/j kh0k2L1k kL1 ;

(5.40)
and

�����p:v:
Z
T
.�h/2jC2�1C h.✓ C ⇠/

��.jC1/ .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

6 C.2j C 3/
�
C 2é C2kh0k2L1

�j kh0kL1

�
�
.j C 1/kh0k2L1k kL1 C kh0kL1k 0kLp C kh00kLp k kL1

�
; (5.41)
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we find that
k QL3k PW 1;p 6 C

�
kh0kL1kh00kLp k kL1 C kh0k2L1k 0kLp

�
: (5.42)

Combining (5.31), (5.33), (5.38) and (5.42), we obtain (5.29).

In order to show uniqueness of the solution in Section 9, we need the following three lemmas,
which are generalizations of Lemmas 5.1–5.3, respectively.

Lemma 5.4 Fix ˇ 2 .0; 1/. Assume h1; h2 2 C 1;ˇ .T/, such that m0;1; m0;2 ⌧ 1. Here m0;i are
defined for i D 1; 2 as in (3.17). Then

k� 0
1.✓/

? �K�1
 �� 0

2.✓/
? �K�2

 k PCˇ 6 Ckh1�h2kC1;ˇ .1Ckh0
1k PCˇ Ckh0

2k PCˇ /
2k kCˇ ; (5.43)

where C D C.ˇ/.

Lemma 5.5 Fix p 2 Œ2;1/ and ˇ 2 .0; 1/. Assume hi 2 C 1;ˇ \ W 2;p.T/ .i D 1; 2/, such that
m0;i ⌧ 1 with the needed smallness depending only on p. Then

��� 0
1.✓/

? � K�1
 � � 0

2.✓/
? � K�2

 
�� PW 1;p

6 Ckh00
1 � h00

2kLp

�
1C kh0

1k PCˇ C kh0
2k PCˇ

�
k kCˇ

C C
�
kh00
1kLp C kh00

2kLp

�
kh1 � h2kC1;ˇ

�
1C kh0

1k PCˇ C kh0
2k PCˇ

�
k kCˇ

C Ckh1 � h2kW 1;1k 0kLp ; (5.44)

where C D C.p; ˇ/.

Lemma 5.6 Under the assumptions of Lemma 5.5,
��� 0
1.✓/ � K�1

 � � 0
2.✓/ � K�2

 
�� PW 1;p

6 Ckh00
1 � h00

2kLp

ˇ̌
ˇ̌
Z
T
 d⇠

ˇ̌
ˇ̌

C Ckh00
1 � h00

2kLp k kCˇ

�
kh1kC1;ˇ C kh2kC1;ˇ

��
1C kh1kC1;ˇ C kh2kC1;ˇ

�2
C C

�
kh00
1kLp C kh00

2kLp

�
k kCˇ kh1 � h2kC1;ˇ

�
1C kh1kC1;ˇ C kh2kC1;ˇ

�3
C Ckh1 � h2kW 1;1k 0kLp .kh1kW 1;1 C kh2kW 1;1/; (5.45)

where C D C.p; ˇ/.

These estimates can be justified by following similar arguments as those in Lemmas 5.1–5.3.
However, since their proofs turn out to be extremely lengthy and somewhat tedious, we shall leave
them to Appendix C.

6. Estimates for integral operators K�; Q� and K Q� ;�

Recall that the integral operators K�; Q� and K Q� ;� are defined in (2.15), while the Poisson kernel P
on the 2-D unit disc and its conjugate Q are defined in (4.1) and (4.2). For convenience, we denote

P r
R

WD P
⇣ r
R
; �
⌘

and Q r
R

WD Q
⇣ r
R
; �
⌘
: (6.1)
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Lemma 6.1 Assume h;H 2 W 1;1.T/, such that ı�1.khkL1 C kHkL1/ ⌧ 1. Denote N D
.2⇡/�1

R
T  .✓/ d✓ . Then

����fer .✓/ � K�; Q� C 1

4⇡
P r

R
⇤ . � N /

����
L1.T/

C
����fe✓ .✓/ � K�; Q� � 1

4⇡
Q r

R
⇤ . � N /

����
L1.T/

6 Cr

R
ı�1�khkL1 C kHkL1

�
k kL1 ; (6.2)

where C is a universal constant.

Proof. With ✓ 0 D ✓ C ⇠ and D.✓; ✓ C ⇠/ WD f .✓/=F.✓ C ⇠/, we calculate that

2⇡er .✓/ � K�; Q� 

D
Z
T

er .✓/ �
�
�.✓/ � Q�.✓ 0/

�
j�.✓/ � Q�.✓ 0/j2  .✓ 0/ d✓ 0

D f .✓/�1
Z
T


1

2
� 1

2
� 1 �D.✓; ✓ C ⇠/2

1CD.✓; ✓ C ⇠/2 � 2D.✓; ✓ C ⇠/ cos ⇠

�
 .✓ C ⇠/ d⇠

DW f .✓/�1.Ir;1 C Ir;2/; (6.3)

where

Ir;1 D �1
2

Z
T
P

⇣ r
R
; ⇠

⌘ �
 .✓ C ⇠/ � N 

�
d⇠ D �1

2
P r

R
⇤ . � N /; (6.4)

Ir;2 D 1

2

Z
T

h
P

⇣ r
R
; ⇠

⌘
� P.D; ⇠/

i
 .✓ C ⇠/ d⇠: (6.5)

Here we used the fact that P r
R

is an even function and has integral 2⇡ on T. Ir;1 is already in the
desired shape. For Ir;2, since

ˇ̌
ˇ r
R

�D.✓; ✓ C ⇠/
ˇ̌
ˇ D r

R

ˇ̌
ˇ̌1 � 1C h.✓/

1CH.✓ C ⇠/

ˇ̌
ˇ̌ 6 Cr

R
.khkL1 C kHkL1/; (6.6)

we may assume that D 2 Œ0; 1�Cıç for some universal C > 0. Hence, by the mean value theorem
and Lemma A.1,

kIr;2kL1 6 Cr

R

�
khkL1 C kHkL1

�
k kL1

Z
T
.ı2 C ⇠2/�1 d⇠

6 Cr

R
ı�1�khkL1 C kHkL1

�
k kL1 : (6.7)

The estimate for fer � K�; Q� in (6.2) follows.
Similarly, since Q r

R
is an odd kernel,

2⇡e✓ .✓/ � K�; Q� D �f .✓/�1
Z
T

D.✓; ✓ C ⇠/ � sin ⇠
1CD.✓; ✓ C ⇠/2 � 2D.✓; ✓ C ⇠/ cos ⇠

 .✓ C ⇠/ d⇠:

DW f .✓/�1.I✓;1 C I✓;2/; (6.8)
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where

I✓;1 D �1
2

Z
T
Q

⇣ r
R
; ⇠

⌘ �
 .✓ C ⇠/ � N 

�
d⇠ D 1

2
Q r

R
⇤ . � N /; (6.9)

I✓;2 D 1

2

Z
T

h
Q

⇣ r
R
; ⇠

⌘
�Q.D; ⇠/

i
 .✓ C ⇠/ d⇠: (6.10)

Then the estimate for fe✓ � K�; Q� in (6.2) can be derived as before.

Lemma 6.2 Assume h;H 2 C 1;˛.T/ for some ˛ 2 .0; 1/, such that m0 C M0 ⌧ 1. Then for
ˇ 2 .0; ˛

1C˛ /,

����fer .✓/ � K�; Q� C 1

4⇡
P r

R
⇤ . � N /

���� PCˇ.T/
C

����fe✓ .✓/ � K�; Q� � 1

4⇡
Q r

R
⇤ . � N /

���� PCˇ.T/

6 Cr

R
.m0 CM0/k k PCˇ C Cr

R
k kL1

�
ı�1.khkL1 C kHkL1/C kh0k PC˛ C kH 0k PC˛

�
;

(6.11)

where C D C.˛; ˇ/.

Proof. Let Ir;1, Ir;2, I✓;1 and I✓;2 be defined as in the proof of Lemma 6.1.
Consider Ir;2. For ✓1; ✓2 2 T,

Ir;2.✓1/ � Ir;2.✓2/

D 1

2

Z
T

⇥
P.D.✓2; ✓2 C ⇠/; ⇠/ � P

�
D.✓1; ✓1 C ⇠/; ⇠

�⇤ �
 .✓1 C ⇠/ �  .✓1/

�
d⇠

C 1

2
 .✓1/

Z
T
P
�
D.✓2; ✓2 C ⇠/; ⇠

�
� P.D.✓1; ✓1 C ⇠/; ⇠/ d⇠

� 1

2

Z
T

h
P

⇣ r
R
; ⇠

⌘
� P.D.✓2; ✓2 C ⇠/; ⇠/

i �
 .✓2 C ⇠/ �  .✓1 C ⇠/

�
d⇠

DW Ir;2;1 C Ir;2;2 C Ir;2;3: (6.12)

Following the argument of (6.6) and (6.7),

jIr;2;1j 6 C

Z
T

1

ı2 C j⇠j2 �
ˇ̌
ˇ̌ f .✓1/

F.✓1 C ⇠/
� f .✓2/

F.✓2 C ⇠/

ˇ̌
ˇ̌ � j⇠jˇk k PCˇ d⇠

6 Ck k PCˇ

Z
T

j⇠jˇ
ı2 C j⇠j2 � r

R
j✓1 � ✓2jˇ

�
khk PCˇ C kHk PCˇ

�
d⇠

6 C j✓1 � ✓2jˇ � r
R
.m0 CM0/k k PCˇ ; (6.13)

and similarly,

jIr;2;3j 6 C j✓1 � ✓2jˇ � r
R
.m0 CM0/k k PCˇ : (6.14)
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To handle Ir;2;2, we first note that

Z
T
P
�
D.✓2; ✓2 C ⇠/; ⇠

�
� P

�
D.✓1; ✓1 C ⇠/; ⇠

�
d⇠

D
Z
T
P
�
D.✓2; ✓2 C ⇠/; ⇠

�
� P

�
D.✓2; ✓2/; ⇠

�
� P

�
D.✓1; ✓1 C ⇠/; ⇠

�
C P

�
D.✓1; ✓1/; ⇠

�
d⇠:

(6.15)

We may bound the integrands in (6.15) as follows. By the mean value theorem and Lemma A.1,
ˇ̌
P
�
D.✓2; ✓2 C ⇠/; ⇠

�
� P

�
D.✓2; ✓2/; ⇠

�
� P.D.✓1; ✓1 C ⇠/; ⇠/C P

�
D.✓1; ✓1/; ⇠

�ˇ̌

6 C

ı2 C ⇠2
�ˇ̌
D.✓2; ✓2 C ⇠/ �D.✓2; ✓2/

ˇ̌
C
ˇ̌
D.✓1; ✓1 C ⇠/ �D.✓1; ✓1/

ˇ̌�

6 C j⇠jˇ 0

ı2 C ⇠2
� r
R

kHk PCˇ0 ; (6.16)

where ˇ0 2 .0; 1/ is to be determined. Here we used the bound j@sP j 6 C.ı2 C ⇠2/�1 since
D 6 1 � Cı (see the proof of Lemma 6.1). Alternatively,

ˇ̌
P
�
D.✓2; ✓2 C ⇠/; ⇠

�
� P

�
D.✓1; ✓1 C ⇠/; ⇠

�
� P

�
D.✓2; ✓2/; ⇠

�
C P

�
D.✓1; ✓1/; ⇠

�ˇ̌

6 C

ı2 C ⇠2
�
jD.✓2; ✓2 C ⇠/ �D.✓1; ✓1 C ⇠/j C jD.✓2; ✓2/ �D.✓1; ✓1/j

�

6 C

ı2 C ⇠2
� r
R

j✓1 � ✓2j.kh0kL1 C kH 0kL1/: (6.17)

If j✓1 � ✓2j > ı, by (6.15) and (6.16),
ˇ̌
ˇ̌
Z
T
P
�
D.✓2; ✓2 C ⇠/; ⇠

�
� P

�
D.✓1; ✓1 C ⇠/; ⇠

�
d⇠

ˇ̌
ˇ̌ 6 Cr

R
kHk PCˇ0 ıˇ

0�ˇ�1j✓1 � ✓2jˇ : (6.18)

Otherwise, if j✓1 � ✓2j 6 ı, we deduce by (6.15) and (6.17) that
ˇ̌
ˇ̌
Z
T
P
�
D.✓2; ✓2 C ⇠/; ⇠

�
� P

�
D.✓1; ✓1 C ⇠/; ⇠

�
d⇠

ˇ̌
ˇ̌ 6 Cr

R
j✓1 � ✓2jˇ ı�ˇ �kh0kL1 C kH 0kL1

�
:

(6.19)
Recall that ˇ < ˛

1C˛ , so we take ˇ0 D ˇ.1C˛/
˛ . Combining these estimates with the definition of

Ir;2;2 in (6.12), by interpolation inequality,

jIr;2;2j 6 Cr

R
j✓1 � ✓2jˇk kL1

�
ı�1.khkL1 C kHkL1/C kh0k PC˛ C kH 0k PC˛

�
: (6.20)

Combining this with (6.12)–(6.14), we obtain that

kIr;2k PCˇ 6 Cr

R
.m0 CM0/k k PCˇ C Cr

R
k kL1

�
ı�1.khkL1 C kHkL1/C kh0k PC˛ C kH 0k PC˛

�
:

(6.21)
The estimate for I✓;2 can be derived in the same manner.
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Lemma 6.3 Assume h 2 W 1;1.T/ and H 2 W 2;p.T/ for some p 2 .1;1/, satisfying that
m0 CM0 ⌧ 1. Then

����fer .✓/ � K�; Q� C 1

4⇡
P r

R
⇤ . � N /

���� PW 1;p.T/

C
����fe✓ .✓/ � K�; Q� � 1

4⇡
Q r

R
⇤ . � N /

���� PW 1;p.T/

6 Cr

R

�
kH 00kLp k kL1 C .m0 CM0/k 0kLp

�
; (6.22)

where C D C.p/.

Proof. Let Ir;1, Ir;2, I✓;1 and I✓;2 be defined as in the proof of Lemma 6.1.
We calculate that

I 0
r;2.✓/ D 1

2

Z
T

h
P

⇣ r
R
; ⇠

⌘
� P.D; ⇠/

i
 0.✓ C ⇠/ d⇠ � 1

2

Z
T
@sP.D; ⇠/

@D

@✓
 .✓ C ⇠/ d⇠: (6.23)

Arguing as in (6.6) and (6.7),
����
Z
T

h
P

⇣ r
R
; ⇠

⌘
� P.D; ⇠/

i
 0.✓ C ⇠/ d⇠

����
Lp

6 Cr

R
ı�1.khkL1 C kHkL1/k 0kLp : (6.24)

For the second term in I 0
r;2, we derive by Lemma A.1 that

Z
T
@sP.D; ⇠/

@D

@✓
 .✓ C ⇠/ d⇠

D f 0.✓/
f .✓/

Z
T
D@sP.D; ⇠/ .✓ C ⇠/ d⇠ C

Z
T
@sP.D; ⇠/

@D

@⇠
 .✓ C ⇠/ d⇠

D f 0.✓/
f .✓/

Z
T

@Q.D; ⇠/

@⇠
 .✓ C ⇠/ d⇠ C

Z
T
@sP.D; ⇠/

@D

@⇠
 .✓ C ⇠/ d⇠

� f 0.✓/
f .✓/

Z
T
@sQ.D; ⇠/

@D

@⇠
 .✓ C ⇠/ d⇠

DW Ir;2;a C Ir;2;b C Ir;2;c : (6.25)

Here @Q.D;⇠/
@⇠ denotes total derivative of Q.D.✓; ✓ C ⇠/; ⇠/ with respect to ⇠.

We integrate by parts in I2;r;a. Arguing as in (6.24),

kIr;2;akLp 6 Ckh0kL1

✓����
Z
T

h
Q.D; ⇠/ �Q

⇣ r
R
; ⇠

⌘i
 0.✓ C ⇠/ d⇠

����
Lp

C kQ r
R

⇤  0kLp

◆

6 Cr

R
kh0kL1ı�1.khkL1 C kHkL1/k 0kLp C Ckh0kL1kP r

R
⇤ H 0kLp : (6.26)

Using the fact that H 0 has mean zero on T, we derive that

P r
R

⇤ H 0 D
Z
T

⇣
P r

R
.⇠/ � P r

R
.⇡/

⌘
H 0.✓ � ⇠/ d⇠: (6.27)
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By Young’s inequality,

kP r
R

⇤ H 0kLp 6
Z
T

ˇ̌
ˇP r

R
.⇠/ � P r

R
.⇡/

ˇ̌
ˇ d⇠ � kH 0kLp 6 Cr

R
k 0kLp : (6.28)

Therefore,

kIr;2;akLp 6 Cr

R
kh0kL1k 0kLp : (6.29)

Next we deal with Ir;2;b . Since
@D

@⇠
D �DF

0.✓ C ⇠/

F.✓ C ⇠/
; (6.30)

we find by Lemma A.1 that

Ir;2;b D �
Z
T
D@sP.D; ⇠/

F 0.✓ C ⇠/

F.✓ C ⇠/
 .⇠ C ✓/ d⇠

D �
Z
T


@Q.D; ⇠/

@⇠
� @sQ.D; ⇠/

@D

@⇠

�
� F

0 
F

.⇠ C ✓/ d⇠

D �
Z
T

@Q.D; ⇠/

@⇠
� F

0 
F

.⇠ C ✓/ d⇠ �
Z
T
D@sQ.D; ⇠/ � F

02 
F 2

.⇠ C ✓/ d⇠

D �
Z
T

@Q.D; ⇠/

@⇠
� F

0 
F

.⇠ C ✓/ d⇠ C
Z
T

@P.D; ⇠/

@⇠
� F

02 
F 2

.⇠ C ✓/ d⇠

�
Z
T
@sP.D; ⇠/

@D

@⇠
� F

02 
F 2

.⇠ C ✓/ d⇠: (6.31)

Arguing as in (6.26)–(6.29),
����
Z
T

@Q.D; ⇠/

@⇠
� F

0 
F

.⇠ C ✓/ d⇠

����
Lp

C
����
Z
T

@P.D; ⇠/

@⇠
� F

02 
F 2

.⇠ C ✓/ d⇠

����
Lp

6 Cr

R

����
F 0 
F

���� PW 1;p

C Cr

R

����
F 02 
F 2

���� PW 1;p

6 Cr

R

�
kH 00kLp k kL1 C kH 0kL1k 0kLp

�
: (6.32)

We notice that the last term in (6.31), which has not been bounded, is in a similar form as the original
Ir;2;b . Following (6.31) and (6.32), it is not difficult to argue by induction that for all k 2 N,

kIr;2;bkLp

6 Cr

R

�
kH 00kLp k kL1 C kH 0kL1k 0kLp

�
C

�����
Z
T
@sP.D; ⇠/

@D

@⇠

F 02k 
F 2k

.⇠ C ✓/ d⇠

�����
Lp

6 Cr

R

�
kH 00kLp k kL1 C kH 0kL1k 0kLp

�
C Cr

R

Z
T

d⇠

ı2 C ⇠2

✓ kH 0kL1

1 � kHkL1

◆2kC1
k kLp :

(6.33)
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Here the constants C are uniformly bounded in k provided the smallness of H . Since M0 ⌧ 1, we
take k ! 1 and obtain

kIr;2;bkLp 6 Cr

R

�
kH 00kLp k kL1 C kH 0kL1k 0kLp

�
: (6.34)

kIr;2;ckLp can be estimated in a similar manner, so is kI 0
✓;2kLp .

Estimates for the operator K Q� ;� can be derived in a similar manner.

Lemma 6.4 1. Under the assumptions of Lemma 6.1,
����Fer .✓/ � K Q� ;� � N � 1

4⇡
P r

R
⇤ . � N /

����
L1.T/

C
����Fe✓ .✓/ � K Q� ;� � 1

4⇡
Q r

R
⇤ . � N /

����
L1.T/

6 Cr

R
ı�1�khkL1 C kHkL1

�
k kL1 ; (6.35)

where C is a universal constant.
2. Under the assumptions of Lemma 6.2,

����Fer .✓/ � K Q� ;� � 1

4⇡
P r

R
⇤ . � N /

���� PCˇ.T/
C

����Fe✓ .✓/ � K Q� ;� � 1

4⇡
Q r

R
⇤ . � N /

���� PCˇ.T/

6 Cr

R
.m0 CM0/k k PCˇ C Cr

R
k kL1

�
ı�1.khkL1 C kHkL1/C kh0k PC˛ C kH 0k PC˛

�
;

(6.36)

where C D C.˛; ˇ/.
3. Assume h 2 W 2;p.T/ for some p 2 .1;1/ and H 2 W 1;1.T/, satisfying that m0 CM0 ⌧ 1.

Then
����Fer .✓/ � K Q� ;� � 1

4⇡
P r

R
⇤ . � N /

���� PW 1;p.T/

C
����Fe✓ .✓/ � K Q� ;� � 1

4⇡
Q r

R
⇤ . � N /

���� PW 1;p.T/

6 Cr

R

�
kh00kLp k kL1 C .m0 CM0/k 0kLp

�
; (6.37)

where C D C.p/.

Proof. We derive as in Lemma 6.1.

2⇡F.✓/er .✓/ � K Q� ;� � 2⇡ N 

D 1

2

Z
T
P

⇣ r
R
; ⇠

⌘ �
 .✓ C ⇠/ � N 

�
d⇠ C 1

2

Z
T


P

✓
f .✓ C ⇠/

F.✓/
; ⇠

◆
� P

⇣ r
R
; ⇠

⌘�
 .✓ C ⇠/ d⇠;

(6.38)
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and

2⇡F.✓/e✓ .✓/ � K Q� ;� 

D �1
2

Z
T
Q

⇣ r
R
; ⇠

⌘ �
 .✓C ⇠/� N 

�
d⇠C 1

2

Z
T


Q

⇣ r
R
; ⇠

⌘
�Q

✓
f .✓ C ⇠/

F.✓/
; ⇠

◆�
 .✓C ⇠/ d⇠:

(6.39)

Then the desired estimate can be proved by arguing as in Lemmas 6.1–6.3.

Lastly, for those convolution terms on the left hand sides of the estimates in Lemmas 6.1–6.4,
we have that

Lemma 6.5 For ˇ 2 .0; 1/, we have

kP r
R

⇤ . � N /kL1 6 4⇡r

RC r
k � N kL1 ; (6.40)

kQ r
R

⇤ . � N /kL1 6 Ck k PCˇ ; (6.41)

and

kP r
R

⇤ . � N /k PCˇ 6 4⇡r

RC r
k k PCˇ ; (6.42)

kQ r
R

⇤ . � N /k PCˇ 6 Ck k PCˇ ; (6.43)

where these two constants C depend on ˇ. Moreover, for p 2 .1;1/,

kP r
R

⇤ . � N /k PW 1;p 6 4⇡r

RC r
k 0kLp ; (6.44)

kQ r
R

⇤ . � N /k PW 1;p 6 Ck 0kLp ; (6.45)

where C depends on p.

Proof. Since

P r
R

⇤ . � N / D
Z
T

�
P r

R
.⇠/ � P r

R
.⇡/

�
. .✓ � ⇠/ � N / d⇠; (6.46)

and P r
R
.⇠/ > P r

R
.⇡/, we have that

kP r
R

⇤ . � N /kL1 6 k � N kL1

Z
T
P r

R
.⇠/ � P r

R
.⇡/ d⇠ D 4⇡r

RC r
k � N kL1 : (6.47)

Since Q r
R

has integral zero over T, by Lemma A.1,

jQ r
R

⇤ . � N /j D
ˇ̌
ˇ̌
Z
T
Q r

R
.⇠/

�
 .✓ � ⇠/ �  .✓/

�
d⇠

ˇ̌
ˇ̌ 6 Ck k PCˇ

Z
T

j⇠jˇ
ı C j⇠j d⇠ 6 Ck k PCˇ :

(6.48)
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It is straightforward to derive that for ✓1; ✓2 2 T,

jP r
R

⇤ . � N /.✓1/ � P r
R

⇤ . � N /.✓2/j

D
ˇ̌
ˇ̌
Z
T

�
P r

R
.⇠/ � P r

R
.⇡/

��
 .✓1 � ⇠/ �  .✓2 � ⇠/

�
d⇠

ˇ̌
ˇ̌

6 4⇡r

RC r
k k PCˇ j✓1 � ✓2jˇ : (6.49)

Moreover, by Young’s inequality,

kP r
R

⇤ . � N /k PW 1;p D
���P r

R
� P r

R
.⇡/

�
⇤  0��

Lp 6 4⇡r

RC r
k 0kLp : (6.50)

The estimates involving Q r
R

follows from the fact Q r
R

D HP r
R

. Note that the boundedness
of Hilbert transform on C ˇ .T/ can be justified by that of its counterpart on C ˇ .R/ with some
adaptation.

7. Existence, uniqueness and estimates for Œ'ç and �

This section aims at establishing well-definedness, regularity and estimates for Œ'ç� and �. The main
approach is to apply a fixed-point argument to the static equations (2.33) and (2.34), by using many
estimates in Sections 3–6.

With the domain determined by r , R, h and H , let Qp be defined by (3.4) and (3.5), and let the
radially symmetric solution p⇤ be defined as in (3.8). Recall that c⇤ and Qc⇤ are defined in (2.22). In
fact, c⇤ D ��jrp⇤.r�/j and Qc⇤ D �⌫jrp⇤.R/j, so their estimates can be found in Lemma 3.1.
Also recall that S WD 1

2⇡P r
R

⇤  defined in (2.38). Then HS D 1
2⇡Q r

R
⇤  thanks to

Lemma A.1.
In the spirit of the linearized equations (2.43) and (2.44), we rewrite (2.33) and (2.34) as

Œ'ç0 � 2Ac⇤f 0 � AS�0 D RŒ'ç0 ; (7.1)
�0 C 2 Qc⇤F 0 � SŒ'ç0 D R�0 ; (7.2)

where

RŒ'ç0 WD 2Af 0.✓/
�
er � r.� ⇤ g/j� � c⇤

�
C 2Af .✓/e✓ � r.� ⇤ g/j�

C 2A� 0.✓/? � K� Œ'ç0 C 2A

✓
� 0.✓/? � K�; Q��0 � 1

2
S�0

◆
; (7.3)

R�0 WD �2F 0�er � r.� ⇤ g/j Q� � Qc⇤
�

� 2Fe✓ � r.� ⇤ g/j Q�

� 2 Q� 0.✓/? � K Q��0 � 2
✓

Q� 0.✓/? � K Q� ;� Œ'ç0 C 1

2
SŒ'ç0

◆
: (7.4)

In what follows, we will need to apply the lemmas in Section 4 with g0 D G. Qp.X//�Br .X/. For
that purpose, according to (4.50) and (4.76), we define

c D � 1

2⇡r

Z
Br

G
�

Qp.X/
�
dX; Qc D r

R
c: (7.5)

We can show the following relation between c and c⇤.
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Lemma 7.1 Let c⇤ and c be defined in (2.22) and (7.5), respectively. Then under the assumption
m0 CM0 ⌧ 1,

jc � c⇤j 6 Cr.m0 CM0/.ıR
2/1=2; (7.6)

where C D C.�; ⌫; G/.

Proof. Thanks to the C 1-smoothness of G,

jc � c⇤j 6 Cr�1
Z
Br

j Qp � p⇤j dX: (7.7)

If r > R=2, by Lemma 3.3, Hölder’s inequality and Poincaré inequality,

jc � c⇤j 6 Ck Qp � p⇤kL2.BR/
6 CRkr. Qp � p⇤/kL2.BR/

6 CR.m0 CM0/.ıR
2/1=2: (7.8)

Since r and R are comparable, the desired estimate follows.
Otherwise, the estimate follows from (3.43).

Then we turn to prove that the static equations (2.33) and (2.34) have solutions Œ'ç0 and �0.

Proposition 7.2 Let ˇ0 2 .0; 1/ and ˇ 2 .0; ˇ 0
1Cˇ 0 /. Suppose h;H 2 C 1;ˇ 0

.T/, such that

m0 CM0 C kh0k PCˇ0 C kH 0k PCˇ0 ⌧ 1; (7.9)

where the smallness depends on �, ⌫, ˇ and ˇ0. Then there exist unique Œ'ç0;�0 2 C ˇ .T/
solving (2.33) and (2.34), or equivalently (7.1)–(7.4). They satisfy that

kŒ'ç0k PCˇ C k�0k PCˇ 6 C jc⇤jr.kh0k PCˇ C kH 0k PCˇ /C Cr2
�
ıˇkh0k PCˇ C .m0 CM0/.1C ıR2/1=2

�
DW N1;ˇ ; (7.10)

where C D C.�; ⌫; G; ˇ; ˇ0/.

Proof. We will first derive a priori estimates for Œ'ç0 and �0, and then briefly discuss the proof of
their existence and uniqueness at the end.

By Lemmas 3.3, 4.4 and 4.7 (with p D .1 � ˇ/�1), the C 1-smoothness of G and the smallness
of h,

kf 0.er � r.� ⇤ g/j� � c/k PCˇ C kfe✓ � r.� ⇤ g/j�k PCˇ

6 kf 0k PCˇ ker � r.� ⇤ g/j� � ckL1 C kf 0kL1ker � r.� ⇤ g/j�k PW 1;p

C kf k PCˇ ke✓ � r.� ⇤ g/j�kL1 C kf kL1ke✓ � r.� ⇤ g/j�k PW 1;p

6 Cr2kh0k PCˇ

�
m0ıj ln ıj C kr. Qp � p⇤/kL2.Br /

�

C Cr2
�
mˇ C kr. Qp � p⇤/kL2.Br /

�

6 Cr2
�
mˇ C .m0 CM0/.ıR

2/1=2
�
: (7.11)
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On the other hand, for ˇ 2 .0; ˇ 0
1Cˇ 0 /, by Lemmas 5.1, 6.1, 6.2 and 6.5,

k� 0.✓/?�K� Œ'ç0k PCˇ C
����� 0.✓/? � K�; Q��0 � 1

2
S�0

���� PCˇ

6 Ckh0k PCˇ .kŒ'ç0kCˇ C kŒ'ç0kL1kh0k PCˇ kh0kL1/

C kf 0=f k PCˇ kfe✓ � K�; Q��0kL1 C kf 0=f kL1kfe✓ � K�; Q��0k PCˇ

C
����fer � K�; Q��0 C 1

2
S�0

���� PCˇ

6 Ckh0k PCˇ kŒ'ç0k PCˇ C C.m0 CM0 C kh0k PCˇ0 C kH 0k PCˇ0 /k�0k PCˇ ; (7.12)

where C D C.ˇ; ˇ0/. Hence, by (7.3), Lemma 7.1 and the fact that jAj 6 1,

kRŒ'ç0k PCˇ 6 jAjC.ˇ; ˇ0/.m0 CM0 C kh0k PCˇ0 C kH 0k PCˇ0 /k�0k PCˇ

C C.ˇ; ˇ0/kh0k PCˇ kŒ'ç0k PCˇ C Cr2
�
mˇ C .m0 CM0/.ıR

2/1=2
�
; (7.13)

and thus by (7.1),

kŒ'ç0k PCˇ 6 jAj
✓

2r

RC r
C C.ˇ; ˇ0/.m0 CM0 C kh0k PCˇ0 C kH 0k PCˇ0 /

◆
k�0k PCˇ

C C.ˇ; ˇ0/kh0k PCˇ kŒ'ç0k PCˇ C C jc⇤jrkh0k PCˇ C Cr2
�
mˇ C .m0 CM0/.ıR

2/1=2
�
; (7.14)

where C D C.�; ⌫; G; ˇ; ˇ0/ unless otherwise stated.
Similarly, by Lemmas 3.3, 4.9 and 4.12,

kF 0.er �r.� ⇤ g/ � Qc/j Q�k PCˇ C kFe✓ � r.� ⇤ g/j Q�k PCˇ

6 kF 0k PCˇ ker � r.� ⇤ g/j Q� � QckL1 C kF 0kL1ker � r.� ⇤ g/j Q�k PW 1;p

C kF k PCˇ ke✓ � r.� ⇤ g/j Q�kL1 C kF kL1ke✓ � r.� ⇤ g/j Q�k PW 1;p

6 Cr2.m0 CM0/.1C ıR2/1=2: (7.15)

By Lemmas 5.1, 6.4 and 6.5,

k Q� 0.✓/? � K Q��0k PCˇ C
���� Q� 0.✓/? � K Q� ;� Œ'ç0 C 1

2
SŒ'ç

���� PCˇ

6 CkH 0k PCˇ

�
k�0kCˇ C k�0kL1kH 0k PCˇ kH 0kL1

�
C kF 0=F k PCˇ kFe✓ � K Q� ;� Œ'ç0kL1 C kF 0=F kL1kFe✓ � K Q� ;� Œ'ç0k PCˇ

C
����Fer � K Q� ;� Œ'ç0 � 1

2
SŒ'ç0

���� PCˇ

6 CkH 0k PCˇ k�0k PCˇ C C
�
m0 CM0 C kh0k PCˇ0 C kH 0k PCˇ0

�
kŒ'ç0k PCˇ ; (7.16)

where C D C.ˇ; ˇ0/. Combining them with (7.2), (7.4) and Lemma 7.1, we obtain that

kR�0k PCˇ 6 C.ˇ; ˇ0/
�
m0 CM0 C kh0k PCˇ0 C kH 0k PCˇ0

�
kŒ'ç0k PCˇ

C C.ˇ; ˇ0/kH 0k PCˇ k�0k PCˇ C Cr2.m0 CM0/.1C ıR2/1=2; (7.17)
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and

k�0k PCˇ 6
✓

2r

RC r
C C.ˇ; ˇ0/.m0 CM0 C kh0k PCˇ0 C kH 0k PCˇ0 /

◆
kŒ'ç0k PCˇ

C C.ˇ; ˇ0/kH 0k PCˇ k�0k PCˇ

C C j Qc⇤jRkH 0k PCˇ C Cr2.m0 CM0/.1C ıR2/1=2; (7.18)

where C D C.�; ⌫; G; ˇ; ˇ0/.
Since jAj < 1 and Qc⇤ D r

Rc⇤, by the smallness assumption (7.9), we combine (7.14) and (7.18)
to obtain (7.10).

Let us briefly explain the proof of existence and uniqueness of Œ'ç0 and �0. Let V denote the
space of C ˇ .T/-functions with mean zero. Take h and H satisfying the assumptions. According
to (7.1) and (7.2), define a map from V ⇥ V to itself by

.Œ'ç0;�0/ 7!
�
2Ac⇤f 0 C AS�0 C RŒ'ç0 ;�2 Qc⇤F 0 C SŒ'ç0 C R�0

�
: (7.19)

Thanks to the estimates above, one can easily show that the map is well-defined and it is a
contraction mapping provided the smallness of h and H . Then the existence and uniqueness of
.Œ'ç0;�0/ follow.

Proposition 7.3 Let ˇ0 2 .0; 1/, ˇ 2 .0; ˇ 0
1Cˇ 0 / and p 2 Œ2;1/. Suppose h;H 2 C 1;ˇ 0 \W 2;p.T/,

such that
m0 CM0 C kh0k PCˇ0 C kH 0k PCˇ0 ⌧ 1; (7.20)

where the smallness depends on �, ⌫, p, ˇ and ˇ0. Then Œ'ç0 and �0 obtained in Proposition 7.2
also belong to W 1;p.T/. They satisfy

kŒ'ç00kLp C k�00kLp

6 C jc⇤jr
�
kh00kLp C kH 00kLp

�

C Cr2.1C kh00kLp C kH 00kLp /
�
ıˇkh0k PCˇ C .m0 CM0/.1C ıR2/1=2

�
DW N2;p; (7.21)

where C D C.�; ⌫; p;G; ˇ; ˇ0/.

Proof. The proof is similar to that of Proposition 7.2.
Let c and Qc be defined as in (7.5). We proceed as before.

kf 0.er �r.� ⇤ g/j� � c/k PW 1;p C kfe✓ � r.� ⇤ g/j�k PW 1;p

6 kf 0k PW 1;p ker � r.� ⇤ g/j� � ckL1 C kf 0kL1ker � r.� ⇤ g/j�k PW 1;p

C kf 0kLp ke✓ � r.� ⇤ g/j�kL1 C kf kL1ke✓ � r.� ⇤ g/j�k PW 1;p

6 Cr2kh00kLp

�
m0ıj ln ıj C kr. Qp � p⇤/kL2.Br /

�

C Cr2
�
mˇ C kr. Qp � p⇤/kL2.Br /

�

6 Cr2ıˇkh0k PCˇ C Cr2.1C kh00kLp /.m0 CM0/.1C ıR2/1=2; (7.22)
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where C D C.�; ⌫; p;G; ˇ/, and by Lemma 5.2 and Lemma 6.3,

k� 0.✓/?�K� Œ'ç0k PW 1;p C
����� 0.✓/? � K�; Q��0 � 1

2
S�0

���� PW 1;p

6 Ckh00kLp kŒ'ç0kL1.1C kh0k PCˇ /C C.kh00kLp kŒ'ç0k PCˇ C kh0kL1kŒ'ç00kLp /

C kf 0=f k PW 1;p kfe✓ � K�; Q��0kL1 C kf 0=f kL1kfe✓ � K�; Q��0k PW 1;p

C
����fer � K�; Q��0 C 1

2
S�0

���� PW 1;p

6 C
�
kh00kLp kŒ'ç0k PCˇ C kh0kL1kŒ'ç00kLp

�
C Ckh00kLp k�0k PCˇ C Ckh0kL1k�00kLp

C C
�
kH 00kLp k�0kL1 C .m0 CM0/k�00kLp

�
6 C.m0 CM0/k�00kLp C Ckh0kL1kŒ'ç00kLp

C C.kh00kLp C kH 00kLp /
�
kŒ'ç0k PCˇ C k�0k PCˇ

�
; (7.23)

where C D C.p; ˇ/. Combining them with (7.1) and (7.3), by Lemma 6.5 and Lemma 7.1

kR0
Œ'ç0kLp 6 C.p; ˇ/.m0 CM0/k�00kLp C C.p; ˇ/kh0kL1kŒ'ç00kLp

C C.kh00kLp C kH 00kLp /.kŒ'ç0k PCˇ C k�0k PCˇ /

C Cr2ıˇkh0k PCˇ C Cr2.1C kh00kLp /.m0 CM0/.1C ıR2/1=2; (7.24)

and thus

kŒ'ç00kLp 6
✓
2jAjr
RC r

C C.p; ˇ/.m0 CM0/

◆
k�00kLp C C.p; ˇ/kh0kL1kŒ'ç00kLp

C C.kh00kLp C kH 00kLp /
�
kŒ'ç0k PCˇ C k�0k PCˇ

�

C C jc⇤jrkh00kLp C Cr2ıˇkh0k PCˇ C Cr2.1C kh00kLp /.m0 CM0/.1C ıR2/1=2;
(7.25)

where C D C.�; ⌫; p;G; ˇ/ unless otherwise stated.
Moreover,

kF 0.er �r.� ⇤ g/ � Qc/j Q�k PW 1;p C kFe✓ � r.� ⇤ g/j Q�k PW 1;p

6 kF 0k PW 1;p ker � r.� ⇤ g/j Q� � QckL1 C kF 0kL1ker � r.� ⇤ g/j Q�k PW 1;p

C kF k PW 1;p ke✓ � r.� ⇤ g/j Q�kL1 C kF kL1ke✓ � r.� ⇤ g/j Q�k PW 1;p

6 Cr2.1C kH 00kLp /.m0 CM0/.1C ıR2/1=2; (7.26)
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where C D C.p;G; ˇ/, and

k Q� 0.✓/? � K Q��0k PW 1;p C
���� Q� 0.✓/? � K Q� ;� Œ'ç0 C 1

2
SŒ'ç0

���� PW 1;p

6 CkH 00kLp k�0kL1.1C kH 0k PCˇ /C C
�
kH 00kLp k�0k PCˇ C kH 0kL1k�00kLp

�
C kF 0=F k PW 1;p kFe✓ � K Q� ;� Œ'ç0kL1 C kF 0=F kL1kFe✓ � K Q� ;� Œ'ç0k PW 1;p

C
����Fer � K Q� ;� Œ'ç0 � 1

2
SŒ'ç0

���� PW 1;p

6 C.m0 CM0/kŒ'ç00kLp C CkH 0kL1k�00kLp

C C.kh00kLp C kH 00kLp /
�
k�0k PCˇ C kŒ'ç0k PCˇ

�
; (7.27)

where C D C.p; ˇ/. Hence, by (7.2), (7.4), Lemma 6.5 and Lemma 7.1, with C D C.p;G; ˇ/,

kR0
�0kLp 6 C.p; ˇ/.m0 CM0/kŒ'ç00kLp C C.p; ˇ/kH 0kL1k�00kLp

C C.kh00kLp C kH 00kLp /
�
k�0k PCˇ C kŒ'ç0k PCˇ

�

C Cr2.1C kH 00kLp /.m0 CM0/.1C ıR2/1=2; (7.28)

and

k�00kLp 6
✓

2r

RC r
C C.p; ˇ/.m0 CM0/

◆
kŒ'ç00kLp C C.p; ˇ/kH 0kL1k�00kLp

C C.kh00kLp C kH 00kLp /
�
k�0k PCˇ C kŒ'ç0k PCˇ

�

C C j Qc⇤jRkH 00kLp C Cr2.1C kH 00kLp /.m0 CM0/.1C ıR2/1=2: (7.29)

Since jAj < 1 and m0 CM0 ⌧ 1, we combine (7.25) and (7.29) to obtain that

kŒ'ç00kLp C k�00kLp

6 C.kh00kLp C kH 00kLp /.kŒ'ç0k PCˇ C k�0k PCˇ /C C jc⇤jr
�
kh00kLp C kH 00kLp

�

C Cr2ıˇkh0k PCˇ C Cr2.1C kh00kLp C kH 00kLp /.m0 CM0/.1C ıR2/1=2; (7.30)

where C D C.�; ⌫; p;G; ˇ/. Applying Proposition 7.2 yields the desired estimate.
To prove Œ'ç0;�0 2 W 1;p.T/, we simply define QV to be the space of mean-zero C ˇ \W 1;p.T/-

functions. One can show that the map in (7.19) is well-defined from QV ⇥ QV to itself and it is a
contraction mapping, provided smallness of h and H .

Lemma 7.4 Under the assumptions of Proposition 7.3,

kRŒ'ç0k PCˇ C kR�0k PCˇ 6 C jc⇤jr
�
kh0k PCˇ0 C kH 0k PCˇ0

�2
C Cr2

�
ıˇkh0k PCˇ C .m0 CM0/.1C ıR2/1=2

�
; (7.31)

and

kRŒ'ç0k PW 1;p C kR�0k PW 1;p

6 C jc⇤jr.kh00kLp C kH 00kLp /
�
kh0k PCˇ C kH 0k PCˇ

�

C Cr2.1C kh00kLp C kH 00kLp /
�
ıˇkh0k PCˇ C .m0 CM0/.1C ıR2/1=2

�

DW QN2;p; (7.32)

where C D C.�; ⌫; p;G; ˇ; ˇ0/.



246 I. KIM AND J. TONG

Proof. The estimates immediately follow by combining (7.13), (7.17), (7.24) and (7.28) with
Proposition 7.2, Proposition 7.3 and Lemma 3.1.

8. Local existence

In this section, we prove existence of local solutions of (2.16)–(2.18).

8.1 Preliminaries

Inspired by (2.45) and (2.46), we may rewrite (2.16) and (2.17) as

@thC c⇤
r

D �Ac⇤
r
.��/1=2h � 1C A

2r2
HS�0 C 1

r
Rh; (8.1)

@tH C Qc⇤
R

D Qc⇤
R
.��/1=2H � 1

R2
HSŒ'ç0 C 1

R
RH ; (8.2)

where

Rh WD � 1

f
� 0.✓/ � K�RŒ'ç0

�
✓
1

f
� 0.✓/ � K� .2Ac⇤f 0 C AS�0/ � 1

2r
H.2Ac⇤f 0 C AS�0/

◆

C
✓
1

f
r.� ⇤ g/j� � � 0.✓/? C c⇤

◆
�

✓
1

f
� 0.✓/ � K�; Q��0 � 1

2r
HS�0

◆
; (8.3)

and

RH WD � 1

F
Q� 0.✓/ � K Q�R�0

�
✓
1

F
Q� 0.✓/ � K Q� .�2 Qc⇤F 0 C SŒ'ç0/ � 1

2R
H.�2 Qc⇤F 0 C SŒ'ç0/

◆

C
✓
1

F
r.� ⇤ g/j Q� � Q� 0.✓/? C Qc⇤

◆
�

✓
1

F
Q� 0.✓/ � K Q� ;� Œ'ç0 � 1

2R
HSŒ'ç0

◆
: (8.4)

For future use, we also denote

QRh WD �1C A

2r
HS�0 C Rh; QRH WD � 1

R
HSŒ'ç0 C RH : (8.5)

We need estimates for Rh and RH .

Lemma 8.1 Under the assumptions of Proposition 7.3,

rkRhk PW 1;p CRkRHk PW 1;p 6 C QN2;p; (8.6)

where C D C.�; ⌫; p;G; ˇ; ˇ0/.
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Proof. By (7.1), RŒ'ç0 has zero integral on T. By Lemma 5.3 and Lemma 7.4,

k� 0.✓/ � K�RŒ'ç0k PW 1;p 6 CkRŒ'ç0k PW 1;p C Ckh00kLp kRŒ'ç0k PCˇ 6 C QN2;p: (8.7)

When � 0 and  are Hölder continuous on T and h satisfies the smallness assumption, one can
rigorously show that

� 0 � K� D d

d✓


1

2⇡

Z
T

ln j�.✓/ � �.✓ 0/j .✓ 0/ d✓ 0
�
; (8.8)

and thus it has mean zero on T. Hence, by Poincaré inequality and (8.7),

kf �1� 0.✓/ � K�RŒ'ç0k PW 1;p 6 Cr�1 QN2;p: (8.9)

Similarly,
����
1

f
� 0.✓/ � K� .2Ac⇤f 0 C AS�0/ � 1

2r
H.2Ac⇤f 0 C AS�0/

���� PW 1;p

6
����
1

f

✓
� 0.✓/ � K� .2Ac⇤f 0 C AS�0/ � 1

2
H.2Ac⇤f 0 C AS�0/

◆���� PW 1;p

C
����
✓
1

2f
� 1

2r

◆
H.2Ac⇤f 0 C AS�0/

���� PW 1;p

6 Cr�1kh00kLp k2Ac⇤f 0 C AS�0k PCˇ C Cr�1m0k2Ac⇤f 0 C AS�0k PW 1;p

6 Cr�1 QN2;p: (8.10)

By Lemmas 3.3, 4.4 and 4.7,

kf �1r.� ⇤ g/j� � � 0.✓/? C c⇤k PW 1;p

6 Ckf 0=f k PW 1;p ke✓ � r.� ⇤ g/j�kL1 C Ckf 0=f kL1ke✓ � r.� ⇤ g/j�k PW 1;p

C ker � r.� ⇤ g/j�k PW 1;p

6 Crkh00kLp

�
m0ıj ln ıj C kr. Qp � p⇤/kL2.Br /

�
C Cr

�
mˇ C kr. Qp � p⇤/kL2.Br /

�

6 Cr�1 QN2;p: (8.11)

Finally, by Lemmas 6.1, 6.3 and 6.5,
����
1

f
� 0.✓/ � K�; Q��0 � 1

2r
HS�0

���� PW 1;p

6 Cr�1
����fe✓ � K�; Q��0 � 1

2
HS�0

���� PW 1;p

C Cr�1kf 0er � K�; Q��0k PW 1;p

C Cr�1khkW 1;1kHS�0k PW 1;p

6 Cr�1�kH 00kLp k�0kL1 C .m0 CM0/k�00kLp

�
C Cr�1kh00kLp k�0kL1

6 Cr�1 QN2;p: (8.12)

Combining these estimates with (8.3), we obtain the estimate for Rh in (8.6).
The estimate for RH can be derived in a similar manner.
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We shall also need bounds for integrals of Rh and RH on T.

Lemma 8.2 Under the assumptions of Proposition 7.3,

r

ˇ̌
ˇ̌
Z
T
Rh d✓

ˇ̌
ˇ̌CR

ˇ̌
ˇ̌
Z
T
RH d✓

ˇ̌
ˇ̌ 6 C.khkL1 C kHkL1/N2;p CCr2.m0 CM0/.1C ıR2/1=2;

(8.13)

where C D C.�; ⌫; p;G; ˇ; ˇ0/.

Proof. We shall again use the fact that, provided � 0, Q� 0 and  to be Hölder continuous on T,

.� 0 � K� /; . Q� 0 � K Q� /; .� 0 � K�; Q� /; . Q� 0 � K Q� ;� / have integrals 0 on T: (8.14)

This is because they all can be represented as ✓ -derivatives of certain quantities as in (8.8).
Applying this fact to (8.3),

Z
T
Rh d✓ D

Z
T

✓
1

r
� 1

f

◆ �
� 0.✓/ � K� .RŒ'ç0 C 2Ac⇤f 0 C AS�0/

�
d✓

C
Z
T
.�er � r.� ⇤ g/j� C c⇤/ d✓ C

Z
T

f 0

f
e✓ � r.� ⇤ g/j� d✓

C
Z
T

✓
1

r
� 1

f

◆
� 0.✓/ � K�; Q��0 d✓: (8.15)

By (7.1), Poincaré inequality, Lemmas 3.3, 4.4, 5.3, 6.1, 6.5 and 7.1, as well as Propositions 7.2
and 7.3, we derive that

ˇ̌
ˇ̌
Z
T
Rh d✓

ˇ̌
ˇ̌ 6 Cr�1khkL1k� 0.✓/ � K� Œ'ç0k PW 1;p

C Cker � r.� ⇤ g/j� � c⇤kL1 C Ckh0kL1ke✓ � r.� ⇤ g/j�kL1

C Cr�1khkL1
�
kh0kL1kfer � K�; Q��0kL1 C kfe✓ � K�; Q��0kL1

�

6 Cr�1khkL1
�
kh00kLp kŒ'ç0k PCˇ C kŒ'ç00kLp

�

C Cr
�
m0ıj ln ıj C .m0 CM0/.ıR

2/1=2
�

C Cr�1khkL1
�
ı�1.khkL1 C kHkL1/k�0kL1 C k�0k PCˇ

�

6 Cr�1khkL1N2;p C Cr.m0 CM0/.1C ıR2/1=2; (8.16)

where C D C.�; ⌫; p;G; ˇ; ˇ0/.
The estimate for the

R
T RH can be derived similarly.

8.2 Proof of existence of local solutions

Now we are ready to show existence of local solutions.

Proof of Theorem 2.1. The proof is an application of the Schauder fixed-point theorem.
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STEP 1 (Setup) Let ı be chosen according to (2.23). Also recall that ˛ D 1 � 2
p , and " > 0 and M

are given in (2.24). We assume M 6 1. The exact smallness of M will be specified later.
With 0 < T 6 minf1; ıM g to be determined, we define

XM;T WD
n
v 2 LpŒ0;T çW

2;p \ CŒ0;T çC 1;˛.T/ W vt 2 LpŒ0;T çW
1;p.T/;

vjtD0 D 0; kvkCŒ0;T çL1.T/ 6 ıM;

kvkLp
Œ0;T ç

PW 2;p.T/ C kvkCŒ0;T ç
PC1;˛.T/ C kvtkLp

Œ0;T ç
PW 1;p.T/ 6 ı�˛C"M

o
: (8.17)

XM;T is a non-empty, convex, closed subset of fv 2 CŒ0;T çC
1;˛.T/ W vt 2 LpŒ0;T çW

1;p.T/g. Take
˛0 2 .0; ˛/ to be determined. Denote

Z WD L1
Œ0;T çC

1;˛0
.T/: (8.18)

By Aubin–Lions Lemma [46], the embedding
˚
v 2 CŒ0;T çC 1;˛.T/ W vt 2 LpŒ0;T çW

1;p.T/
 
,! Z (8.19)

is compact, soXM;T is compact inZ. In what follows, we shall apply Schauder fixed-point theorem
on

YM;T WD
✓
e� Ac⇤

r t.��/1=2
h0 � c⇤t

r
CXM;T

◆
⇥
✓
e

Qc⇤
R t.��/1=2

H0 � Qc⇤t
R

CXM;T

◆
; (8.20)

which is a non-empty, convex, compact subset of Z ⇥Z.

STEP 2 (Estimates for elements in YM;T ) Take .h;H/ 2 YM;T . By the definition of XM;T and
Lemma 3.1,

khkCŒ0;T çL1.T/ 6
���e� Ac⇤

r t.��/1=2
h0

���
L1.T/

C jc⇤jT
r

C ıM 6 C.G/ıM: (8.21)

By the definition of the PW 2� 1
p ;p.T/-seminorm in (2.20),

khkLp
Œ0;T ç

PW 2;p.T/ 6
✓

r

jAc⇤j

◆ 1
p

kh0k PW 2� 1
p ;p

.T/
C ı�˛C"M 6 C.p;�; ⌫; r=jc⇤j/ı�˛C"M: (8.22)

Moreover,W 2� 1
p ;p.T/ ,! h1;˛.T/ [47, ê 2.7], where h1;˛.T/ is the closure of C1.T/ in the C 1;˛-

topology. So e� Ac⇤
r t.��/1=2

h0 is continuous in t valued in C 1;˛.T/ and hence

khkCŒ0;T ç
PC1;˛.T/ 6 kh0k PC1;˛.T/ C ı�˛C"M 6 C.p/ı�˛C"M: (8.23)

Applying interpolation to (8.21) and (8.23) yields

khkCŒ0;T ç
PC1;ˇ0

.T/ 6 C.G; p/ı1� 1C˛�"
1C˛ .1Cˇ 0/M: (8.24)

Hence, taking
ˇ0 D "

1C ˛ � " ; (8.25)
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we find that
khkCŒ0;T ç

PC1;ˇ0
.T/ 6 C.G; p/M: (8.26)

Similarly,

kHkCŒ0;T çL1.T/ 6 C.G/ıM; (8.27)

kHkLp
Œ0;T ç

PW 2;p.T/ 6 C.p;R=j Qc⇤j/ı�˛C"M; (8.28)

kHkCŒ0;T ç
PC1;˛.T/ 6 C.p/ı�˛C"M; (8.29)

and, with the same ˇ0 as above,

kHkCŒ0;T ç
PC1;ˇ0

.T/ 6 C.G; p/M: (8.30)

In what follows, we shall assume M to be suitably small, which depends on p and G, so
that (8.21), (8.23), (8.26), (8.27), (8.29) and (8.30) implies that for .h;H/ 2 YM;T ,

sup
t2Œ0;T ç

�
m1;˛ CM1;˛ C kh0k PCˇ0 C kH 0k PCˇ0

�
6 C.G; p/M ⌧ 1: (8.31)

STEP 3 (Construction of a map on YM;T ) Inspired by (8.1) and (8.2), for given .h;H/ 2 YM;T , we
let .hé;Hé/ solve

@thé D � Ac⇤
r
.��/1=2hé C 1

r
QRh; héjtD0 D 0; (8.32)

@tHé D Qc⇤
R
.��/1=2Hé C 1

R
QRH ; HéjtD0 D 0: (8.33)

Recall that QRh and QRH are defined in (8.5), which are uniquely determined by .h;H/ via (2.33)
(cf. Proposition 7.3), (2.34), (8.3) and (8.4). Then let

. Qh; QH/ D
✓
e� Ac⇤

r t.��/1=2
h0 � c⇤t

r
C hé; e

Qc⇤
R t.��/1=2

H0 � Qc⇤t
R

CHé

◆
: (8.34)

A fixed-point of the map T W .h;H/ 7! . Qh; QH/ is then a solution of (8.1) and (8.2).
We shall show that T is continuous from YM;T to itself in the topology of Z ⇥Z and then apply

Schauder fixed-point theorem. It suffices to prove that:

✏ the map T
0 W .h;H/ 7! .hé;Hé/ is well-defined as a continuous function on YM;T in the

topology of Z ⇥Z, and
✏ .hé;Hé/ 2 XM;T ⇥XM;T for properly chosen M and T .

STEP 4 (Continuity of T 0) We choose ˛0 < ˛00 < minf14 ; ˛g. By (8.1) and (8.2),

. QRh; QRH / D
�
r@thC c⇤ C Ac⇤.��/1=2h;R@tH C Qc⇤ � Qc⇤.��/1=2H

�
: (8.35)

By (8.31) and Lemma 3.4, provided that M ⌧ 1 which depends on p, G and ˛00, for any pair
.h1;H1/; .h2;H2/ 2 YM;T ,

k QRh1
� QRh2

kL1
Œ0;T ç

C˛00
.T/ C k QRH1

� QRH2
kL1

Œ0;T ç
C˛00

.T/

6 C.˛00;�; ⌫; r; R;G/ � d˛00
�
.h1;H1/; .h2;H2/

�
; (8.36)
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where

d˛00
�
.h1;H1/; .h2;H2/

�
WD kh1 � h2kL1

Œ0;T ç
C1;˛00

.T/ C kH1 �H2kL1
Œ0;T ç

C1;˛00
.T/: (8.37)

We abbreviate it as d˛00 if it incurs no confusion. By taking h2 D H2 D 0 in (8.36) which
corresponds to QRh2

D QRH2
D 0, we show that QRh1

; QRH1
2 L1

Œ0;T çC
˛00
.T/; so are QRh2

and
QRH2

. Following a similar argument, we may apply Lemma 3.4 to different time slices of hi andHi ,
and use the time continuity hi ;Hi 2 CŒ0;T çC 1;˛

00
.T/ to prove QRhi

; QRHi
2 CŒ0;T çC ˛

00
.T/.

Let .hi;é;Hi;é/ .i D 1; 2/ be the unique solution of (8.32) and (8.33) in Z ⇥ Z corresponding
to .hi ;Hi / 2 YM;T . By Lemma A.7 and (8.36),

kh1;é � h2;ékCŒ0;T ç
PC1;˛0

.T/ 6 C.˛0; ˛00;�; ⌫; r; R;G/ � d˛00 : (8.38)

On the other hand, let Nhi;é D 1
2⇡

R
T hi;é d✓ . By (8.32) and (8.36),

k Nh1;é � Nh2;ékCŒ0;T çL1.T/ 6 Cr�1k QRh1
� QRh2

kCŒ0;T çC˛00
.T/ 6 C.˛00;�; ⌫; r; R;G/ � d˛00 : (8.39)

Combining this with (8.38), we use interpolation as well as (8.21), (8.23), (8.27) and (8.29) to derive
that

kh1;é � h2;ékCŒ0;T çC1;˛0
.T/ 6 C.˛0; ˛00;�; ⌫; r; R;G/ � d ✓˛0d1�✓

˛

6 C.˛0; ˛00; p;�; ⌫; r; R;G/ � d ✓˛0 ; (8.40)

where ✓ D ˛�˛00
˛�˛0 . Similarly, kH1;é � H2;ékCŒ0;T çC1;˛0

.T/ enjoys the same bound. This proves
(Hölder) continuity of T 0 in YM;T in the topology of Z ⇥Z.

In fact, if one improves Lemma A.7, it can be shown that T 0 is log-Lipschitz continuous in YM;T
in the topology of Z ⇥Z. We omit the details although it may be of independent interest.

STEP 5 (Justification of .hé;Hé/ 2 XM;T ⇥ XM;T ) Let ˇ0 be taken as before, and let ˇ D ˇ 0
4 <

ˇ 0
1Cˇ 0 . It is not difficult to show that

kHS 0k PW 1;p 6 CkS 0k PW 1;p 6 Cıˇ�1C 1
p k 0k PCˇ : (8.41)

Combining with Lemma 8.1,

k QRhk PW 1;p C k QRHk PW 1;p 6 Cr�1� QN2;p C ıˇ�1C 1
pN1;ˇ

�
; (8.42)

Then we derive by Lemma 3.1, Proposition 7.2, Lemma 7.4, (8.22), (8.28) and (8.31) that

kr�1 QRhkLp
Œ0;T ç

PW 1;p C kR�1 QRHkLp
Œ0;T ç

PW 1;p

6 C jc⇤jr�1.kh00kLp
Œ0;T ç

Lp C kH 00kLp
Œ0;T ç

Lp / sup
t2Œ0;T ç

�
kh0k PCˇ C kH 0k PCˇ

�

C C.T 1=p C kh00kLp
Œ0;T ç

Lp C kH 00kLp
Œ0;T ç

Lp / sup
t2Œ0;T ç

�
ıˇkh0k PCˇ C .m0 CM0/.1C ıR2/1=2

�

C Cıˇ�1C 1
p T 1=pjc⇤jr�1 sup

t2Œ0;T ç

�
kh0k PCˇ C kH 0k PCˇ

�

C Cıˇ�1C 1
p T 1=p sup

t2Œ0;T ç

�
ıˇkh0k PCˇ C .m0 CM0/.1C ıR2/1=2

�

6 Cı�˛C"M 2.1C ıR2/1=2 C Cıˇ�1C 1
p T 1=pM.1C ıR2/1=2; (8.43)
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where C D C.p; ";�; ⌫; R=j Qc⇤j; G/. Here we rewrote the ˇ- and ˇ0-dependence into dependence
on p and ", and used the fact that r=jc⇤j 6 R=j Qc⇤j. In particular,C does not deteriorate as ı becomes
smaller. Hence,

kr�1 QRhkLp
Œ0;T ç

PW 1;p C kR�1 QRHkLp
Œ0;T ç

PW 1;p 6 C
�
ıˇ�1C 1

p T 1=p C ı�˛C"M
�
M; (8.44)

where C D C.p; ";�; ⌫; R=j Qc⇤j; G; ıR2/.
To this end, applying Lemma A.5 and Lemma A.6 to (8.32) and (8.33), we obtain that

khékLp
Œ0;T ç

PW 2;p C k@thékLp
Œ0;T ç

PW 1;p C khékCŒ0;T ç
PC1;˛

C kHékLp
Œ0;T ç

PW 2;p C k@tHékLp
Œ0;T ç

PW 1;p C kHékCŒ0;T ç
PC1;˛

6 C
�
ıˇ�1C 1

p T 1=p C ı�˛C"M
�
M: (8.45)

Here the universal constant C has the same dependence as above. Now we take

M 6 M⇤.p; ";�; ⌫; R=j Qc⇤j; G; ıR2/ ⌧ 1; (8.46)

T 6 T⇤.ı; p; ";�; ⌫; R=j Qc⇤j; G; ıR2/ ⌧ 1; (8.47)

so that (8.45) becomes

khékLp
Œ0;T ç

PW 2;p C k@thékLp
Œ0;T ç

PW 1;p C khékCŒ0;T ç
PC1;˛

C kHékLp
Œ0;T ç

PW 2;p C k@tHékLp
Œ0;T ç

PW 1;p C kHékCŒ0;T ç
PC1;˛

6 ı�˛C"M: (8.48)

Note that the smallness needed for M will not be more stringent as ı becomes smaller.
Finally, we show .hé;Hé/ satisfies the CŒ0;T çL1.T/-bound in the definition (8.17) ofXM;T . By

Lemma 8.2, Sobolev inequality and (8.42),

kr�1 QRhkL1 C kR�1 QRHkL1 6 Cr�2.khkL1 C kHkL1/N2;p C C.m0 CM0/.1C ıR2/1=2

C Cr�2. QN2;p C ıˇ�1C 1
pN1;ˇ /

6 Cr�2. QN2;p C ıˇ�1C 1
pN1;ˇ /: (8.49)

Following (8.43) and (8.44),

kr�1 QRhkL1
Œ0;T ç

L1 C kR�1 QRHkL1
Œ0;T ç

L1 6 CT 1� 1
p
�
ıˇ�1C 1

p T 1=p C ı�˛C"M
�
M: (8.50)

Combining this with (8.32) and (8.33), we use the fact ke�t.��/1=2kL1!L1 6 1 to obtain that

khékCŒ0;T çL1.T/ C kHékCŒ0;T çL1.T/ 6 CT 1� 1
p
�
ıˇ�1C 1

p T 1=p C ı�˛C"M
�
M; (8.51)

where C D C.p; ";�; ⌫; R=j Qc⇤j; G; ıR2/. Take T⇤ in (8.47) even smaller if necessary, so that the
required CŒ0;T çL1.T/-bound for .hé;Hé/ in (8.17) is achieved.

This shows that T 0 has its image .hé;Hé/ in XM;T ⇥XM;T .
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STEP 6 (Existence and estimates) By Schauder fixed-point theorem, the map T has a fixed-
point .h;H/ 2 YM;T , which is a mild solution of (8.1) and (8.2). Moreover, the pointwise well-
definedness of @th and @tH has been readily shown in Step 4, as they are at least in CŒ0;T çC ˛

00
.T/,

where ˛00 < minf14 ; ˛g is arbitrary. Therefore, .h;H/ is a strong solution of (8.1) and (8.2).
Estimates for h andH follow from (8.21)–(8.23) and (8.27)–(8.29). For @th and @tH , we derive

by (8.34), (8.48) and the definition of W 2� 1
p ;p.T/-space (2.20),

k@thkLp
Œ0;T ç

PW 1;p 6 k@te� Ac⇤
r t.��/1=2

h0kLp
Œ0;T ç

PW 1;p C k@thékLp
Œ0;T ç

PW 1;p

6 C.�; ⌫; p;G/kh0k PW 2� 1
p ;p C ı�˛C"M; (8.52)

and similarly,
k@tHkLp

Œ0;T ç
PW 1;p 6 C.�; ⌫; p;G/kH0k PW 2� 1

p ;p C ı�˛C"M: (8.53)

8.3 Continuation of the local solutions

A local solution can be extended to longer time intervals as long as f .T / and F.T / still satisfy
the smallness assumption (2.24) on the initial data. We start with the following lemma that links
estimates for f .T / and F.T / when they are treated as new initial datum, with the estimates for f0
and F0.

Lemma 8.3 Under the assumptions of Theorem 2.1 withM⇤ suitably small, let f and F be a local
solution over Œ0; T ç. Define f1.✓/ D f .✓; T / and F1.✓/ D F.✓; T /. Let

r1 WD 1

2⇡

Z
T
f1.✓/ d✓; R1 WD 1

2⇡

Z
T
F1.✓/ d✓; (8.54)

and according to (2.19),

h1.✓/ WD f1

r1
� 1; H1.✓/ WD F1

R1
� 1: (8.55)

Let

ı1 D
1 � r1

R1

1 � r
R

� ı: (8.56)

Then r1, R1 and ı1 satisfy (2.23). Moreover, with some universal constant QC D QC.p; ";G/,

ı�1
1 .kh1kL1.T/ C kH1kL1.T//C ı˛�"

1

⇣
kh1k PW 2� 1

p ;p
.T/

C kH1k PW 2� 1
p ;p

.T/

⌘
6 QC.p; ";G/M;

(8.57)
where M is defined in (2.24) with h0, H0 and ı.

Proof. That r1, R1 and ı1 satisfy (2.23) is obvious since r , R and ı satisfy (2.23).
To show (8.57), we first study h.T / and H.T /. Note that (2.26) readily provides

ı�1�kh.T /kL1 C kH.T /kL1
�

6 C.p;G/M: (8.58)
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A bound for W 2� 1
p ;p-seminorm of h.T / and H.T / may be derived as follows. Denote h⇤ D

h � e� Ac⇤
r t.��/1=2

h0 and H⇤ D H � e Qc⇤
R t.��/1=2

H0. By (8.34) and (8.48), they satisfy

@xh⇤; @xH⇤ 2 W 1;p.Œ0; T ç ⇥ T/ (8.59)

and
h⇤jtD0 D H⇤jtD0 D @xh⇤jtD0 D @xH⇤jtD0 D 0: (8.60)

We make zero extension of h⇤ and H⇤ to the region t < 0 while still denote the extension to be
h⇤ and H⇤. Then the above properties imply that @xh⇤; @xH⇤ 2 W 1;p..�1; T ç ⇥ T/. By trace
theorem (see, e.g., [47, ê2.7.2]) and (8.48),

k@xh⇤.T /k PW 1� 1
p ;p

.T/
C k@xH⇤.T /k PW 1� 1

p ;p
.T/

6 C
⇣
k@xh⇤k PW 1;p..�1;T ç⇥T/ C k@xH⇤k PW 1;p..�1;T ç⇥T/

⌘

6 C
⇣
kh⇤kLp

Œ0;T ç
PW 2;p.T/ C kH⇤kLp

Œ0;T ç
PW 2;p.T/

⌘

C C
⇣
k@th⇤kLp

Œ0;T ç
PW 1;p.T/ C k@tH⇤kLp

Œ0;T ç
PW 1;p.T/

⌘

6 Cı�˛C"M: (8.61)

It is noteworthy that the constants C may only depend on p but not on T . On the other hand, by the
definition (2.20) of the W 2� 1

p ;p.T/-seminorm,

ke� Ac⇤
r t.��/1=2

h0.T /k PW 2� 1
p ;p

.T/
C ke� Qc⇤

R t.��/1=2
H0.T /k PW 2� 1

p ;p
.T/

6 kh0k PW 2� 1
p ;p

.T/
C kH0k PW 2� 1

p ;p
.T/
: (8.62)

Combining this with (2.24) and (8.61), we conclude that

kh.T /k PW 2� 1
p ;p

.T/
C kH.T /k PW 2� 1

p ;p
.T/

6 C.p/ı�˛C"M: (8.63)

Thanks to (8.58) and the way r1 and R1 are defined
ˇ̌
ˇr1
r

� 1
ˇ̌
ˇC

ˇ̌
ˇ̌R1
R

� 1
ˇ̌
ˇ̌ 6 C.p;G/ıM: (8.64)

Assume M⇤ is already small enough, depending on p and G, to guarantee that the right hand side
of the above inequality is sufficiently small and that

c1ı 6 ı1 6 c2ı (8.65)

for some universal 0 < c1 < 1 < c2. Hence,

ı�1
1

�
kh1kL1.T/ C kH1kL1.T/

�
6 Cı�1�kh.T /kL1.T/ C kH.T /kL1.T/

�
C C.G/M; (8.66)

and

ı˛�"
1

⇣
kh1k PW 2� 1

p ;p
.T/

C kH1k PW 2� 1
p ;p

.T/

⌘

6 C.p; "/ı˛�"
⇣
kh.T /k PW 2� 1

p ;p
.T/

C kH.T /k PW 2� 1
p ;p

.T/

⌘
: (8.67)

They combined with (8.58) and (8.63) imply (8.57).
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Proof of Corollary 2.2. We would like to construct a local solution over Œ0; QT ç by making successive
continuations.

STEP 1 (Setup) We can always start with f0 and F0 satisfying the smallness condition of
Theorem 2.1. To make the notations more systematic, we rewrite r , R and ı in Theorem 2.1 as
r0, R0 and ı0, respectively. Let h0 and H0 be defined as in (2.19). Since

M 0 WD ı�1
0

�
kh0kL1.T/ C kH0kL1.T/

�
C ı˛�"

0

�
kh0k PW 2� 1

p ;p
.T/

C kH0k PW 2� 1
p ;p

.T/

�
6 M⇤;0;

(8.68)
where according to (8.46),

M⇤;0 WD M⇤
�
p; ";�; ⌫; R0=j Qc⇤.r0; R0/j; G; ı0R20

�
; (8.69)

by Theorem 2.1, there exists a solution .f 0; F 0/ on Œ0; t0ç, where by (8.47),

t0 6 T⇤
�
ı0; p; ";�; ⌫; R0=j Qc⇤.r0; R0/j; G; ı0R20

�
: (8.70)

Define T0 D t0.
Suppose we have obtained a solution on Œ0; Tk�1ç for some k 2 ZC. We define

fk D f .Tk�1/; Fk.t D 0/ D F.Tk�1/; (8.71)

rk D 1

2⇡

Z
T
fk.✓/ d✓; Rk D 1

2⇡

Z
T
Fk.✓/ d✓: (8.72)

Also let

ık D
1 � rk

Rk

1 � rk�1

Rk�1

� ık�1: (8.73)

With this choice, rk , Rk and ık satisfy (2.23). Let hk and Hk be defined by fk , Fk , rk and Rk as
in (2.19). Then if

M k WD ı�1
k

�
khkkL1.T/ C kHkkL1.T/

�
C ı˛�"

k

�
khkk PW 2� 1

p ;p
.T/

C kHkk PW 2� 1
p ;p

.T/

�
6 M⇤;k ;

(8.74)
where

M⇤;k WD M⇤
�
p; ";�; ⌫; Rk=j Qc⇤.rk ; Rk/j; G; ıkR2k

�
; (8.75)

Theorem 2.1 claims that there exists a solution .f k ; F k/ on Œ0; tk ç, where by (8.47),

tk 6 T⇤
�
ık ; p; ";�; ⌫; Rk=j Qc⇤.rk ; Rk/j; G; ıkR2k

�
: (8.76)

To this end, we let Tk D Tk�1 C tk , and define f .t/ D f k.t � Tk�1/ and F.t/ D F k.t � Tk�1/
for t 2 ŒTk�1; Tk ç. Then it is easy to verify that .f; F / is a local strong solution on Œ0; Tk ç.

Starting from the initial data, if we are able to make such continuation until TK > QT for some
finite K, then we prove the existence of a strong solution on Œ0; QT ç. Otherwise,

1. either (8.74) is first violated for some finite K⇤ (depending on the initial data) with TK⇤ < QT ;
2. or we are able to make continuation for infinitely many times but still can not reach QT . This

implies that for all k 2 N, Tk < QT and (8.74) holds, while

lim
k!1

T⇤
�
ık ; p; ";�; ⌫; Rk=j Qc⇤.rk ; Rk/j; G; ıkR2k

�
D 0: (8.77)
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We are going to show that both of them would not occur if we take initial datum h0 and H0 to be
sufficiently small.

STEP 2 (A priori estimates for configurations staying almost circular) Consider an arbitrary k such
that Tk < QT and (8.74) holds for all numbers from 0 to k. We shall first derive upper and lower
bounds for rk and Rk .

Since (8.74) holds, in which M⇤ is sufficiently small, the inner and outer interfaces at times
T�1; � � � ; Tk�1 are all sufficiently close to circles (we use the convention T�1 D 0). In this case, we
must have rk < Rk as the interfaces can not cross by the proof of Theorem 2.1. Moreover, with
some universal constants c and C ,

cj˝Tk�1
j1=2 6 rk < Rk 6 C j Q̋

Tk�1
j1=2: (8.78)

The increment of j Q̋ j is due to the growth of the tumor, which provides a naive bound for j Q̋ j
d

dt
j Q̋ j 6 G.0/j Q̋ j: (8.79)

Therefore, for all such k, rk and Rk admit an upper bound that only depends on G, j Q̋
0j and QT .

Since the initial data is assumed to satisfy the smallness condition (8.68), j Q̋
0j is comparable with

R20 up to universal constants. Hence, the j Q̋
0j-dependence can be rewritten as R0-dependence. We

note that Lemma 3.1 may provide a better upper bound that depends linearly on T , but the naive
bound here is enough for this qualitative discussion. On the other hand, because of the growth of
the tumor, j˝Tk�1

j > j˝0j. This gives a positive lower bound for rk and Rk that only depends on
j˝0j, and thus only on r0 by the same reasoning as above.

To this end, we note that R=j Qc⇤.r; R/j is a continuous function in r; R 2 RC. The continuity
can be justified using Lemma 3.4 with h1 D H1 D 0 and h2 and H2 being small constants. Indeed,
j Qc⇤.r; R/j is the speed of the outer interface when the interfaces are concentric circles with radii
r and R, respectively. Therefore, for all such k, Rk=j Qc⇤.rk ; Rk/j admits positive lower and upper
bounds depending only on �, ⌫, G, r0, R0 and QT .

By Remark 3.1, ıkR2k has lower and upper bounds that only depend on j Q̋
0n˝0j. This together

with the bound for Rk implies that ık has positive lower and upper bounds only depending on G,
r0, R0 and QT .

By the proof of Theorem 2.1 (cf. (8.47) and (8.51)), T⇤ has continuous dependence on ı, R=j Qc⇤j
and ıR2. Combining all the facts above, there is a universal T⇤⇤ D T⇤⇤.�; ⌫; G; r0; R0; QT / > 0,
such that for all such k,

T⇤
�
ık ; p; ";�; ⌫; Rk=j Qc⇤.rk ; Rk/j; G; ıkR2k

�
> T⇤⇤: (8.80)

This contradicts with (8.77), so case (2) above is ruled out.
Similarly, there exists a universal M⇤⇤ D M⇤⇤.�; ⌫; G; r0; R0; QT / > 0 such that for all such k,

M⇤
�
p; ";�; ⌫; Rk=j Qc⇤.rk ; Rk/j; G; ıkR2k

�
> M⇤⇤: (8.81)

STEP 3 (Estimates for total number of continuations) It suffices to consider the case (1) above.
Thanks to (8.80), if (8.74) always holds, we only need to make continuation for finitely many

times to cover the time interval Œ0; QT ç. To be more precise, by choosing the longest possible lifespan
of the local solution in each stage of continuation, we can have TN > QT for some N that admits an
upper bound

N 6 N⇤⇤.�; ⌫; G; r0; R0; QT /; (8.82)
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provided that (8.74) is not violated along the way. In order to make (8.74) hold for N⇤⇤ times, we
take M sufficiently small (recall that M is defined by h0, H0 and ı0 in (2.24)), such that

QC.p; ";G/N⇤⇤ �M 6 M⇤⇤; (8.83)

where QC is given in Lemma 8.3 and M⇤⇤ is introduced in (8.81). Note that the required smallness
for M only depends on �, ⌫, G, r0, R0 and QT . With (8.83), it is easy to justify by Lemma 8.3
that (8.74) will always be satisfied before the solution is extended beyond QT .

This completes the proof.

9. Uniqueness

In this section, we prove uniqueness of the local solution under the additional assumptionG 2 C 1;1.

9.1 Basic setup

We start with basic setups that will be used throughout this section. Let p 2 .2;1/ and " > 0 as
in Theorem 2.1, and ˛ D 1 � 2

p . Let ˇ0 be defined in (8.25) and ˇ D ˇ0=4 as in the proof of local

existence (see step 5). In particular, ˇ < ˇ 0
1Cˇ 0 and ˇ < 1

4 .
Suppose there are two solutions fi and Fi .i D 1; 2/ of (2.16)–(2.18) with regularity and

estimates given in Theorem 2.1. We define hi and Hi .i D 1; 2/ as in (2.19). Let m0;i , M0;i ,
m˛;i and M˛;i be defined as in (3.17), (3.18), (3.45) and (3.46), respectively, and let �m0, �M0,
�m˛ and �M˛ be defined in (3.47)–(3.50). By virtue of (2.26), by imposing sufficient smallness
in (2.24) that depends on G, p and ", we may assume that for all t 2 Œ0; T ç, �i .t/ ⇢ Br.1Cı/ and
Q�i .t/ ⇢ Bcr.1C5ı/, and

m0;i CM0;i C khik PCˇ0 C kHik PCˇ0 ⌧ 1: (9.1)

Later we shall see the smallness needs to depend on p and ".
Let pi solve (1.6) and (1.7) in the (time-varying) physical domain that is determined by fi

and Fi . Let xi .X/ be the diffeomorphism between the physical and the (time-invariant) reference
domains, determined by hi and Hi via (3.2), and let Xi .x/ be its inverse. Define Qpi .X/ WD
pi .xi .X// as the pull-back of pi to the reference domain. Let 'i be the potential defined in (2.1)
corresponding to pi . Let ci and Qci be defined as in (7.5).

The idea of proving uniqueness is to first derive bounds for QRh1
� QRh2

and QRH1
� QRH2

(see (8.5))
in terms of h1 � h2 and H1 � H2 by following the arguments in previous sections, and then use
regularity theory of (8.1) and (8.2) to conclude that h1 � h2 and H1 � H2 can only be zero if
they initially are. Such a process would be extremely involved if carried out naively, requiring more
estimates than we currently have. To slightly reduce the complexity, we shall segregate inner and
outer interfaces by a cut-off function in space, which decouples their dynamics in some sense.

With abuse of notation, let ⌘.x/ be a time-independent, radially symmetric, smooth cut-off
function on the physical domain, such that ⌘ 2 Œ0; 1ç in R2, ⌘ ⌘ 1 on Br.1C3ı/, and ⌘ ⌘ 0
outside Br.1C4ı/. Moreover, we need jr⌘j 6 C.rı/�1 and jr2⌘j 6 C.rı/�2 for some universal
C . For i D 1; 2, define

 i D ⌘'i ;  i D .1 � ⌘/'i :
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The equation satisfied by  i can be derived from (1.6), (1.7) and (2.1). Proceeding as in Section 2,

 i D �D�i
Œ'i çC � ⇤ .G.pi /�˝i

� 2r'ir⌘ � 'i�⌘/
D �D�i

Œ'i çC � ⇤ .g ;i .Xi // in R2n�i ; (9.2)

where we define in the reference coordinate

g ;i .X/ D G
�

Qpi .X/
�
�Br .X/ � 2⌫r Qpi .X/r⌘.X/ � ⌫ Qpi .X/�⌘.X/: (9.3)

Note that the last two terms above are only supported on Br.1C4ı/nBr.1C3ı/, where the
diffeomorphism is identity. Comparing (2.3) and (9.2), we find

� D Q�i
�i C � ⇤ .2r'ir⌘C 'i�⌘/ D 0 in Br.1C3ı/: (9.4)

Hence, we claim that

 i D �D Q�i
�i C � ⇤ .2r'ir⌘C 'i�⌘/ in Q̋

i : (9.5)

Indeed, we may first assume  i D �D Q�i
˚i C � ⇤ .2r'ir⌘C 'i�⌘/ for some boundary potential

˚i to be determined along Q�i . Then we observe D Q�i
˚i and D Q�i

�i have to coincide in Br.1C3ı/
because of (9.4) and the fact  i D 0 there. Since D Q�i

˚i and D Q�i
�i are harmonic inside Q̋

i , this
proves ˚i D �i . For convenience, we also introduce

g ;i .X/ D 2⌫r Qpi .X/r⌘.X/C ⌫ Qpi .X/�⌘.X/: (9.6)

Then (9.5) becomes
 i D �D Q�i

�i C � ⇤ g ;i
�
Xi .x/

�
in Q̋

i : (9.7)

This also implies

� ⇤ g ;i
�
Xi .x/

�
D � ⇤

�
G.pi /�˝i

�
� D�i

Œ'i ç in Bcr.1C4ı/: (9.8)

Recall that Œ'i ç and �i satisfy (7.1)–(7.4). They can be rewritten as (see (2.33) and (2.34))

Œ'i ç
0 � 2Ac⇤f 0

i D QRŒ'i ç0 ; (9.9)

�0
i C 2 Qc⇤F 0

i D QR�0
i
; (9.10)

where

QRŒ'i ç0 WD 2Af 0
i .✓/

⇣
er � r

�
� ⇤ g ;i .Xi /

�ˇ̌
�i

� c⇤
⌘

C 2Afi .✓/e✓ � r
�
� ⇤ g ;i .Xi /

�ˇ̌
�i

C 2A� 0?
i � K�i

Œ'i ç
0; (9.11)

and

QR�0
i

WD �2F 0
i .✓/

⇣
er � r

�
� ⇤ g ;i .Xi /

�ˇ̌
Q�i

� Qc⇤
⌘

� 2Fi .✓/e✓ � r
�
� ⇤ g ;i .Xi /

�ˇ̌
Q�i

� 2 Q� 0?
i � K Q�i

�0
i : (9.12)
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On the other hand, following the derivation of (2.16) and (2.17), (8.1)–(8.5) admit the following
new representations,

@thi C c⇤
r

D �Ac⇤
r
.��/1=2hi C 1

r
QRhi
; (9.13)

@tHi C Qc⇤
R

D Qc⇤
R
.��/1=2Hi C 1

R
QRHi

; (9.14)

where

QRhi
D � 1

fi
� 0
i � K�i

QRŒ'i ç0 � 2Ac⇤

✓
1

fi
� 0
i � K�i

f 0
i � 1

2r
Hf 0

i

◆

C
✓
f 0
i

fi
e✓ � r

�
� ⇤ g ;i .Xi /

�ˇ̌
�i

� er � r
�
� ⇤ g ;i .Xi /

�ˇ̌
�i

C c⇤

◆
; (9.15)

and

QRHi
D � 1

Fi
Q� 0
i � K Q�i

QR�0
i

C 2 Qc⇤

✓
1

Fi
Q� 0
i � K Q�i

F 0
i � 1

2R
HF 0

i

◆

C
✓
F 0
i

Fi
e✓ � r

�
� ⇤ g ;i .Xi /

�ˇ̌
Q�i

� er � r
�
� ⇤ g ;i .Xi /

�ˇ̌
Q�i

C Qc⇤

◆
: (9.16)

(9.13) and (9.14) are coupled with initial data hi .t D 0/ D h0 and Hi .t D 0/ D H0.

9.2 Estimates for differences of two solutions

Next we shall bound QRh1
� QRh2

and QRH1
� QRH2

.

Lemma 9.1 g ;i and g ;i are supported in Br.1C4ı/, satisfying that

kg ;ikL1 C kg ;ikL1 6 C.⌫; r; R;G/; (9.17)
kg ;1 � g ;2kL1 C kg ;1 � g ;2kL1 6 C.ˇ;�; ⌫; r; R;G/.�m0 C�M0/; (9.18)

and

ke✓ � rg ;ikL2 C ke✓ � rg ;ikL2 6 C.�; ⌫; r; R;G/.m0;i CM0;i /; (9.19)
ke✓ � r.g ;1 � g ;2/kL2 C ke✓ � r.g ;1 � g ;2/kL2 6 C.ˇ;�; ⌫; r; R;G/.�mˇ C�Mˇ /:

(9.20)

Proof. Note that Qpi and p⇤ are harmonic in a neighborhood (whose size depends on r and R) of
the support of r⌘, so gradient estimates apply. Then the desired estimates follow from Lemma 3.3
and Lemma 3.5. The assumption G 2 C 1;1 is used when proving the last inequality.

Proposition 9.2 Assume (9.1) with the smallness depending on p and ˇ (and thus on p and ".)

kŒ'1ç0 � Œ'2ç0k PCˇ 6 Cr2
�
kh0
1 � h0

2k PCˇ C�m0 C�Mˇ

�
; (9.21)

and

kŒ'1ç00 � Œ'2ç00kLp 6 C.p; ";�; ⌫; G/r2kh00
1 � h00

2kLp .1C ıR2/1=2

C Cr2
�
kh0
1 � h0

2k PCˇ C�m0 C�Mˇ

��
1C kh00

1kLp C kh00
2kLp C kH 00

1 kLp

�
; (9.22)

where C D C.p; ";�; ⌫; r; R;G/ unless otherwise stated.
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Proof. We proceed as in Proposition 7.2 and Proposition 7.3. By Lemmas 3.5, 4.3–4.7, 7.1 and 9.1,
��f 0
1.✓/.er � r

�
� ⇤ g ;1.X1/

�ˇ̌
�1

� c⇤/ � f 0
2.✓/.er � r

�
� ⇤ g ;2.X2/

�ˇ̌
�2

� c⇤/
�� PCˇ

6
��.f 0

1 � f 0
2/.er � r

�
� ⇤ g ;1.X1/

�ˇ̌
�1

� c⇤/
�� PCˇ

C
��f 0
2.✓/.er � r

�
� ⇤ g ;1.X1/

�ˇ̌
�1

� er � r
�
� ⇤ g ;1.X2/

�ˇ̌
�2
/
�� PCˇ

C
��f 0
2.✓/.er � r

�
� ⇤ .g ;1 � g ;2/.X2/

�ˇ̌
�2

�� PCˇ

6 Cr2kh0
1 � h0

2k PCˇ .m0;1ıj ln ıjkg ;1kL1.B.1C4ı/r /

C ke✓ � rg ;1kL2.Br.1C4ı//
C .m0;1 CM0;1/.ıR

2/1=2/

C Cr2kh0
1 � h0

2kL1.kg ;1kL1.B.1C4ı/r /mˇ;1 C ke✓ � rg ;1kL2.B.1C4ı/r /
/

C Cr2kh0
2k PCˇ � ıj ln ıj�m0kg ;1kL1.Br.1C4ı//

C Cr2kh0
2kL1.kg ;1kL1.B.1C4ı/r /�mˇ C�m0ke✓ � rg ;1kL2.B.1C4ı/r /

/

C Cr2kh0
2k PCˇ .m0;2ıj ln ıjkg ;1 � g ;2kL1.B.1C4ı/r /

C ke✓ � r.g ;1 � g ;2/kL2.Br.1C4ı//
C jc1 � c2j/

C Cr2kh0
2kL1.kg ;1 � g ;2kL1.B.1C4ı/r /mˇ;2 C ke✓ � r.g ;1 � g ;2/kL2.B.1C4ı/r /

/

6 Cr2kh0
1 � h0

2k PCˇ .mˇ;1 CM0;1/C Cr2kh0
2k PCˇ .�mˇ C�Mˇ /; (9.23)

where C D C.ˇ;�; ⌫; r; R;G/. Here we used the estimate by (7.5) and Lemma 3.5 that

jc1 � c2j 6 C

r

Z
Br

jG. Qp1/ �G. Qp2/j dX 6 Crk Qp1 � Qp2kL1.Br / 6 Cr.�m0 C�M0/; (9.24)

where C D C.ˇ;�; ⌫; r; R;G/. Similarly,

��f1.✓/e✓ � r
�
� ⇤ g ;1.X1/

�ˇ̌
�1

� f2.✓/e✓ � r
�
� ⇤ g ;2.X2/

�ˇ̌
�2

�� PCˇ

6 Cr2.�mˇ C�Mˇ /: (9.25)

On the other hand, by (9.1), Lemma 5.1 and Lemma 5.4,

k� 0?
1 � K�1

Œ'1ç
0 � � 0?

2 � K�2
Œ'2ç

0k PCˇ

6 C.ˇ/
�
kh1 � h2kC1;ˇ kŒ'1ç0k PCˇ C kh0

2k PCˇ kŒ'1ç0 � Œ'2ç0k PCˇ

�
: (9.26)

Combining these estimates with (9.1), (9.9), (9.11) and Proposition 7.2 yields

k QRŒ'1ç0 � QRŒ'2ç0k PCˇ

6 Cr2kh0
1 � h0

2k PCˇ .m0;1 CM0;1 C kh0
1k PCˇ C kH 0

1k PCˇ /C Cr2.�mˇ C�Mˇ /

C C.ˇ/kh0
2k PCˇ kŒ'1ç0 � Œ'2ç0k PCˇ ; (9.27)

and
kŒ'1ç0 � Œ'2ç0k PCˇ 6 Cr2kh0

1 � h0
2k PCˇ C Cr2.�mˇ C�Mˇ /; (9.28)

where C D C.ˇ; ˇ0;�; ⌫; r; R;G/. Note that ˇ and ˇ0 essentially depend on p and ".
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To show (9.22), we derive as in (7.22) that��f 0
1.✓/.er � r

�
� ⇤ g ;1.X1/

�
j�1

� c⇤/ � f 0
2.✓/.er � r

�
� ⇤ g ;2.X2/

�ˇ̌
�2

� c⇤/
�� PW 1;p

6 kf 0
1 � f 0

2k PW 1;p

��er � r
�
� ⇤ g ;1.X1/

�ˇ̌
�1

� c⇤
��
L1

C kf 0
1 � f 0

2kL1
��er � r

�
� ⇤ g ;1.X1/

�ˇ̌
�1

�� PW 1;p

C
��f 0
2.✓/

⇣
er � r

�
� ⇤ g ;1.X1/

�ˇ̌
�1

� er � r
�
� ⇤ g ;1.X2/

�ˇ̌
�2

⌘�� PW 1;p

C
��f 0
2.✓/er � r

�
� ⇤ .g ;1 � g ;2/.X2/

�ˇ̌
�2

�� PW 1;p

6 kf 0
1 � f 0

2k PW 1;p

��er � r
�
� ⇤ g ;1.X1/

�ˇ̌
�1

� c⇤
��
L1

C Cr2kh0
1 � h0

2kL1.mˇ;1 CM0;1/C Cr2kh00
2kLp .�mˇ C�Mˇ /: (9.29)

We shall need an estimate for ker �r.� ⇤g ;1.X1//j�1
�c⇤kL1 with explicit r- andR-dependence.

By (9.4), and then (2.11), Lemmas 3.3, 4.4, 6.1, 6.5, 7.1 and Proposition 7.2,��er � r
�
� ⇤ g ;1.X1/

�
j�1

� c⇤
��
L1

6
��er � r

�
� ⇤ .G.p1/�˝1

/
�
j�1

� c⇤
��
L1 C ker � r.D Q�1

�1/j�1
kL1

6
��er � r

�
� ⇤ .G.p1/�˝1

/
�
j�1

� c1
��
L1 C jc1 � c⇤j C ke✓ � K�1; Q�1

�0
1kL1

6 C.�; ⌫; G; ˇ; ˇ0/r
�
kh0
1k PCˇ C kH 0

1k PCˇ C .m0;1 CM0;1/.1C ıR2/1=2
�
: (9.30)

Hence,
��f 0
1.✓/

�
er � r

�
� ⇤ g ;1.X1/

�ˇ̌
�1

� c⇤
�

� f 0
2.✓/.er � r

�
� ⇤ g ;2.X2/

�ˇ̌
�2

� c⇤/
�� PW 1;p

6 C.�; ⌫; G; ˇ; ˇ0/r2kh00
1 � h00

2kLp

�
kh0
1k PCˇ C kH 0

1k PCˇ C .m0;1 CM0;1/.1C ıR2/1=2
�

C Cr2kh0
1 � h0

2kL1.mˇ;1 CM0;1/C Cr2kh00
2kLp .�mˇ C�Mˇ /: (9.31)

On the other hand,
��f1.✓/e✓ � r

�
� ⇤ g ;1.X1/

�ˇ̌
�1

� f2.✓/e✓ � r
�
� ⇤ g ;2.X2/

�ˇ̌
�2

�� PW 1;p

6 Cr2.�mˇ C�Mˇ /; (9.32)

and by Lemma 5.2 and Lemma 5.5,

k� 0?
1 � K�1

Œ'1ç
0�� 0?

2 � K�2
Œ'2ç

0k PW 1;p

6 C
�
�m0 C kh0

1 � h0
2k PCˇ

��
kh00
1kLp C kh00

2kLp

�
kŒ'1ç0k PCˇ

C Ckh00
1 � h00

2kLp kŒ'1ç0k PCˇ C C�m0kŒ'1ç00kLp

C C
�
kh00
2kLp kŒ'1ç0 � Œ'2ç0k PCˇ C kh0

2kL1kŒ'1ç00 � Œ'2ç00kLp

�
; (9.33)

where C D C.p; ˇ/. Combining these estimates with (9.1), (9.9), (9.11), (9.21) as well as
Propositions 7.2 and 7.3, we can show

k QRŒ'1ç0 � QRŒ'2ç0k PW 1;p

6 C.p; ";�; ⌫; G/r2kh00
1 � h00

2kLp

�
kh0
1k PCˇ C kH 0

1k PCˇ C .m0;1 CM0;1/.1C ıR2/1=2
�

C Cr2
�
kh0
1 � h0

2k PCˇ C�m0 C�Mˇ

��
1C kh00

1kLp C kh00
2kLp C kH 00

1 kLp

�
C C.p; ˇ/kh0

2kL1kŒ'1ç00 � Œ'2ç00kLp ; (9.34)

and thus (9.22).
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Proposition 9.3 Under the assumption of Proposition 9.2,

k�0
1 � �0

2k PCˇ 6 Cr2
�
kH 0

1 �H 0
2k PCˇ C�mˇ C�M0

�
; (9.35)

and

k�00
1 � �00

2kLp 6 C.p; ";�; ⌫; G/r2kH 00
1 �H 00

2 kLp .1C ıR2/1=2

C Cr2
�
�mˇ C�M0 C kH 0

1 �H 0
2k PCˇ

��
1C kh00

1kLp C kH 00
1 kLp C kH 00

2 kLp

�
; (9.36)

where C D C.p; ";�; ⌫; r; R;G/ unless otherwise stated.

Proof. We justify as before. By Lemmas 3.5, 4.8–4.12, 7.1 and 9.1,

��F 0
1.✓/

�
er � r

�
� ⇤ g ;1.X1/

�ˇ̌
Q�1

� Qc⇤
�

� F 0
2.✓/

�
er � r

�
� ⇤ g ;2.X2/

�ˇ̌
Q�2

� Qc⇤
��� PCˇ

6 Cr2kH 0
1 �H 0

2k PCˇ .m0;1 CM0;1/C Cr2kH 0
2k PCˇ .�mˇ C�Mˇ /; (9.37)

where C D C.ˇ;�; ⌫; r; R;G/. Here we used the fact that, by (4.76), (7.5) and (9.6), with � being
the unit outer normal vector of @Br.1C3ı/,
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Similarly,
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Again by (9.1), Lemma 5.1 and Lemma 5.4,
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By (9.12), (9.37), (9.39), (9.40) and Proposition 7.2,
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where C D C.p; ˇ;�; ⌫; r; R;G/. Combining this with (9.10) yields (9.35).
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In addition, thanks to (9.8),
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and
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By Lemma 5.2 and Lemma 5.5,
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Combining (9.42)–(9.44) with (9.35) and Propositions 7.2 and 7.3, we find
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Then (9.36) follows from (9.10) and (9.45).

Lemma 9.4 Under the assumption of Proposition 9.2,
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and
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where C D C.p; ";�; ⌫; r; R;G/ unless otherwise stated.

Proof. It suffices to apply Proposition 9.2 and Proposition 9.3 to (9.27), (9.34), (9.41) and (9.45).

Lemma 9.5 Under the assumption of Proposition 9.2,
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where C D C.p; ";�; ⌫; r; R;G/ unless otherwise stated.

Proof. We argue as in Lemma 8.1. Note that QRŒ'i ç0 has mean zero on T. By Poincaré inequality and
Lemmas 5.3 and 5.6,
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By (9.9) and (9.10),
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So by Proposition 7.2, Proposition 7.3 and Lemma 9.4,
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; (9.55)

where C D C.p; ";�; ⌫; r; R;G/ unless otherwise stated. Similarly,
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By (9.24) and Lemmas 4.3–4.7 and 9.1,
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Note that this term is not of mean zero on T, so we have to bound itsL1-norm and PW 1;p-seminorm
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in order to prove (9.50). Finally,
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and by proceeding as in (9.29)–(9.31),
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Combining these estimates with (9.15), we use the fact jc⇤j 6 Cr by Lemma 3.1 to prove (9.50).
To show (9.51), we derive as before.
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By (9.38) and Lemmas 4.8–4.12 and 9.1,
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and
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Combining these estimates and the fact Qc⇤ 6 C.�; ⌫; G/R�1r2 with (9.16) yields (9.51).

9.3 Proof of the uniqueness

Now we are ready to prove uniqueness.

Proof of Theorem 2.3. In this proof, we always assume that the constant C has the dependence
C D C.p; ";�; ⌫; r; R;G/ unless otherwise stated.

As stated at the beginning of this section, suppose there are two solutions fi and Fi .i D 1; 2/
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Here we first applied change of time variables to normalize the coefficients of fractional Laplacians
in (9.66) and (9.67), and then applied Lemma A.5 and Lemma A.6 to obtain these estimates. To
fulfill the condition of Lemma A.6, we need
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Note that by Lemma 3.1, the right hand side is bounded from below by some constant depending
only on �, ⌫ and G.
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On the other hand, by Sobolev embedding (in space) and Hölder’s inequality (in time)

kh1 � h2kCŒ0;T0ç
L1.T/ C kH1 �H2kCŒ0;T0ç

L1.T/

6 C.p/T
1� 1

p

0

✓
1

r
k QRh1

� QRh2
kLp

Œ0;T0ç
W 1;p.T/ C 1

R
k QRH1

� QRH2
kLp

Œ0;T0ç
W 1;p.T/

◆
: (9.70)

Denote

N .T0/ WD kh00
1 � h00

2kLp
Œ0;T0ç

Lp.T/ C kH 00
1 �H 00

2 kLp
Œ0;T0ç

Lp.T/

C kh0
1 � h0

2kCŒ0;T0ç
PCˇ.T/ C kH 0

1 �H 0
2kCŒ0;T0ç

PCˇ.T/

C ı�1kh1 � h2kCŒ0;T0ç
L1.T/ C ı�1kH1 �H2kCŒ0;T0ç

L1.T/: (9.71)

By interpolation and Lemma 9.5, with ✓ D .1 � 1
p / � ˛�ˇ

1C˛ ,

N .T0/

6 C.p;�; ⌫; G/

✓
r

jAc⇤j � 1
r

k QRh1
� QRh2

kLp
Œ0;T0ç

PW 1;p.T/ C R

j Qc⇤j � 1
R

k QRH1
� QRH2

kLp
Œ0;T0ç

PW 1;p.T/

◆

C CT ✓0

✓
1

r
k QRh1

� QRh2
kLp

Œ0;T0ç
PW 1;p.T/ C 1

R
k QRH1

� QRH2
kLp

Œ0;T0ç
PW 1;p.T/

◆

6

C.p; ";�; ⌫; G/ � r

jc⇤j C C1T
✓
0

�
N .T0/

� sup
t2Œ0;T0ç

�
kh0
1k PCˇ C kh0

2k PCˇ C kH 0
1k PCˇ C kH 0

2k PCˇ

C .m0;1 Cm0;2 CM0;1 CM0;2/.1C ıR2/1=2
�

C C2N .T0/
�
T
1=p
0 C kh00

1kLp
Œ0;T0ç

Lp C kh00
2kLp

Œ0;T0ç
Lp C kH 00

1 kLp
Œ0;T0ç

Lp C kH 00
2 kLp

Œ0;T0ç
Lp

�
:

(9.72)

Here the constants C1 and C2 have the same dependence as C introduced above.
Now we take T0 such that C1T ✓0 6 1

2 and

C2

⇣
T
1=p
0 C kh00

1kLp
Œ0;T0ç

Lp C kh00
2kLp

Œ0;T0ç
Lp C kH 00

1 kLp
Œ0;T0ç

Lp C kH 00
2 kLp

Œ0;T0ç
Lp

⌘
6 1

2
: (9.73)

Such T0 relies on p, ", �, ⌫, r , R, G as well as the fixed solutions hi and Hi . Then (9.72) becomes

N .T0/ 6

C.p; ";�; ⌫; G/ � r

jc⇤j C 1

�
N .T0/

� sup
t2Œ0;T0ç

�
kh0
1k PCˇ C kh0

2k PCˇ C kH 0
1k PCˇ C kH 0

2k PCˇ

C .m0;1 Cm0;2 CM0;1 CM0;2/.1C ıR2/1=2
�

6 C.p; ";�; ⌫; G; r=jc⇤j; ıR2/M � N .T0/: (9.74)

In the last inequality, we used the estimate (2.26). If we assume M to be suitably small, depending
only on p, ", �, ⌫, G, r=jc⇤j and ıR2, we obtain that N .T0/ D 0. Note that here the smallness
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of M has no additional dependence on other parameters compared to that in the proof of existence
of local solutions.

We can continue this process starting from t D T0 and find a second time interval ŒT0; T0 C T1ç
on which uniqueness holds. By repeating this argument for finitely many times (see (2.28) and the
way we chose T0 above), we can prove the uniqueness of local solution on Œ0; T ç.

A. Some auxiliary estimates

A.1 Estimates for the Poisson kernel and its conjugate

Lemma A.1 Let Poisson kernel P on the 2-D unit disc and its conjugate Q be defined as in (4.1)
and (4.2), respectively.

1. Let H⇠ denote the Hilbert transform on T with respect to ⇠. Then for s 6D 1,

Q.s; ⇠/ D sgn.1 � s/H⇠P.s; ⇠/: (A1)

2. For all ⇠ 2 T and all s 2 Œ0; 2ç,

jP.s; ⇠/j C jQ.s; ⇠/j 6 C.j1 � sj2 C ⇠2/�1=2: (A2)

3. For derivatives of P and Q, we have
ˇ̌
ˇ̌@P
@s
.s; ⇠/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌@Q
@⇠
.s; ⇠/

ˇ̌
ˇ̌ 6 C

�
.1 � s/2 C ⇠2

��1
; (A3)

ˇ̌
ˇ̌@P
@⇠
.s; ⇠/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌@Q
@s
.s; ⇠/

ˇ̌
ˇ̌ 6 C j sin ⇠j

�
.1 � s/2 C ⇠2

��3=2
; (A4)

and ˇ̌
ˇ̌@2P
@s2

.s; ⇠/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ @2P
@⇠@s

.s; ⇠/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌@2Q
@s2

.s; ⇠/

ˇ̌
ˇ̌ 6 C

�
.1 � s/2 C ⇠2

��3=2
: (A5)

Moreover,
@P

@⇠
.s; ⇠/ D �s @Q

@s
;

@Q

@⇠
.s; ⇠/ D s

@P

@s
: (A6)

Proof. (A1) can be proved by calculating Fourier transforms of P.s; �/ and Q.s; �/.
For any s > 0,

1C s2 � 2s cos ⇠ D .1 � s cos ⇠/2 C .s sin ⇠/2 D .s � cos ⇠/2 C sin2 ⇠ > 0: (A7)

If cos ⇠ > 1
2 ,

1C s2 � 2s cos ⇠ D .1C s2/.1 � cos ⇠/C cos ⇠.1 � s/2

> C
�
j⇠j2 C j1 � sj2

�
: (A8)

Otherwise,
1C s2 � 2s cos ⇠ > C.1C s2/ > C

�
j⇠j2 C j1 � sj2

�
: (A9)

Then (A2) follows easily.
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Finally, we calculate that

@P

@s
.s; ⇠/ D 2.1C s2/ cos ⇠ � 4s

.1C s2 � 2s cos ⇠/2
D 2 cos ⇠
1C s2 � 2s cos ⇠

� 4s sin2 ⇠
.1C s2 � 2s cos ⇠/2

; (A10)

@Q

@s
.s; ⇠/ D 2.1 � s2/ sin ⇠

.1C s2 � 2s cos ⇠/2
; (A11)

@2P

@⇠@s
.s; ⇠/ D � 2.1C s2/ sin ⇠

.1C s2 � 2s cos ⇠/2
� @P

@s
� 4s sin ⇠
1C s2 � 2s cos ⇠

; (A12)

@2P

@s2
.s; ⇠/ D 4s cos ⇠ � 4

.1C s2 � 2s cos ⇠/2
� 8.s � cos ⇠/

�
.1C s2/ cos ⇠ � 2s

�
.1C s2 � 2s cos ⇠/3

; (A13)

and

@P

@⇠
.s; ⇠/ D �s @Q

@s
; (A14)

@Q

@⇠
.s; ⇠/ D s

@P

@s
; (A15)

@2Q

@s2
.s; ⇠/ D �1

s

✓
@2P

@⇠@s
C @Q

@s

◆
: (A16)

Then (A3)–(A6) follow.

A.2 Some Calderón-commutator-type estimates

In this part we shall establish some Calderón-commutator-type estimates used in Section 5. Recall
that

�f .✓/ WD f .✓ C ⇠/ � f .⇠/
2 sin ⇠

2

: (A17)

Lemma A.2 Let k D .k1; � � � ; kn/ be a multi-index of length n 2 ZC. Assume h1; � � � ; hn 2
W 1;1.T/ and  2 Lp.T/ for some p 2 Œ2;1/. Define

Mk; .✓/ D p:v:
Z
T

nY
iD1
.�hi /

ki �  .✓ C ⇠/

2 tan ⇠
2

d⇠; (A18)

Nk; .✓/ D p:v:
Z
T

nY
iD1
.�hi /

ki �  .✓ C ⇠/

2 sin ⇠
2

d⇠: (A19)

Then

kMk; kLp C kNk; kLp 6 C jkjC2
⇤ k kLp

nY
iD1

kh0
ik
ki

L1 ; (A20)

where C⇤ is a universal constant depending only on p. Here jkj WD Pn
iD1 ki .

Proof. The proof essentially follows the classic argument of Lp-boundedness of the Calderón
commutator [21, ê 9:3]. For completeness, we elaborate it as follows.
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First we notice that sin.⇠=2/ is not continuous on T at ˙⇡ . For this technical reason, with abuse
of notations, we introduce an even cut-off function ⌘ 2 C1

0 .Œ�2; 2ç/, such that ⌘ ⌘ 1 on Œ�1; 1ç,
⌘ 2 Œ0; 1ç on Œ�2; 2ç, and j⌘0j 6 C . Write (A18) as

Mk; D p:v:
Z
T

nY
iD1
.�hi /

ki �  .✓ C ⇠/

2 tan ⇠
2

⇥
⌘.⇠/C

�
1 � ⌘.⇠/

�⇤
d⇠ DW M .1/

k; CM
.2/
k; : (A21)

It is straightforward to bound M .2/
k; as it involves no singularity,

kM .2/
k; kLp 6 CC

jkj
1 k kLp

nY
iD1

kh0
ik
ki

L1 : (A22)

Here C1 D ⇡=2 comes from the fact that
ˇ̌
ˇ̌2 sin

⇠

2

ˇ̌
ˇ̌�1 6 C1j⇠j�1 on T: (A23)

To derive an Lp-bound for M .1/
k; , we first show that M .1/

k;1 2 BMO by mathematical induction.

STEP 1 For k D 0, M .1/
0;1 D �⇡H⌘.0/ D 0 since ⌘ is even.

STEP 2 Suppose for someN > 1 and any multi-index k such that jkj 6 N �1, we have shown that
M
.1/
k;1 2 BMO and, with some constant C⇤ that will be specified later,

��M .1/
k;1

��
BMO

6 C jkjC1
⇤

nY
iD1

kh0
ik
ki

L1 : (A24)

It is known that the map  7! M
.1/
k; is associated with the kernel

nY
iD1

✓
hi .x/ � hi .y/
2 sin x�y

2

◆ki

� ⌘.x � y/
2 tan x�y

2

; (A25)

which is a standard anti-symmetric kernel, vanishing whenever jx � yj > 2. It can be naturally
understand as a kernel on R with a bound similar to (A24). Hence, by the T1 Theorem, it is .2; 2/-
bounded. Its operator norm depends linearly [21, ê 9:3] on the constant in (A24) and the kernel
constant of (A25), which is bounded by

CC
jkjC1
1

�
jkj C 1

� nY
iD1

kh0
ik
ki

L1 : (A26)

This further implies that [21, Theorem 6.6] for all k satisfying jkj 6 N � 1, and  2 L1,

��M .1/
k; 

��
BMO

6 C
�
C

jkjC1
1 .jkj C 1/C C jkjC1

⇤
�
k kL1

nY
iD1

kh0
ik
ki

L1 : (A27)
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Now consider the case when jkj D N . Observe that
 

1

2 sin ⇠
2

!jkj
1

2 tan ⇠
2

D � 1

jkj � d
d⇠

 
1

2 sin ⇠
2

!jkj
: (A28)

We integrate by parts in M .1/
k;1 . For almost all ✓ 2 T,

M
.1/
k;1 .✓/ D 1

jkjp:v:
Z
Œ�2;2ç

 
1

2 sin ⇠
2

!jkj
d
hY

.hi .✓ C ⇠/ � hi .✓//ki⌘.⇠/
i

D 1

jkj

Z
Œ�2;2ç

nY
iD1
.�hi /

ki � ⌘0.⇠/ d⇠

C
nX
iD1

ki

jkjp:v:
Z
Œ�2;2ç

.�h1/
k1 � � � .�hi /ki �1 � � � .�hn/kn � ⌘.⇠/h

0
i .✓ C ⇠/

2 sin ⇠
2

d⇠

DW M .1;0/
k;1 C

nX
iD1

M
.1;i/
k;1 : (A29)

Indeed, this can be rigorously justified by the fact that hi are differentiable almost everywhere. It is
straightforward to derive that

��M .1;0/
k;1

��
L1 6 CC

jkj
1

nY
iD1

kh0
ik
ki

L1 : (A30)

On the other hand, by (A27),
��M .1;i/

k;1
��
BMO

6 ki

jkj kM
.1/

.k1;��� ;ki �1;��� ;kn/;h
0
i

kBMO C ki

jkjC
jkj�1
1

nY
jD1

kh0
j kkj

L1

�����
1

2 sin ⇠
2

� 1

2 tan ⇠
2

�����
L1.Œ�2;2ç/

6 Cki

jkj
�
C

jkj
1 jkj C C jkj

⇤
� nY
jD1

kh0
j kkj

L1 : (A31)

Hence, with some universal constant C ,

��M .1/
k;1

��
BMO

6 C
�
C

jkj
1 jkj C C jkj

⇤
� nY
iD1

kh0
ik
ki

L1 : (A32)

Now assuming C⇤ sufficiently large but still universal, such that

C

"✓
C1

C⇤

◆jkj
jkj C 1

#
6 C⇤; (A33)

we conclude with (A24) for jkj D N . By induction, (A24) holds for all multi-indices k.
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To this end, we argue as in (A25)–(A27) to find that  7! M
.1/
k; is bounded from L2 to L2, and

also from L1 to BMO . By interpolation, it is .p; p/-bounded as well. In particular,

��M .1/
k; 

��
Lp 6 Cp

�
C

jkjC1
1 .jkj C 1/C C jkjC1

⇤
�
k kLp

nY
iD1

kh0
ik
ki

L1 : (A34)

Combining (A22) and (A34) yields a bound for kMk; kLp that has the same form as in (A34). A
bound for kNk; kLp can be derived easily since .Mk; �Nk; / is an integral with no singularity.

Assuming C⇤ to be even larger if needed, we obtain the desired estimate from (A34).

Lemma A.3 Let k D .k1; � � � ; kn/ be a multi-index of length n 2 ZC. With p 2 Œ2;1/, assume
that h1; � � � ; hn 2 W 2;p.T/, and hnC1;  2 W 1;p.T/. Define

QMk; .✓/ D p:v:
Z
T

nY
iD1
.�hi /

ki ��hnC1 �  .✓ C ⇠/

2 tan ⇠
2

d⇠; (A35)

QNk; .✓/ D p:v:
Z
T

nY
iD1
.�hi /

ki ��hnC1 �  .✓ C ⇠/

2 sin ⇠
2

d⇠: (A36)

Then

k QMk; kLp C k QNk; kLp

6 C jkjC1
⇤⇤ .kh0

nC1kLp k kL1 C khnC1kL1k 0kLp /

nY
iD1

kh0
ik
ki

L1

C C jkjC1
⇤⇤ khnC1kL1k kL1

nX
iD1

kh0
1kk1

L1 � � � kh0
ik
ki �1
L1 � � � kh0

nkkn

L1 � 1fki>0gkh00
i kLp ; (A37)

where C⇤⇤ is a universal constant depending only on p.

Proof. We shall prove (A37) by induction. It suffices to prove it for hnC1 and  being smooth.

STEP 1 Consider k D 0. Note that even in this simple case, the estimate (A37) does not trivially
follow from Lemma A.2.

By integration by parts as in (A29),

QM0; .✓/

D p:v:
Z
T

1

2 sin ⇠
2

d
⇥
.hnC1.✓ C ⇠/ � hnC1.✓// .✓ C ⇠/

⇤

�
⇥�
hnC1.✓ C ⇡/ � hnC1.✓/

�
 .✓ C ⇡/

⇤

D
Z
T

1 � cos ⇠2
2 sin ⇠

2

⇥
h0
nC1.✓ C ⇠/ .✓ C ⇠/C

�
hnC1.✓ C ⇠/ � hnC1.✓/

�
 0.✓ C ⇠/

⇤
d⇠

C p:v:
Z
T

1

2 tan ⇠
2

⇥
h0
nC1.✓ C ⇠/ .✓ C ⇠/C

�
hnC1.✓ C ⇠/ � hnC1.✓/

�
 0.✓ C ⇠/

⇤
d⇠

�
⇥�
hnC1.✓ C ⇡/ � hnC1.✓/

�
 .✓ C ⇡/

⇤
: (A38)
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By Sobolev embedding and Lp-boundedness of the Hilbert transform,

k QM0; kLp 6 C
�
kh0
nC1kLp k kL1 C khnC1kL1k 0kLp

�
: (A39)

Since
j QN0; � QM0; j 6 C

Z
T

jhnC1.✓ C ⇠/ � hnC1.✓/jj .✓ C ⇠/j d⇠; (A40)

it is easy to show that QN0; satisfies the same estimate as (A39).

STEP 2 Suppose (A37) holds for all multi-indices k satisfying jkj 6 N � 1, where C⇤⇤ > 0 is
some constant to be chosen later. Then consider the case with jkj D N . By integration by parts as
in (A29), for almost all ✓ 2 T,

QMk; .✓/

D
nX
iD1

ki

jkj C 1
p:v:

Z
T
.�h1/

k1 � � � .�hi /ki �1 � � � .�hn/kn ��hnC1
h0
i .✓ C ⇠/ .✓ C ⇠/

2 sin ⇠
2

d⇠

C 1

jkj C 1
p:v:

Z
T

nY
iD1
.�hi /

ki
h0
nC1.✓ C ⇠/ .✓ C ⇠/

2 sin ⇠
2

d⇠

C 1

jkj C 1
p:v:

Z
T

nY
iD1
.�hi /

ki .hnC1.✓ C ⇠/ � hnC1.✓// �  
0.✓ C ⇠/

2 sin ⇠
2

d⇠

� 1

jkj C 1
� 1 � .�1/jkjC1

2jkjC1

nY
iD1

�
hi .✓ C ⇡/ � hi .✓/

�ki
�
hnC1.✓ C ⇡/ � hnC1.✓/

�
 .✓ C ⇡/

D
nX
iD1

ki

jkj C 1
QN.k1;��� ;ki �1;��� ;kn/;h

0
i
 C 1

jkj C 1
.Nk;.hnC1 /0 � hnC1.✓/Nk; 0/

� 1

jkj C 1
� 1 � .�1/jkjC1

2jkjC1

nY
iD1

�
hi .✓ C ⇡/ � hi .✓/

�ki
�
hnC1.✓ C ⇡/ � hnC1.✓/

�
 .✓ C ⇡/:

(A41)

By the induction hypothesis (A37),

kki QN.k1;��� ;ki �1;��� ;kn/;h
0
i
 kLp

6 kiC
jkj
⇤⇤ .kh0

nC1kLp kh0
i kL1 C khnC1kL1k.h0

i /
0kLp / � kh0

1kk1

L1 � � � kh0
ik
ki �1
L1 � � � kh0

nkkn

L1

C kiC
jkj
⇤⇤khnC1kL1kh0

i kL1

�
X

j D1;���n
j 6Di

kh0
1kk1

L1 � � � kh0
ik
ki �1
L1 � � � kh0

j kkj �1
L1 � � � kh0

nkkn

L1 � 1fkj>0gkh00
j kLp

C kiC
jkj
⇤⇤khnC1kL1kh0

i kL1 � kh0
1kk1

L1 � � � kh0
ik
ki �2
L1 � � � kh0

nkkn

L1 � 1fki>1gkh00
i kLp
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6 kiC
jkj
⇤⇤ .kh0

nC1kLp k kL1 C khnC1kL1k 0kLp / �
nY

jD1
kh0
j kkj

L1

C CkiC
jkj
⇤⇤khnC1kL1k kL1

nX
jD1

kh0
1kk1

L1 � � � kh0
j kkj �1
L1 � � � kh0

nkkn

L1 � 1fkj>0gkh00
j kLp :

(A42)

By Lemma A.2,

k.Nk;.hnC1 /0 � hnC1.✓/Nk; 0/kLp

6 C jkjC2
⇤ .kh0

nC1kLp k kL1 C khnC1kL1k 0kLp /

nY
iD1

kh0
ik
ki

L1 : (A43)

Combining these estimates with (A41), we obtain by Sobolev embedding that

k QMk; kLp

6 C jkj
⇤⇤ .kh0

nC1kLp k kL1 C khnC1kL1k 0kLp /

nY
iD1

kh0
ik
ki

L1

C CC jkj
⇤⇤khnC1kL1k kL1

nX
iD1

kh0
1kk1

L1 � � � kh0
ik
ki �1
L1 � � � kh0

nkkn

L1 � 1fki>0gkh00
i kLp

C C jkjC2
⇤ .kh0

nC1kLp k kL1 C khnC1kL1k 0kLp /

nY
iD1

kh0
ik
ki

L1

C CC
jkj
1

nY
iD1

kh0
ik
ki

L1 � kh0
nC1kLp k kL1

6 .C jkj
⇤⇤ C C jkjC2

⇤ C CC
jkj
1 /.kh0

nC1kLp k kL1 C khnC1kL1k 0kLp /

nY
iD1

kh0
ik
ki

L1

C CC jkj
⇤⇤khnC1kL1k kL1

nX
iD1

kh0
1kk1

L1 � � � kh0
ik
ki �1
L1 � � � kh0

nkkn

L1 � 1fki>0gkh00
i kLp : (A44)

The estimate for QNk; can be derived easily, since

j QNk; � QMk; j 6 CC
jkj
1

nY
iD1

kh0
ik
ki

L1

Z
T

jhnC1.✓ C ⇠/ � hnC1.✓/jj .✓ C ⇠/j d⇠: (A45)

Taking C⇤⇤ > 0 to be suitably large, we prove (A37) when jkj D N .

This completes the proof.
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Lemma A.4 Under the hypotheses of Lemma A.2, we additionally assume h1; � � � ; hn 2 W 2;p.T/
and  2 W 1;p.T/.

kMk; k PW 1;p C kNk; k PW 1;p

6 .jkj C 1/C
jkjC1
é k 0kLp

nY
iD1

kh0
ik
ki

L1

C .jkj C 1/C
jkjC1
é k kL1

nX
iD1

kh0
1kk1

L1 � � � kh0
ik
ki �1
L1 � � � kh0

nkkn

L1 � 1fki>0gkh00
i kLp ; (A46)

where Cé is a universal constant depending only on p.

Proof. Instead of studying weak derivatives of Mk; and Nk; directly, we turn to difference
quotients first. Without loss of generality, let " > 0 be arbitrary and sufficiently small. It suffices to
prove uniform-in-" Lp-bounds for "�1.Mk; .✓ C "/�Mk; .✓// and "�1.Nk; .✓ C "/�Nk; .✓//.
Write

"�1�Mk; .✓ C "/ �Mk; .✓/
�

D
nX
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�
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�k1 � � �
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�
ki �1X
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✓
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T
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iD1

�
�hi .✓/

�ki � "
�1. .✓ C "C ⇠/ �  .✓ C ⇠//

2 tan ⇠
2

d⇠: (A47)

Applying Lemma A.2 and Lemma A.3,
��"�1�Mk; .✓ C "/ �Mk; .✓/

���
Lp

6
nX
iD1

kiC
jkj
⇤⇤

�
k"�1�hi .✓ C "/ � hi .✓/
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C jkj
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��"�1�hi .✓ C "/ � hi .✓/
���
L1k kL1
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L1 � C.ki � 1/1fki>1gkh00
i kLp

C C jkjC2
⇤

nY
iD1
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ik
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6 C
�
jkjC jkj

⇤⇤ C C jkjC2
⇤

�
k 0kLp

nY
iD1

kh0
ik
ki

L1

C C jkjC jkj
⇤⇤k kL1

nX
iD1

kh0
1kk1

L1 � � � kh0
ik
ki �1
L1 � � � kh0

nkkn

L1 � 1fki>0gkh00
i kLp : (A48)

Note that this bound is uniform in ". Hence, Mk; .✓/ has weak derivative, with an identical Lp-
bound as above. The estimate for Nk; can be derived similarly. Therefore, (A46) holds if Cé is
taken to be suitably large.

A.3 Regularity theory of fractional heat equations

We focus on the following Cauchy problem of fractional heat equation on T with special exponent 12 .

@tv D �.��/1=2v C f .t; ✓/; v.0; ✓/ D 0: (A49)

For our purpose, we have that:

Lemma A.5 Suppose f 2 LpŒ0;T çLp.T/ for some p 2 Œ2;1/. Then there exists v 2 LpŒ0;T çW 1;p.T/
solving (A49), satisfying that

kvtkLp
Œ0;T ç

Lp.T/ C k.��/1=2vkLp
Œ0;T ç

Lp.T/ 6 Ckf kLp
Œ0;T ç

Lp.T/; (A50)

where C D C.p/.

This immediately follows from [35, Theorem 1]; see also [5, Theorem 4.1].

Lemma A.6 Suppose T 6 1 and p 2 .2;1/. Under the assumption of Lemma A.5, v 2
CŒ0;T çC

˛.T/ with ˛ D 1 � 2
p , satisfying that

kvkCŒ0;T ç
PC˛.T/ 6 Ckf kLp

Œ0;T ç
Lp.T/; (A51)

where C D C.p/.

Proof. Let P.t; ✓/ be the Poisson kernel on T, with t being the time variable, solving

@tP D �.��/1=2P; P.0; ✓/ D ı0 (A52)

in the sense of distribution. Here ı0 is the delta measure at 0 2 T. Note that P.t; ✓/ is related to
P.s; ⇠/, which is defined in Section 4, in the following sense

P.t; ✓/ D 1

2⇡
P.e�t ; ✓/: (A53)

Then v can be represented by

v.t; ✓/ D
Z t

0

Z
T
P.t � ⌧; ✓ � ⇠/f .⌧; ⇠/ d⇠d⌧: (A54)
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Take arbitrary ✓1; ✓2 2 T, such that d✓ WD j✓1 � ✓2j 6 1. Denote N✓ D .✓1 C ✓2/=2. Then

jv.t; ✓1/ � v.t; ✓2/j

6
Z
Œ0;tç⇥T\f.⌧;⇠/W jt�⌧ jCj N✓�⇠j6d✓ g

�
jP.t � ⌧; ✓1 � ⇠/j C jP.t � ⌧; ✓2 � ⇠/j

�
jf .⌧; ⇠/j d⇠d⌧

C
Z
Œ0;tç⇥T\f.⌧;⇠/W jt�⌧ jCj N✓�⇠j>d✓ g

jP.t � ⌧; ✓1 � ⇠/ � P.t � ⌧; ✓2 � ⇠/jjf .⌧; ⇠/j d⇠d⌧: (A55)

By the mean value theorem, Lemma A.1 and Hölder’s inequality,

jv.t; ✓1/ � v.t; ✓2/j

6 C

Z
Œ0;tç⇥T\f.⌧;⇠/W jt�⌧ jCj✓1�⇠j62d✓ g

jf .⌧; ⇠/j
jt � ⌧ j C j✓1 � ⇠j d⇠d⌧

C C

Z
Œ0;tç⇥T\f.⌧;⇠/W jt�⌧ jCj✓2�⇠j62d✓ g

jf .⌧; ⇠/j
jt � ⌧ j C j✓2 � ⇠j d⇠d⌧

C C j✓1 � ✓2j
Z
Œ0;tç⇥T\f.⌧;⇠/W jt�⌧ jCj N✓�⇠j>d✓ g

jf .⌧; ⇠/j
jt � ⌧ j2 C j N✓ � ⇠j2

d⇠d⌧

6 Ckf kLp.Œ0;T ç⇥T/

 Z 2d✓

0

⇢1�p0
d⇢

!1=p0

C C j✓1 � ✓2jkf kLp.Œ0;T ç⇥T/

✓Z 1

d✓=
p
2

⇢1�2p0
d⇢

◆1=p0

: (A56)

Here p0 D .1 � 1
p /

�1 2 .1; 2/. Calculating the integral above yields

jv.t; ✓1/ � v.t; ✓2/j 6 C j✓1 � ✓2j˛kf kLp
Œ0;T ç

Lp.T/: (A57)

It is then straightforward to justify the case j✓1 � ✓2j > 1.
The time-continuity of v in C 1;˛ follows from the absolute continuity of the Lebesgue integral

with respect to translation.

Lemma A.7 Suppose T 6 1 and f 2 L1
Œ0;T çC

˛.T/ for some ˛ 2 .0; 1/. Then for all ˇ 2 .0; ˛/,
there exists a unique v 2 CŒ0;T çC 1;ˇ .T/ solving (A49), satisfying that

kvkCŒ0;T ç
PC1;ˇ.T/ 6 Ckf kL1

Œ0;T ç
PC˛.T/; (A58)

where C D C.˛; ˇ/.

Proof. Once again, v can be represented by (A54). It then suffices to bound its PC 1;ˇ -seminorm,
which also implies the uniqueness.

For arbitrary ✓1; ✓2 2 T,

@✓v.t; ✓1/ � @✓v.t; ✓2/

D
Z t

0

Z
T
@✓P.t � ⌧; ⇠/

�
f .⌧; ✓1 � ⇠/ � f .⌧; ✓1/ � f .⌧; ✓2 � ⇠/C f .⌧; ✓2/

�
d⇠d⌧ (A59)



INTERFACE MOTION IN A TUMOR GROWTH MODEL 279

Since

jf .⌧; ✓1 � ⇠/�f .⌧; ✓1/�f .⌧; ✓2 � ⇠/Cf .⌧; ✓2/j 6 Ckf .⌧; �/k PC˛ min
˚
j⇠j˛; j✓1 � ✓2j˛

 
; (A60)

by (A53) and Lemma A.1, we have that

j@✓v.t; ✓1/ � @✓v.t; ✓2/j 6
Z t

0

Z
T

j@✓P.t � ⌧; ⇠/jj⇠j˛�ˇ d⇠d⌧ � j✓1 � ✓2jˇkf kL1
Œ0;T ç

PC˛.T/

6 C

Z t

0

.1 � e�.t�⌧//˛�ˇ�1 d⌧ � j✓1 � ✓2jˇkf kL1
Œ0;T ç

PC˛.T/

6 C j✓1 � ✓2jˇkf kL1
Œ0;T ç

PC˛.T/: (A61)

Finally, the time continuity of v can be justified by interpolating between the facts that v 2
CŒ0;T çC

˛.T/ and v 2 L1
Œ0;T çC

1;ˇ 0
.T/ for some ˇ0 2 .ˇ; ˛/.

B. Proofs of Lemma 3.4 and Lemma 3.5

We need several preparatory results.
Let hi and Hi be given as in Section 3.3. Let xi .X/ .i D 1; 2/ denote the diffeomorphism (3.2)

defined by hi and Hi ,

xi .X/ D ⇣i .X/X; ⇣i .X/ WD 1C hi .!/⌘ı

⇣⇢
r

⌘
CHi .!/⌘ı

⇣ ⇢
R

⌘
: (B1)

Let pi denote the pressure on the physical domain that is determined by �i and Q�i , while Qpi denotes
its pull back into the reference coordinate as in (3.4). By (3.5), . Qp1 � Qp2/ solves

� rXk

✓
a
@Xk
@x1;i

@Xj

@x1;i
rXj

. Qp1 � Qp2/
◆

D rXk


a

✓
@Xk
@x1;i

@Xj

@x1;i
� @Xk
@x2;i

@Xj

@x2;i

◆
rXj

Qp2
�

C
�
G. Qp1/ �G. Qp2/

�
�Br � rXk

@Xk
@x1;i

� a @Xj
@x1;i

rXj
. Qp1 � Qp2/

� a

rXk

@Xk
@x1;i

� @Xj
@x1;i

� rXk

@Xk
@x2;i

� @Xj
@x2;i

�
rXj

Qp2 (B2)

in BR, with . Qp1 � Qp2/j@BR
D 0. Here a D a.X/ is given in (3.6), and x1;i and x2;i denote i -th

components of x1 and x2, respectively.
We first derive estimates for several ingredients in (B2).

Lemma B.1 Assume hi ;Hi 2 W 1;1.T/ satisfy that m0;i CM0;i ⌧ 1. Then����
@X

@x1
� @X

@x2

����
L1.BR/

6 C.�m0 C�M0/; (B3)
����
@Xk
@x1;i

@Xj

@x1;i
� @Xk
@x2;i

@Xj

@x2;i

����
L1.BR/

6 C.�m0 C�M0/; (B4)
����rXk

@Xk
@x1;i

� rXk

@Xk
@x2;i

����
L1.BR/

6 C.ır/�1.�m0 C�M0/; (B5)

where the constants C are all universal.
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If in addition, hi ;Hi 2 C 1;˛.T/ for some ˛ 2 .0; 1/, such that m˛;i CM˛;i ⌧ 1, then
����
@X

@x1
� @X

@x2

���� PC˛.BR/

6 C.ır/�˛.�m˛ C�M˛/; (B6)

and ����
@Xk
@x1;i

@Xj

@x1;i
� @Xk
@x2;i

@Xj

@x2;i

���� PC˛.BR/

6 C.ır/�˛.�m˛ C�M˛/: (B7)

Here C are universal constants only depending on ˛. All the quantities above are only supported
on Br.1C2ı/nBr.1�2ı/ and BRnBR.1�2ı/.

Proof. The proof is once again a straightforward calculation.
We derive by (3.2) that

@X

@x1
� @X

@x2
D .⇣21 C ⇣1⇢@⇢⇣1/

�1
⇣
.⇣1 � ⇣2/ � Id C

�
r.⇣1 � ⇣2/

�? ˝X?
⌘

C .⇣22 C ⇣2⇢@⇢⇣2/ � .⇣21 C ⇣1⇢@⇢⇣1/

.⇣21 C ⇣1⇢@⇢⇣1/.⇣
2
2 C ⇣2⇢@⇢⇣2/

.⇣2 � Id C .r⇣2/? ˝X?/: (B8)

By (3.27),
ˇ̌
.⇣22 C ⇣2⇢@⇢⇣2/ � .⇣21 C ⇣1⇢@⇢⇣1/

ˇ̌
6 j⇣1 � ⇣2jj⇣1 C ⇣2 C ⇢@⇢⇣2j C j⇣1jj⇢@⇢.⇣1 � ⇣2/j
6 Cı�1�kh1 � h2kL1 C kH1 �H2kL1

�
6 C.�m0 C�M0/: (B9)

Combining (3.28), (3.30) and (B9) with (B8), we find that
ˇ̌
ˇ̌ @X
@x1

� @X

@x2

ˇ̌
ˇ̌ 6 C

�
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.j⇣2j C ⇢jr⇣2j/

6 C.�m0 C�M0/; (B10)

which proves (B3). It is easy to derive (B4) from (B3) and Lemma 3.2.
To show (B5), we use (3.25) to derive that
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.⇣22 C ⇣2⇢@⇢⇣2/

�1rXj
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(B11)
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Then by (3.27), (3.28), (3.30), (3.32), (B9) and Lemma 3.2,

ˇ̌
ˇ̌rXk

@Xk
@x1;i

� rXk

@Xk
@x2;i

ˇ̌
ˇ̌ 6 C

ˇ̌
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.⇣21 C ⇣1⇢@⇢⇣1/
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6 C.ır/�1.�m0 C�M0/: (B12)

To prove (B6), we start with a Hölder estimate of .⇣21 C ⇣1⇢@⇢⇣1/� .⇣22 C ⇣2⇢@⇢⇣2/. Using the fact
that kfgk PC˛ 6 kf k PC˛ kgkL1 C kf kL1kgk PC˛ ,

��.⇣21 C ⇣1⇢@⇢⇣1/ � .⇣22 C ⇣2⇢@⇢⇣2/
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C k⇣1 � ⇣2kL1.k⇣1 C ⇣2k PC˛.BR/
C k⇢@⇢⇣1k PC˛.BR/

/
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: (B13)

Note that the Hölder semi-norms are taken over BR with respect to the Euclidean distance in X -
coordinate instead of the .⇢; !/-coordinate. Using
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⌘
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⌘
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and the fact that ⌘ı.⇢r / and ⌘ı. ⇢R / are supported near @Br and @BR, respectively, we find that
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In the last line, we applied interpolation inequalities. Setting h1 D H1 D 0 (or h2 D H2 D 0), we
obtain estimates for k⇣ik PC˛.BR/

.
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we deduce that
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Combining (B15) and (B17) with (B13) yields that
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Setting h2 D H2 D 0 gives
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Thanks to (3.28), it is not difficult to derive that k.⇣21 C ⇣1⇢@⇢⇣1/
�1k PC˛.BR/

has the same bound,
with a different constant C .

In addition, by (3.30),
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So
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Here we used the fact that �m0 C�M0 6 C.�m˛ C�M˛/ by interpolation.
To this end, combining (3.28), (3.30), (B8), (B9), (B15), (B18) and (B21),
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��.⇣22 C ⇣2⇢@⇢⇣2/ � .⇣21 C ⇣1⇢@⇢⇣1/

��
L1
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�
h
k.⇣21 C ⇣1⇢@⇢⇣1/

�1k PC˛.BR/
C k.⇣22 C ⇣2⇢@⇢⇣2/

�1k PC˛.BR/

Ck⇣2k PC˛.BR/
C k.r⇣2/? ˝X?k PC˛.BR/

i

6 C.ır/�˛.�m˛ C�M˛/: (B22)

In the last inequality, we needed the assumption m˛;i CM˛;i ⌧ 1.
Finally, (B7) follows from (B3), (B6) and Lemma 3.2.

Lemma B.2 Assume h2;H2 2 C 1;˛.T/ with ˛ < 1
4 , satisfying that m˛;2 CM˛;2 ⌧ 1. Then

k Qp2kC1;˛.Br /
C k Qp2kC1;˛.BRnBr /

6 C.˛;�; ⌫; r; R;G/: (B23)

Proof. By (3.5), Qp2 solves

� rXk

✓
a
@Xk
@x2;i

@Xj

@x2;i
rXj

Qp2
◆

D G. Qp2/�Br � rXk

@Xk
@x2;i

� a @Xj
@x2;i

rXj
Qp2 (B24)

in BR, with Qp2j@BR
D 0. By putting h1 D H1 D 0 in (B4) and (B7), we obtain that
����
@Xk
@x2;i

@Xj

@x2;i
� Id

����
L1.BR/

6 C.m0;2 CM0;2/; (B25)
����
@Xk
@x2;i

@Xj

@x2;i

���� PC˛.BR/

6 C.ır/�˛.m˛;2 CM˛;2/: (B26)

By assumingm˛;2 CM˛;2 to be suitably small (ans thusm0;2 CM0;2 is small by interpolation), we
may have the coefficient matrix satisfy

1

2
minf�; ⌫gId 6 a

@Xk
@x2;i

@Xj

@x2;i
6 2maxf�; ⌫gId; (B27)

which is symmetric and piecewise C ˛ in BR. Therefore, by [36, Corollary 1.3] and Lemma 3.2,
for ˛ < 1

4 ,

k Qp2kC1;˛.Br /
C k Qp2kC1;˛.BRnBr /

6 C

 
˛;�; ⌫; r; R;

����
@Xk
@x2;i

@Xj

@x2;i

����
C˛.BR/

! ����G. Qp2/�Br � rXk

@Xk
@x2;i

� a @Xj
@x2;i

rXj
Qp2
����
L1

6 C.˛;�; ⌫; r; R;G/
�
1C kr Qp2kL1.BR/

�
: (B28)

We omit the dependence of C on m0;2 C M0;2 and m˛;2 C M˛;2 since they can be bounded by
universal constants. The ı-dependence of C is encoded in the .r; R/-dependence. By interpolation
inequality, with ✏ > 0 to be chosen and C✏ depending on ✏ and ˛,

kr Qp2kL1.BR/ 6 ✏
�
k Qp2kC1;˛.Br /

C k Qp2kC1;˛.BRnBr /

�
C C✏k Qp2kL1.BR/: (B29)

Taking ✏ suitably small, we conclude from (B28) that

k Qp2kC1;˛.Br /
C k Qp2kC1;˛.BRnBr /

6 C.˛;�; ⌫; r; R;G/.1C k Qp2kL1.BR//: (B30)

Then the desired estimate follows from the fact p2 2 Œ0; pM ç (see Section 1).
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Now we are ready to prove Lemma 3.5.

Proof of Lemma 3.5. In this proof, we shall use C⇤ to denote universal constants with the
dependence C⇤ D C⇤.˛;�; ⌫; r; R;G/. Its precise definition may vary from line to line.

STEP 1 (L1-bound) Rewrite (B2) as

rXk

✓
a
@Xk
@x1;i

@Xj

@x1;i
rXj

. Qp1 � Qp2/
◆

C G. Qp1/ �G. Qp2/
Qp1 � Qp2

�Br � . Qp1 � Qp2/ � rXk

@Xk
@x1;i

� a @Xj
@x1;i

rXj
. Qp1 � Qp2/

D �rXk


a

✓
@Xk
@x1;i

@Xj

@x1;i
� @Xk
@x2;i

@Xj

@x2;i

◆
rXj

Qp2
�

C a


rXk

@Xk
@x1;i

� @Xj
@x1;i

� rXk

@Xk
@x2;i

� @Xj
@x2;i

�
rXj

Qp2: (B31)

Arguing as in the proof of Lemma B.2, we may assume the coefficient matrix satisfies

1

2
minf�; ⌫gId 6 a

@Xk
@x1;i

@Xj

@x1;i
6 2maxf�; ⌫gId; (B32)

and it is symmetric and piecewise C ˛ in BR. Moreover,

G. Qp1/ �G. Qp2/
Qp1 � Qp2

�Br 6 0; (B33)

and ˇ̌
ˇ̌G. Qp1/ �G. Qp2/

Qp1 � Qp2

ˇ̌
ˇ̌C

ˇ̌
ˇ̌rXk

@Xk
@x1;i

� a @Xj
@x1;i

ˇ̌
ˇ̌ 6 C.�; ⌫; r; R;G/: (B34)

Recall that . Qp1� Qp2/j@BR
D 0. By theL1-bound of the weak solution [27, Theorem 8.16], together

with Lemma B.1 and Lemma B.2,

k Qp1 � Qp2kL1.BR/

6 C.�; ⌫; r; R;G/

����a
✓
@Xk
@x1;i

@Xj

@x1;i
� @Xk
@x2;i

@Xj

@x2;i

◆
rXj

Qp2
����
L4.BR/

C C.�; ⌫; r; R;G/

����a

rXk

@Xk
@x1;i

� @Xj
@x1;i

� rXk

@Xk
@x2;i

� @Xj
@x2;i

�
rXj

Qp2
����
L2.BR/

6 C⇤.�m0 C�M0/: (B35)

This proves (3.52).

STEP 2 (C 1;˛-bound) This part of the proof is similar to that of Lemma B.2.
In addition to (B32), we know that

a

✓
@Xk
@x1;i

@Xj

@x1;i
� @Xk
@x2;i

@Xj

@x2;i

◆
rXj

Qp2 (B36)
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is piecewise C ˛ thanks to Lemma B.1 and Lemma B.2. Applying [36, Corollary 1.3] to (B2), for
˛ < 1

4 ,

k Qp1 � Qp2kC1;˛.Br /
C k Qp1 � Qp2kC1;˛.BRnBr /

6 CkG. Qp1/ �G. Qp2/kL1.Br / C C

����rXk

@Xk
@x1;i

@Xj

@x1;i

����
L1.BR/

kr. Qp1 � Qp2/kL1.BR/

C C

����rXk

@Xk
@x1;i

� @Xj
@x1;i

� rXk

@Xk
@x2;i

� @Xj
@x2;i

����
L1.BR/

kr Qp2kL1.BR/

C C

����
✓
@Xk
@x1;i

@Xj

@x1;i
� @Xk
@x2;i

@Xj

@x2;i

◆
rXj

Qp2
����
C˛.Br /

C C

����
✓
@Xk
@x1;i

@Xj

@x1;i
� @Xk
@x2;i

@Xj

@x2;i

◆
rXj

Qp2
����
C˛.BRnBr /

: (B37)

Here the constants

C D C

 
˛;�; ⌫; r; R;

����
@Xk
@x1;i

@Xj

@x1;i

����
C˛.BR/

!
: (B38)

By (3.52), Lemma B.1 and Lemma B.2, we simplify (B37) to be

k Qp1 � Qp2kC1;˛.Br /
C k Qp1 � Qp2kC1;˛.BRnBr /

6 C⇤k Qp1 � Qp2kL1.Br / C C⇤.ır/�1.m0;1 CM0;1/kr. Qp1 � Qp2/kL1.BR/

C C⇤.ır/�1.�m0 C�M0/

C C⇤.�m0 C�M0/C C⇤.ır/�˛.�m˛ C�M˛/

6 C⇤kr. Qp1 � Qp2/kL1.BR/ C C⇤.�m˛ C�M˛/: (B39)

By interpolation and arguing as in the proof of Lemma B.2,

k Qp1 � Qp2kC1;˛.Br /
C k Qp1 � Qp2kC1;˛.BRnBr /

6 C⇤
�
�m˛ C�M˛ C k Qp1 � Qp2kL1.BR/

�
: (B40)

Now by the L1-bound (3.52), we conclude with (3.53).

Lemma 3.4 follows from Lemma 3.5 immediately.

Proof of Lemma 3.4. Back in the physical coordinate, by (2.13),

@thi D � 1

rfi
� ui

�
�.✓/

�
� � 0
i .✓/

? D �
�
�
.1C hi /er � h0

ie✓
�
j

r.1C hi /
�

@Xk
@xi;j

� rXk
Qpi
�ˇ̌
ˇ̌
@Br

: (B41)

Here rXk
is taken from the inside of @Br . Similarly,

@tHi D �
⌫
�
.1CHi /er �H 0

i e✓
�
j

R.1CHi /
�

@Xk
@xi;j

� rXk
Qpi
�ˇ̌
ˇ̌
@BR

: (B42)

By definition (B1), ⇣i D 1 C hi .✓/ in a neighborhood of @Br , while ⇣i D 1 C Hi .✓/ near @BR.
So (3.30) reduces to

r⇣i D
(
h0
i .✓/r

�1e✓ on @Br ;

H 0
i .✓/R

�1e✓ on @BR:
(B43)
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Hence, (3.2) can be simplified as

@Xk
@xi;j

D

8<
:
�
1C hi .✓/

��2⇥�
1C hi .✓/

�
ıkj � h0

i .✓/er;k ˝ e✓;j
⇤

on @Br ;
�
1CHi .✓/

��2⇥�
1CHi .✓/

�
ıkj �H 0

i .✓/er;k ˝ e✓;j
⇤

on @BR:
(B44)

Now we calculate by (B41) and (B42) that

@thi D ��
r


.1C hi /

2 C .h0
i /
2

.1C hi /3
er � h0

i

.1C hi /2
e✓

�
r Qpi j@Br

; (B45)

@tHi D � ⌫

R
� .1CHi /

2 C .H 0
i /
2

.1CHi /3
� er � r Qpi j@BR

: (B46)

In (B46), we used the fact that Qpi j@BR
D 0 and thus r Qpi j@BR

is in the er -direction.
To prove (3.51), we start with the trivial bound

���1C hi .✓/
��1��

C˛.T/ 6 C (B47)

due to the smallness of m0;i , where C is a universal constant. Then we simply use kfgkC˛.T/ 6
3kf kC˛.T/kgkC˛.T/ to derive that

����
.1C h1/

2 C .h0
1/
2

.1C h1/3
� .1C h2/

2 C .h0
2/
2

.1C h2/3

����
C˛.T/

6
����

1

1C h1
� 1

1C h2

����
C˛

C
����
.h0
1/
2 � .h0

2/
2

.1C h1/3

����
C˛

C
����.h0

2/
2 .1C h1/

3 � .1C h2/
3

.1C h1/3.1C h2/3

����
C˛

6 Ckh1 � h2kC˛ C Ckh0
1 C h0

2kC˛ kh0
1 � h0

2kC˛ C Ckh0
2k2C˛ kh1 � h2kC˛

6 C.˛; ı;m˛;1 Cm˛;2/�m˛: (B48)

Similarly, ����
h0
1

.1C h1/2
� h0

2

.1C h2/2

����
C˛.T/

6 C.˛; ı;m˛;1 Cm˛;2/�m˛: (B49)

Setting h1 D 0 or h2 D 0 above yields
����
.1C hi /

2 C .h0
i /
2

.1C hi /3

����
C˛.T/

C
����

h0
i

.1C hi /2

����
C˛.T/

6 C.˛; ı;m˛;i /: (B50)

Then it is not difficult to derive from (B45) that

k@th1 � @th2kC˛.T/ 6 C.�; r/ � C.˛; ı;m˛;1 Cm˛;2/�m˛ � kr Qp1kC˛.T/
C C.�; r/ � C.ı;m˛;2/kr. Qp1 � Qp2/kC˛.T/

6 C.˛;�; r; R;m˛;1 Cm˛;2/
�
�m˛kr Qp1kC˛.Br /

C kr. Qp1 � Qp2/kC˛.Br /

�
:

(B51)

By Lemma B.2 and Lemma 3.5,

k@th1 � @th2kC˛.T/ 6 C⇤.�m˛ C�M˛/; (B52)

where C⇤ D C⇤.˛;�; ⌫; r; R;G/. Once again, the dependence of C⇤ on m˛;i C M˛;i is omitted
since it is assumed to be small.

Estimates for .@tH1 � @tH2/ can be derived from (B46) in a similar manner.
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C. Proofs of Lemmas 5.4–5.6

In this section, we prove Lemmas 5.4–5.6.

Proof of Lemma 5.4. Let li be defined as in (5.2) corresponding to hi . By virtue of (5.5),

2⇡
�
� 0
1.✓/

? � K�1
 � � 0

2.✓/
? � K�2

 
�

D 1

2

Z
T

✓
1

1C l1
� 1

1C l2

◆
 .✓ C ⇠/ d⇠

C h2.✓/ � h1.✓/
1C h2.✓/

� 1

1C h1.✓/

Z
T

�h1.✓/ � cos ⇠2 � h0
1.✓/

2 sin ⇠
2

 .✓ C ⇠/

1C l1
d⇠

C 1

1C h2.✓/

Z
T

�.h1 � h2/.✓/ � cos ⇠2 � .h1 � h2/0.✓/
2 sin ⇠

2

 .✓ C ⇠/

1C l1
d⇠

C 1

1C h2.✓/

Z
T

�h2.✓/ � cos ⇠2 � h0
2.✓/

2 sin ⇠
2

✓
 .✓ C ⇠/

1C l1
�  .✓ C ⇠/

1C l2

◆
d⇠

DW J1 C J2 C J3 C J4: (C1)

We start with the integrand of J1.
����
✓

1

1C l1
� 1

1C l2

◆
 .✓ C ⇠/

���� PCˇ
✓

6
����

1

1C l1
� 1

1C l2

���� PCˇ
✓

k kL1 C
����

1

1C l1
� 1

1C l2

����
L1
✓

k k PCˇ

6 Ckl1 � l2k PCˇ
✓

k kL1 C Ckl1 � l2kL1
✓
.kl1k PCˇ

✓

C kl2k PCˇ
✓

/k kL1

C Ckl1 � l2kL1
✓

k k PCˇ : (C2)

We derive that

kl1�l2kL1
✓

6
�����

.�h1/
2 � .�h2/2�

1C h1.✓/
��
1C h1.✓ C ⇠/

�
�����
L1
✓

C
�����.�h2/

2

 
1�

1C h1.✓/
��
1C h1.✓ C ⇠/

� � 1�
1C h2.✓/

��
1C h2.✓ C ⇠/

�
!�����

L1

6 C.kh0
1kL1 C kh0

2kL1/kh1 � h2kW 1;1 ; (C3)

and

kl1 � l2k PCˇ
✓

6
�����

.�h1/
2 � .�h2/2�

1C h1.✓/
��
1C h1.✓ C ⇠/

�
����� PCˇ

✓
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C
�����.�h2/

2

 
1�

1C h1.✓/
��
1C h1.✓ C ⇠/

� � 1�
1C h2.✓/

��
1C h2.✓ C ⇠/

�
!����� PCˇ

✓

6 Ckh0
1 C h0

2k PCˇ kh0
1 � h0

2kL1 C Ckh0
1 C h0

2kL1kh0
1 � h0

2k PCˇ

C Ckh0
1 C h0

2kL1kh0
1 � h0

2kL1kh1k PCˇ

C Ckh0
2k PCˇ kh0

2kL1kh1 � h2kL1 C Ckh0
2k2L1kh1 � h2k PCˇ

C Ckh0
2k2L1kh1 � h2kL1

�
kh1k PCˇ C kh2k PCˇ

�
6 C

�
kh0
1k PCˇ C kh0

2k PCˇ

�
kh1 � h2kC1;ˇ : (C4)

Taking h2 D 0 in the second last step of (C4) yields that

klik PCˇ
✓

6 Ckh0
ik PCˇ kh0

ikL1 : (C5)

Combining these estimates with (C2), we argue as in (5.6) that

kJ1k PCˇ 6 C sup
⇠2T

����
✓

1

1C l1
� 1

1C l2

◆
 .✓ C ⇠/

���� PCˇ
✓

6 Ckh1 � h2kC1;ˇ .kh0
1k PCˇ C kh0

2k PCˇ /k kCˇ : (C6)

Next, by taking advantage of (5.10) and (5.15),

kJ2k PCˇ 6
����
h2 � h1
1C h2

���� PCˇ

�����
1

1C h1

Z
T

�h1.✓/ � cos ⇠2 � h0
1.✓/

2 sin ⇠
2

 .✓ C ⇠/

1C l1
d⇠

�����
L1

C
����
h2 � h1
1C h2

����
L1

�����
1

1C h1

Z
T

�h1.✓/ � cos ⇠2 � h0
1.✓/

2 sin ⇠
2

 .✓ C ⇠/

1C l1
d⇠

����� PCˇ

6 C
�
kh2 � h1k PCˇ C kh2 � h1kL1kh2k PCˇ

�
� kh0

1k PCˇ k kL1

C Ckh2 � h1kL1 � kh0
1k PCˇ

�
k kCˇ C k kL1kh0

1k PCˇ kh0
1kL1

�
: (C7)

Arguing as in (5.9)–(5.15),

kJ3k PCˇ 6 Ck.h1 � h2/0k PCˇ

�
k kCˇ C k kL1kh0

1k PCˇ kh0
1kL1

�
: (C8)

In order to apply the same argument to J4, we need the following estimate.
ˇ̌
ˇ̌
ˇ̌
 .✓ C ⇠/

1C l1
�  .✓ C ⇠/

1C l2
�  .✓/

1C h0
1.✓/

2

.1Ch1/2

C  .✓/

1C h0
2.✓/

2

.1Ch2/2

ˇ̌
ˇ̌
ˇ̌

6 C j .✓ C ⇠/ �  .✓/jjl1 � l2j

C C j .✓/j
ˇ̌
ˇ̌l1 � l2 � h0

1.✓/
2

.1C h1/2
C h0

2.✓/
2

.1C h2/2

ˇ̌
ˇ̌

C C j .✓/j
ˇ̌
ˇ̌
ˇ

h0
1.✓/

2

�
1C h1.✓/

�2 � h0
2.✓/

2

�
1C h2.✓/

�2
ˇ̌
ˇ̌
ˇ
✓ˇ̌
ˇ̌l1 � h0

1.✓/
2

.1C h1/2

ˇ̌
ˇ̌C

ˇ̌
ˇ̌l2 � h0

2.✓/
2

.1C h2/2

ˇ̌
ˇ̌
◆
:

(C9)
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Since
ˇ̌
ˇ̌l1 � l2 � h0

1.✓/
2

.1C h1/2
C h0

2.✓/
2

.1C h2/2

ˇ̌
ˇ̌

6
ˇ̌
ˇ̌
ˇ

�
�h1.✓/

�2 � h0
1.✓/

2

.1C h1/
�
1C h1.✓ C ⇠/

� �
�
�h2.✓/

�2 � h0
2.✓/

2

.1C h2/
�
1C h2.✓ C ⇠/

�
ˇ̌
ˇ̌
ˇ

C
ˇ̌
ˇ̌
ˇ
h0
1.✓/

2
�
h1.✓ C ⇠/ � h1.✓/

�
.1C h1/2

�
1C h1.✓ C ⇠/

� � h0
2.✓/

2
�
h2.✓ C ⇠/ � h2.✓/

�
.1C h2/2

�
1C h2.✓ C ⇠/

�
ˇ̌
ˇ̌
ˇ

6 C j⇠jˇkh1 � h2kC1;ˇ .kh0
1k PCˇ C kh0

2k PCˇ /; (C10)

we apply this and (C3) to (C9) to conclude that
ˇ̌
ˇ̌
ˇ̌
 .✓ C ⇠/

1C l1
�  .✓ C ⇠/

1C l2
�  .✓/

1C h0
1.✓/

2

.1Ch1/2

C  .✓/

1C h0
2.✓/

2

.1Ch2/2

ˇ̌
ˇ̌
ˇ̌

6 C j⇠jˇk k PCˇ �
�
kh0
1kL1 C kh0

2kL1
�
kh1 � h2kW 1;1

C Ck kL1 � j⇠jˇkh1 � h2kC1;ˇ

�
kh0
1k PCˇ C kh0

2k PCˇ

�

C Ck kL1
�
kh0
1kL1 C kh0

2kL1
�
kh1 � h2kW 1;1 � j⇠jˇ

�
kh0
1kL1kh0

1k PCˇ C kh0
2kL1kh0

2k PCˇ

�

6 C j⇠jˇk kCˇ .kh0
1k PCˇ C kh0

2k PCˇ /kh1 � h2kC1;ˇ : (C11)

Now we proceed as in (5.9)–(5.15).

jJ4.✓ C "/ � J4.✓/j

6
ˇ̌
ˇ̌ 1

1C h2.✓ C "/
� 1

1C h2.✓/

ˇ̌
ˇ̌
Z
T

ˇ̌
ˇ̌
ˇ
�h2.✓ C "/ � cos ⇠2 � h0

2.✓ C "/

2 sin ⇠
2

ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌  .✓ C "C ⇠/

1C l1.✓ C "; ✓ C "C ⇠/
�  .✓ C "C ⇠/

1C l2.✓ C "; ✓ C "C ⇠/

ˇ̌
ˇ̌ d⇠

C C

Z
T

ˇ̌
ˇ̌
ˇ
�h2.✓ C "/ � cos ⇠2 � h0

2.✓ C "/

2 sin ⇠
2

ˇ̌
ˇ̌
ˇ

� j"jˇ sup
⇠

����
 .✓ C ⇠/

1C l1.✓; ✓ C ⇠/
�  .✓ C ⇠/

1C l2.✓; ✓ C ⇠/

���� PCˇ
✓

d⇠

C C

Z
T

ˇ̌
ˇ̌
ˇ
�h2.✓ C "/ ��h2.✓/ � cos ⇠2

�
h0
2.✓ C "/ � h0

2.✓/
�

2 sin ⇠
2

ˇ̌
ˇ̌
ˇ

�

ˇ̌
ˇ̌
ˇ̌

 .✓ C ⇠/

1C l1.✓; ✓ C ⇠/
�  .✓ C ⇠/

1C l2.✓; ✓ C ⇠/
�  .✓/

1C h0
1.✓/

2

.1Ch1.✓//2

C  .✓/

1C h0
2.✓/

2

.1Ch2.✓//2

ˇ̌
ˇ̌
ˇ̌ d⇠

C C

ˇ̌
ˇ̌
ˇ
Z
T

�h2.✓ C "/ ��h2.✓/ � cos ⇠2
�
h0
2.✓ C "/ � h0

2.✓/
�

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ
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�

ˇ̌
ˇ̌
ˇ̌

 .✓/

1C h0
1.✓/

2

.1Ch1.✓//2

�  .✓/

1C h0
2.✓/

2

.1Ch2.✓//2

ˇ̌
ˇ̌
ˇ̌ : (C12)

By (5.11), (5.14), (C3)–(C6) and (C11),

jJ4.✓ C "/ � J4.✓/j 6 C"ˇk kCˇ kh0
2k PCˇ .kh0

1k PCˇ C kh0
2k PCˇ /kh1 � h2kC1;ˇ : (C13)

Combining (C6)–(C8) and (C13) yield the desired estimate.

Proof of Lemma 5.5. Let C⇤ and Cé be the constants in Lemma A.2 and Lemma A.4, respectively,
both of which only depend on p. Without loss of generality, we may assume Cé > C⇤ > 1.
Following (5.5), we use L.i/k .k D 0; 1; 2; 3/ to denote the corresponding quantities defined by hi
.i D 1; 2/. li are defined as in (5.2) by hi . Thanks to the smallness of hi , we may assume jli j < 1,
and that C2 > 0 is a universal constant such that k.1C hi /

�1kL1 6 C2.
We start with bounding L.1/1 � L.2/1 . Taking their ✓ -derivatives, we use (C3) to derive that

kL.1/1 � L.2/1 k PW 1;p

6 1

2

������
Z
T

2
4

2�h1�h
0
1

.1Ch1.✓//.1Ch1.✓C⇠// � .�h1/
2.h0

1.✓/Ch0
1.✓C⇠/Ch0

1.✓/h1.✓C⇠/Ch1.✓/h
0
1.✓C⇠//

.1Ch1.✓//2.1Ch1.✓C⇠//2�
1C l1.✓; ✓ C ⇠/

�2

�
2�h2�h

0
2

.1Ch2.✓//.1Ch2.✓C⇠// � .�h2/
2.h0

2.✓/Ch0
2.✓C⇠/Ch0

2.✓/h2.✓C⇠/Ch2.✓/h
0
2.✓C⇠//

.1Ch2.✓//2.1Ch2.✓C⇠//2�
1C l2.✓; ✓ C ⇠/

�2
3
5 .✓ C ⇠/ d⇠

������
Lp

C 1

2

����
Z
T

✓
1

1C l1
� 1

1C l2

◆
 0.✓ C ⇠/ d⇠

����
Lp

6 C.kh0
1 � h0

2kL1kh00
1kLp C kh0

2kL1kh00
1 � h00

2kLp C kh0
2kL1kh00

2kLp kh1 � h2kW 1;1/k kL1

C C.kh0
1kL1 C kh0

2kL1/kh1 � h2kW 1;1k 0kLp : (C14)

As in (5.18), we Taylor expand .1C li /
�1 and rewrite L.i/2 as

L
.i/
2 D

1X
jD0

.�1/j
�
1C hi .✓/

��.jC1/p:v:
Z
T
.�hi /

2jC1�1C hi .✓ C ⇠/
��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

DW
1X
jD0

L
.i/
2;j : (C15)

We derive

.�1/j .L.1/2;j � L.2/2;j /

D
h�
1C h1.✓/

��.jC1/ �
�
1C h2.✓/

��.jC1/i

� p:v:
Z
T
.�h1/

2jC1�1C h1.✓ C ⇠/
��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠
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C
�
1C h2.✓/

��.jC1/

� p:v:
Z
T
�.h1 � h2/

2jX
lD0
.�h1/

l .�h2/
2j�l �

�
1C h1.✓ C ⇠/

��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

C
�
1C h2.✓/

��.jC1/

� p:v:
Z
T
.�h2/

2jC1
✓

1

1C h1.✓ C ⇠/
� 1

1C h2.✓ C ⇠/

◆

�
j�1X
lD0

�
1C h1.✓ C ⇠/

��l�
1C h2.✓ C ⇠/

��.j�1�l/ �  .✓ C ⇠/

2 sin ⇠
2

d⇠: (C16)

Note that here in this proof, with abuse of notations, we use l as a summation index, which has
nothing to do with (5.2).

By Lemma A.2, for 0 6 l 6 k,

�����p:v:
Z
T
�.h1 � h2/.�h1/l .�h2/k�l �  .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
Lp

6 CC k⇤
�
kh0
1kL1 C kh0

2kL1
�kkh0

1 � h0
2kL1k kLp : (C17)

Letting k D 2j and replacing  by .1C h1/
�j ,

�����p:v:
Z
T
�.h1 � h2/.�h1/l .�h2/2j�l�1C h1.✓ C ⇠/

��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
Lp

6 C
�
C 2⇤C2.kh0

1kL1 C kh0
2kL1/2

�j kh0
1 � h0

2kL1k kLp : (C18)

Further taking h2 D 0 and l D 2j , we find

�����p:v:
Z
T
.�h1/

2jC1�1C h1.✓ C ⇠/
��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
Lp

6 C
�
C 2⇤C2kh0

1k2L1
�j kh0

1kL1k kLp : (C19)

Similarly,

����p:v:
Z
T
.�h2/

2jC1
✓

1

1C h1.✓ C ⇠/
� 1

1C h2.✓ C ⇠/

◆

�
�
1C h1.✓ C ⇠/

��l�
1C h2.✓ C ⇠/

��.j�1�l/ �  .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
Lp

6 C
�
C 2⇤C2kh0

2k2L1
�j kh0

2kL1kh1 � h2kL1k kLp : (C20)
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On the other hand, by Lemma A.4, for 0 6 l 6 k,
�����p:v:

Z
T
�.h1 � h2/.�h1/l .�h2/k�l �  .✓ C ⇠/

2 sin ⇠
2

d⇠

����� PW 1;p

6 .k C 2/C kC2
é k 0kLp kh0

1 � h0
2kL1

�
kh0
1kL1 C kh0

2kL1
�k

C .k C 2/C kC2
é k kL1kh00

1 � h00
2kLp

�
kh0
1kL1 C kh0

2kL1
�k

C .k C 2/C kC2
é k kL1kh0

1 � h0
2kL1

�
kh0
1kL1 C kh0

2kL1
�k�1 � 1fk>0g

�
kh00
1kLp C kh00

2kLp

�
:

(C21)

Taking k D 2j and replacing  by .1C h1/
�j ,

�����p:v:
Z
T
�.h1 � h2/.�h1/l .�h2/2j�l�1C h1.✓ C ⇠/

��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

����� PW 1;p

6 .2j C 2/C
2jC2
é .jC

jC1
2 kh0

1kL1k kLp C C
j
2 k 0kLp /kh0

1 � h0
2kL1.kh0

1kL1 C kh0
2kL1/2j

C .2j C 2/C
2jC2
é C

j
2 k kL1kh00

1 � h00
2kLp

�
kh0
1kL1 C kh0

2kL1
�2j

C .2j C 2/C
2jC2
é C

j
2 k kL1kh0

1 � h0
2kL1

� 1fj>0g.kh0
1kL1 C kh0

2kL1/2j�1�kh00
1kLp C kh00

2kLp

�
: (C22)

Further taking h2 D 0 and l D 2j ,
�����p:v:

Z
T
.�h1/

2jC1�1C h1.✓ C ⇠/
��j �  .✓ C ⇠/

2 sin ⇠
2

d⇠

����� PW 1;p

6 C.j C 1/
�
C 2é C2kh0

1k2L1
�j ⇥
.j kh0

1kL1k kLp C k 0kLp /kh0
1kL1 C k kL1kh00

1kLp

⇤
:

(C23)

Similarly,
����p:v:

Z
T
.�h2/

2jC1
✓

1

1C h1.✓ C ⇠/
� 1

1C h2.✓ C ⇠/

◆

�
�
1C h1.✓ C ⇠/

��l�
1C h2.✓ C ⇠/

��.j�1�l/ �  .✓ C ⇠/

2 sin ⇠
2

d⇠

����� PW 1;p

6 .2j C 2/C
2jC2
é kh0

2k
2jC1
L1

�
����
✓

1

1C h1
� 1

1C h2

◆
.1C h1/

�l .1C h2/
�.j�1�l/ 

���� PW 1;p

C C.2j C 2/C
2jC2
é kh0

2k
2j
L1kh00

2kLp � C jC1
2 kh1 � h2kL1k kL1

6 C.j C 1/.C 2é C2kh0
2k2L1/j kh0

2kL1 �
⇥
kh0
1 � h0

2kL1k kLp

Cj kh1 � h2kL1.kh0
1kL1 C kh0

2kL1/k kLp C kh1 � h2kL1k 0kLp

⇤

C C.j C 1/.C 2é C2kh0
2k2L1/j kh00

2kLp � kh1 � h2kL1k kL1 : (C24)
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Combining these estimates with (C16), we use the fact kfgk PW 1;p 6 kf k PW 1;1kgkLp C
kf kL1kgk PW 1;p to derive that

kL.1/2;j � L.2/2;j k PW 1;p

6 C.j C 1/C
j
2

�
kh0
1 � h0

2kL1 C .j C 2/kh1 � h2kL1kh0
2kL1

�

� .C 2⇤C2kh0
1k2L1/j kh0

1kL1k kLp

C C.j C 1/C
j
2 kh1 � h2kL1

� .j C 1/.C 2é C2kh0
1k2L1/j

⇥
.j kh0

1kL1k kLp C k 0kLp /kh0
1kL1 C k kL1kh00

1kLp

⇤

C C.j C 1/C
j
2 kh0

2kL1
2jX
lD0

�
C 2⇤C2.kh0

1kL1 C kh0
2kL1/2

�j kh0
1 � h0

2kL1k kLp

C CC
j
2

2jX
lD0
.j C 1/

�
C 2é C2.kh0

1kL1 C kh0
2kL1/2

�j

�
⇥
.j kh0

1kL1k kLp C k 0kLp /kh0
1 � h0

2kL1 C k kL1kh00
1 � h00

2kLp

C 1fj>0gk kL1kh0
1 � h0

2kL1.kh00
1kLp C kh00

2kLp /.kh0
1kL1 C kh0

2kL1/�1
⇤

C C.j C 1/C
j
2 kh0

2kL1
j�1X
lD0
.C 2⇤C2kh0

2k2L1/j kh0
2kL1kh1 � h2kL1k kLp

C CC
j
2

j�1X
lD0
.j C 1/.C 2é C2kh0

2k2L1/j kh0
2kL1 �

⇥
kh0
1 � h0

2kL1k kLp

Cj kh1 � h2kL1.kh0
1kL1 C kh0

2kL1/k kLp C kh1 � h2kL1k 0kLp

⇤

C .j C 1/.C 2é C2kh0
2k2L1/j kh00

2kLp � kh1 � h2kL1k kL1 : (C25)

Assuming kh0
ikL1 ⌧ 1,

kL.1/2 � L.2/2 k PW 1;p 6
1X
jD0

kL.1/2;j � L.2/2;j k PW 1;p

6 C
�
k 0kLp kh1 � h2kW 1;1 C k kL1kh00

1 � h00
2kLp

�
C Ck kL1kh1 � h2kW 1;1

�
kh00
1kLp C kh00

2kLp

�
: (C26)

We similarly write

L
.i/
3 D

1X
jD0

h0
i .✓/

�
�1 � hi .✓/

��.jC1/p:v:
Z
T
.�hi /

2j
�
1C hi .✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

DW
1X
jD0

L
.i/
3;j (C27)
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and

.�1/jC1.L.1/3;j � L.2/3;j /

D
h
h0
1.✓/.1C h1.✓//

�.jC1/ � h0
2.✓/

�
1C h2.✓/

��.jC1/i � p:v:
Z
T
A
j
i �  .✓ C ⇠/

2 tan ⇠
2

d⇠

C h0
2.✓/

�
1C h2.✓/

��.jC1/ � p:v:
Z
T
.A
j
1 � Aj2/ �  .✓ C ⇠/

2 tan ⇠
2

d⇠; (C28)

where

Ai WD .�hi /
2

1C hi .✓ C ⇠/
D

�
1C hi .✓/

�
� li .✓; ✓ C ⇠/: (C29)

To proceed as before, we need L1-bounds for the integrals in (C28). We additionally define

Bi D h0
i .✓/

2

1C hi .✓/
: (C30)

It is easy to show that jAi j; jBi j 6 C 21C2kh0
ik2L1 , where C1 D ⇡=2 is introduced in the proof of

Lemma A.2, and
jAi � Bi j 6 Ckh0

ikL1kh0
ik PCˇ j⇠jˇ : (C31)

Hence, by the mean value theorem,
ˇ̌
ˇ̌
ˇp:v:

Z
T
A
j
i �  .✓ C ⇠/

2 tan ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
Z
T

�
A
j
i  .✓ C ⇠/ � Bji  .✓/

� 1

2 tan ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

6 C

Z
T
j.C 21C2kh0

ik2L1/j�1 � kh0
ikL1kh0

ik PCˇ j⇠jˇ � k kL1 j⇠j�1 d⇠

C C

Z
T
.C 21C2kh0

ik2L1/j � j .✓ C ⇠/ �  .✓/jj⇠j�1 d⇠

6 C.C 21C2/
j
�
j kh0

ik
2j�1
L1 kh0

ik PCˇ k kL1 C kh0
ik
2j
L1k k PCˇ

�
: (C32)

We also derive that
ˇ̌
ˇ̌
ˇp:v:

Z
T
.A
j
1 � Aj2/

 .✓ C ⇠/

2 tan ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

6
Z
T

jAj1 � Aj2 � Bj1 C B
j
2 j
ˇ̌
ˇ̌
ˇ
 .✓ C ⇠/

2 tan ⇠
2

ˇ̌
ˇ̌
ˇ d⇠ C jBj1 � Bj2 j

ˇ̌
ˇ̌
ˇ
Z
T

 .✓ C ⇠/ �  .✓/
2 tan ⇠

2

d⇠

ˇ̌
ˇ̌
ˇ : (C33)

Write

A
j
1 � Aj2 � Bj1 C B

j
2

D .A1 � A2 � B1 C B2/

j�1X
lD0

Al1A
j�1�l
2 C .B1 � B2/

j�1X
lD0

�
Al1A

j�1�l
2 � B l1B

j�1�l
2

�
: (C34)



INTERFACE MOTION IN A TUMOR GROWTH MODEL 295

Since

A1 � A2 � B1 C B2 D
�
1C h1.✓/

� 
l1 � h0

1.✓/
2

�
1C h1.✓/

�2
!

�
�
1C h2.✓/

� 
l2 � h0

2.✓/
2

�
1C h2.✓/

�2
!

D h1 � h2
1C h1

.A1 � B1/

C
�
1C h2.✓/

� 
l1 � l2 � h0

1.✓/
2

�
1C h1.✓/

�2 C h0
2.✓/

2

�
1C h2.✓/

�2
!
; (C35)

we use (C10) and (C31) to derive that

jA1 � A2 � B1 C B2j 6 C j⇠jˇkh1 � h2kC1;ˇ

�
kh0
1k PCˇ C kh0

2k PCˇ

�
(C36)

Combining this with (C31) and (C34) yields that

jAj1 � Aj2 � Bj1 C B
j
2 j

6 jA1 � A2 � B1 C B2j
j�1X
lD0

�
C 21C2kh0

1k2L1
�l�
C 21C2kh0

2k2L1
�j�1�l

C C jB1 � B2j
j�1X
lD0

l
�
C 21C2kh0

1k2L1
�l�1 � kh0

1kL1kh0
1k PCˇ j⇠jˇ �

�
C 21C2kh0

2k2L1
�j�1�l

C C jB1 � B2j
j�1X
lD0

�
C 21C2kh0

1k2L1
�l � .j � 1 � l/

�
C 21C2kh0

2k2L1
�j�2�l � kh0

2kL1kh0
2k PCˇ j⇠jˇ

6 C.C 21C2/
j�1j⇠jˇ � j kh1 � h2kC1;ˇ

�
kh0
1k PCˇ C kh0

2k PCˇ

��
kh0
1k2L1 C kh0

2k2L1
�j�1

: (C37)

Applying this to (C33), we obtain that

ˇ̌
ˇ̌
ˇp:v:

Z
T
.A
j
1 � Aj2/

 .✓ C ⇠/

2 tan ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

6 C.C 21C2/
j�1 � j kh1 � h2kC1;ˇ

�
kh0
1k PCˇ C kh0

2k PCˇ

��
kh0
1k2L1 C kh0

2k2L1
�j�1k kCˇ : (C38)

Arguing as in (C17)–(C20), for j > 1 and 0 6 l 6 2j � 1,

�����p:v:
Z
T
�.h1 � h2/.�h1/l .�h2/2j�1�l�1C h1.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

6 CC 2j�1
⇤ C

j
2

�
kh0
1kL1 C kh0

2kL1
�2j�1kh0

1 � h0
2kL1k kLp ; (C39)

�����p:v:
Z
T
A
j
1 �  .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

6 CC 2j�1
⇤ C

j
2 kh0

1k
2j
L1k kLp ; (C40)
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and

����p:v:
Z
T
.�h2/

2j

✓
1

1C h1.✓ C ⇠/
� 1

1C h2.✓ C ⇠/

◆

�
�
1C h1.✓ C ⇠/

��l�
1C h2.✓ C ⇠/

��.j�1�l/ �  .✓ C ⇠/

2 sin ⇠
2

d⇠

�����
Lp

6 CC 2j�1
⇤ C

j
2 kh0

2k
2j
L1kh1 � h2kL1k kLp : (C41)

Hence,

�����p:v:
Z
T
.A
j
1 � Aj2/ �  .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

6
2j�1X
lD0

�����p:v:
Z
T
�.h1 � h2/.�h1/l .�h2/2j�1�l�1C h1.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

C
j�1X
lD0

����p:v:
Z
T
.�h2/

2j

✓
1

1C h1.✓ C ⇠/
� 1

1C h2.✓ C ⇠/

◆

�
�
1C h1.✓ C ⇠/

��l�
1C h1.✓ C ⇠/

��.j�1�l/ �  .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

6 CjC 2j�1
⇤ C

j
2

�
kh0
1kL1 C kh0

2kL1
�2j�1kh1 � h2kW 1;1k kLp : (C42)

Similar to (C21)–(C24), for j > 1,

�����p:v:
Z
T
�.h1 � h2/.�h1/l .�h2/2j�1�l�1C h1.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

6 .2j C 1/C
2jC1
é

�
jC

jC1
2 kh0

1kL1k kLp C C
j
2 k 0kLp

�
kh0
1 � h0

2kL1
�
kh0
1kL1 C kh0

2kL1
�2j�1

C .2j C 1/C
2jC1
é C

j
2 k kL1kh00

1 � h00
2kLp

�
kh0
1kL1 C kh0

2kL1
�2j�1

C .2j C 1/C
2jC1
é C

j
2 k kL1kh0

1 � h0
2kL1

�
kh0
1kL1 C kh0

2kL1
�2j�2 �

�
kh00
1kLp C kh00

2kLp

�
;

(C43)

�����p:v:
Z
T
A
j
1 �  .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

6 .2j C 1/C
2jC1
é

�
jC

jC1
2 kh0

1kL1k kLp C C
j
2 k 0kLp

�
kh0
1k
2j
L1

C C.2j C 1/C
2jC1
é C

j
2 k kL1kh00

1kLp kh0
1k
2j�1
L1 ; (C44)
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and
����p:v:

Z
T
.�h2/

2j

✓
1

1C h1.✓ C ⇠/
� 1

1C h2.✓ C ⇠/

◆

�
�
1C h1.✓ C ⇠/

��l�
1C h2.✓ C ⇠/

��.j�1�l/ �  .✓ C ⇠/

2 sin ⇠
2

d⇠

����� PW 1;p

6 .2j C 1/C
2jC1
é

����
✓

1

1C h1
� 1

1C h2

◆
.1C h1/

�l .1C h2/
�.j�1�l/ 

���� PW 1;p

kh0
2k
2j
L1

C C.2j C 1/C
2jC1
é C

jC1
2 kh1 � h2kL1k kL1kh00

2kLp kh0
2k
2j�1
L1

6 C.2j C 1/C
2jC1
é C

j
2 kh0

2k
2j
L1 �

⇥
kh0
1 � h0

2kL1k kLp

C j kh1 � h2kL1.kh0
1kL1 C kh0

2kL1/k kLp C kh1 � h2kL1k 0kLp

⇤

C C.2j C 1/C
2jC1
é C

jC1
2 kh0

2k
2j�1
L1 kh1 � h2kL1k kL1kh00

2kLp : (C45)

Hence,
�����p:v:

Z
T
.A
j
1 � Aj2/ �  .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

6
2j�1X
lD0

�����p:v:
Z
T
�.h1 � h2/.�h1/l .�h2/2j�1�l�1C h1.✓ C ⇠/

��j �  .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

C
j�1X
lD0

����p:v:
Z
T
.�h2/

2j

✓
1

1C h1.✓ C ⇠/
� 1

1C h2.✓ C ⇠/

◆

�
�
1C h1.✓ C ⇠/

��l�
1C h2.✓ C ⇠/

��.j�1�l/ �  .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

6 Cj 2.2j C 1/C
2jC1
é C

j
2 k kLp kh1 � h2kW 1;1

�
kh0
1kL1 C kh0

2kL1
�2j

C Cj.2j C 1/C
2jC1
é C

j
2 k 0kLp kh1 � h2kW 1;1

�
kh0
1kL1 C kh0

2kL1
�2j�1

C Cj.2j C 1/C
2jC1
é C

j
2 k kL1kh00

1 � h00
2kLp

�
kh0
1kL1 C kh0

2kL1
�2j�1

C Cj.2j C 1/C
2jC1
é C

j
2 k kL1kh1 � h2kW 1;1.kh0

1kL1 C kh0
2kL1/2j�2�kh00

1kLp C kh00
2kLp

�
:

(C46)

To this end, by (C28),

kL.1/3;j � L.2/3;j k PW 1;p

6 kh00
1.1C h1/

�.jC1/ � h00
2.1C h2/

�.jC1/kLp

�����p:v:
Z
T
A
j
1

 .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
L1

C .j C 1/k.h0
1/
2.1C h1/

�.jC2/ � .h0
2/
2.1C h2/

�.jC2/kL1

�����p:v:
Z
T
A
j
1

 .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp
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C kh0
1.1C h1/

�.jC1/ � h0
2.1C h2/

�.jC1/kL1

�����p:v:
Z
T
A
j
1

 .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

C kh00
2.1C h2/

�.jC1/kLp

�����p:v:
Z
T
.A
j
1 � Aj2/

 .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
L1

C .j C 1/k.h0
2/
2.1C h2/

�.jC2/kL1

�����p:v:
Z
T
.A
j
1 � Aj2/

 .✓ C ⇠/

2 tan ⇠
2

d⇠

�����
Lp

C kh0
2.1C h2/

�.jC1/kL1

�����p:v:
Z
T
.A
j
1 � Aj2/

 .✓ C ⇠/

2 tan ⇠
2

d⇠

����� PW 1;p

: (C47)

For j D 0, this can be simplified as

��L.1/3;0 � L.2/3;0
�� PW 1;p 6 C

�
kh00
1 � h00

2kLp C kh00
2kLp kh1 � h2kL1

�
k k PCˇ

C Ckh1 � h2kW 1;1
�
kh0
1kL1 C kh0

2kL1
�
k kLp

C Ckh1 � h2kW 1;1k 0kLp : (C48)

For j > 1, by applying (C32), (C38), (C40), (C42), (C44) and (C46) to (C47), we derive that

kL.1/3;j � L.2/3;j k PW 1;p

6 C.C
jC1
2 kh00

1 � h00
2kLp C kh00

2kLp .j C 1/C
jC2
2 kh1 � h2kL1/

� .C 21C2/j � j kh0
1k
2j�1
L1 kh0

1k PCˇ k kCˇ

C C.j C 1/.j C 2/C
jC2
2 kh1 � h2kW 1;1.kh0

1kL1 C kh0
2kL1/

� C 2j�1
⇤ C

j
2 kh0

1k
2j
L1k kLp

C C.j C 1/C
jC1
2 kh1 � h2kW 1;1

�
h
.2j C 1/C

2jC1
é .jC

jC1
2 kh0

1kL1k kLp C C
j
2 k 0kLp /kh0

1k
2j
L1

C.2j C 1/C
2jC1
é C

j
2 k kL1kh00

1kLp kh0
1k
2j�1
L1

i

C CC
jC1
2 kh00

2kLp

� .C 21C2/j�1 � j kh1 � h2kC1;ˇ .kh0
1k PCˇ C kh0

2k PCˇ /.kh0
1k2L1 C kh0

2k2L1/j�1k kCˇ

C CC
jC2
2 .j C 1/kh0

2k2L1

� jC 2j�1
⇤ C

j
2 .kh0

1kL1 C kh0
2kL1/2j�1kh1 � h2kW 1;1k kLp

C CC
jC1
2 kh0

2kL1 � j.2j C 1/C
2jC1
é C

j
2 .kh0

1kL1 C kh0
2kL1/2j�2

�
⇥
j k kLp kh1 � h2kW 1;1.kh0

1kL1 C kh0
2kL1/2

C k 0kLp kh1 � h2kW 1;1.kh0
1kL1 C kh0

2kL1/

C k kL1kh00
1 � h00

2kLp .kh0
1kL1 C kh0

2kL1/

Ck kL1kh1 � h2kW 1;1.kh00
1kLp C kh00

2kLp /
⇤
: (C49)
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This together with (C48) and the smallness of hi implies

��L.1/3 � L.2/3
�� PW 1;p 6

��L.1/3;0 � L.2/3;0
�� PW 1;p C

1X
jD1

��L.1/3;j � L.2/3;j
�� PW 1;p

6 Ckh00
1 � h00

2kLp

�
1C kh0

1k PCˇ C kh0
2k PCˇ

�
k kCˇ

C C
�
kh00
1kLp C kh00

2kLp

�
kh1 � h2kC1;ˇ .1C kh0

1k PCˇ C kh0
2k PCˇ /k kCˇ

C Ckh1 � h2kW 1;1k 0kLp : (C50)

Then the desired estimate follows from (C14), (C26) and (C50).

Proof of Lemma 5.6. Following (5.31), we use QL.i/k .k D 1; 2; 3/ to denote the corresponding
quantities defined by hi .i D 1; 2/.

Using (5.32), we find that
�� QL.1/1 � QL.2/1

�� PW 1;p

6
����
✓

h00
1

1C h1
� .h0

1/
2

.1C h1/2
� h00

2

1C h2
C .h0

2/
2

.1C h2/2

◆✓
1

2

Z
T
 d⇠ C L

.1/
1

◆����
Lp

C
����
✓

h00
2

1C h2
� .h0

2/
2

.1C h2/2

◆
.L
.1/
1 � L.2/1 /

����
Lp

C
����
✓

h0
1

1C h1
� h0

2

1C h2

◆
.L
.1/
1 /0

����
Lp

C
����

h0
2

1C h2
.L
.1/
1 � L.2/1 /0

����
Lp

6 C
�
kh00
1 � h00

2kLp C kh00
2kLp kh1 � h2kL1

� ✓ˇ̌ˇ̌
Z
T
 d⇠

ˇ̌
ˇ̌C kL.1/1 kL1

◆

C Ckh00
2kLp kL.1/1 � L.2/1 kL1

C Ckh1 � h2kW 1;1kL.1/1 k PW 1;p C Ckh0
2kL1kL.1/1 � L.2/1 k PW 1;p : (C51)

It is not difficult to show by (C3) that

��L.1/1 � L.2/1
��
L1 6 Ck kL1

Z
T

kl1 � l2kL1
✓
d⇠

6 Ck kL1.kh0
1kL1 C kh0

2kL1/kh1 � h2kW 1;1 : (C52)

Taking h2 D 0 yields kL.1/1 kL1 6 Ck kL1kh0
1kL1 ; here we used the factm0;i ⌧ 1. Substituting

these estimates as well as (5.17) and (C14) into (C51), we obtain that
�� QL.1/1 � QL.2/1

�� PW 1;p 6 C.kh00
1 � h00

2kLp C .kh00
1kLp C kh00

2kLp /kh1 � h2kW 1;1/

�
✓ˇ̌
ˇ̌
Z
T
 d⇠

ˇ̌
ˇ̌C k kL1.kh0

1kL1 C kh0
2kL1/

◆

C C.kh0
1kL1 C kh0

2kL1/2kh1 � h2kW 1;1k 0kLp : (C53)

To bound QL.1/2 � QL.2/2 , we are going to make use of the estimates for L.1/2 � L
.2/
2 in Lemma 5.5,

since QL.i/2 coincides with �h0
i .✓/L

.i/
2 if  in the definition of L.i/2 is replaced by  =.1 C hi /. For
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this purpose, an L1-estimate for L.1/2 � L.2/2 is needed. We start with

ˇ̌
L
.1/
2 � L.2/2

ˇ̌
6

ˇ̌
ˇ̌
ˇ̌p:v:

Z
T

0
@
�h1�h0

1.✓/

1Ch1.✓/

1C l1
�

�h2�h0
2.✓/

1Ch2.✓/

1C l2

1
A  .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ̌

C

ˇ̌
ˇ̌
ˇ̌p:v:

Z
T

0
@

h0
1.✓/

1Ch1.✓/

1C l1
�

h0
2.✓/

1Ch2.✓/

1C l2

1
A  .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ̌ : (C54)

It is straightforward to bound the first term.

ˇ̌
ˇ̌
ˇ̌p:v:

Z
T

0
@
�h1�h0

1.✓/

1Ch1.✓/

1C l1
�

�h2�h0
2.✓/

1Ch2.✓/

1C l2

1
A  .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ̌

6 C

Z
T

j⇠jˇ
�
kh0
1 � h0

2k PCˇ C kh0
2k PCˇ .kh1 � h2kL1 C jl1 � l2j/

�
k kL1 j⇠j�1 d⇠

6 C
�
kh0
1 � h0

2k PCˇ C kh0
2k PCˇ kh1 � h2kW 1;1

�
k kL1 : (C55)

To bound the second term in (C54), we first note that (C32) and (C38) still hold if 2 tan ⇠
2 in their

denominators are replaced by 2 sin ⇠
2 . Hence, we argue as in the proof of Lemma 5.5 by Taylor

expanding .1C li /
�1 that

ˇ̌
ˇ̌
ˇp:v:

Z
T

✓
1

1C l1
� 1

1C l2

◆
 .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

6
1X
jD1

ˇ̌
ˇ̌
ˇp:v:

Z
T

 
A
j
1�

1C h1.✓/
�j � A

j
2�

1C h2.✓/
�j
!
 .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

6
1X
jD1

C
j
2

ˇ̌
ˇ̌
ˇp:v:

Z
T
.A
j
1 � Aj2/

 .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌ 1

.1C h1/j
� 1

.1C h2/j

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇp:v:

Z
T
A
j
2

 .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

6 Ck kCˇ kh1 � h2kC1;ˇ

�
kh0
1k PCˇ C kh0

2k PCˇ

�
: (C56)

Taking h2 D 0 here yields

ˇ̌
ˇ̌
ˇp:v:

Z
T

✓
1

1C l1
� 1

◆
 .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ 6 Ck kCˇ kh1kC1;ˇ kh0

1k PCˇ ; (C57)

which further implies

ˇ̌
ˇ̌
ˇp:v:

Z
T

1

1C l1

 .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ 6 Ck kCˇ

�
1C kh1kC1;ˇ

�2
: (C58)
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To this end, we may bound the second term in (C54) as follows
ˇ̌
ˇ̌
ˇ̌p:v:

Z
T

0
@

h0
1.✓/

1Ch1.✓/

1C l1
�

h0
2.✓/

1Ch2.✓/

1C l2

1
A  .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ̌

6
ˇ̌
ˇ̌ h0

1

1C h1
� h0

2

1C h2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇp:v:

Z
T

1

1C l1

 .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

C
ˇ̌
ˇ̌ h0

2

1C h2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇp:v:

Z
T

✓
1

1C l1
� 1

1C l2

◆
 .✓ C ⇠/

2 sin ⇠
2

d⇠

ˇ̌
ˇ̌
ˇ

6 Ck kCˇ kh1 � h2kC1;ˇ

�
1C kh1kC1;ˇ C kh2kC1;ˇ

�2
: (C59)

Combining this with (C54) and (C55),

kL.1/2 � L.2/2 kL1 6 Ck kCˇ kh1 � h2kC1;ˇ

�
1C kh1kC1;ˇ C kh2kC1;ˇ

�2
: (C60)

Setting h1 D 0 (or h2 D 0) provides

kL.i/2 kL1 6 Ck kCˇ khikC1;ˇ

�
1C khikC1;ˇ

�2
: (C61)

To emphasize the  -dependence of L
.i/
2 , we shall rewrite L

.i/
2 as L

.i/
2; . Since QL.i/2 D

�h0
i .✓/L

.i/
2; =.1Chi /

, we derive with (C26), (C60) and (C61) that

k QL.1/2 � QL.2/2 k PW 1;p

6 kh00
1 � h00

2kLp kL.1/2; =.1Ch1/
kL1 C kh00

2kLp kL.1/2; =.1Ch1/
� L.2/2; =.1Ch1/

kL1

C kh00
2kLp kL.2/2; =.1Ch1/� =.1Ch2/

kL1

C kh0
1 � h0

2kL1kL.1/2; =.1Ch1/
k PW 1;p C kh0

2kL1kL.1/2; =.1Ch1/
� L.2/2; =.1Ch1/

k PW 1;p

C kh0
2kL1kL.2/2; =.1Ch1/� =.1Ch2/

k PW 1;p

6 Ckh00
1 � h00

2kLp

����
 

1C h1

����
Cˇ

kh1kC1;ˇ .1C kh1kC1;ˇ /2

C Ckh00
2kLp

����
 

1C h1

����
Cˇ

kh1 � h2kC1;ˇ .1C kh1kC1;ˇ C kh2kC1;ˇ /2

C Ckh00
2kLp

����
 

1C h1
�  

1C h2

����
Cˇ

kh2kC1;ˇ .1C kh2kC1;ˇ /2

C Ckh0
1 � h0

2kL1

✓����
 

1C h1

���� PW 1;p

kh1kW 1;1 C k kL1kh00
1kLp

◆

C Ckh0
2kL1

✓����
 

1C h1

���� PW 1;p

kh1 � h2kW 1;1 C k kL1kh00
1 � h00

2kLp

C k kL1kh1 � h2kW 1;1.kh00
1kLp C kh00

2kLp /

◆
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C Ckh0
2kL1

✓����
 

1C h1
�  

1C h2

���� PW 1;p

kh2kW 1;1 C
����

 

1C h1
�  

1C h2

����
L1

kh00
2kLp

◆
:

(C62)

This gives

k QL.1/2 � QL.2/2 k PW 1;p

6 Ckh00
1 � h00

2kLp k kCˇ

�
kh1kC1;ˇ C kh2kC1;ˇ

��
1C kh1kC1;ˇ C kh2kC1;ˇ

�2
C C.kh00

1kLp C kh00
2kLp /k kCˇ kh1 � h2kC1;ˇ

�
1C kh1kC1;ˇ C kh2kC1;ˇ

�3
C Ckh1 � h2kW 1;1k 0kLp

�
kh1kW 1;1 C kh2kW 1;1

�
: (C63)

For QL.i/3 , we rewrite

QL.i/3 D
1X
jD1

.�1/jC1�1C hi .✓/
��j p:v:

Z
T
A
j
i �  .✓ C ⇠/

2 tan ⇠
2

d⇠: (C64)

Thanks to (C40), (C42), (C44) and (C46), we derive as in the proof of Lemma 5.5 that

�� QL.1/3 � QL.2/3
�� PW 1;p

6 Ckh1 � h2kW 1;1
�
k 0kLp .kh0

1kL1 C kh0
2kL1/C k kL1.kh00

1kLp C kh00
2kLp /

�
C Ckh00

1 � h00
2kLp k kL1

�
kh0
1kL1 C kh0

2kL1
�
: (C65)

Combining (C53), (C63) and (C65), we obtain (5.45).
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