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Abstract
In this work we consider the global existence of volume-preserving crystalline curva-
ture flow in a non-convex setting.We show that a natural geometric property, associated
with reflection symmetries of the Wulff shape, is preserved with the flow. Using this
geometric property, we address global existence and regularity of the flow for smooth
anisotropies. For the non-smooth case we establish global existence results for the
types of anisotropies known to be globally well-posed.

1 Introduction

The motion of sets by crystalline curvature arises from physical applications such as
crystal growth [10] or in statistical physics [32], where sets evolve to decrease their
anisotropic perimeter. We consider the volume-preserving version of such motions.
More precisely, we consider a flow of sets (!t )t≥0 moving with the outward normal
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Fig. 1 Example of the
volume-preserving flow in 2D
with φ(p) = ψ(p) = ‖p‖1 that
converges to a rescaling of the
square Wulff shape

velocity V given by

V = ψ(n)(−κφ + λ) on ∂!t . (M)

Here κφ and n each denote the anisotropic mean curvature and the outward unit
normal of ∂!t . The forcing term λ = λ(t), coupled with the solution, is the Lagrange
multiplier enforcing the volume constraint |!t | = |!0|. The functions ψ,φ : RN →
[0,∞) are positively one-homogeneous (see (A.5)), convex, positive away from the
origin, and are respectively denoting mobility and anisotropy in the system. We will
also require that they are symmetric with respect to a number of reflections: this will
allow the solutions of (M) to preserve a related geometric property that is central to
our analysis as we discuss below.

The anisotropic curvature κφ is formally the first variation of the anisotropic perime-
ter functional

Perφ(!) :=
∫

∂!
φ(n) dHN−1.

If φ is C2 away form the origin, one can verify that κφ = div∂! Dφ(n), where div∂!

is the surface divergence of the so-called Cahn-Hoffman vector field Dφ(n). If no
regularity except convexity is assumed for φ and if the graph of φ has corners, κφ

is called a crystalline mean curvature. If φ is piece-wise linear so that its sub-level
sets are convex polytopes, it is often called a purely crystalline anisotropy. We refer to
[1,3,34,35] for further discussion of this problem in the variational setting. See Fig. 1
for an example of a solution of (M).

Our goal in this paper is to establish a global existence for the flow (M) for sets
starting from non-convex profiles. The difficulty lies in both the non-smoothness of φ

and the low regularity of λ. If the evolving surface is regular enough, then λ can be
explicitly written as the weighted average of the mean curvature over the surface,

λ(t) =
∫

∂!t

κφψ(n) dHN−1/

∫

∂!t

ψ(n) dHN−1,

but there is no a priori regularity for λ in general. In fact for non-convex Lipschitz
domains, the forcing term λ in (M) can be unbounded (see [26, Example A.2]).
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On volume-preserving crystalline mean. . . 735

When φ is smooth and when the forcing λ is a priori fixed as a bounded function
in (M), there have been both viscosity solution [8,9,17,31] and variational approaches
[3,4,11,15,28] to address the global well-posedness of the flow.

It is well-known that convexity is preserved in the flow (M). The global-in-time
existence of the convex flow, as well as convergence to a rescaled version of the Wulff
shape

Wφ := {x ∈ RN : x · p ≤ φ(p) for all p ∈ RN } (1.1)

up to translations have been studied for both smooth [2] and non-smooth φ [5]. Beyond
convex setting, there is no global-in-time existence result for (M) even for smooth
anisotropies. To achieve this one likely needs to understand the pattern of topological
changes that contributes to both the instability of the motion as well as the regularity
of the forcing term λ. In the isotropic case ψ = φ = |x |, the global existence for (M)
is proved under an energy convergence assumption that rules out abrupt topological
changes: see [28–30]. The phase field method is used to show existence in [33].

Alternatively, one could also explore geometric conditions under which topological
changes do not occur: this is the direction we pursue here. While it is suspected that
star-shapedness is preserved in the evolution, it remains open to be proved even for
the isotropic case. For the isotropic case, [25,26] introduced a stronger version of star-
shapedness, called as a reflection property, motivated by [18]. Belowwewill introduce
a geometric condition (1.4) that naturally extends this property for anisotropic flows.

To discuss the geometric property that (M) preserves, some notations are necessary.
We represent the reflection symmetry of φ and ψ in terms of the corresponding root
system as follows. Let P be a finite root system (see (2.2)) consisting of unit vectors
in RN , with enough directions in the root system such that

span(P\') = RN for any hyperplane'going through the origin. (1.2)

We say P is compatible with φ and ψ if in addition φ and ψ are invariant under
reflection with respect to its elements, namely (4.1). The concept of the root system
has been introduced in the context of reflection and Coxeter groups (see e.g. [24]).
Examples of φ that allow a compatible root system are those whose Wulff shapes are
convex regular polytopes in R2 and R3.

Given such a root system, we consider sets ! for which there exists ρ > 0 such
that

|!| > KNρN |B1(0)|, (1.3)

satisfying the following reflection property:

)∂H (!) ∩ H ⊂ ! ∩ H for any half-spaceH ⊂ RN

whose normal is inPandBρ(0) ⊂ H , (1.4)

where )∂H denotes the reflection operator with respect to the hyperplane ∂H ; see
Sect. 2. Here the constant K = K(P) > 1 is given in (4.3). Note that the reflection
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property gets stronger as ρ decreases since the family of eligible half-spaces grows:
Wφ satisfies (1.4) for ρ = 0, making it the ideal shape for this property.

Our main observation is that the flow (!t )t≥0 given by (M) preserves the prop-
erty (1.3)–(1.4) for any root system satisfying (1.2) compatible with φ and ψ . This
geometric property in turn guarantees that !t is a Lipschitz domain for each time
(Theorem 2.2). To incorporate λ as a distribution, we will denote the coupled pair
((!t )t≥0,*) as a solution of (M), where *′ = λ in the sense of distributions.

Theorem 1 Let φ ∈ C2(RN\{0}), and letP be a root system compatible with φ andψ .
Then for any bounded open initial data !0 satisfying (1.3)–(1.4), there is a viscosity
solution ((!t )t≥0,*) of (M) starting from!0 that preserves volume and satisfies (1.4)
for all positive times.

Moreover, * ∈ C1/2([0,∞)), and there exists a finite number of local neighbor-
hoods {Oi }ni=1 in RN such that

(a)
⋃n

i=1Oi × [0,∞) contains + := ⋃
t>0(∂!t × {t}).

(b) For each i , + restricted to Oi × [0,∞) can be represented as a graph of a
function that is uniformly Lipschitz in space and uniformly Hölder continuous
in time.

In addition,Oi , the coordinates inOi where the graph property holds, as well as their
Lipschitz and Hölder constants, depend only on P , the extremal values of φ and ψ on
SN−1, and |!0|.

See the end of Sect. 6 for the proof of this Theorem.
Additional challenges arisewhenφ is non-smooth. In this case the optimal regularity

for the evolving set is only Lipschitz and κφ is understood as nonlocal. The flow
develops flat features like faces and edges (see Fig. 1) that might break or bend during
the evolution [7]. The well-posedness of the crystalline mean curvature flow has only
recently been established, respectively with the level set formulation [19,23] and with
variational approach that directly addresses the motion of the sets [12,14]; see Sect. 7
for further discussions. The next theorem states that our results hold for the class of
non-smooth anisotropies that were successfully addressed with these approaches.

Theorem 2 If φ is purely crystalline, then the statements in Theorem 1 hold as long
as there is no fattening in the process of smooth approximations (see Sect. 7.1).

If ψ is φ-regular, then the statements in Theorem 1 hold for a flow ((!t )t≥0,*) of
(M) in the sense of [14] (see Sect. 7.2).

Remark 1.1 1. Uniqueness of the flow (M) remains open, even in the isotropic case.
2. Both conditions (1.3) and (1.4) are needed to ensure that!t is a Lipschitz domain.

For instance, if P = {±ei : 1 ≤ i ≤ N }, then we may have a domain with cusps
satisfying (1.4). See also Remark 2.5 and Example 2.3.

3. For smooth anisotropies, we expect that an approach similar to [26, Section 5]
will lead to the asymptotic convergence of the flow to the Wulff shape. We do not
pursue it here since the proof would at least require significant regularity analysis
that deviates from the main topic of the paper. For non-smooth anisotropies the
asymptotic convergence to a Wulff shape remains open.
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Fig. 2 The root system P and
!0 in Example 1.2 for N = 2

(a)

P

Ω0

B1(0)

(b)

We now give two examples of sets that satisfy our geometric assumptions but that
are not convex.

Example 1.2 Let

φ(ξ) = ψ(ξ) := ‖ξ‖∞ := max{|ξ · ei | : 1 ≤ i ≤ N }

where {ei }Ni=1 is the standard basis of RN , and let P be given as

P = {±ei : 1 ≤ i ≤ N } ∪ {± 1√
2
(ei + e j ),± 1√

2
(ei − e j ) : 1 ≤ i < j ≤ N }, (1.5)

see Fig. 2a. Then P satisfies (1.2), and the following union of two cubes with suffi-
ciently large C > 0

!0 :=
(
[−C,C]N − e1

)
∪

(
[−C − 1,C + 1]N + e1

)

satisfies (1.4) for ρ = 1; see Fig. 2b.

Example 1.3 In this example we consider φ and ψ with a triangular symmetry. For
N = 2, let

φ(ξ) = ψ(ξ) := max{ξ · η1, ξ · η2, ξ · η3}

where η1 = (
√
3
2 , 1

2 ), η2 = (−
√
3
2 , 1

2 ) and η3 = (0,−1). Then, φ and

ψ are invariant with respect to reflections given by elements of P :=
{

±
(
1
2 ,−

√
3
2

)
,±

(
1
2 ,

√
3
2

)
,±(1, 0)

}
as in (4.1). In addition, P satisfies (1.2). In this

case, the two equilateral triangles

{ξ : φ(ξ) ≤ 1} and {ξ : φ(−ξ) ≤ 1},

satisfy (1.4) for all ρ > 0. In particular, their union!0 also satisfies (1.4) for all ρ > 0;
see Fig. 3b.
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Fig. 3 The root system P and
!0 in Example 1.3 for N = 2

(a)

P Ω0

(b)

Outline of the paper. In Sect. 2 we study geometric properties of sets that satisfy
(1.4). In Sect. 2.1we show that such sets are Lipschitz domains, by establishing interior
and exterior cone properties at the boundary points. Since the reflection property is
limited to the directions in P , the argument for this step is considerably more subtle
than the one in [25,26]. Sect. 2.2 provides a lower bound on in-radius of the sets
satisfying (1.4) in terms of its diameter.

In Sect. 3, we introduce a notion of viscosity solutions for (M). While interested in
the geometry of sets, we will adopt the level set approach, since it allows flexibility
in perturbation arguments in our analysis. We extend the notions developed in [26] to
accommodate λ that is only a distributional derivative of a continuous function. This
is necessary due to the unknown regularity of the volume-preserving λ.

Sections 4, 5 and 6 concern curvature flows with smooth anisotropy φ. In Sect. 4 we
show the preservation of the reflection property (1.4) for level sets of viscosity solutions
with fixed forcing. In Sect. 5, a discrete-time scheme is introduced to approximate
(M) with flows with piece-wise constant forcing. Due to the results from the previous
sections, one can show that the discrete solutions have locally Lipschitz interfaces and
thus a fattening phenomenon does not occur in their limit. As a consequence, we prove
Theorem 1 in Sect. 6.

Lastly in Sect. 7 we address (M) with non-smooth φ and prove Theorem 2. Here the
global well-posedness of (M) is established in terms of available notions of crystalline
flow.

2 Root system and geometric properties

In this section we study geometry of sets that satisfy (1.4). For a unit vector p ∈ RN

we define the hyperplane

'p(s) := {x ∈ RN : x · p = s},

which divides RN into the half-spaces

'+
p (s) := {x ∈ RN : x · p > s} and '−

p (s) := {x ∈ RN : x · p < s}.

123



On volume-preserving crystalline mean. . . 739

Then the corresponding reflection map and the reflection property (1.4) can be written
respectively as )'p(s)(x) = x − 2(x · p − s)p and

)'p(s)(!) ∩ '−
p (s) ⊂ ! ∩ '−

p (s) for allp ∈ Pands > ρ . (2.1)

Let us next review the notion of root systems, which are used to describe reflection
symmetries of objects [24, Section 1.2]. A root system P in RN is a set of nonzero
vectors in RN satisfying

P ∩ (Rp) = {p,−p} and )pP = P for all p ∈ P, (2.2)

where )p := )'p(0) = I − 2 p⊗p
|p|2 . In this paper we will only consider finite root

systems P ⊂ SN−1 that satisfy (1.2).

2.1 Interior and exterior cones

We will show that sets satisfying (1.4) are Lipschitz domains. To this end we define
cones of directions. For r > 0 and a basis A = {pi }Ni=1 ⊂ SN−1 of RN we write
Coner (A) to denote the open r -cone generated by A:

Coner ({pi }Ni=1) =
{

N∑

i=1

ai pi :
N∑

i=1

ai < r and ai > 0 for all 1 ≤ i ≤ N

}

. (2.3)

That is, Coner (A) is the open N -simplex given by the convex hull co(r A ∪ {0}).
For the rest of this paper, σ1, σ2 and σ3 denote the following constants that charac-

terize the distribution of the directions in P:

σ1 = σ1(P) := min
p∈P

max
basis A⊂P

p∈A

min
q∈A

|q · p|, (2.4)

σ2 = σ2(P) := max
x∈D

|x |, D := {x ∈ RN , |p · x | ≤ 1 for all p ∈ P}, (2.5)

σ3 = σ3(P) := min
basis A⊂P

max{r : Br ( 1
2N

∑
p∈A p) ⊂ Cone1(A)}. (2.6)

Lemma 2.1 LetP ⊂ SN−1 beafinite root systemsatisfying (1.2). Thenσ1(P), σ3(P) ∈
(0, 1] and σ2(P) ∈ [1,∞).

Proof It is clear that σ1 ≤ 1 as P ⊂ SN−1. To show the lower bound, fix p ∈ P . By
(1.2), we can find a basis A ⊂ P\p⊥ of RN , and by replacing one of its vectors by p
if necessary we can assume that p ∈ A. But then minq∈A |q · p| > 0. Since P is finite,
we conclude that σ1 > 0. It is clear that 0 < σ3 < 1 since 1

2N
∑

p∈A p ∈ Cone1(A)
for any basis A ⊂ P .

The estimate on σ2 is a consequence of the fact that D is defined as the convex polar
of convP , which contains the origin in its interior. However, we give a direct proof.
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Ω

Bρ(0)
B

2
√

2−
√
2ρ
(0)

Ω

Bρ(0)
B

2
√

2−
√
2ρ
(0)

Fig. 4 The cone property

We set K := supx∈D |x |. AsP ⊂ SN−1 we have K ≥ 1. Let {xi }i∈N satisfy |xi | → K
with |xi | ≥ 1. As {xi/|xi |} ⊂ SN−1, along a subsequence xi/|xi | → y ∈ SN−1. As
|p · xi | ≤ 1 for all p ∈ P , we have

∣∣∣∣p · xi
|xi |

∣∣∣∣ ≤ 1
|xi |

.

Thus if K = ∞ it follows that p · y = 0 for all p ∈ P with y ∈ SN−1, but this
contradicts (1.2). Hence we conclude that 1 ≤ σ2 = K < ∞. 01

Now we are ready to state the main result in this section.

Theorem 2.2 Suppose that ! satisfies (1.4) and contains

Br := σ−1
1 σ2(ρ + 2r)B1(0) (2.7)

for some r > 0. Then ∂! has the r-cone property at every point, with locally constant
cone directions that are independent of the choice of !.

More precisely, for every x0 ∈ Bc
r there exists A ⊂ P that only depends on x0 such

that A is a basis of RN and

x + Coner (A) ⊂ !c and y − Coner (A) ⊂ ! (2.8)

for any x ∈ !c ∩ Br (x0) and y ∈ ! ∩ Br (x0). In particular, ! is a Lipschitz domain.

When φ(x) = ψ(x) = |x |, the above theorem corresponds to the cone property
and star-shapedness of a set having ρ-reflection (see [18, Lemma 21]).

Example 2.3 In R2, recall P given in (1.5):

P =
{
±e1,±e2, ±1√

2
(e1 + e2), ±1√

2
(e1 − e2)

}

=
{
(cos(kπ/4), sin(kπ/4)) : 0 ≤ k < 8

}
.
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Then σ1(P) = cos(π/4) = 1√
2
and σ2(P) = cos(π/8)−1 =

√
4 − 2

√
2 since D is

the regular octagon

D = {(x1, x2) : |x1|, |x2| ≤ 1, |x1 + x2|, |x1 − x2| ≤
√
2}.

By Theorem 2.2, if! satisfies (1.4) and! contains B
2
√

2−
√
2ρ
(0), then! has exterior

and interior cones in RN at any point x ∈ ∂! (see Fig. 4).

The proof of Theorem 2.2 combines the following two geometric observations. For
the rest of the section we assume that ! satisfies (1.4), or its equivalent form (2.1).

Lemma 2.4 For x ∈ RN with |x | ≥ σ−1
1 σ2, there exists a basis A ⊂ P such that

p · x ≥ 1 for all p ∈ A. (2.9)

Proof Suppose |x | ≥ σ−1
1 σ2. Then |p1 · x | ≥ σ−1

1 for some p1 ∈ P , and by (2.2) we
can assume

p1 · x ≥ σ−1
1 .

Next observe that (2.2) and the definition of σ1 yields {pi }Ni=2 ⊂ P that with p1
span RN such that

p1 · pi ≥ σ1 for all 1 ≤ i ≤ N .

Therefore

(2(p1 · pi )p1 − pi ) · x + pi · x = 2(p1 · pi )(p1 · x) ≥ 2σ1σ−1
1 = 2,

which implies that at least one of the terms on the left is ≥ 1.
Recall from (2.2) that 2(p1 · pi )p1 − pi ∈ P . For each 2 ≤ i ≤ N , we replace pi

in {pi }Ni=1 by 2(p1 · pi )p1 − pi if pi · x < 1. This new basis satisfies (2.9). 01
Remark 2.5 We point out that (1.2) is essential for Lemma 2.4, since if ' is a hyper-
plane such that span(P\') 2= RN then Lemma 2.4 does not hold for x ⊥ ' no matter
how large |x | is. For instance if N = 2 and P = {±e1,±e2}, then P does not satisfy
(1.2) because

P\'e1(0) = {±e1}.

Lemma 2.6 Suppose x ∈ RN satisfies

min
p∈A

p · x ≥ ρ + r for some basis A ⊂ P and r > 0.

Then for Coner as given in (2.3), we have

x + Coner (A) ⊂ !c if x ∈ !c and x − Coner (A) ⊂ ! if x ∈ !.
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Proof We first prove that

If y · p > ρ and y + ap ∈ ! for some a > 0, then y ∈ !. (2.10)

This follows from (2.1) with reflection ) := )'p(y·p+ a
2 )
. Since

ρ < y · p < y · p + a
2
< y · p + a,

(2.1) yields y = )(y + ap) ∈ ! if y + ap ∈ !.
Let us denote A = {pi }Ni=1 and choose {ak}Nk=1 as in (2.3). We now apply (2.10)

iteratively to yk = x+∑N
i=k+1 ai pi , ak and pk , for 1 ≤ k ≤ N . This is possible since

yk · pk − ρ ≥ r +
N∑

i=k+1

ai pi · pk > 0 for 1 ≤ k ≤ N .

Since x + ∑N
i=1 ai pi = y1 + a1 p1, yk−1 = yk + ak pk , yN = x , we deduce that

x +∑N
i=1 ai pi ∈ ! implies x ∈ !, or equivalently, x ∈ !c implies x +∑N

i=1 ai pi ∈
!c.

We next apply (2.10) to yk = x − ∑k
i=1 ai pi , ak and pk . Noting that

x = y1 + a1 p1, yk−1 = yk + ak pk and yN = x −
N∑

i=1

ai pi ,

we conclude that x ∈ ! implies x − ∑N
i=1 ai pi ∈ !. 01

Proof of Theorem 2.2. From Lemma 2.4, for any point x0 ∈ RN\Br there is a basis
A ⊂ P such that

p · x0 ≥ ρ + 2r for all p ∈ A.

Since |p · x − p · x0| ≤ |x − x0| for all p ∈ A, we have

p · x ≥ p · x0 − r ≥ ρ + r for all p ∈ A and x ∈ Br (x0),

We can now conclude by Lemma 2.6. 01

2.2 In and out-radius

In this section, we estimate the in-radius of sets satisfying (1.4) in terms of their
out-radius. Recall that σi are given by (2.4)–(2.6).

Theorem 2.7 Suppose ! satisfies (1.4) and

! ! BR(0) for some R > σ−1
1 σ2(1+ σ2σ

−1
3 )ρ .
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Fig. 5 Ball reflection in the
proof of Lemma 2.9 ∂Ω

Bc(z)z

ΨΠp(s)(Bc(z))

Πp(s)

Then Bc(0) ⊂ !, where c satisfies R = R(c) = σ−1
1 σ2

(
ρ + (σ2ρ + c)σ−1

3

)
.

The proof proceeds in a number of steps. For the rest of the section we assume that
! satisfies (1.4), or its equivalent form (2.1).

Proposition 2.8 Suppose there is x ∈ ! such that |x | ≥ σ−1
1 σ2(ρ + cσ−1

3 ) for some
c > 0. Then

Bc(z0) ⊂ ! for some z0 ∈ ! such that |x − z0| ≤ c
2σ3

.

Proof From Lemma 2.4, there is a basis A ⊂ P such that

p · x ≥ ρ + cσ−1
3 for all p ∈ A.

Then Lemma 2.6 yields that

x − Conecσ−1
3
(A) ⊂ !.

It follows that z0 := x − cσ−1
3

2N
∑

p∈A p satisfies

Bc(z0) ⊂ x − Conecσ−1
3
(A) ⊂ !.

01

Next we show that the reflection of an interior ball of ! is also in !.

Lemma 2.9 For p ∈ P , s > ρ, c > 0 and z ∈ '+
p (s),

if Bc(z) ⊂ !, then Bc()'p(s)(z)) ⊂ !.

Proof The argument is illustrated in Fig. 5. We have

)'p(s)(Bc(z) ∩ '+
p (s)) = Bc()'p(s) (z)) ∩ '−

p (s).

As Bc(z) ⊂ ! and ! satisfies (2.1), we have

Bc()'p(s) (z)) ∩ '−
p (s) ⊂ )'p(s)(! ∩ '+

p (s)) ⊂ ! ∩ '−
p (s).
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Since clearly

Bc()'p(s)(z)) ∩
(
'+

p (s) ∪ 'p(s)
)

⊂ Bc(z) ⊂ !,

the inclusion is proved. 01

Proposition 2.10 Suppose Bc(z0) ⊂ ! for some z0 ∈ ! and c > σ2ρ. Then

Bc−σ2ρ(0) ⊂ !. (2.11)

Proof For a given ε > 0, let s := (1 + ε)ρ and construct sequences {zm}m≥0 ⊂ RN

and {qm}m≥0 ⊂ P by

zm+1 := )'qm (s) (zm) and qm ∈ arg max
p∈P

p · zm .

A direct computation yields

|zm+1|2 = |zm − 2(zm · qm)qm + 2sqm |2 = |zm |2 + 4s2 − 4s(zm · qm).

If we have qm · zm > s + ε, then from the above equation we have

|zm+1|2 − |zm |2 < −4sε.

Since |zm | ≥ 0 for all m ≥ 0, there exists the smallest m∗ ≥ 0 such that qm∗ · zm∗ ≤
s + ε. Since qm is a maximizer of p · zm in P , we conclude that

|zm∗ | ≤ σ2(s + ε). (2.12)

Recall that Bc(z0) ⊂ !. Also we have qm · zm > s + ε for 0 ≤ m < m∗ by our
choice ofm∗, which implies zm ∈ '+

qm (s) for 0 ≤ m < m∗. Thus applying Lemma 2.9
iteratively, we arrive at

Bc(zm+1) = Bc()'qm (s)(zm)) ⊂ ! for 0 ≤ m ≤ m∗ − 1,

This and (2.12) yield

Bc−σ2(s+ε)(0) ⊂ !.

As ε is arbitary, we conclude. 01

Proof of Theorem 2.7. From Proposition 2.8, there exists z0 ∈ ! such that

Bσ2ρ+c(z0) ⊂ !.

Proposition 2.10 now yields Bσ2ρ+c−σ2ρ(0) ⊂ !. 01
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3 Viscosity solutions

In this section we introduce a notion of viscosity solutions for the level set equations
of (M) when φ is smooth, namely when φ is C2 away from the origin. Readers may
skip this section during the first reading, as it does not directly relate to the geometric
description of the results.

Let us first recall some standard notations.

• Q := RN × (0,∞) and QT := RN × (0, T ], T > 0.
• For a domain U ⊂ RN and T > 0, UT := U × (0, T ], ∂pUT := (U × {0}) ∪
(∂U × [0, T ]).

• For (x0, t0) ∈ RN × (0,∞),

Dr (x0, t0) := Br (x0) × (t0 − r2, t0], ∂pDr := (Br (x0) × {t0 − r2}) ∪ (∂Br (x0)

×[t0 − r2, t0]).

• For u : L ⊂ RN+1 → R, we denote its semi-continuous envelopes u∗, u∗ : L →
R by

u∗(x, t) := lim
ε→0+

inf
Bε(x,t)∩L

u and u∗(x, t) := lim
ε→0+

sup
Bε(x,t)∩L

u. (3.1)

When λ is continuous, the level set equation of (M) can be written as

ut = ψ(−Du)(− div Dφ(−Du)+ λ), (3.2)

assuming !t = {u(·, t) > 0}. In this case we can use the following definition used in
[26] that proves convenient for stability properties. It can be shown to be equivalent
to the more classical version in [9] using the argument in [16, Sec. 7.2].

Recall that ϕ ∈ C2,1(Dr ) is said to be a classical strict subsolution (resp. superso-
lution) of (3.2) if ϕt < F∗(t, Dϕ, D2ϕ) (resp. ϕt > F∗(t, Dϕ, D2ϕ)) on Dr with the
right-hand side of (3.2) written as F(t, p, X) := ψ(−p)(trace(D2

pφ(−p)X)+ λ(t)),
p 2= 0.

Definition 3.1 Let φ ∈ C2(RN\{0}) and λ ∈ C([0,∞)).

• A function u : Q → R is a viscosity subsolution of (3.2) if u∗ < ∞ and for
Dr ⊂ Q and for every classical strict supersolution ϕ ∈ C2,1(Dr ), u∗ < ϕ on
∂pDr implies u∗ < ϕ in Dr .

◦ A function u : Q → R is a viscosity supersolution of (3.2) if u∗ > −∞ and
Dr ⊂ Q and for every classical strict subsolution ϕ ∈ C2,1(Dr ), u∗ > ϕ on ∂pDr

implies u∗ > ϕ in Dr .

Since the forcing term λ in (M) may not exist in a classical sense, we cannot
directly use the above notion of viscosity solutions. Indeed we will modify the notion
to incorporate λ as the distributional derivative of a continuous function *. To this
end we use the set convolutions as follows. While the definition is mostly parallel to
the isotropic case in [26], the geometric nature of the convolution is different.
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For γ ∈ C([0,∞); [0,∞)), the sup-convolution û(·; γ ) and inf-convolution
ũ(·; γ ) over the Wulff shape Wψ are given by

û(x, t; γ ) := sup
x−γ (t)Wψ

u(·, t) and ũ(x, t; γ ) := inf
x+γ (t)Wψ

u(·, t). (3.3)

We often write û(x, t) and ũ(x, t) if γ is understood from the context. Note that the
sign x − γ (t)Wψ in (3.3) is chosen so that

{̂u(·, t; γ ) > 0} = {u(·, t) > 0} + γ (t)Wψ .

Aswe do not assume thatψ is even, in general−Wψ 2= Wψ . See Fig. 6 for illustration.
Note also that û∗ = (̂u)∗ and ũ∗ = (̃u)∗ (see [26, Lemma C.8]).

In contrast to the isotropic convolution over the balls used in [26], the sup-
convolution and inf-convolution over the Wulff shape of ψ are needed to modify
the normal velocity of the level sets while accounting for the anisotropic factor ψ (see
Lemma B.2). This is the main feature that differs from the notion introduced in [26].

Using these convolutions we now define viscosity solutions of the level set equation

ut = ψ(−Du)(− div Dφ(−Du)+ *′) in Q (3.4)

for the flow

V = ψ(n)(−κφ + *′). (3.5)

Definition 3.2 For a function u : Q → R,

• u is a viscosity subsolution of (3.4) if u∗ < ∞ and for any 0 ≤ t1 < t2 and 3 ∈
C([t1, t2])∩C1((t1, t2)) such that 3 > * in [t1, t2], the function û = û(·;3−*)

given in (3.3) is a viscosity subsolution of

ut = ψ(−Du)(− div Dφ(−Du)+ 3′) in (t1, t2) × RN . (3.6)

• u is a viscosity supersolution of (3.4) if u∗ > −∞ and for any 0 ≤ t1 < t2
and 3 ∈ C([t1, t2]) ∩ C1((t1, t2)) such that 3 < * in [t1, t2], the function
ũ = ũ(·;−3 + *) given in (3.3) is a viscosity supersolution of (3.6).

• u is a viscosity solution of (3.4) with initial data u0 if u∗ and u∗ are respectively a
viscosity subsolution and a viscosity supersolution of (3.4), and if u∗ = (u0)∗ and
u∗ = (u0)∗ at t = 0.

• (!t )t≥0 is a viscosity solution (subsolution or supersolution, respectively) of (3.5)
if there exists a viscosity solution (subsolution or supersolution, respectively) u of
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"n
ψ("n)

0
Wψ

"n

γψ("n) û > 0
u > 0

x − γWψ

x

Fig. 6 Illustration why the sup-convolution over Wψ , û(·, ·; γ ), moves the boundary of super-level sets by
distance γψ(n) in the outer normal n direction

(3.4) such that

!t = {u(·, t) > 0} for all t ≥ 0.

To simplify the notation, we will sometimes say that u : Q → R is a viscosity solution
of the flow (3.5) if it is a viscosity solution of the associated level set equation (3.4).

By Definition 3.2, the following property holds for the set solutions.

Lemma 3.3 Let * ∈ C([0,∞)) and γ ∈ C([0,∞); [0,∞)), and denote

!̂t (γ ) :=
⋃

y∈γ (t)Wψ

(!t + y) and !̃t (γ ) :=
⋂

y∈γ (t)Wψ

(!t − y).

If (!t )t≥0 is a viscosity subsolution of V = ψ(n)(−κφ+*′), then !̂t (γ ) is a viscosity
subsolution of V = ψ(n)(−κφ + *′ + γ ′).

Similarly, if (!t )t≥0 is a viscosity supersolution of V = ψ(n)(−κφ + *′), then
!̃t (γ ) is a viscosity supersolution of V = ψ(n)(−κφ + *′ − γ ′).

Proof We only show the subsolution part, since the rest can be shown with parallel
arguments. For a given 3 ∈ C([t1, t2])∩C1((t1, t2)) such that 3 > *+ γ in [t1, t2],
we need to show that

̂̂!t (γ )(3 − * − γ )is a viscosity subsolution ofV = ψ(n)(−κφ + 3′)in(t1, t2).
(3.7)

If this is the case, we conclude that !̂t (γ ) is a viscosity subsolution of V =
ψ(n)(−κφ + *′ + γ ′).

As Wψ is convex, we get

̂̂!t (γ )(3 − * − γ ) =
⋃

y∈γ (t)Wψ ,
z∈(3−*−γ )(t)Wψ

(!t + y + z) =
⋃

w∈(3−*)(t)Wψ

(!t + w)

= !̂t (3 − *).

As 3 > * in [t1, t2] and (!t )t≥0 is a viscosity subsolution of V = ψ(n)(−κφ +*′),
it follows that !̂t (3 − *) is a viscosity solution of V = ψ(n)(−κφ + 3′) in (t1, t2).
We can now conclude. 01
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Definition 3.4 For * ∈ C([0,∞)), the pair ((!t )t≥0,*) is a viscosity solution of
(M) if

(!t )t≥0 is a viscosity solution of V = ψ(n)(−κφ + *′) and |!t | = |!0|.

Belowwe present the comparison principle, stability andwell-posedness properties
for our notion of viscosity solutions. The proofs are omitted as they are parallel to those
of [26, Theorems 2.10, 2.12 & 2.14].

Theorem 3.5 Given φ ∈ C2(RN\{0}) and * ∈ C([0,∞)), let u and v be each a
viscosity subsolution and a viscosity supersolution of (3.4). Then the following holds
for any bounded domain U in RN and T > 0: If u∗ ≤ v∗ on ∂pUT , then u∗ ≤ v∗ in
UT .

For a sequence of functions {uk}k∈N on Q, the half-relaxed limits are defined as

lim sup ∗
k→∞

uk(x, t) := lim
j→∞

sup
{
uk(y, s) : k ≥ j, |y − x | ≤ 1

j , |s − t | ≤ 1
j

}
,

lim inf ∗
k→∞

uk(x, t) := lim
j→∞

inf
{
uk(y, s) : k ≥ j, |y − x | ≤ 1

j , |s − t | ≤ 1
j

}
.

Theorem 3.6 Let φ ∈ C2(RN\{0}), and let {*k}k∈N be a sequence in C([0,∞)) that
locally uniformly converges to *∞ as k → ∞. Let uk be a viscosity subsolution
(supersolution, respectively) of (3.4) with * = *k . If

u := lim sup ∗
k→∞

uk < ∞ (u := lim inf ∗
k→∞

uk > −∞, respectively),

then u is a viscosity subsolution (supersolution, respectively) of (3.4) with * = *∞.

As in [9] we denote for a constant a and a set U

Ca(U ) = {u + a : u ∈ C(U ) with compact support in U }.

Theorem 3.7 Let* ∈ C([0,∞)), φ ∈ C2(RN\{0}) and g ∈ Ca(RN ) for some a ∈ R.
Then for any T > 0 there is a unique viscosity solution u ∈ Ca(QT ) of (3.4) with
initial data g.

4 Preservation of the reflection property

Here we show that the curvature flow with fixed forcing (3.4) preserves (1.4) for
smooth φ, when φ and ψ are invariant with respect to reflections given by elements
of P , namely when they satisfy

φ = φ ◦ )p and ψ = ψ ◦ )p for any p ∈ P. (4.1)
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Throughout this section we fix a < 0. For a given bounded domain !0, consider
u0 ∈ Ca(RN ) given by

u0(x) := max{− sd(x,!0), a} for all x ∈ RN . (4.2)

Here sd denotes the signed distance function, namely

sd(x,!) :=
{

− dist(x, ∂!) if x ∈ !,

dist(x, ∂!) if x ∈ !c.

Proposition 4.1 Assume that φ ∈ C2(RN \ {0}). Let u ∈ Ca(QT ) be a viscosity
solution of (3.4) with initial data u0. If!0 satisfies (1.4), then so does!t := {u(·, t) >
0} for all t ∈ [0, T ].

Proof For any fixed p ∈ P and s ∈ R, we claim that

v(x, t) := u()'p(s)(x), t) is a viscosity solution of(3.4)

with the initial data v0(x) := u0()'p(s)(x)). To verify the viscosity solution con-
dition, we only need to show that sub- and supersolution property is preserved for
reflections of test functions. Therefore it is enough to verify the invariance of (3.4)
under reflection for functions u ∈ C2(QT ) and* ∈ C1([0,∞)), at points (x, t) ∈ QT
where Dv(x, t) 2= 0. First note that, identifying the linear operator as its gradient,
D)'p(s)(x) = I − 2p ⊗ p =: )'p(0) =: R, which is a unitary symmetric matrix,
and R2 = I . Therefore

Dv(x, t) = RDu()'p(s)(x), t)

andboth sides have the samenorm.Moreover,ψ(−Dv(x, t)) = ψ(−Du()'p(s)(x), t))
since ψ = ψ ◦ R by assumption.

Finally, differentiating φ(x) = φ(Rx) twice we obtain RD2φ(x)R = D2φ(Rx).
A similar computation yields D2v(x, t) = RD2u()'p(s)(x), t)R. This implies

div(Dφ(−Dv(x, t))) = trace(−D2φ(−Dv(x, t))D2v(x, t))

= trace(−RD2φ(−Du()'p(s)(x), t))RRD
2u()'p(s)(x), t)R)

= trace(−D2φ(−Du()'p(s)(x), t))D
2u()'p(s)(x), t)).

We conclude that all terms in (3.4) are invariant with respect to the reflection )'p(s)
for test functions, and hence v is a viscosity solution whenever u is.

Let us now fix p ∈ P and s > ρ. As !0 satisfies (1.4), u0 given in (4.2) satisfies

v0(x) := u0()'p(s)(x)) ≤ u0(x) for all x ∈ '−
p (s).

By definition v = u on 'p(s) × [0, T ]. As u ∈ Ca(QT ), there exists a bounded
domain U in RN such that u = v = a in U c × [0, T ]. Applying the comparison
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principle Theorem 3.5 in (U ∩ '−
p (s)) × [0, T ], we conclude that

v ≤ u in '−
p (s) × [0, T ],

which implies (1.4) for !t . 01

The following theorem will be used in the next section to guarantee (1.4) for the
discrete-time flow that approximates (M). Let us define K > 0 by the σi ’s given in
Sect. 2:

K = K(P) := σ−1
1 σ2

(
1+ σ2σ

−1
3 (1+ σ−1

1 )
)
. (4.3)

Theorem 4.2 For a given φ ∈ C2(RN\{0}), let u ∈ Ca(QT ) be a viscosity solution
of (3.4) with initial data (4.2), where !0 satisfies (1.4). Suppose that

|!t | > |BKρ | + ε for some ε > 0 and t ≥ 0 where !t := {x ∈ RN : u(x, t) > 0}.
(4.4)

Then, !t satisfies (1.4) and contains Br given in (2.7) for some r = r(P, ε) > 0.

Proof Due to Proposition 4.1 we only need to check that !t contains Br . For R(·)
given in Theorem 2.7, observe that from the definition of K

R(σ−1σ2ρ) = σ−1
1 σ2

(
ρ + (σ2ρ + σ−1σ2ρ)σ

−1
3

)
= Kρ .

From this and (4.4) there exists ε1 = ε1(P, ε) > 0 such that

!t ! BR(σ−1
1 σ2ρ)+ε1

(0).

Since !t satisfies (1.4), Theorem 2.7 yields r = r(P, ε) > 0 such that

Br = Bσ−1σ2(ρ+2r)(0) ⊂ !t . (4.5)

01

5 The discrete ! scheme

In this section we introduce an explicit way to construct the flow for (M) by approx-
imation, where the approximate λ is given as a piecewise constant function of time.
As in Sect. 4, we rely on the level set approach to describe the approximate flow.

For a given bounded open E ⊂ RN , a < 0 and h > 0, let u(·; E, h) ∈ Ca(Qh)

be the unique viscosity solution of V = ψ(n)(−κφ + λ(E, h)) with initial data
u0 ∈ Ca(RN ) given by

u0(x) := max{− sd(x, E), a}, (5.1)
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where the forcing term is defined with a constant α > 0:

λ(E, h) := α sign(|!0| − |E |)√
h

. (5.2)

Here sign(c) denotes the sign of c, set to zero if c equals zero. Note that the well-
posedness of u follows from Theorem 3.7. We then define the corresponding set
evolution

Tt (E; h) := {x ∈ RN : u(x, t; E, h) > 0}, t ∈ [0, h]. (5.3)

Iterating this process over the time intervals [kh, (k + 1)h] for k ∈ N, we define
the evolution

Et (h) := Tt−h5 t
h 6

(
(Th)5

t
h 6(!0; h); h

)
, λh(t) := λ(E5t/h6h(h), h) and *h(t)

:=
∫ t

0
λh(s)ds. (5.4)

Here T m
h denotes the m-th functional power of Th(·; h).

In the remainder of the paper we will study the properties of the h-flow Et (h) and
its limit as h tends to zero. The goal is to show that the limit is a solution of the
volume-preserving flow (M). First we show that the h-flow is a viscosity solution with
the corresponding forcing.

Lemma 5.1 Let Et (h) and λh be given in (5.4). For h > 0, Et (h) is a viscosity solution
of V = ψ(n)(−κφ + λh).

Proof By construction, Et (h) is a viscosity solution of V = ψ(n)(−κφ + λh) in
RN × ((k − 1)h, kh] for all k ∈ N. It is thus enough to show that Et (h) is a viscosity
solution of V = ψ(n)(−κφ +λh) inRN × (t1, t2] for times t1 = h− ε and t2 = h+ ε

with 0 < ε < h.
FollowingDefinition 3.2,we check the viscosity subsolution property for u(x, t) :=

χEt (h)(x). For any 3 ∈ C([t1, t2]) ∩C1((t1, t2)) such that 3 > * in [t1, t2], we need
to verify that

û = û(·;3 − *) is a viscosity subsolution ofV = ψ(n)(−κφ + 3′) inRN × (t1, t2],

where û is given in (3.3). Consider a cylindrical domain Dr ⊂ RN × (t1, t2) and
a classical strict supersolution ϕ of V = ψ(n)(−κφ + 3′) that is above û∗ on the
parabolic boundary of Dr . In this setting we would like to show that û∗ < ϕ in Dr .

By Lemma 3.3, û(·;3 − *) is a viscosity subsolution V = ψ(n)(−κφ + 3′) in
RN × (t1, h] and RN × (h, t2]. Since ϕ is above û∗ on the parabolic boundary of
Dr ∩ {t ≤ h}, it follows that

û∗ < ϕ in Dr ∩ {t ≤ h}.
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From the above inequality, we now have ϕ above û∗ on the parabolic boundary of
Dr ∩ {t ≥ h}. Thus we conclude that

û∗ < ϕ in Dr ∩ {t ≥ h}.

Thus we have shown the subsolution property for u.
Parallel arguments yield that u is a viscosity supersolution of V = ψ(n)(−κφ+λh).

01

Next we show that the h-flow keeps its volume close to that of the initial set |!0|
if the constant α in the forcing term (5.2) is sufficiently large (Theorem 5.2). More
precisely we require that

α = max
{
2Mφ

σ3mψ
, 1

} (
N − 1
mφ/ψ

) 1
2

, (5.5)

where

M f := sup
ν∈SN−1

f (ν) and m f := inf
ν∈SN−1

f (ν). (5.6)

Theorem 5.2 Let φ ∈ C2(RN \ {0}). Suppose that !0 satisfies (1.3) and (1.4). Then
there are constants C = C(P,Mφ,mφ/ψ ,mψ ) > 0, r = r(P, |!0|) > 0 and
h0 = h0(P,Mφ,mφ/ψ ,mψ , |!0|) such that the following holds for all h ∈ (0, h0)
and t ≥ 0 and for Br given in (2.7):

Et (h) satisfies (1.4), Br ⊂ Et (h), and
∣∣|Et (h)| − |!0|

∣∣ < C
√
h.

From the above theorem and Theorem 2.7, it follows that Et (h) is uniformly
bounded for all t ≥ 0 and 0 < h < h0. Based on this bound and Theorem 2.2
the following is immediate:

Corollary 5.3 Let φ,!0, h0 and r be as given in Theorem 5.2. Then for h ∈ (0, h0) and
t ≥ 0, Et (h) is a uniformly bounded Lipschitz domain with a uniform Lipschitz con-
stant. In particular, the cone property (2.8) holds with! = Et (h) and r = r(P, |!0|).

5.1 Proof of Theorem 5.2.

The main ingredient in the proof is the comparison of solutions with Wulff-shape
self-similar barriers, based on the geometric properties obtained in Section 4.

First we show a bound on the speed of the boundary of a solution that will be used
for Et (h).

Lemma 5.4 Suppose that * ∈ C([0, h]) with min* ≥ *(0) − q for some q ≥ 0.
Let (!t )t≥0 be a viscosity solution of V = ψ(n)(−κφ +*′), and set m = mφ/ψ . For
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given x0 ∈ RN , if we have

x0 +
(
2δ + q

m

)
Wφ ⊂⊂ !0 for some δ > 0, (5.7)

then, for τδ := δ2m/(N − 1),

x0 + δWφ +
(
q + *(t) − *(0)

)
Wψ ⊂⊂ !t for 0 ≤ t ≤ min{h, τδ}. (5.8)

A parallel statement holds for!0 and!t replaced by (!0)
c and (!t )

c, respectively,
but with −Wψ replacing Wψ .

Proof We use the fact that the set flow R(t)Wφ is a viscosity subsolution of V =
−ψ(n)κφ with

R(t) :=
√
4δ2 − 2(N − 1)t/mφ/ψ

as long as R(t) > 0, that is, t < 2τδ , since the set flow R(mφ/ψ t)Wφ is a solution
of V = −φ(n)κφ and ψmφ/ψ ≤ φ (see [6]). It follows from Lemma 3.3 that the
sup-convolution

S(t) := x0 + R(t)Wφ + (q + *(t) − *(0))Wψ

is a viscosity subsolution of V = ψ(n)(−κφ + *′) for 0 ≤ t ≤ min{h, 2τδ}. Since
Wψ ⊂ m−1

φ/ψWφ (Lemma A.6), our assumption yields S(0) ⊂⊂ !0. Now we can
conclude by the comparison principle (Theorem 3.5) since R(t) ≥ δ for 0 ≤ t ≤
3τδ/2. 01

We next show that |Eh(t)| does not grow apart from |!0| over more than one time
step.

Proposition 5.5 Suppose that E satisfies (1.4) and contains Br given in (2.7) for some
r > 0. Then there exists h0 = h0(P,Mφ,mφ/ψ , r) > 0 such that the following holds
for h ∈ (0, h0):

if|E | < |!0|, thenE ⊂ Th(E; h) and if|E | > |!0|, thenTh(E; h) ⊂ E .

Proof Let us assume that |E | < |!0| and fix x ∈ E\Br . By Theorem 2.2 E contains
x − Coner (A) given by some basis A ⊂ P . By definition of σ3 in (2.6) this cone
contains a ball of radius sσ3 centered at xs := x − s

2N
∑

p∈A p for any 0 < s ≤ r ,
and since Wφ ⊂ BMφ (0) by Lemma A.6, we have for δs := sσ3/(2Mφ)

xs + 2δsWφ ⊂ Bsσ3(xs) ⊂ x − Coner (A) ⊂ E for any 0 < s < r .
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Fig. 7 Barrier argument in
Proposition 5.5 if |E | < |!0|

E
Th(E;h)

x

x0 + 2δWφ

x0

x0 + δ̂Wφ(Λh(h))

For given h > 0 we set

s = sh := 2Mφ

σ3

√
N − 1
mφ/ψ

√
h.

Let h0 > 0 be the solution of sh0 = r and fix h ∈ (0, h0).
Recall now that !t := Tt (E; h) is by definition a viscosity solution of V =

ψ(n)(−κφ + (*h)′) with initial data E . Setting δ = δs and q = 0, and noting
that *h(t) ≥ 0 = *h(0) for 0 ≤ t ≤ h since |E | < |!0|, Lemma 5.4 yields the last
inclusion in

x ∈ Bmψ*h(h)(xs) ⊂ xs + δsWφ + *h(h)Wψ ⊂ Th(E; h) (5.9)

since h = τδs , where the first inclusion follows from |x − xs | ≤ s ≤ mψα
√
h =

mψ*h(h) by definition of α in (5.5), and the second one by Lemma A.6.
Next, fix x ∈ Br . As σ1 ≤ 1 ≤ σ2 from Lemma 2.1, the radius of the ball Br given

in (2.7) is bigger than 2r . Then, there exists xs such that |x− xs | ≤ s and Bs(xs) ⊂ Br
for any 0 < s < r . Due to Br ⊂ E and σ3 ∈ (0, 1] from Lemma 2.1, we have for the
same δs = sσ3/(2Mφ) as above

xs + 2δsWφ ⊂ Bsσ3(xs) ⊂ Bs(xs) ⊂ Br ⊂ E for any 0 < s < r .

Then, a parallel argument yields that x ∈ Th(E; h). We deduce E ⊂ Th(E; h) since
x ∈ E was arbitrary.

The inequality |E | > |!0| can be handled similarly, considering the complements
of the sets. 01

Next we show that ∂Tt (E; h) stays in O(
√
h)-neighborhood of ∂E .
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Proposition 5.6

Tt (E; h)c ⊂ Ec + Bc
√
h(0) and Tt (E; h) ⊂ E + Bc

√
h(0) for all t ∈ [0, h].

Here c := (2+ m−1
φ/ψ )Mφα with mφ/ψ , Mφ as given in (5.6).

Proof To prove the first inclusion, suppose x0 /∈ Ec+ Bc
√
h(0). Since Bc

√
h(x0) ⊂ E ,

Lemma A.6 implies that

x0 + (2+ m−1
φ/ψ )α

√
hWφ ⊂ E .

On the other hand,*h satisfies*h(t) ≥ *h(0)−α
√
h for 0 ≤ t ≤ h. Thus Lemma 5.4

with δ = q = α
√
h yields

x0 + α
√
hWφ ⊂ Tt (E; h) for all 0 ≤ t ≤ τδ = hα2mφ/ψ/(N − 1).

As α satisfies (5.5), h ≤ τδ , and thus the first inclusion is obtained. Parallel arguments
yield the other inclusion. 01

Proposition 5.7 For given r > 0, there exist positive constants h0 and C depending
only on P,Mφ,mφ/ψ ,mψ , r such that the following holds for all 0 < h < h0:

If a set E satisfies (1.4), contains Br in (2.7) and satisfies
∣∣|E | − |!0|

∣∣ < C
√
h,

then

∣∣|Th(E; h)| − |!0|
∣∣ < C

√
h.

Proof Propositions 5.6 and A.4 yield

∣∣|Tt (E; h)| − |E |
∣∣ < c

(
2+ m−1

φ/ψ

)
Mφα

√
h for all t ∈ [0, h] (5.10)

for some c = c(P). If |E | = |!0|, then we can conclude with

C(P,Mφ,mφ/ψ ,mψ ) := c
(
2+ m−1

φ/ψ

)
Mφα. (5.11)

If |E | < |!0|, Proposition 5.5 yields h0 such that |E | ≤ |Th(E; h)| for all h ∈
(0, h0). Thus we have

−C
√
h ≤ |E | − |!0| ≤ |Th(E; h)| − |!0| < |Th(E; h)| − |E | for all h ∈ (0, h0),

where the first inequality is given by the assumption. Combining the abovewith (5.10),
we conclude with the same choice of C . Parallel arguments work if |E | > |!0|. 01

Proof of Theorem 5.2. Let C = C(P,Mφ,mφ/ψ ,mψ ) be the constant given in (5.11).
Due to (1.3), we have
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|!0| > |BKρ(0)| + 2C
√
h0 + ε for h0, ε(= ε(P, |!0|)) 7 1, (5.12)

where K is given in (4.3). In particular, as |!0| > |BKρ(0)| + ε, Theorem 4.2 yields
Br ⊂ !0 for some r > 0 depending only on P and ε = ε(P, |!0|).

Now Proposition 5.7 applies to E = !0 and we have
∣∣|Eh(h)|− |!0|

∣∣ < C
√
h for

all h ∈ (0, h0), if h0 is chosen sufficiently small. From this and (5.12), we get

|Eh(h)| > |BKρ(0)| + C
√
h + ε for all h ∈ (0, h0).

Again, as |Eh(h)| > |BKρ(0)| + ε, Theorem 4.2 now yields that Eh(h) satisfies (1.4)
and contains Br for the same r given above.

We can iterate this argument in the time interval [kh, (k + 1)h] for all k ∈ N.
Applying Proposition 5.7 to E = Ekh(h) and then using Theorem 4.2, we conclude
that

E(k+1)h(h) satisfies (1.4), contains Br and satisfies
∣∣|E(k+1)h(h)| − |!0|

∣∣ < C
√
h

(5.13)

for all k ∈ N and h ∈ (0, h0).
Lastly, it follows from (5.10) with E = E5t/h6h and (5.13) that

∣∣|Et (h)| − |!0|
∣∣ ≤

∣∣|Et (h)| − |E5t/h6h |
∣∣ +

∣∣|E5t/h6h | − |!0|
∣∣ < 2C

√
h for all t

≥ 0 and h ∈ (0, h0).

The above and (5.12) imply that

|Et (h)| > |BKρ(0)| + ε for all t ≥ 0 and h ∈ (0, h0).

By Theorem 4.2 again, Et (h) satisfies (1.4) and contains Br for all t ≥ 0 and h ∈
(0, h0). 01

5.2 Equicontinuity of3h and Et(h)

Proposition 5.8 Let !0 and φ be as in Theorem 5.2. Then *h : [0,∞) → R in (5.4)
is locally uniformly Hölder continuous. Namely there exist positive constants h1 and
C depending only on P,mψ ,Mφ,mφ/ψ and |!0| such that

∣∣∣*h(t) − *h(s)
∣∣∣ ≤ C |t − s| 12 for any |t − s| ≤ 1 and h ∈ (0, h1). (5.14)

Proof The proof is based on the fact that |Et (h)| is O(h1/2)-close to |!0| (Theo-
rem 5.2), which bounds the oscillation range of *h .

We will only show (5.14) for small time intervals. Let α satisfy (5.5) and let r and
h0 be as given in Theorem 5.2. For ε0 := r2/(2α)2, we claim that there are constants
h1 ∈ (0, h0) and C ≥ α with dependence as given above such that (5.14) holds for
|s − t | ≤ ε0.
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It is clearly enough to show the claim for s < t . Suppose that for some h ∈ (0, h0),
s∗, t∗ with s∗ < t∗ ≤ s∗ + ε0 we have

R := *h(t∗) − *h(s∗) − α|t∗ − s∗|1/2 > 0.

Let s0 be the last time in [s∗, t∗] such that*h(s0) ≤ *h(s∗). Since*h is continuous s0
is well-defined, less than t∗, and satisfies *h(τ ) > *h(s0) = *h(s∗) for τ ∈ (s0, t∗].
We first show that

Es0(h)+ BR(0) ⊂ Et∗(h). (5.15)

To deduce this, we apply Lemma 5.4 as in the proof of Proposition 5.5, but this
time with s := α|t∗ − s0|1/2 ≤ αε

1/2
0 < r . Thus δ := sσ3/(2Mφ) satisfies τδ =

δ2mφ/ψ/(N−1) > |t∗−s0|. Using these estimates and the fact fromTheorem 5.2 that
Es0(h) satisfies (1.4) and containsBr , we can proceed as in the proof of Proposition 5.5
to show that for every x ∈ Es0(h) we can find x0 satisfying x0 + 2δWφ ⊂ Es0(h) and
|x− x0| ≤ s = α|t∗ −s0|1/2. Lemma 5.4 yields an inclusion as in (5.9) and we deduce

BR(x) ⊂ B*h(t∗)−*h(s0)(x0) ⊂ Et∗(h).

This implies (5.15).
We now use a series of inequalities to estimate R. The inequality [27, Theorem 3]

with dimensional constantC1 is used first, then (5.15) and the isoperimetric inequality,

Per(Es0(h)+ BR(0)) ≥ C |Es0(h)+ BR(0)|(N−1)/N ≥ C |Es0(h)|(N−1)/N ,

that yield another dimensional constant C2, and finally the estimate in Theorem 5.2
is used to find constants h1 and C3 depending only on P,Mφ,mφ/ψ ,mψ such that
|Et∗(h) \ Es0(h)| ≤ C3h1/2 and |!0|/2 ≤ |Es0(h)| for h ∈ (0, h1). These all yield

R ≤ C1
|(Es0(h)+ BR(0))\Es0(h)|

Per(Es0(h)+ BR(0))
≤ C2|Es0(h)|

1−N
N |Et∗(h) \ Es0(h)|

≤ C4|!0|
1−N
N h1/2. (5.16)

for h ∈ (0, h1) with C4 depending only on P,Mφ,mφ/ψ ,mψ . Setting M :=
C4|!0|(1−N )/N , we therefore have

*h(t∗) − *h(s∗) = α|t∗ − s∗|1/2 + R ≤ α|t∗ − s∗|1/2 + Mh1/2.

Since we also have*h(t∗)−*h(s∗) ≤ α
h1/2 |t∗ −s∗| by the definition of*h , it follows

that

*h(t∗) − *h(s∗) ≤ C |t∗ − s∗|1/2 with C = max(2α,M).
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This shows one direction in (5.14) for |t − s| ≤ ε0. We can similarly bound *h(t) −
*h(s) from below by considering the same argument for the complement Et (h)c. By
making the constant C larger if necessary, we deduce (5.14) for any |t − s| ≤ 1. 01

Proposition 5.8 yields the equicontinuity of Et (h) in the Hausdorff distance.

Corollary 5.9 Under the assumptions and with h1 in Proposition 5.8, there exist C
depending only on P,Mφ,mφ/ψ ,mψ such that

dH (∂Es(h), ∂Et (h)) ≤ C |t − s| 12 for any |t − s| ≤ 1 and h ∈ (0, h1). (5.17)

Proof Using the Hölder continuity of *h in Proposition 5.8, one can use the barrier
argument as in the proof of Proposition 5.6 to conclude that for all 0 ≤ s < t < s + 1
and 0 < h < h1

I−(h) ⊂ Et (h) ⊂ I+(h),

where I±(h) := {x ∈ RN : sd(x, Es(h)) < ±C1|t − s| 12 }, (5.18)

for some C1 depending on parameters P,Mφ,mφ/ψ ,mψ . As a consequence, we have

sup
x∈∂Et (h)

d(x, ∂Es(h)) ≤ C1|t − s| 12 for all h ∈ (0, h1). (5.19)

Now, Lemma A.5 applies to Es(h) and there exists C2 = C2(P) > 1 such that

max{d(x, I−(h)), d(x, (I+(h))c)} ≤ C2C1|t − s| 12
for all x ∈ ∂Es(h) and h ∈ (0, h1) (5.20)

if |t − s| ≤ ε for sufficiently small ε = ε(P) > 0. On the other hand, (5.18) implies
d(x, ∂Et (h)) ≤ max{d(x, I−(h)), d(x, (I+(h))c)} for all x ∈ ∂Es(h). From this and
(5.20), we have

sup
x∈∂Es (h)

d(x, ∂Et (h)) ≤ C2C1|t − s| 12 for all h ∈ (0, h1) if |t − s| ≤ ε.

We can now conclude (5.17) using the above inequality and (5.19), as well as the
triangle inequality. 01

6 The proof of Theorem 1

In this section we prove Theorem 1. We construct the flow as the limit as h → 0
of the approximate flow with the discrete-time forcing λh introduced in Sect. 5. The
main ingredients in the analysis are the cone property and the Hölder time-continuity
of the approximate flow obtained in Sect. 5. Due to these properties, we can rule out
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potential fattening of the sets as h tends to zero. Recall that the smoothness of φ is
necessary both for the reflection comparison principle and for the preservation of (1.4)
in Sect. 4.

We resort to the level set approach, which is more convenient for convergence
arguments. Let us define

uh(x, t) := max{− sd(x, Et (h)), a} for (x, t) ∈ RN × [0,∞), (6.1)

where Et (h) is as given in Sect. 5. The value of the constant a < 0 is not important
and is chosen only so that the solution is bounded.

Lemma 6.1 Let φ and !0 be as in Theorem 1. Then along a subsequence uh locally
uniformly converges to u in RN × [0,∞) as h tends to zero.

Proof By Arzelà–Ascoli, it is enough to show that {uh} is uniformly bounded and
equi-continuous for sufficiently small h. For the bound, the lower bound follows from
its definition, and the upper bound is a consequence of Corollary 5.3.

uh is 1-Lipschitz in space for all h > 0 due to its definition, and furthermore

|uh(x, t) − uh(x, s)| ≤ | sd(x, Et (h)) − sd(x, Es(h))|
for all s, t ∈ [0,∞) with |t − s| < 1.

As the evolving sets {Et (h)}t∈[0,T ] for h ∈ (0, h0) are uniformly Hölder continuous
in the Hausdorff distance from Proposition 5.9, we conclude. 01

Proposition 6.2 Let !0 and φ be as given in Theorem 1. For u given in Lemma 6.1
and the corresponding subsequence {hi }i , we have

lim sup ∗
i→∞

χEt (hi ) = χ!t
and lim inf ∗

i→∞
χEt (hi ) = χ!t for each t ≥ 0, (6.2)

where

!t := {u(·, t) > 0} and !t
c = {u(·, t) < 0}.

Proof We only show the first equality in (6.2), since the other can be shown by parallel
arguments. If u(x, t) > 0, uhi (x, t) > 0 for sufficiently large i . Thus, if we define
!t := {u(·, t) > 0}, then

lim sup ∗
i→∞

χEt (hi )(x, t) = 1 for all x ∈ !t .

Next we show that u(·, t) is negative outside of !t . Fix x with u(x, t) = 0. By
the uniform convergence uhi to u and the definition of uhi as the signed distance
function, there exists yi → x with uhi (yi , t) = 0. Pick x0 ∈ Bc

r ∩ Br/2(x) and let
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A := {p j }Nj=1 ⊂ P be the basis from Theorem 2.2 for x0. It follows from (2.8) applied
to Et (hi ) that

− sd(·, yi − Coner (A)) ≤ uhi (·, t) ≤ sd(·, yi + Coner (A)) on B|a|(yi ), (6.3)

where a is the constant from (6.1). Due to the local uniform convergence uhi → u,
(6.3) holds for u too with x in place of yi , and we conclude that x ∈ {u(·, t) > 0} = !t
and so u(·, t) < 0 in (!t )

c.
Now, if x ∈ (!t )

c, then u(·, t) < 0 in a compact neighborhood of x and thus
uhi (·, t) < 0 for sufficiently large i in the same neighborhood. Thus we conclude that

lim sup ∗
i→∞

χEt (hi )(x, t) = 0.

01

Let us finish this section with carefully verifying the statements of Theorem 1.

Proof of Theorem 1. Let (!t )t≥0 be as given in Proposition 6.2. From Proposition 5.8,
along a subsequence *h locally uniformly converges to * ∈ C1/2([0,∞)) as h → 0.
WecombineLemma5.1withProposition6.2 andTheorem3.6 to conclude that (!t )t≥0
is a viscosity solution of V = ψ(n)(−κφ + *′).

As Et (h) satisfies (1.4) and contains Br due to Theorem 5.2, Proposition 6.2 yields
the same property for!t . Moreover!t is uniformly bounded for all t ≥ 0: this follows
from Theorem 2.7 and the fact that!t contains Br . Hence one can find a finite number
of neighborhoodsOi := Br (xi ) with xi ∈ Bc

r , such that
⋃

i (Oi × [0,∞)) contains +.
As explained in the proof of Proposition 6.2, from the local uniform convergence

of uh to u and their non-degeneracy it follows that (2.8) holds for (!t )t≥0, where A
is the basis given from Theorem 2.2. In particular it follows that ∂!t has interior and
exterior r -cone properties in each Br (xi ), with the axis of the cone νi only depending
on xi . In other words ∂!t in each set Oi can be represented as a Lipschitz graph
{x · νi = fi (x ′, t)}, where x ′ = x − (x · νi )νi , with fi (·, t) having uniform Lipschitz
constant over t .

The Hölder regularity of fi in time follows from

dH (∂!t , ∂!s) ≤ C |t − s| 12 for any |t − s| ≤ 1

with C only depending on φ and ψ . This is a consequence of Corollary 5.9 and the
fact that dH (∂!t , ∂Et (h)) tends to zero as h → 0, for each fixed t ≥ 0. We can now
conclude.

Lastly, it remains to show that |!t | = |!0| for all t ≥ 0. Since !t is a Lipschitz
domain, we have |!t | = |!t |. Proposition 6.2 and Fatou’s lemma yield that

|!t | =
∫

RN
lim sup ∗

i→∞
χEt (hi )(x) dx ≥ lim sup

i→∞

∫

RN
χEt (hi )(x) dx = lim sup

i→∞
|Et (hi )|
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and

|!t | =
∫

RN
lim inf ∗

i→∞
χEt (hi )(x) dx ≤ lim inf

i→∞

∫

RN
χEt (hi )(x) dx = lim inf

i→∞
|Et (hi )|.

FromTheorem 5.2 we have limi→∞ |Et (hi )| = |!0|, and thus we conclude. It follows
that ((!t )t≥0,*) is a viscosity solution of (M) in the sense of Definition 3.4, and we
can conclude the theorem. 01

7 Global existence: crystalline flows

In this last section we focus on the remaining case of Lipschitz but non-differentiable
anisotropy φ. Given φ, let {φn} be a sequence of positively one-homogeneous, convex
functions in C2(RN\{0}) such that φn → φ locally uniformly with

• {φn < 1} are strictly convex;
• all φn have a reflection symmetry with respect to the same root system P as φ.

For example, we can take positively one-homogeneous functions φn such that {φn <

1} = {p : (φ ∗ η1/n)(p) + |p|2/n < 1}, where η1/n is the standard mollifier with
radius 1/n.

We can then follow Sect. 5 to construct a sequence of approximate solutions for
the anisotropy φn with forcing *n . Using this approximation, we present two results
which characterize our limit with the available notion of solutions of (M).

If φ ∈ C2(RN \{0}), this would immediately follow from the stability properties of
viscosity solutions. When φ is only Lipschitz and its graph has corners, that is, more
than one tangent hyperplane at a point, there are challenges associated to defining a
notion of solutions, even with smooth forcing. As we already explained in Sect. 1,
the main challenge lies in the nonlocality of the evolution as the crystalline curvature
depends on the size and shape of flat facets parallel to the facets of the Wulff shape,
and is in fact very sensitive (discontinuous) to facet breaking and facet bending. The
crystalline curvature is usually constant on facets and they are therefore preserved
in the evolution, but for certain geometries of facets or for non-uniform forcing the
curvature might not be a constant and facets break or bend [7]. In dimension N = 2
the flow is relatively well understood and a notion of viscosity solutions has been
defined [19,20]. In dimensions N ≥ 3 there are two notions of solutions only recently
available.

In Sect. 7.1 we discuss the notion of viscosity solutions introduced by Giga and
Pozar [21,22], based on the level set functions. This notion allows a general mobility
ψ but requires the anisotropy φ to be purely crystalline. In Sect. 7.2 we discuss
the alternative notion by Chambolle, Morini, Novaga and Ponsiglione [12,14]. Here
variational approach is used to introduce a notion of solutions, using the signed distance
function to the evolving set. This notion directly deals with the set evolution and thus
fits well with the approach taken in the preceding sections. On the other hand, when
the mobility ψ is not φ-regular such as ψ ≡ 1, a solution is indirectly defined as a
limit of solutions with φ-regular mobilities.
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7.1 General mobility for purely crystalline case

In this section we assume φ to be a purely crystalline anisotropy, that is, φ(p) =
maxi (xi · p), where xi are the vertices of the corresponding Wulff shape. This is so
that we can use the notion of viscosity solutions developed in [21–23].

In contrast to Sect. 7.2, we can consider amobilityψ that is not φ-regular, as long as
it is reflection symmetric with respect to the root system P . On the other hand, in this
generality the only stability result currently available in [23] is for limits of continuous
solutions of the problem with smooth anisotropy. For this reason we follow Sect. 5
but without the re-initialization of the distance function after every h-step to construct
a sequence of continuous approximate solutions. This way we obtain approximating
solutions for the level set equation.

Due to issues with possible fattening and consequent non-uniqueness, it is not clear
whether the zero super-level set of the limit solution has the correct volume. Thus
our existence result for the set flow (M) is under the assumption of no fattening; see
Theorem 7.4.

Let us fix n ∈ N, h = 1/n and a < 0 throughout this section. For given fixed n ∈ N
the algorithm is parallel to that of Sect. 5 except the re-initialization step aswe describe.
With initial data u0 in (5.1) and λn(t) := λ(E, 1/n) for t ∈ (0, h) where λ is defined
in (5.2), we find the unique continuous viscosity solution un ∈ Ca(RN × [0, h]) of
the level set formulation of

V = ψ(n)(−κφn + λn) in RN × [0, h],

with initial data u0. Then for every k ∈ N, we iteratively define λn(t) :=
λ({un(·, kh) > 0}, 1/n) for t ∈ (kh, (k+1)h) and extend un toCa(RN ×[0, (k+1)h])
to be the unique continuous viscosity solution of the level set formulation of V =
ψ(n)(−κφn + λn) in RN × [kh, (k + 1)h] with initial data un(·, kh) (that is, we do
not reinitialize the data as the signed distance function to {u(·, kh) > 0}).

Note that

{un(·, t) > 0} = Et (1/n) and {un(·, t) ≥ 0} = Et (1/n). (7.1)

Indeed, on the interval [0, h) the equality holds by the definition of Et (h) and no
fattening is established in Corollary 5.3. Furthermore, the absence of fattening also
implies that reinitializing the signed distance function in (5.1) using E = Eh(h) to
continue the construction of Et (h) on the interval [h, 2h) does not change the zero
level set and therefore the equality continues to hold on this interval. Iteratively we
conclude that the equality holds for all t ≥ 0.

Proposition 5.8 yields a constant h1 = h1(P,mψ ,Mφ,mφ/ψ ) > 0 such that for
n > 1/h1 we have uniform Hölder continuity for *n(t) :=

∫ t
0 λn(s) ds. Thus along

a subsequence *n locally uniformly converges to * ∈ C1/2([0,∞)).
By viscosity solutions in the sense of Definition 3.2 below, we mean the general-

ization of viscosity solutions defined in [23] to a continuous * as in Definition 3.2,
using (3.6) in the sense of [23].
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Proposition 7.1 The functions

u := lim sup ∗
n

un, u := lim inf ∗
n

un

are a viscosity subsolution and a viscosity supersolution, respectively, of the crystalline
mean curvature flow V = ψ(n)(−κφ + *′) in the sense of Definition 3.2.

Proof We modify the proof of [21, Th. 8.9]. For δ > 0 we can approximate every φn
by the smooth φn,δ(p) := (φn ∗ ηδ)+ δ|p|2 and find viscosity solutions un,δ of

ut = ψ(−Du)(− div Dφn,δ(−Du)+ λn) (7.2)

with initial data u(·, 0) = u0 as above. By the stability result for the viscosity solutions
of the smooth anisotropicmean curvature flow, un,δ → un locally uniformly. Note that
this approximation by solutions with uniformly elliptic operator − div Dφn,δ(−Du)
is necessary in the proof of [21, Th. 8.9] to be able to use the perturbed test function
method.

Let us now take any 3 ∈ C([t1, t2]) ∩ C1((t1, t2)) with 3 > * on [t1, t2]. For n
sufficiently large, 3 − *n > 0 on [t1, t2] due to the local uniform convergence of *n
to *. For these n, by definition and by following the proof of Lemma 5.1 the function
ûn,δ(·;3 − *n) (see (3.3) for the notation) is a viscosity subsolution of

ut = ψ(−Du)(− div Dφn,δ(−Du)+ 3′)

in RN × (t1, t2). We note that

ûn,δ(·,3 − *n) → ûn(·,3 − *n) as δ → 0

locally uniformly and, by Lemma B.1,

û(·;3 − *) = lim sup ∗
n

ûn(·;3 − *n).

Therefore we can follow the proof of [21, Th. 8.9], with necessary modifications
to allow a time-dependent forcing done in [23], to conclude that û(·;3 − *) is a
viscosity subsolution of (3.6). 01

Lemma 7.2 u and u from Proposition 7.1 satisfy u(·, 0) ≤ u0 ≤ u(·, 0). In particular,
u = u in RN × [0,∞) and the subsequence un converges to the continuous function
u := u locally uniformly.

Proof We need to construct barriers at t = 0 for un that can be controlled in n
uniformly. Fix ε > 0 and choose 3 ∈ C1([0, 1]) with * < 3 < * + ε in [0, 1].
As *n → * locally uniformly (along a subsequence), for large enough n we have
*n < 3 < *n + ε. We have that ûn(·;3 − *n) is a subsolution of
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ut = ψ(−Du)(− div Dφn(−Du)+ 3′). (7.3)

Let us recall the positively one-homogeneous level set function φ◦
n of the Wulff

shape Wφn = {φ◦
n ≤ 1} defined as φ◦

n(x) := max{x · p : φn(p) ≤ 1, p ∈ RN }. By a
standard convex analysis, φ◦

n ∈ C2(RN\{0}) and due to the local uniform convergence
φn → φ, we deduce φ◦

n → φ◦ locally uniformly. Let us define

vn(x, t) := Mφn

√
φ◦
n(−x)2 + 2(N−1)Mψ

mφn
t + Mψ Mφn

mφn
(3(t) − 3(0)).

We check that it is a classical supersolution on (RN \ {0})× (0,∞). Indeed, we have

∂tvn(x, t) = Mψ Mφn
mφn

( N−1√··· + 3′(t)),

Dvn(x, t) = Mφn
φ◦
n (−x)√··· (−Dφ◦

n(−x)).

A standard convex analysis (see [6]) yields

− div Dpφn(−Dvn(x, t)) = − div Dpφn(Dφ◦
n(−x)) = N − 1

φ◦
n(−x)

and φn(Dφ◦
n(−x)) = 1. The latter yields |Dφ◦

n(−x)| ≤ 1
mφn

and, using that φ◦
n (−x)√··· ≤

1, also ψ(−Dvn) ≤ Mψ Mφn
mφn

. We conclude that

ψ(−Dvn(x, t))(− div Dpφn(−Dvn(x, t))+ 3′(t)) ≤ Mψ Mφn
mφn

( N−1√··· + 3′(t))

= ∂tvn(x, t).

Therefore vn is a classical supersolution of (7.3) in (RN\0) × (0,∞). Since the first
term in vn is nondecreasing in t , we conclude that it is a viscosity supersolution in
RN × (0,∞).

Furthermore, as φ◦
n(−x) ≥ M−1

φn
|x |, we observe that vn(x, 0) ≥ |x | and therefore

for any fixed y ∈ RN ,

ûn(x, 0;3(0) − *n(0)) = û0(x;3(0) − *n(0))

≤ vn(x − y, 0)+ û0(y;3(0) − *n(0)), x ∈ RN ,

as both u0 and û0 are 1-Lipschitz in space. By comparison principle,

ûn(x, t) ≤ vn(x − y, t)+ û0(y;3(0) − *n(0)) for (x, t) ∈ RN × [0, 1],

where the right-hand side converges locally uniformly to v(x − y, t)+ û0(y;3(0)−
*(0)). Here v is defined as vn but with φ instead of φn . We deduce

lim sup ∗
n

ûn(y, 0) ≤ v(y − y, 0)+ û0(y;3(0) − *(0)) = û0(y;3(0) − *(0))
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≤ u0(y)+ Mψ |3(0) − *(0)|
≤ u0(y)+ Mψε,

where we used that u0 is 1-Lipschitz and that Wψ ⊂ BMψ for the second inequality.
Since ε > 0 was arbitrary, we conclude u(·, 0) ≤ u0. The inequality for u can be
deduced analogously.

Following the argument in [26, Theorem 2.10], we can then show that u ≤ u in
RN × [0,∞) and hence u := u = u. We conclude that un converges to u locally
uniformly along a subsequence. 01

Now we turn to the question of the volume of the zero super-level set of the limit
u. We will show that if the sets {u(·, t) > 0} and {u(·, t) ≥ 0} have the same volume,
then it must be |!0|. To this end, we fix a < 0 and define the signed distance functions
similar to (6.1),

dn(x, t) := max(− sd(x, {un(·, t) > 0}), a).

Following the proof of Lemma 6.1, this sequence is locally uniformly bounded and
equicontinuous. Thus by selecting a further subsequence if necessary, there exists a
continuous function d such that dn → d locally uniformly.

Lemma 7.3 Let u be as in Lemma 7.2 and d be as introduced above. We have

{u > 0} ⊂ {d > 0} ⊂ {d ≥ 0} ⊂ {u ≥ 0}.

Proof Observe that (7.1) yields sign un = sign dn . Let us fix (x, t)with u(x, t) > 0.By
continuity, there exists δ > 0 with minBδ(x) u(·, t) > 0 and so by the locally uniform
convergence we have minBδ(x) un(·, t) > 0 for sufficiently large n. In particular,
dn(x, t) ≥ δ and hence d(x, t) ≥ δ.

A parallel argument verifies that u(x, t) < 0 implies d(x, t) < 0. The claim of the
theorem follows. 01

Theorem 7.4 Let!0 satisfy (1.4) and let u be fromLemma7.2. Set!t := {u(·, t) > 0}.
If there is no fattening of {u(·, t) = 0} in measure, that is, if |{u(·, t) = 0}| = 0 for all
t ≥ 0, then ((!t )t≥0,*) is a viscosity solution of (M).

Proof We can follow the proof of Theorem 1 with dn in place of uh in (6.1) to show
that {d(·, t) = 0} can be locally expressed as a graph of a Lipschitz function and
|{d(·, t) > 0}| = |!0|.

By Lemma 7.3, for any t ≥ 0

|{u(·, t) > 0}| ≤ |{d(·, t) > 0}| ≤ |{u(·, t) > 0}| + |{u(·, t) = 0}| = |{u(·, t) > 0}|.
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We conclude that |{u(·, t) > 0}| = |!0|. Now the theorem follows from the previous
characterization of u as a viscosity solution of V = ψ(n)(−κφ + *′). 01

7.2 With"-regular mobility

In this section we assume ψ to be φ regular, namely that there exists ε0 > 0 and a
convex function η such that

ψ(ν) = η(ν)+ ε0φ(ν). (7.4)

(7.4) is equivalent to ensuring that, for a closed set E , positive level sets of distance
function d := distψ

o
(x, E) satisfy the interior Wulff-shape property. When φ is dif-

ferentiable, this property yields the curvature bound

(div z)+ ≤ (N − 1)/(ε0d), where z := Dφ(Dd) (7.5)

(see [12,13] for further discussions on φ-regularity). Based on this observation, a
notion of distributional solutions for the set evolution of V = ψ(n)(−κφ + λ) was
introduced in [13] as well as its uniqueness, when λ is in L∞

loc([0,∞)).
We are not able to obtain such regularity for the volume-preserving forcing term*′

for our limit flow, which only exists in the distributional sense. (In general it appears
difficult to obtain strong regularity properties for * in non-convex setting: see [26,
Example A.2]). Instead, here we will show that our limit satisfies a natural extension
of the distributional solutions in [12], with necessary modifications to address the
weaker regularity of our forcing term. We expect this notion to deliver uniqueness for
crystalline flows of this form (that is with fixed forcing *′ where its anti-derivative *

is merely in C([0, T ])), however we do not pursue this issue here.
For φn as given earlier in the section, we define ψn(ν) := η(ν)+ ε0φn(ν). Let us

denote its corresponding solution ((!n
t )t≥0,*n) and define

dn(x, t) := distψ
o
n (x,!n

t ) and d̃n(x, t) := distψ
o
n (x, (!n

t )
c), where distη(x, E)

:= inf
y∈E

η(x − y).

Note that due to the geometric properties we have on (!n
t )t≥0 and the uniform Hölder

continuity of *n (see Theorem 1), along a subsequence, !n
t converges to !t locally

uniformly in Hausdorff distance, and dn, d̃n,*n converge to d, d̃,* locally uniformly
in space and time. Below we will show that the limiting flow ((!t )t≥0,*) satisfies
the properties of distributional solutions for the crystalline flow.

Theorem 7.5 Let (ψn,φn) be as given above, and let ((!t )t≥0,*) be a subsequential
limit of ((!n

t )t≥0,*n) as discussed above. Then the following holds for Et := !t :

(a) Let d(x, t) := distψ
o
(x, Et ). Then there exists z ∈ L∞(RN × (0, T )) such that

z ∈ ∂φ(Dd) a.e., div z is a Radon measure in 9 := ⋃
0<t<T (RN \ Et ) × {t},

and
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(div z)+ ∈ L∞({d(x, t) ≥ δ}) for every δ ∈ (0, 1). (7.6)

Moreover, for any smooth φ supported in 9 we have

∫ ∫
d(−φt )dxdt ≥

∫ ∫
(z · Dφ − *φt )dxdt . (7.7)

(b) The statements of (a) hold for Et replaced by Ẽt := RN\!t and * replaced
by −*.

(c) |!t | = |!0| for all t > 0.

Remark 7.6 In Lemma 2.6 of [13], there is an additional term−Mdφ in the right-hand
side integrand of (7.7). This term is present due to the spatial dependence of the forcing
* in their case, and thus does not appear for our problem.

The following is an immediate consequence of properties (a)–(b), which constitutes
of the definition in [14] for the flow with the fixed forcing V = ψ(n)(−κφ + g) with
g = *′.

Corollary 7.7 When * is a Lipschitz continuous function of time, (!t )t≥0 is a solution
of the flow V = ψ(n)(−κφ + *′) in the sense of [14].

Our proof largely follows that of Theorem 2.8 in [13], with necessary modifications
made for the low regularity of *. We will only show (a) since (b) can be shown via
a parallel proof. (c) is a direct consequence of the following convergence:

sup
x∈!n

t

d(x,!t ) → 0 as n → ∞, for all t > 0.

Proof Let us consider a sequence of C1 functions θn that sits below *n and locally
uniformly converges to *. For instance we can choose θ̃n := *∗η1/n with a standard
mollifier η and shift it down by en := ‖θ̃n − *n‖L∞ to define θn (Note that en goes to
zero as n → ∞ due to the locally uniform convergence of* to*n). By Definition 3.2

ũn(x, t) := inf
x+(*n−θn)(t)Wψ

u(·, t) = χ!̃n
t
(x), where u(·, t) := χ!t ,

is a viscosity supersolution of V = ψ(n)(−κφ + θ ′
n). We accordingly define

d̃n := distψ
o
(x, En

t ), where En
t := !̃n

t .

From Lemma 2.6 of [13], dn satisfies (7.7) with z replaced by zn = Dφn(Ddn)
and * replaced by θn . From Theorem 1 which provides uniform spatial geometric
properties on !n

t and uniform Hölder continuity of dn over time, we know that En
t

converges to Et in the Kuratowski sense, and thus dn locally uniformly converges to d
inRN ×[0,∞). Moreover, zn’s are uniformly bounded in L∞

loc(RN ×[0,∞)) and thus
have a subsequential weak-∗ limit z. Using this and the locally uniform convergence
of d̃n, θn to d,*, we can confirm that (7.7) holds for d and z.
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Now it remains to confirm that z ∈ ∂φ(Dd) a.e. with (7.6). To this end, observe
that due to the uniform φn regularity of ψn we have div zn ≤ (N − 1)/(ε0dn) for
some ε0 > 0 as pointed out in (7.5). Hence arguing as in Theorem 2.8 of [13] we can
conclude. 01
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Appendix A: Geometric properties

Here we show several geometric properties used in the paper. First we show that Pφ

given below is a root system:

Pφ := {p ∈ SN−1 : φ = φ ◦ )p and ψ = ψ ◦ )p}.

By definition of Pφ and the fact that )p = )−p, it can be shown that

p ∈ Pφ, if and only if − p ∈ Pφ (A.1)

Recall the reflection with respect to a hyperplane containing the origin

)p = )'p(0) = I − 2p ⊗ p

is a symmetric unitary operator and an involution. Furthermore, compositions of three
(or any odd number of) reflections are also reflections. From this observation, we show
that if p and q are directions of reflection symmetry, then ±)q(p) is also a direction
of reflection symmetry.

Lemma A.1 If p, q ∈ Pφ , then ±)q(p) ∈ Pφ . In particular, Pφ is a root system.

Proof As )q is an involution and symmetric, we have

)q)p)q x = )q
(
)q x − 2()q x · p)p

)
= x − 2(x · )q p))q p = ))q px .

From |)q(p)| = |p| = 1 and (A.1), we conclude that ±)p(q) ∈ Pφ . 01

Lemma A.2 The perimeter of a set E satisfying (1.4) and Br ⊂ E ⊂ BR(0) for some
r > 0 and R > 0 is bounded by C = C(P, r , R) > 0.

Proof Set F := BR(0) \ Br . There exists a finite number of points xi , 1 ≤ i ≤ m in
F such that

F ⊂
⋃

1≤i≤m

Br (xi ).
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As E is a Lipschitz domain from Theorem 2.2, it suffices to show thatHN−1(∂E ∩
Br (xi )) is uniformly bounded for 1 ≤ i ≤ m. Here,HN−1 is the (N −1)-dimensional
Hausdorff measure. Either ∂E∩Br (xi ) is empty or it can be represented by a Lipschitz
graph. In particular, from the cone condition in Theorem 2.2, the Lipschitz constant
only depends on r and P and thus we conclude. 01

Next, let us recall the uniform density from [27, Definition 4], which is, roughly
speaking, a quantitative definition for Ahlfors regular sets. Let c ∈ (0, 1) and s0 > 0.
We say that ! ⊂ RN has (s0, c)-uniform lower density if the estimate

0 < c ≤ |Bs(x) ∩ !|
|Bs(x)|

holds for all s ∈ (0, s0) and x ∈ ∂!. Similarly,! is said to have (s0, c)-uniform upper
density if

|Bs(x) ∩ !|
|Bs(x)|

≤ 1 − c < 1.

When both conditions are satisfied together, ! has (s0, c)-uniform density.

Lemma A.3 [27, Theorem 4]. Let ! ⊂ RN have (s0, c)-uniform density. Then

|{x ∈ RN : 0 < d(x,!) < s}| ≤ C
(
1+ 1

c

) N−1
N Per(!)s for all s ∈ (0, s0).

Here, C is a dimensional constant.

As a consequence of Theorem 2.2 and the above lemma, we conclude.

Proposition A.4 Suppose that E satisfies (1.4) and Br ⊂ E ⊂ BR(0) for some r > 0
and R > 0. Then, there exists c = c(P, r , R) > 0 such that

|{x ∈ RN : 0 < d(x, E) < s}| ≤ cs (A.2)

for all s ∈ (0, r). Here, Br is given in (2.7)

Proof We claim that E has (r , σ N
3 )-uniform density for σ3 given in (2.6). For all

s ∈ (0, r), E has an s-interior cone and an s-exterior cone from Theorem 2.2. As
s-interior and exterior cones are contained in a ball of radius s and contains a ball of
radius σ3s for σ3 given in (2.6), we conclude that

σ N
3 ≤ |Bs(x) ∩ E |

|Bs(x)|
≤ 1 − σ N

3 .
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Then, we apply Lemma A.3 and Lemma A.2 to conclude (A.2). 01

Lemma A.5 Suppose that a bounded set E satisfies (1.4) and Br ⊂ E for some r > 0.
Then, there exist C = C(P) > 0 and ε0 = ε0(P, r) > 0 such that

d(x, I−) ≤ Cε and d(x, (I+)c) ≤ Cε for all x ∈ ∂E and for all ε ∈ (0, ε0)
(A.3)

where I± := {x ∈ RN : sd(x, E) < ±ε}.

Proof Set ε0 := σ3r/2 and fix x ∈ ∂E . Theorem 2.2 yields that E contains x −
Coner (A) given by some basis A ⊂ P . This cone contains a ball of radius sσ3 centered
at xs := x − s

2N
∑

p∈A p for any 0 < s ≤ r . For ε ∈ (0, ε0), choose s := 2ε/σ3. As
B2ε(xs) is contained in E , we have d(xs, ∂E) > ε and thus xs ∈ I−. This yields that

d(x, I−) ≤ |x − xs | ≤ s
2
= ε

σ3
. (A.4)

The second inequality can be handled similarly. 01

A function f : RN → R is called positively one-homogeneous if

f (sξ) = s f (ξ) for all ξ ∈ RN and s ≥ 0. (A.5)

Recall the definition of the Wulff shape W f in (1.1).

Lemma A.6 For positively one-homogeneous functions f , g : RN → R with f ≤ g
we have

Bm f (0) ⊂ W f ⊂ Wg ⊂ BMg (0),

Here, m f , Mg are given in (5.6).

Proof W f ⊂ Wg is clear from the definition. For the ordering with Bm f (0) and
BMg (0), we note that Br (0) = Wh for h(p) := r |p| for any r ≥ 0. 01

Appendix B: Technical lemmas

Lemma B.1 Suppose that uk : RN × R → R is a locally-bounded sequence of
upper semi-continuous functions and let u := lim sup ∗

k→∞ uk. Let rk ∈ C(R) be
a sequence of non-negative continuous functions such that rk → r locally uniformly
and let K ⊂ RN be a nonempty compact set. Then

sup
x+r(t)K

u(·, t) = lim sup
k→∞

(xk ,tk )→(x,t)

sup
xk+rk (tk)K

uk(·, tk). (B.1)
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Proof Fix (x, t) and suppose (xk, tk) → (x, t).
Choose y ∈ x+r(t)K such that u(y, t) = supx+r(t)K u(·, t) and yk ∈ xk+rk(tk)K

such that uk(yk, tk) = supxk+rk (tk )K u(·, tk).
Since {yk} is clearly bounded, we can consider a subsequence indexed by km so

that ykm → z for some z and limm ukm (ykm , tkm ) = lim sup
k

uk(yk, tk). Suppose that

r(t) > 0. We have rkm (tkm ) > 0 for large m and therefore

r(t)
rkm (tkm )

(ykm − xkm ) ∈ r(t)K .

Since the left-hand side converges to z− x , we have z− x ∈ r(t)K . On the other hand,
if r(t) = 0 then rkm (tkm ) → 0 and hence z − x = limm(ykm − xkm ) = 0 ∈ r(t)K .
This implies that u(z, t) ≤ u(y, t). Since u = lim sup ∗ uk , we conclude that

lim sup
k

uk(yk, tk) = lim
m

ukm (ykm , tkm ) ≤ u(z, t) ≤ u(y, t).

As the sequence {(xk, tk)} was arbitrary, we conclude that the inequality ≥ holds in
(B.1).

To show the equality, we consider a maximizing sequence, i.e., we choose
(yk, tk) → (y, t) such that u(y, t) = lim sup

k
uk(yk, tk). If r(t) > 0, we set

xk = yk − rk (tk )
r(t) (y − x). Clearly yk ∈ xk + rk(tk)K and xk → x . If r(t) = 0, it

is sufficient to take any xk ∈ yk − rk(tk)K and we still have xk → x = y. We then
have

lim sup
k

sup
xk+rk (tk)K

uk(·, tk) ≥ lim sup uk(yk, tk) = u(y, t) = sup
x+r(t)K

u(·, t).

This finishes the proof. 01

Lemma B.2 Suppose that ψ,φ : RN → [0,∞) are positively one-homogeneous
convex functions, with zero only at p = 0 and suppose that φ ∈ C2(RN\{0}). Suppose
that u is a viscosity subsolution of ut = ψ(−Du)(− div Dφ(−Du)+λ) for some λ ∈
C(R). Then for any positive R ∈ C1(R), û(·; R) from (3.3) is a viscosity subsolution
of ut = ψ(−Du)(− div Dφ(−Du)+ λ + R′).

Proof Without loss of generality we may assume that u is upper semi-continuous. To
simplify the notation we write û(x, t) instead of û(x, t; R). Let ϕ be a smooth test
function such that û −ϕ has a maximum 0 at (x̂, t̂). Recall that we need to show ϕt ≤
F∗(t̂, Dϕ, D2ϕ) at (x̂, t̂),where F(t, p, X) :=ψ(−p)

(
trace[D2

pφ(−p)X ]+ λ+ R′
)
,

p 2= 0.
Due to the assumption we have

ϕ(x, t) ≥ û(x, t) = max
x−R(t)Wψ

u(·, t)
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with equality at (x̂, t̂). We now fix ŷ ∈ x̂ − R(t̂)Wψ such that u(ŷ, t̂) = û(x̂, t̂). Note
that from the definition R(t) x̂−ŷ

R(t̂)
∈ R(t)Wψ and so x − R(t) x̂−ŷ

R(t̂)
∈ x − R(t)Wψ ,

which yields

ϕ(x, t) ≥ û(x, t) ≥ u(x − R(t) x̂−ŷ
R(t̂)

, t)

for all x, t with equality at (x̂, t̂). Thus we deduce

ϕ̂(x, t) := ϕ(x + R(t) x̂−ŷ
R(t̂)

, t) ≥ u(x, t)

for all x , t with equality at (ŷ, t̂). In particular, u − ϕ̂ has a local maximum at (ŷ, t̂).
Now a direct computation yields Dϕ̂(ŷ, t̂) = Dϕ(x̂, t̂), D2ϕ̂(ŷ, t̂) = D2ϕ(x̂, t̂)

and

ϕ̂t (ŷ, t̂) = ϕt (x̂, t̂)+ Dϕ(x̂, t̂) · x̂−ŷ
R(t̂)

R′(t̂), (B.2)

If Dϕ(x̂, t̂) = 0 this simply yields ϕ̂t (ŷ, t̂) = ϕt (x̂, t̂) and we conclude that the
correct viscosity solution condition is satisfied for ϕ since u is a viscosity solution
with right-hand side F(t, p, X) − ψ(−p)R′(t) by assumption.

Now suppose that Dϕ(x̂, t̂) 2= 0. As

ϕ(x, t̂) ≥ û(x, t̂) ≥ u(ŷ, t̂) = ϕ(x̂, t̂) for x ∈ ŷ + R(t̂)Wψ ,

we deduce that ŷ+R(t̂)Wψ ⊂ {ϕ(·, t̂) ≥ ϕ(x̂, t̂)}. In particular,−Dϕ(x̂, t̂) is an outer
normal toWψ at (x̂− ŷ)/R(t̂). Therefore, by definition ofWψ = {x : x · p ≤ ψ(p)∀p}
and the fact that ψ is positively one-homogeneous and convex,

−Dϕ(x̂, t̂) · x̂−ŷ
R(t̂)

= ψ(−Dϕ(x̂, t̂)).

which yields together with (B.2)

ϕ̂t (ŷ, t̂) = ϕt (x̂, t̂) − ψ(−Dϕ(x̂, t̂))R′(t̂),

again yielding the correct viscosity condition for ϕ at (x̂, t̂) from the viscosity solution
condition that ϕ̂ satisfies at (ŷ, t̂).

We conclude that û is a viscosity subsolution of ut = ψ(−Du)(− div Dφ(−Du)+
λ + R′). 01
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