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Abstract

In this work we consider the global existence of volume-preserving crystalline curva-
ture flow in anon-convex setting. We show that a natural geometric property, associated
with reflection symmetries of the Wulff shape, is preserved with the flow. Using this
geometric property, we address global existence and regularity of the flow for smooth
anisotropies. For the non-smooth case we establish global existence results for the
types of anisotropies known to be globally well-posed.

1 Introduction

The motion of sets by crystalline curvature arises from physical applications such as
crystal growth [10] or in statistical physics [32], where sets evolve to decrease their
anisotropic perimeter. We consider the volume-preserving version of such motions.
More precisely, we consider a flow of sets (£2;);>0 moving with the outward normal
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Fig.1 Example of the
volume-preserving flow in 2D J
with ¢(p) = ¥(p) = [Ipll; that

converges to a rescaling of the
square Wulff shape

velocity V given by
V=vym)(—kp +1) onaL. ™M)

Here k4 and n each denote the anisotropic mean curvature and the outward unit
normal of d€2;. The forcing term A = A(t), coupled with the solution, is the Lagrange
multiplier enforcing the volume constraint |2;| = |2|. The functions v/, ¢ : RY —
[0, co) are positively one-homogeneous (see (A.5)), convex, positive away from the
origin, and are respectively denoting mobility and anisotropy in the system. We will
also require that they are symmetric with respect to a number of reflections: this will
allow the solutions of (M) to preserve a related geometric property that is central to
our analysis as we discuss below.

The anisotropic curvature kg is formally the first variation of the anisotropic perime-
ter functional

Pery (Q) := f dpm)dHN 1.
02

IfgpisC 2 away form the origin, one can verify that ks = divgo D¢ (n), where divyq
is the surface divergence of the so-called Cahn-Hoffman vector field D¢ (n). If no
regularity except convexity is assumed for ¢ and if the graph of ¢ has corners, «y
is called a crystalline mean curvature. If ¢ is piece-wise linear so that its sub-level
sets are convex polytopes, it is often called a purely crystalline anisotropy. We refer to
[1,3,34,35] for further discussion of this problem in the variational setting. See Fig. 1
for an example of a solution of (M).

Our goal in this paper is to establish a global existence for the flow (M) for sets
starting from non-convex profiles. The difficulty lies in both the non-smoothness of ¢
and the low regularity of A. If the evolving surface is regular enough, then A can be
explicitly written as the weighted average of the mean curvature over the surface,

)\(t)=/ ke (m) dHN 1/ vm)dHN !,
92 082

but there is no a priori regularity for A in general. In fact for non-convex Lipschitz
domains, the forcing term A in (M) can be unbounded (see [26, Example A.2]).
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When ¢ is smooth and when the forcing A is a priori fixed as a bounded function
in (M), there have been both viscosity solution [8,9,17,31] and variational approaches
[3,4,11,15,28] to address the global well-posedness of the flow.

It is well-known that convexity is preserved in the flow (M). The global-in-time
existence of the convex flow, as well as convergence to a rescaled version of the Wulff
shape

Wy = {xERN:x~p§¢(p)forallpeRN} (1.1)

up to translations have been studied for both smooth [2] and non-smooth ¢ [5]. Beyond
convex setting, there is no global-in-time existence result for (M) even for smooth
anisotropies. To achieve this one likely needs to understand the pattern of topological
changes that contributes to both the instability of the motion as well as the regularity
of the forcing term A. In the isotropic case ¥ = ¢ = |x|, the global existence for (M)
is proved under an energy convergence assumption that rules out abrupt topological
changes: see [28-30]. The phase field method is used to show existence in [33].

Alternatively, one could also explore geometric conditions under which topological
changes do not occur: this is the direction we pursue here. While it is suspected that
star-shapedness is preserved in the evolution, it remains open to be proved even for
the isotropic case. For the isotropic case, [25,26] introduced a stronger version of star-
shapedness, called as a reflection property, motivated by [18]. Below we will introduce
a geometric condition (1.4) that naturally extends this property for anisotropic flows.

To discuss the geometric property that (M) preserves, some notations are necessary.
We represent the reflection symmetry of ¢ and v in terms of the corresponding root
system as follows. Let P be a finite root system (see (2.2)) consisting of unit vectors
in RY, with enough directions in the root system such that

span(P\IT) = R" for any hyperplaneITgoing through the origin. (1.2)

We say P is compatible with ¢ and ¢ if in addition ¢ and ¥ are invariant under
reflection with respect to its elements, namely (4.1). The concept of the root system
has been introduced in the context of reflection and Coxeter groups (see e.g. [24]).
Examples of ¢ that allow a compatible root system are those whose Wulff shapes are
convex regular polytopes in R? and R3.

Given such a root system, we consider sets €2 for which there exists p > 0 such
that

2] > KN p" | B1(0)], (1.3)
satisfying the following reflection property:

WUy (Q)NH C Q2N H for any half-spaceH C RY
whose normal is inPandB,(0) C H, (1.4)

where Wy denotes the reflection operator with respect to the hyperplane 0 H; see
Sect. 2. Here the constant C = [C(P) > 1 is given in (4.3). Note that the reflection
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property gets stronger as p decreases since the family of eligible half-spaces grows:
W, satisfies (1.4) for p = 0, making it the ideal shape for this property.

Our main observation is that the flow (£2;);>0 given by (M) preserves the prop-
erty (1.3)—(1.4) for any root system satisfying (1.2) compatible with ¢ and . This
geometric property in turn guarantees that €2, is a Lipschitz domain for each time
(Theorem 2.2). To incorporate A as a distribution, we will denote the coupled pair
((21)1>0, A) as a solution of (M), where A’ = X in the sense of distributions.

Theorem 1 Let ¢ € C>(RN\{0}), and let P be a root system compatible with ¢ and .
Then for any bounded open initial data Q2 satisfying (1.3)—(1.4), there is a viscosity
solution (($2;):>0, A) of (M) starting from Qo that preserves volume and satisfies (1.4)
for all positive times.

Moreover, A € C'/2([0, 00)), and there exists a finite number of local neighbor-
hoods {O;}!_, in R¥ such that

(@ Ui, Oi x [0, 00) contains T := |, (32 x {t}).

(b) For each i, T restricted to O; x [0, 00) can be represented as a graph of a
function that is uniformly Lipschitz in space and uniformly Holder continuous
in time.

In addition, O;, the coordinates in O; where the graph property holds, as well as their
Lipschitz and Holder constants, depend only on ‘P, the extremal values of ¢ and r on
SN=1 and ||

See the end of Sect. 6 for the proof of this Theorem.

Additional challenges arise when ¢ is non-smooth. In this case the optimal regularity
for the evolving set is only Lipschitz and kg is understood as nonlocal. The flow
develops flat features like faces and edges (see Fig. 1) that might break or bend during
the evolution [7]. The well-posedness of the crystalline mean curvature flow has only
recently been established, respectively with the level set formulation [19,23] and with
variational approach that directly addresses the motion of the sets [12,14]; see Sect. 7
for further discussions. The next theorem states that our results hold for the class of
non-smooth anisotropies that were successfully addressed with these approaches.

Theorem 2 If ¢ is purely crystalline, then the statements in Theorem 1 hold as long
as there is no fattening in the process of smooth approximations (see Sect. 7.1).

If ¢ is ¢-regular, then the statements in Theorem 1 hold for a flow ((£2;);>0, A) of
(M) in the sense of [14] (see Sect. 7.2).

Remark 1.1 1. Uniqueness of the flow (M) remains open, even in the isotropic case.

2. Both conditions (1.3) and (1.4) are needed to ensure that €2, is a Lipschitz domain.
For instance, if P = {%e; : 1 <i < N}, then we may have a domain with cusps
satisfying (1.4). See also Remark 2.5 and Example 2.3.

3. For smooth anisotropies, we expect that an approach similar to [26, Section 5]
will lead to the asymptotic convergence of the flow to the Wulff shape. We do not
pursue it here since the proof would at least require significant regularity analysis
that deviates from the main topic of the paper. For non-smooth anisotropies the
asymptotic convergence to a Wulff shape remains open.
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Fig.2 The root system P and QO
Qo in Example 1.2 for N =2 . h
7) A N ’ ® N
N r\B 1 (0)
\J A A
(@ (b)

We now give two examples of sets that satisfy our geometric assumptions but that
are not convex.

Example 1.2 Let
¢ &) =¥ E) = [§llc :=max{[§ - ¢;[ : | =i < N}
where {ei}lN: | is the standard basis of RV, and let P be given as
P={te;:1<i<N}U {:i:%@(ei +e)), :i:\%(e,- —ej):1<i<j<N}, (15

see Fig. 2a. Then P satisfies (1.2), and the following union of two cubes with suffi-
ciently large C > 0

Q) = ([—c, N — el) U ([—C LoV 4 el)
satisfies (1.4) for p = 1; see Fig. 2b.

Example 1.3 In this example we consider ¢ and ¥ with a triangular symmetry. For
N =2, let

¢ &) =y (&) :=max{§ -n1,§-n2, & - 03}

where 1| = (‘/Tg,%), m = —‘/Tg,%) and n3 = (0,—1). Then, ¢ and
Y are invariant with respect to reflections given by elements of P := { +

(%, —%5) o+ (%, @) (1, 0)} as in (4.1). In addition, P satisfies (1.2). In this

case, the two equilateral triangles

{£:0() < 1}and {§ : ¢(=§) = 1},

satisfy (1.4) forall p > 0. In particular, their union 2 also satisfies (1.4) for all p > 0;
see Fig. 3b.
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Fig.3 The root system PP and

Qo in Example 1.3 for N =2
P v/\%

(a) (b)

Outline of the paper. In Sect. 2 we study geometric properties of sets that satisfy
(1.4).In Sect. 2.1 we show that such sets are Lipschitz domains, by establishing interior
and exterior cone properties at the boundary points. Since the reflection property is
limited to the directions in P, the argument for this step is considerably more subtle
than the one in [25,26]. Sect. 2.2 provides a lower bound on in-radius of the sets
satisfying (1.4) in terms of its diameter.

In Sect. 3, we introduce a notion of viscosity solutions for (M). While interested in
the geometry of sets, we will adopt the level set approach, since it allows flexibility
in perturbation arguments in our analysis. We extend the notions developed in [26] to
accommodate A that is only a distributional derivative of a continuous function. This
is necessary due to the unknown regularity of the volume-preserving A.

Sections 4, 5 and 6 concern curvature flows with smooth anisotropy ¢. In Sect. 4 we
show the preservation of the reflection property (1.4) for level sets of viscosity solutions
with fixed forcing. In Sect. 5, a discrete-time scheme is introduced to approximate
(M) with flows with piece-wise constant forcing. Due to the results from the previous
sections, one can show that the discrete solutions have locally Lipschitz interfaces and
thus a fattening phenomenon does not occur in their limit. As a consequence, we prove
Theorem 1 in Sect. 6.

Lastly in Sect. 7 we address (M) with non-smooth ¢ and prove Theorem 2. Here the
global well-posedness of (M) is established in terms of available notions of crystalline
flow.

2 Root system and geometric properties

In this section we study geometry of sets that satisfy (1.4). For a unit vector p € RV
we define the hyperplane

,(s) :={x € RN tx - p=s},
which divides R" into the half-spaces

i) ={xeRY:x-p>stand I, (s) := (x e RV : x - p < s}.
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Then the corresponding reflection map and the reflection property (1.4) can be written
respectively as ‘lfnp(s)(x) =x—2(x-p—s)pand

W, () (2) NI, (s) C QN T, (s) forallp € Pands > p. 2.1)

Let us next review the notion of root systems, which are used to describe reflection
symmetries of objects [24, Section 1.2]. A root system P in RY is a set of nonzero
vectors in RY satisfying

PN Rp) ={p,—p}and ¥,P =P forall p € P, 2.2)

where W), := W ) = [ — 2%. In this paper we will only consider finite root
systems P C SV~ that satisfy (1.2).

2.1 Interior and exterior cones

We will show that sets satisfying (1.4) are Lipschitz domains. To this end we define
cones of directions. For r > 0 and a basis A = {p; INzl c SN of RN we write

Cone, (A) to denote the open r-cone generated by A:

N N
Cone,({pi}L)) =1 aipi: Y aj <randa; > Oforall  <i <Ny. (23)
i=1 i=1

That is, Cone, (A) is the open N-simplex given by the convex hull co(r A U {0}).
For the rest of this paper, o1, 02 and o3 denote the following constants that charac-
terize the distribution of the directions in P:

o1 =01(P):=min  max minlq - pl, 2.4)
peP basis QCP qeA
PE

oy = (P) = mal))( x|, D:={xeRV, |p-x| <1forall p € P}, 2.5)
xXe

03 =03(P) ;== min max{r: Br(ﬁ ZpeA p) C Cone;(A)}. (2.6)
basis AcP

Lemma2.1 LetP? c SN~ be afinite root system satisfying (1.2). Theno1(P), 03(P) €
(0, 1] and o> (P) € [1, 00).

Proof 1t is clear that o; < 1 as P C S¥—!. To show the lower bound, fix p € P.By
(1.2), we can find a basis A € P\ p* of RV, and by replacing one of its vectors by p
if necessary we can assume that p € A. But then mingea |g - p| > 0. Since P is finite,
we conclude that o7 > 0. It is clear that 0 < o3 < 1 since ﬁ ZpeA p € Cone;(A)
for any basis A C P.

The estimate on o3 is a consequence of the fact that D is defined as the convex polar
of conv P, which contains the origin in its interior. However, we give a direct proof.

@ Springer



740 I.Kimetal.

Fig.4 The cone property

Weset K :=sup,.p |x]. AsP C S¥—1wehave K > 1.Let {x;};en satisfy |x;| — K
with [x;| > 1. As {x;/|x;|} € S¥~!, along a subsequence x;/|x;| — y € S¥~1. As
|p-xi| < 1forall p € P, we have

1

~ xl

‘ .

p .
|x; |

Thus if K = oo it follows that p - y = 0 for all p € P with y € SV, but this
contradicts (1.2). Hence we conclude that 1 < op = K < o0. ]

Now we are ready to state the main result in this section.

Theorem 2.2 Suppose that Q2 satisfies (1.4) and contains
B, := oy 'o2(p +2r)B1(0) 2.7

for somer > 0. Then 02 has the r-cone property at every point, with locally constant
cone directions that are independent of the choice of 2.

More precisely, for every xo € BE there exists A C ‘P that only depends on x such
that A is a basis of RN and

x + Cone, (A) C Q€ and y — Cone,(A) C Q (2.8)

forany x € QN B, (x9) and y € QN B, (xo). In particular, Q is a Lipschitz domain.

When ¢ (x) = ¥ (x) = |x|, the above theorem corresponds to the cone property
and star-shapedness of a set having p-reflection (see [18, Lemma 21]).

Example 2.3 In R?, recall P given in (1.5):

P = {ﬂ:eh *es, jE7;(61 +e2), %(61 - 62)]
= {(cos(km/4), sin(kmr/4)) : 0 < k < 8}.
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Then o1 (P) = cos(/4) = % and 0»(P) = cos(/8)"! = V4 — 242 since D is

the regular octagon
D = {(x1,x2) : [x1], |22l < L, xy +x2l, [x1 — x2 < V2

By Theorem 2.2, if €2 satisfies (1.4) and 2 contains B2 o (0), then 2 has exterior
and interior cones in R" at any point x € 92 (see Fig. 4).

The proof of Theorem 2.2 combines the following two geometric observations. For
the rest of the section we assume that <2 satisfies (1.4), or its equivalent form (2.1).

Lemma 2.4 For x € RN with |x| > 01_102, there exists a basis A C P such that
p-x>1 forallpe A. 2.9

Proof Suppose |x| > aflaz. Then |p; - x| > afl for some p; € P, and by (2.2) we
can assume

-1
p1-x>o .

Next observe that (2.2) and the definition of o yields { pi}lN= , C P that with p;
span R¥ such that

p1-pi =01 foralll <i <N.
Therefore
Qp1-pipr— pi) - x + pi - x =2(p1 - p)(p1 - x) = 20107 ' =2,

which implies that at least one of the terms on the left is > 1.
Recall from (2.2) that 2(p; - pi)p1 — pi € P.Foreach2 <i < N, we replace p;
in {p;}Y_, by 2(p1 - pi)p1 — pi if pi - x < 1. This new basis satisfies (2.9). ]

Remark 2.5 We point out that (1.2) is essential for Lemma 2.4, since if IT is a hyper-
plane such that span(P\IT) # R" then Lemma 2.4 does not hold for x L ITno matter
how large |x| is. For instance if N = 2 and P = {%e, £e>}, then P does not satisty
(1.2) because

P\, (0) = {£ey ).

Lemma 2.6 Suppose x € RN satisfies

Inilr41p-x >p+r  forsomebasis ACPandr > 0.
pe

Then for Cone, as given in (2.3), we have

x + Cone, (A) C Q°ifx € Q° and x — Cone,(A) C Qifx € Q.
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742 I.Kimetal.

Proof We first prove that
Ify-p>pandy+ap e Qforsomea > 0, theny € Q. (2.10)

This follows from (2.1) with reflection W := Wy (., 44). Since

a
P<y'P<Y'P+§<Y'P+aa

2.1)yieldsy =¥ (y+ap) e Qif y +ap € Q.
Let us denote A = {p,‘}f\’:1 and choose {ak}iv:] as in (2.3). We now apply (2.10)
iteratively to yy = x + ZzNzk-H a; pi,a and py, for 1 < k < N.This is possible since

N

Yk Pk —p =1+ Z aipi-pr >0 forl <k <N.
i=k+1

Since x + Z,N:la,-pi = y1 + a1 p1, Yk—1 = Yk + axpx, YN = x, we deduce that
x+ Z,N=1 a;pi € Qimplies x € Q, or equivalently, x € Q€ implies x + vazl aipi €
Q.
We next apply (2.10) to yxy = x — Z?:l ai pi , ar and pr. Noting that
N
Xx=yi+aipi,yi1=y+apandyy =x— Y aipi,

i=1

we conclude that x €  implies x — ZlN:l aip; € 2. O

Proof of Theorem 2.2. From Lemma 2.4, for any point xg € RV\B, there is a basis
A C P such that

p-xo=>p+2rforall p e A.
Since |p - x — p - xo| < |x — xo| forall p € A, we have
p-x>p-xo—r>p-+rforall pe Aandx € B,(xp),

We can now conclude by Lemma 2.6. O

2.2 In and out-radius

In this section, we estimate the in-radius of sets satisfying (1.4) in terms of their
out-radius. Recall that o; are given by (2.4)—(2.6).

Theorem 2.7 Suppose 2 satisfies (1.4) and

Q ¢ Bg(0) for some R > o, 'oa(1 + o205 Hp.
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Fig.5 Ball reflection in the
proof of Lemma 2.9 o0

Vg, () (Be(2))

Then B.(0) C 2, where c satisfies R = R(c) = 01_102(,0 + (020 + 6)0'3_1).

The proof proceeds in a number of steps. For the rest of the section we assume that
Q satisfies (1.4), or its equivalent form (2.1).

Proposition 2.8 Suppose there is x € Q such that |x| > Gflaz(p + co{l)for some
¢ > 0. Then

c
B.(z0) C Q for some zo € Q such that |x — zo| < Tor"
03

Proof From Lemma 2.4, there is a basis A C P such that
p-x > ,0+ca3_1 for all p € A.
Then Lemma 2.6 yields that

X — Conewgl (A) C Q.

—1
It follows that zg := x — % 2 pea P satisfies

B.(z0) C x — Conew;n(A) C Q.

Next we show that the reflection of an interior ball of 2 is also in 2.

Lemma2.9 Forp € P,s > p, ¢ > 0andz € T} (s),

if Be(z) C Q, then Be(Wr,(5)(2)) C €.

Proof The argument is illustrated in Fig. 5. We have
Wi, () (Be(2) N TTE(5)) = Be(Wrn, , (2)) N T (s).
As B.(z) C 2 and < satisfies (2.1), we have

Be(Wr,, (2)) NI (5) C W, () (2N TTH(s)) © N T, (s).
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744 I.Kimetal.

Since clearly

Be(Wn, @) N (ME6) UML) € B.(2) € @,
the inclusion is proved. O
Proposition 2.10 Suppose B.(zo0) C 2 for some zo € Q2 and ¢ > o2p. Then
Be_g,p(0) C Q. (2.11)

Proof For a given ¢ > 0, let s := (1 + ¢)p and construct sequences {z;; }m>0 C R¥N
and {gm}m>0 C P by

Zm+l = ‘I/qu(x) (Zm) and Qm € arg max p *Zm-
peP

A direct computation yields
2 _ 2 _ 2 2
lZmt11" = 12m = 2@m - qm)qm + 25qm|” = |zm|” + 4" — 4s(@m - gm).
If we have g, - z» > s + €, then from the above equation we have

2 2
|Zm+1]" — lzm|” < —4se.

Since |z;;| > 0 for all m > 0, there exists the smallest m* > 0 such that g,* - Zx <
s + ¢. Since g, is a maximizer of p - z,, in P, we conclude that

[zm*| < 02(s + ¢&). (2.12)
Recall that B.(z¢) C 2. Also we have g, - z;n > s + ¢ for 0 < m < m* by our
choice of m*, which implies z,,, € I'Ijlrm (s) forO < m < m™. Thus applying Lemma 2.9
iteratively, we arrive at
Be(zm+1) = Bc(¥n,, s)(@m)) C 2 for0 <m <m* —1,
This and (2.12) yield
Bcfaz(s+s) 0) C €.
As ¢ is arbitary, we conclude. O

Proof of Theorem 2.7. From Proposition 2.8, there exists zg € € such that

Bozp+c (z0) C Q.

Proposition 2.10 now yields By, p4c—a,p(0) C Q2. O
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3 Viscosity solutions

In this section we introduce a notion of viscosity solutions for the level set equations
of (M) when ¢ is smooth, namely when ¢ is C? away from the origin. Readers may
skip this section during the first reading, as it does not directly relate to the geometric
description of the results.

Let us first recall some standard notations.

0:=RN x(0,00)and Q7 :=R¥ x (0,T], T >0.

For a domain U C RN and T > 0, Ur := U x (0, T], 3,Ur := (U x {0}) U
U x [0,T]).

For (xo, 1p) € RY x (0, 00),

Dy (x0, t0) := By (x0) x (to — %, 101, 8,D;, := (B,(x0) x {to — r*}) U (3B, (x0)

X[ty — rz, tol).

Foru : L ¢ RV*! — R, we denote its semi-continuous envelopes i, u* : L —
R by

us(x,1) ;= lim inf wu andu*(x,7):= lim sup wu. 3.1
e—0+ By (x,1)NL =0+ B (x,n)NL

When A is continuous, the level set equation of (M) can be written as
uy = Y (—Du)(—div D¢ (—Du) + 1), (3.2)

assuming ; = {u(-, ) > 0}. In this case we can use the following definition used in
[26] that proves convenient for stability properties. It can be shown to be equivalent
to the more classical version in [9] using the argument in [16, Sec. 7.2].

Recall that ¢ € C%1(D,) is said to be a classical strict subsolution (resp. superso-
Iution) of (3.2) if ¢; < Fy(t, Dg, D*¢) (resp. ¢; > F*(t, Dp, D*¢)) on D, with the
right-hand side of (3.2) written as F (¢, p, X) := w(—p)(trace(Dlz,qb(—p)X) + A1),
p #0.

Definition 3.1 Let ¢ € C2(RV\{0}) and A € C([0, 00)).

e A function u : Q — R is a viscosity subsolution of (3.2) if u* < oo and for
D, C Q and for every classical strict supersolution ¢ € C>!(D,), u* < ¢ on
dp D, implies u* < ¢ in D,.

o A function u : Q — R is a viscosity supersolution of (3.2) if u, > —oo and
D, C Q and for every classical strict subsolution ¢ € C2'1(D,), Uy > @ ond,D,
implies u, > ¢ in D;,.

Since the forcing term A in (M) may not exist in a classical sense, we cannot
directly use the above notion of viscosity solutions. Indeed we will modify the notion
to incorporate A as the distributional derivative of a continuous function A. To this
end we use the set convolutions as follows. While the definition is mostly parallel to
the isotropic case in [26], the geometric nature of the convolution is different.
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For y € C([0, o0); [0, 00)), the sup-convolution u(-; ¥) and inf-convolution
u(-; y) over the Wulff shape Wy, are given by

u(x,t;y):= sup u(-1) and u(x,t;y):= inf  u(,1). (3.3)
x=y(OHWy Xty (OWy

We often write #(x, t) and #(x, t) if y is understood from the context. Note that the
sign x — y (1) Wy in (3.3) is chosen so that

{u,t;7) >0} ={u(-,1) > 0} + y () Wy.

As we do not assume that v is even, in general — Wy, # Wy,. See Fig. 6 for illustration.
Note also that #* = (1)* and i, = (@)« (see [26, Lemma C.8]).

In contrast to the isotropic convolution over the balls used in [26], the sup-
convolution and inf-convolution over the Wulff shape of ¢ are needed to modify
the normal velocity of the level sets while accounting for the anisotropic factor ¥ (see
Lemma B.2). This is the main feature that differs from the notion introduced in [26].

Using these convolutions we now define viscosity solutions of the level set equation

u; = Y (—Du)(—div D¢(—Du) + A') in Q (3.4)
for the flow
V =vym)(—ky + A). (3.5)

Definition 3.2 For a functionu : 0 — R,

e u is a viscosity subsolution of (3.4) if u™ < coand forany 0 <t <, and ® €
C([t1, ) NCY((t1, 1)) such that © > A in [t1, 12], the function@ = @ (-; © — A)
given in (3.3) is a viscosity subsolution of

u; = Y(—Du)(—div D¢p(—Du) + ©') in (t1, 1) x RV, 3.6)
e u is a viscosity supersolution of (3.4) if u, > —oo and forany 0 < #; < o

and ©® € C([t1,]) N C((11, 1)) such that ® < A in [f1, 12], the function
u=1u(;—0+ A) given in (3.3) is a viscosity supersolution of (3.6).

e u is a viscosity solution of (3.4) with initial data uq if u* and u, are respectively a
viscosity subsolution and a viscosity supersolution of (3.4), and if u* = (ug)* and
Uy = (ug), att = 0.

e (S2;):>01s a viscosity solution (subsolution or supersolution, respectively) of (3.5)
if there exists a viscosity solution (subsolution or supersolution, respectively) u of
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x—yWy @1

Vi) m w<@£ﬁ
/ 0\ us0
Wy,

Fig. 6 Illustration why the sup-convolution over Wy, u(-, -; y), moves the boundary of super-level sets by
distance y v (n) in the outer normal n direction

(3.4) such that
Q; ={u(-,t) >0} forallt > 0.

To simplify the notation, we will sometimes say thatu : QO — Ris a viscosity solution
of the flow (3.5) if it is a viscosity solution of the associated level set equation (3.4).
By Definition 3.2, the following property holds for the set solutions.

Lemma3.3 Let A € C([0, 00)) and y € C([0, 00); [0, 00)), and denote

Q)= |J @+»nad@pm= () @ -y,
yey )Wy yey )Wy

If (2/)1>0 is a viscosity subsolution of V. = ¥ (m)(—ky + A'), then @, (y) is aviscosity
subsolution of V.= y(m)(—ky + A"+ y').

Similarly, if (Q)i=>0 is a viscosity supersolution of V.= ¥ (n)(—«g + A'), then
Q, () is a viscosity supersolution of V. = Yvm)(—kp + A —y).

Proof We only show the subsolution part, since the rest can be shown with parallel
arguments. For a given ® € C([t1, 12]) N C! ((t1,12)) suchthat ® > A + y in [11, 2],
we need to show that

@,(y)(@ — A — y)is a viscosity subsolution of V = v (n)(—«g + ®")in(t, tp).
3.7

If this is the case, we conclude that ﬁ,(y) is a viscosity subsolution of V =
V() (—kp + A +y).
As Wy is convex, we get

QO —A-y)= U @+y+2 = U @+w
yey )Wy, we(@—A)(1)Wy
Z€E(O@—=A—=y)()Wy
=Q:/(® — A).

As ©® > Ain [1, r2] and (£2;),>0 is a viscosity subsolution of V' = v (n)(—ky + A,
it follows that Q;(® — A) is a viscosity solution of V = ¢ (n)(—ky + ©’) in (11, 12).
We can now conclude. O
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Definition 3.4 For A € C([0, 00)), the pair ((£2);>0, A) is a viscosity solution of
M) if

(2/)1>0 is a viscosity solution of V = yr(m)(—ky + Ay and |Q;| = |Q].

Below we present the comparison principle, stability and well-posedness properties
for our notion of viscosity solutions. The proofs are omitted as they are parallel to those
of [26, Theorems 2.10, 2.12 & 2.14].

Theorem 3.5 Given ¢ € C2(RN\{0}) and A € C([0, 0)), let u and v be each a
viscosity subsolution and a viscosity supersolution of (3.4). Then the following holds
for any bounded domain U in RN and T > 0: Ifu* < vy, ond,Ur, then u* < v, in
Ur.

For a sequence of functions {uy }xen on Q, the half-relaxed limits are defined as

lim sup * uy(x, t) := lim sup {uk(y,s) k>, |ly—x| < Lo s—1< l.},
k00 j—o00 J J

lim inf 4 ug(x, t) := lim inf {uk(y,s) k=g, ly—xl<i |s—1< l.}.
k—00 j—o00 J J

Theorem 3.6 Let ¢ € C*(RV\{0}), and let {Ai}ren be a sequence in C ([0, 00)) that
locally uniformly converges to Ao as k — 00. Let uy be a viscosity subsolution
(supersolution, respectively) of (3.4) with A = Ay. If

u :=1lim sup " uy < oo (u :=lim inf , uy > —o0, respectively),
k— 00 k—o00

then u is a viscosity subsolution (supersolution, respectively) of (3.4) with A = Aso.

As in [9] we denote for a constant @ and a set U

CoU) ={u+a:ue CU) with compact support in U}.

Theorem 3.7 Let A € C([0, 0)), ¢ € C*(RN\{0}) and g € Co(RN) for some a € R.
Then for any T > O there is a unique viscosity solution u € C,(Q7) of (3.4) with
initial data g.

4 Preservation of the reflection property
Here we show that the curvature flow with fixed forcing (3.4) preserves (1.4) for

smooth ¢, when ¢ and ¥ are invariant with respect to reflections given by elements
of P, namely when they satisty

¢p=¢oV¥,andy =y oV, foranypecP. 4.1
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Throughout this section we fix a < 0. For a given bounded domain €2¢, consider
ug € C,(RN) given by

ug(x) := max{—sd(x, Qp), a} forall x € RV, “4.2)
Here sd denotes the signed distance function, namely

e @) o |t 9) ifreq,
x,Q):=1 . .
dist(x, 9€2) if x € Q°.

Proposition 4.1 Assume that ¢ € C2(RN \ {0}). Let u € CQ(E) be a viscosity
solution of (3.4) with initial data u. If 2y satisfies (1.4), then so does 2 := {u(-, t) >
0} forallt € [0, T].

Proof For any fixed p € P and s € R, we claim that
v(x, 1) == u(W,(s)(x), 1) is a viscosity solution of(3.4)

with the initial data vo(x) := uo(¥p () (x)). To verify the viscosity solution con-
dition, we only need to show that sub- and supersolution property is preserved for
reflections of test functions. Therefore it is enough to verify the invariance of (3.4)
under reflection for functions u € C2(Qr)and A € C'([0, 00)), at points (x,t) € Ot
where Dv(x,t) # 0. First note that, identifying the linear operator as its gradient,
D\I/np(s)(x) =1-2pQ@p=: ‘I’H,,(O) =: R, which is a unitary symmetric matrix,
and R? = I. Therefore

Dv(x,t) = RDM(\I—’HP(S)(X), t)

and both sides have the same norm. Moreover,  (—Dv(x, 1)) = ¥ (—Du(¥r,,5)(x), 1))
since ¥ = ¥ o R by assumption.

Finally, differentiating ¢ (x) = ¢ (Rx) twice we obtain RD*¢(x)R = D*¢(Rx).
A similar computation yields D?v(x, 1) = RD*u(Wry,(5)(x), 1) R. This implies

div(D¢(—Dv(x, 1))) = trace(—D*¢ (—Dv(x, 1)) D*v(x, 1))
= trace(—R D¢ (—Du (¥, (5) (x), 1)) RRD*u(Wr (5 (x), ) R)
= trace(—D?¢(— Du(¥n, (5 (x), ) D*u(Wr, (5) (x), ).

We conclude that all terms in (3.4) are invariant with respect to the reflection Wy ()
for test functions, and hence v is a viscosity solution whenever u is.
Letus now fix p € P and s > p. As Qg satisfies (1.4), ug given in (4.2) satisfies

vo(x) := uo(\llnp(s)(x)) <ug(x) forallx e H;(s).

By definition v = u on I, (s) x [0, T]. As u € C,(Qr), there exists a bounded
domain U in RY such that u = v = a in U x [0, T]. Applying the comparison
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principle Theorem 3.5 in (U N [T, (s)) x [0, T'], we conclude that
v<u in H;(s) x [0, T,

which implies (1.4) for €;. O

The following theorem will be used in the next section to guarantee (1.4) for the
discrete-time flow that approximates (M). Let us define IC > 0 by the o;’s given in
Sect. 2:

K=K®P):=o0"'o(1+00;'(1+0, ). (4.3)

Theorem 4.2 For a given ¢ € CZRN\{0}), let u € C4(Q7) be a viscosity solution
of (3.4) with initial data (4.2), where Q2 satisfies (1.4). Suppose that

|2/| > |Bxpl +¢& forsomee > 0andt > 0 where Q; := {x € RY :u(x,r) > 0}.
4.4

Then, 2, satisfies (1.4) and contains B, given in (2.7) for some r = r(P, &) > 0.

Proof Due to Proposition 4.1 we only need to check that €, contains B,. For R(-)
given in Theorem 2.7, observe that from the definition of /C

R(c'o2p) = o] o2 (p + (02p + 0_102,0)03’]) =Kp.
From this and (4.4) there exists 61 = ¢1(P, ¢) > 0 such that

& »¢— BR(al_lozp)+el ().

Since €2, satisfies (1.4), Theorem 2.7 yields r = r(P, &) > 0 such that

Br = 307102(p+2r)(0) C Q[. (45)

5 The discrete A scheme

In this section we introduce an explicit way to construct the flow for (M) by approx-
imation, where the approximate X is given as a piecewise constant function of time.
As in Sect. 4, we rely on the level set approach to describe the approximate flow.

For a given bounded open E C RN a<Oandh > 0,letu(:; E,h) € C, (@)
be the unique viscosity solution of V' = v(n)(—ky + A(E, h)) with initial data
ug € Cy(RY) given by

ug(x) := max{—sd(x, E), a}, 5.1
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where the forcing term is defined with a constant o > O:

a sign(|€20| — |ET)
vh '
Here sign(c) denotes the sign of ¢, set to zero if ¢ equals zero. Note that the well-

posedness of u follows from Theorem 3.7. We then define the corresponding set
evolution

ME, h) = (5.2)

T(E:h):={x eRY :u(x,t; E,h) >0}, t€][0,h] (5.3)

Iterating this process over the time intervals [kh, (k + 1)h] for k € N, we define
the evolution

Ei(h) =T,y (T (0 s k) 21 (0) = MELpgn(h), 1) and A" (1)

t
= / A (s)ds. (5.4)
0

Here 7," denotes the m-th functional power of 7 (-; h).

In the remainder of the paper we will study the properties of the hA-flow E;(h) and
its limit as A tends to zero. The goal is to show that the limit is a solution of the
volume-preserving flow (M). First we show that the A-flow is a viscosity solution with
the corresponding forcing.

Lemma 5.1 Let E,(h) and Al be givenin (5.4). Forh > 0, E;(h) is a viscosity solution
of V.= vy (m)(—kp + A".

Proof By construction, E;(h) is a viscosity solution of V' = v (n)(—«y + A" in
RN x ((k — 1)h, kh] for all k € N. It is thus enough to show that E, (%) is a viscosity
solution of V. = v (n)(—ky +Ah) inRN x (11, o] fortimes 1y =h—eandt; = h+¢
with0 < ¢ < h.

Following Definition 3.2, we check the viscosity subsolution property foru(x, t) :=
XE,(h)(x). Forany ® € C([t, 12]) N Cl((tl, 1)) such that ® > A in [t1, 1], we need
to verify that

@ =1(; ® — A) is a viscosity subsolution of V = /(n)(—«g + @) inRY x (11, 2],

where % is given in (3.3). Consider a cylindrical domain D, C RY x (#1, 1) and
a classical strict supersolution ¢ of V = ¢ (n)(—ky + ©') that is above u* on the
parabolic boundary of D,. In this setting we would like to show that 7* < ¢ in D, .

By Lemma 3.3, u(-; ® — A) is a viscosity subsolution V = v/ (n)(—kg + ©') in
RY x (1, h] and RN x (h, 1,]. Since ¢ is above @* on the parabolic boundary of
D, N{t < h}, it follows that

u* < @in D, N{t < h).
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From the above inequality, we now have ¢ above u* on the parabolic boundary of
D, N {t > h}. Thus we conclude that

u* < @in D, N{t > h).

Thus we have shown the subsolution property for u.
Parallel arguments yield that u is a viscosity supersolution of V = ¥ (m)(—«¢ +a).
(]

Next we show that the i-flow keeps its volume close to that of the initial set |€2g]
if the constant « in the forcing term (5.2) is sufficiently large (Theorem 5.2). More
precisely we require that

oM, N-1)\?
o = max 1 , (5.5)
a3Mmy, me/y
where
My:= sup f(v) and my:= inf f(v). (5.6)
peSN-1 veSh-1

Theorem 5.2 Let ¢ € C2(RN \ {0}). Suppose that Qq satisfies (1.3) and (1.4). Then
there are constants C = C(P, My, mgy,my) > 0, r = r(P,|Ql) > 0 and
ho = ho(P, My, mgy, my, |Q|) such that the following holds for all h € (0, ho)
and t > 0 and for B, given in (2.7):

Eq(h) satisfies (1.4), B, C E¢(h), and ||E;(h)| — ||| < cvh.

From the above theorem and Theorem 2.7, it follows that E,(h) is uniformly
bounded for all t+ > 0 and 0 < h < hg. Based on this bound and Theorem 2.2
the following is immediate:

Corollary 5.3 Let ¢, Q20, ho and r be as given in Theorem 5.2. Then for h € (0, hg) and
t >0, E;(h) is a uniformly bounded Lipschitz domain with a uniform Lipschitz con-
stant. In particular, the cone property (2.8) holds with Q2 = E;(h) andr = r (P, |Qo)).

5.1 Proof of Theorem 5.2.

The main ingredient in the proof is the comparison of solutions with Wulff-shape
self-similar barriers, based on the geometric properties obtained in Section 4.

First we show a bound on the speed of the boundary of a solution that will be used
for E;(h).

Lemma 5.4 Suppose that A € C([0, h]) with min A > A(0) — g for some g > 0.
Let (S2;)¢>0 be a viscosity solution of V.= y(n)(—kgy + A’), and set m = me /y . For
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given xo € RN, if we have
X0 + (25 + i) Wy CC Qo for some s > 0, (5.7)
m

then, for t5 := 8°m /(N — 1),
x0+8Wg + (g + A1) — AO)Wy CC Q2 for0 <t <min{h, 15}.  (5.8)

A parallel statement holds for Qy and 2 replaced by (20)¢ and (2;)¢, respectively,
but with —Wy, replacing Wy,.

Proof We use the fact that the set flow R(#)Wy is a viscosity subsolution of V =
— ¥ (m)ky with

R(1) = /482 = 2N — Dt /mgyy

as long as R(t) > 0, that is, t < 27;, since the set flow R(mg,y )Wy is a solution
of V.= —¢m)ky and Yymy/y < ¢ (see [6]). It follows from Lemma 3.3 that the
sup-convolution

S(t) == x0 + R(OWp + (q + At) — A0) Wy,

is a viscosity subsolution of V = ¢/ (n)(—kg + A’) for 0 < t < min{h, 275}. Since
Wy C mq_s/lw Wy (Lemma A.6), our assumption yields S(0) CC 9. Now we can
conclude by the comparison principle (Theorem 3.5) since R(t) > § for 0 < ¢t <
315/2. O

We next show that | Ej, ()| does not grow apart from |2g| over more than one time
step.

Proposition 5.5 Suppose that E satisfies (1.4) and contains B, given in (2.7) for some

r > 0. Then there exists ho = ho(P, My, mgy, ) > 0 such that the following holds
for h € (0, hy):

iflE| < ||, thenE C Ty(E; h) and iflE| > ||, thenTy(E; h) C E.

Proof Let us assume that |E| < |Qo| and fix x € E\B,. By Theorem 2.2 E contains
x — Cone,(A) given by some basis A C P. By definition of o3 in (2.6) this cone
contains a ball of radius so3 centered at x; := x — ﬁ ZpeA pforany0 <s <r,

and since Wy C §M¢ (0) by Lemma A.6, we have for §; := so3/(2My)

Xs +28,Wy C ESU3(xs) Cx —Cone,(A) CE foranyO<s <r.
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Fig.7 Barrier argument in
Proposition 5.5 if |E| < Q0]

w0 + SWy (A" (h))

For given h > 0 we set

2My |N — 1\/—
=55 = —— | ——/h.
P 03 me/y

Let iy > 0 be the solution of s, = r and fix & € (0, hy).

Recall now that Q; := 7,(E; h) is by definition a viscosity solution of V =
Ym)(—ky + (A"Y) with initial data E. Setting § = 8, and ¢ = 0, and noting
that A" (r) > 0 = A"(0) for 0 < ¢ < h since |E| < |Q0|, Lemma 5.4 yields the last
inclusion in

X € By aigy (%5) C Xy + 8Wy + AWy, C T (E; ) (5.9)

since h = t5,, where the first inclusion follows from |x — x4] < s < mwa\/ﬁ =
my A" (h) by definition of « in (5.5), and the second one by Lemma A.6.

Next, fix x € B,. Aso; < 1 < oy from Lemma 2.1, the radius of the ball B, given
in (2.7) is bigger than 2r. Then, there exists x; such that |x — x| < s and By(xg) C B,
forany 0 < s < r.Dueto B, C E and 03 € (0, 1] from Lemma 2.1, we have for the
same 8y = s03/(2My) as above

Xg + 28:,Wy C Esag(xs) C Es(xs) CB, CE forany0 <s <r.
Then, a parallel argument yields that x € 7;,(E; h). We deduce E C 7, (E; h) since
x € E was arbitrary.

The inequality |E| > |Q2p| can be handled similarly, considering the complements
of the sets. o

Next we show that 37, (E; h) stays in O(ﬁ)-neighborhood of 0F.
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Proposition 5.6

T(E; ) C ES+ B, ;;(0) and T,(E;h) C E+ B, /;(0) forallt € [0, h].

Herec .= 2+ m;/lw)Mdjot withmgy, Mg as givenin (5.6).

Proof To prove the first inclusion, suppose xo ¢ E€ +B B ﬁ(O). Since B B ﬁ(xo) CE,
Lemma A.6 implies that

x0o+ 2+ m;/lw)a«/}—lwtp C E.

On the other hand, A” satisfies A" (t) > A"(0)—a+/hfor0 <t < h. Thus Lemma 5.4
with § = ¢ = a+/h yields

x0 + av/hWy C T(E; h) forall 0 < t < 75 = ha’my)y /(N — 1).

As « satisfies (5.5), h < t5, and thus the first inclusion is obtained. Parallel arguments
yield the other inclusion. O

Proposition 5.7 For given r > 0, there exist positive constants ho and C depending
only on P, My, mg sy, my, r such that the following holds for all 0 < h < hyp:

If a set E satisfies (1.4), contains B, in (2.7) and satisfies ||E| — |SZo|| < C/h,
then

174 (E; h)| — 190]| < CVh.

Proof Propositions 5.6 and A.4 yield

T (E: )] — E|| < c (2 + m(;/lw> Mya/h forall 1 € [0, h] (5.10)
for some ¢ = ¢(P). If |E| = ||, then we can conclude with
C(P. My, moyymy) i=c (24 my ), ) Mya. (5.11)

If |[E| < |0], Proposition 5.5 yields kg such that |E| < |7,(E; h)| for all h €
(0, hg). Thus we have

—CvVh < |E| = Q0| < |T(E; b)| — Q0] < |T,(E; )| — |E| for all h € (0, ho),

where the first inequality is given by the assumption. Combining the above with (5.10),
we conclude with the same choice of C. Parallel arguments work if |E| > |Q|. O

Proof of Theorem 5.2. Let C = C(P, My, myy,, my, ) be the constant given in (5.11).
Due to (1.3), we have
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10| > |Bic,(0)| +2Cy/ho+¢  for ho, e(= (P, 1)) < 1, (5.12)

where K is given in (4.3). In particular, as [Qg| > B, (0)| + ¢, Theorem 4.2 yields
B, C Qp for some r > 0 depending only on P and ¢ = (P, |Q]).

Now Proposition 5.7 applies to E = Qg and we have ||Eh (h)| — |Qo|] < C/h for
all i € (0, hyg), if ho is chosen sufficiently small. From this and (5.12), we get

|En(h)| > |Bic,(0)] + C/h + & for all i € (0, ho).

Again, as |E (h)| > | B, (0)| 4 &, Theorem 4.2 now yields that Ej, (h) satisfies (1.4)
and contains B, for the same r given above.

We can iterate this argument in the time interval [kh, (k + 1)h] for all k € N.
Applying Proposition 5.7 to E = Eyj,(h) and then using Theorem 4.2, we conclude
that

E (k+1)n(h) satisfies (1.4), contains B, and satisfies ||E(k+1)h (h)| — |Qo|| <Ccvh
(5.13)

for all k € Nand i € (0, hg).
Lastly, it follows from (5.10) with £ = E|;/,), and (5.13) that

1E:(h)] = 1Q0l] < [|E«(W)| = |Eynnl| + [|ELismn] — 190l| < 2CV/h for all ¢
> 0and & € (0, ho).

The above and (5.12) imply that
|E;(h)| > |Bic,(0)| 4 & forallt > 0 and € (0, ho).

By Theorem 4.2 again, E,;(h) satisfies (1.4) and contains B, for all 1 > O and i €
(0, ho). O

5.2 Equicontinuity of A" and E,(h)

Proposition 5.8 Let Q2 and ¢ be as in Theorem 5.2. Then A" : [0, 00) — R in (5.4)
is locally uniformly Holder continuous. Namely there exist positive constants h1 and
C depending only on P, my,, My, mg/y and || such that

Aty — M) < Cle =512 forany |t —s| < landh € (0, hy).  (5.14)

Proof The proof is based on the fact that |E, (k)| is O(h'/?)-close to || (Theo-
rem 5.2), which bounds the oscillation range of A"

We will only show (5.14) for small time intervals. Let « satisfy (5.5) and let r and
ho be as given in Theorem 5.2. For g¢ := r2/(20)?, we claim that there are constants
h1 € (0, hg) and C > o with dependence as given above such that (5.14) holds for
|s —t] < .
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It is clearly enough to show the claim for s < 7. Suppose that for some 4 € (0, hg),
s*, t* with s* < 1* < s* + g9 we have

R := A"t — A (s*) — alt* — s*|1/* > 0.

Let so be the last time in [s*, 7*] such that A’ (sg) < A’ (s*). Since A’ is continuous s
is well-defined, less than 7*, and satisfies A" (1) > A’ (sg) = A" (s*) for T € (so, t*].
We first show that

Eg,(h) + Br(0) C Ep+(h). (5.15)

To deduce this, we apply Lemma 5.4 as in the proof of Proposition 5.5, but this
time with s := a|t* — so|'/? < ae(l)/z < r. Thus § := s03/(2My) satisfies 75 =
82my y /(N —1) > |t*—sp|. Using these estimates and the fact from Theorem 5.2 that
E, (h) satisfies (1.4) and contains B, we can proceed as in the proof of Proposition 5.5
to show that for every x € Eg,(h) we can find xg satisfying xo +25Wy C E,(h) and
lx —xo| <s = a|t* —so|'/2. Lemma 5.4 yields an inclusion as in (5.9) and we deduce

§R (x) C EAh(z*)—Ah(so) (x0) C Es=(h).
This implies (5.15).
We now use a series of inequalities to estimate R. The inequality [27, Theorem 3]
with dimensional constant C is used first, then (5.15) and the isoperimetric inequality,
Per(Eq,(h) + Br(0) = C|Eq,(h) + Br(O)| NV = ClE, ()| VDV,
that yield another dimensional constant C», and finally the estimate in Theorem 5.2

is used to find constants 71 and C3 depending only on P, My, mg/y, my such that
|Ep(h) \ Egy(h)| < C3h'/% and |Q0]/2 < |Eq,(h)| for h € (0, hy). These all yield

R<C |(Es0(h)+ER(0)_)\ES0(h)|
Per(Ey,(h) + Br(0))

< C4IQ| T K12, (5.16)

< CoEy()|'N |Epe (h) \ Ego(h)]

for h € (0, h;) with C4 depending only on P, My, mgy/y, my. Setting M =
C4|SZO|(1_N)/N, we therefore have

Since we also have A" (%) — A" (s*) < }2‘1"7 |* — s*| by the definition of A", it follows
that

Ay = A (s*) < C|r* — 5*|'/? with C = max(Qa, M).
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This shows one direction in (5.14) for |t — s| < g9. We can similarly bound Ar(t) —
A" (s) from below by considering the same argument for the complement E, (k). By
making the constant C larger if necessary, we deduce (5.14) forany |t —s| < 1. O

Proposition 5.8 yields the equicontinuity of E; (/) in the Hausdorff distance.

Corollary 5.9 Under the assumptions and with hy in Proposition 5.8, there exist C
depending only on P, My, mgy , my such that

dy(0Eg(h),dE;(h)) < C|t —s|%f0rany [t —s| <landh € (0, hy). (5.17)

Proof Using the Holder continuity of A’ in Proposition 5.8, one can use the barrier
argument as in the proof of Proposition 5.6 to conclude that forall0 <s <t < s+ 1
and 0 < h < hy

I~ (h) C E;(h) C TH(h),

where T (h) := {x € RV : sd(x, E,(h)) < +£Ci|t — 5|2}, (5.18)

for some C; depending on parameters P, My, my/y , my . As a consequence, we have

sup d(x,dEs(h)) < Ci|t — s|% forall h € (0, hy). (5.19)
x€E; (h)

Now, Lemma A.5 applies to E;(h) and there exists C; = C2(P) > 1 such that

max{d(x, I~ (h)), d(x, (Tt (h))9)} < C2Cit —SI%
forall x € 9E(h) and & € (0, hy) (5.20)

if |t — s| < ¢ for sufficiently small ¢ = ¢(P) > 0. On the other hand, (5.18) implies
d(x,dE;(h)) < max{d(x,Z~(h)),d(x, (T (h)))}forall x € dE (h). From this and
(5.20), we have

sup  d(x, dE;(h)) < C2Cilt —s|2 forallh € (0, hy)if |t — 5| < e.
xe€dEg(h)

We can now conclude (5.17) using the above inequality and (5.19), as well as the
triangle inequality. O
6 The proof of Theorem 1

In this section we prove Theorem 1. We construct the flow as the limit as 7 — 0
of the approximate flow with the discrete-time forcing A;, introduced in Sect. 5. The

main ingredients in the analysis are the cone property and the Holder time-continuity
of the approximate flow obtained in Sect. 5. Due to these properties, we can rule out
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potential fattening of the sets as & tends to zero. Recall that the smoothness of ¢ is
necessary both for the reflection comparison principle and for the preservation of (1.4)
in Sect. 4.

We resort to the level set approach, which is more convenient for convergence
arguments. Let us define

u(x,t) = max{—sd(x, E;(h)),a} for (x,1) € RN x [0, 00), (6.1

where E;(h) is as given in Sect. 5. The value of the constant @ < 0 is not important
and is chosen only so that the solution is bounded.

Lemma 6.1 Let ¢ and Qq be as in Theorem 1. Then along a subsequence u" locally
uniformly converges to u in RN x [0, 00) as h tends to zero.

Proof By Arzela—Ascoli, it is enough to show that {u”} is uniformly bounded and
equi-continuous for sufficiently small /. For the bound, the lower bound follows from
its definition, and the upper bound is a consequence of Corollary 5.3.

u™ is 1-Lipschitz in space for all # > 0 due to its definition, and furthermore

u (x, 1) — u" (x, 5)| < |sd(x, E¢(h)) — sd(x, Es(h))]
forall s, ¢ € [0, co) with |t — 5| < 1.

As the evolving sets {E;(h)}:c[0,1] for h € (0, hp) are uniformly Holder continuous
in the Hausdorff distance from Proposition 5.9, we conclude. O

Proposition 6.2 Let Q20 and ¢ be as given in Theorem 1. For u given in Lemma 6.1
and the corresponding subsequence {h;};, we have

lim sup* xg,n,) = Xg; and liminf . xg,n;) = xe, for eacht > 0, (6.2)

i—00 =00

where

Q = {u(,1) > 0} and ;= {u(-, 1) < 0}.
Proof We only show the first equality in (6.2), since the other can be shown by parallel
arguments. If u(x,t) > 0, uhi(x, 1) > 0 for sufficiently large i. Thus, if we define

Q; = {u(-, t) > 0}, then

lim sup* xg, ;) (x, ) = 1 forall x € ;.
i—00

Next we show that u(-, ) is negative outside of ;. Fix x with u(x,#) = 0. By
the uniform convergence u” to u and the definition of u” as the signed distance

function, there exists y; — x with uhi (yi,t) = 0. Pick xo € B¢ N B, s2(x) and let
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A:={p; };V:l C P be the basis from Theorem 2.2 for xo. It follows from (2.8) applied
to E,(h;) that

—sd(-, y; — Cone, (A)) < u" (-, 1) < sd(, y; + Cone,(A))  on Bja(:), (6.3)

where a is the constant from (6.1). Due to the local uniform convergence uli = u,
(6.3) holds for u too with x in place of y;, and we conclude that x € {u(-, 1) > 0} = Q;
and so u(-, ) < 0in (2/)C.

Now, if x € (Q,)S, then u(-,7) < Oin a compact neighborhood of x and thus

ui (-, 1) < 0 for sufficiently large i in the same neighborhood. Thus we conclude that

lim sup ™ xg, ;) (x, 1) = 0.

i—00

Let us finish this section with carefully verifying the statements of Theorem 1.

Proof of Theorem 1. Let (£2;);>0 be as given in Proposition 6.2. From Proposition 5.8,
along a subsequence A" locally uniformly converges to A € C/2([0, 00)) as h — 0.
We combine Lemma 5.1 with Proposition 6.2 and Theorem 3.6 to conclude that (£2;);>0
is a viscosity solution of V = y(n)(—kg + A').

As E;(h) satisfies (1.4) and contains 5, due to Theorem 5.2, Proposition 6.2 yields
the same property for €2,. Moreover €2, is uniformly bounded for all # > 0: this follows
from Theorem 2.7 and the fact that €2, contains B,. Hence one can find a finite number
of neighborhoods O; := B, (x;) with x; € B¢, such that |J; (O; x [0, 00)) contains I'.

As explained in the proof of Proposition 6.2, from the local uniform convergence
of u” to u and their non-degeneracy it follows that (2.8) holds for (£2;);>0, where A
is the basis given from Theorem 2.2. In particular it follows that d<2; has interior and
exterior r-cone properties in each B, (x;), with the axis of the cone v; only depending
on x;. In other words 9<2; in each set O; can be represented as a Lipschitz graph
{x-vi = fi(x’, )}, where x’ = x — (x - v;)v;, with f; (-, 1) having uniform Lipschitz
constant over 7.

The Holder regularity of f; in time follows from

dy (3, 992) < Clt — 5|2 forany |t —s| < 1

with C only depending on ¢ and . This is a consequence of Corollary 5.9 and the
fact that dg (0€2,, 0 E;(h)) tends to zero as h — 0, for each fixed r > 0. We can now
conclude.

Lastly, it remains to show that |2;| = |Q2p]| for all # > 0. Since €2; is a Lipschitz
domain, we have |2;| = || Proposition 6.2 and Fatou’s lemma yield that

1) = / lim sup ™ xg, ;) (x) dx > lim supf XE,(hj)(x) dx = lim sup | E; (h;)|
RN RN

i—00 i—00 i—00
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and

|Qt| = / lim il‘lf* XEt(hi)(x) dx < lim inf/ XEt(hi)(x) dx = lim inf |E,(/’l,)|
RN i i—oo JRN i—00

11— 00

From Theorem 5.2 we have lim; _, o | E; (h;)| = |20/, and thus we conclude. It follows
that ((£2;);>0, A) 1S a viscosity solution of (M) in the sense of Definition 3.4, and we
can conclude the theorem. O

7 Global existence: crystalline flows

In this last section we focus on the remaining case of Lipschitz but non-differentiable
anisotropy ¢. Given ¢, let {¢,,} be a sequence of positively one-homogeneous, convex
functions in C2(RN\{0}) such that ¢, — ¢ locally uniformly with

e {¢, < 1} are strictly convex;
e all ¢, have a reflection symmetry with respect to the same root system P as ¢.

For example, we can take positively one-homogeneous functions ¢, such that {¢, <
1} ={p : (@ *nmm)p) + Ip|>/n < 1}, where n1/n is the standard mollifier with
radius 1/n.

We can then follow Sect. 5 to construct a sequence of approximate solutions for
the anisotropy ¢, with forcing A,. Using this approximation, we present two results
which characterize our limit with the available notion of solutions of (M).

If ¢ € C2(RN\ {0}), this would immediately follow from the stability properties of
viscosity solutions. When ¢ is only Lipschitz and its graph has corners, that is, more
than one tangent hyperplane at a point, there are challenges associated to defining a
notion of solutions, even with smooth forcing. As we already explained in Sect. 1,
the main challenge lies in the nonlocality of the evolution as the crystalline curvature
depends on the size and shape of flat facets parallel to the facets of the Wulff shape,
and is in fact very sensitive (discontinuous) to facet breaking and facet bending. The
crystalline curvature is usually constant on facets and they are therefore preserved
in the evolution, but for certain geometries of facets or for non-uniform forcing the
curvature might not be a constant and facets break or bend [7]. In dimension N = 2
the flow is relatively well understood and a notion of viscosity solutions has been
defined [19,20]. In dimensions N > 3 there are two notions of solutions only recently
available.

In Sect. 7.1 we discuss the notion of viscosity solutions introduced by Giga and
Pozar [21,22], based on the level set functions. This notion allows a general mobility
Y but requires the anisotropy ¢ to be purely crystalline. In Sect. 7.2 we discuss
the alternative notion by Chambolle, Morini, Novaga and Ponsiglione [12,14]. Here
variational approach is used to introduce a notion of solutions, using the signed distance
function to the evolving set. This notion directly deals with the set evolution and thus
fits well with the approach taken in the preceding sections. On the other hand, when
the mobility ¥ is not ¢-regular such as ¢ = 1, a solution is indirectly defined as a
limit of solutions with ¢-regular mobilities.
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7.1 General mobility for purely crystalline case

In this section we assume ¢ to be a purely crystalline anisotropy, that is, ¢(p) =
max; (x; - p), where x; are the vertices of the corresponding Wulff shape. This is so
that we can use the notion of viscosity solutions developed in [21-23].

In contrast to Sect. 7.2, we can consider a mobility ¥ that is not ¢-regular, as long as
it is reflection symmetric with respect to the root system P. On the other hand, in this
generality the only stability result currently available in [23] is for limits of continuous
solutions of the problem with smooth anisotropy. For this reason we follow Sect. 5
but without the re-initialization of the distance function after every A-step to construct
a sequence of continuous approximate solutions. This way we obtain approximating
solutions for the level set equation.

Due to issues with possible fattening and consequent non-uniqueness, it is not clear
whether the zero super-level set of the limit solution has the correct volume. Thus
our existence result for the set flow (M) is under the assumption of no fattening; see
Theorem 7.4.

Letusfixn € N, s = 1/n and a < 0 throughout this section. For given fixedn € N
the algorithm is parallel to that of Sect. 5 except the re-initialization step as we describe.
With initial data ug in (5.1) and A, (¢) := A(E, 1/n) for ¢t € (0, h) where X is defined
in (5.2), we find the unique continuous viscosity solution u, € C, (RN x [0, h]) of
the level set formulation of

V = ¢ (n)(—ky, + ) in RN x [0, A1,

with initial data ug. Then for every k € N, we iteratively define A,(¢) :=
A{un (-, kh) > 0}, 1/n) fort € (kh, (k+1)h) and extend u,, to C, (RN x [0, (k+1)h])
to be the unique continuous viscosity solution of the level set formulation of V =
Y(m)(—«ky, + Ay) in RN x [kh, (k + 1)h] with initial data u, (-, kh) (that is, we do
not reinitialize the data as the signed distance function to {u(-, kh) > 0}).

Note that

{un(-,0) >0} = E;(1/n)  and  {u,(-,1) = 0} = E;(1/n). (7.1)

Indeed, on the interval [0, #) the equality holds by the definition of E;(h) and no
fattening is established in Corollary 5.3. Furthermore, the absence of fattening also
implies that reinitializing the signed distance function in (5.1) using £ = Ej(h) to
continue the construction of E;(h) on the interval [/, 2h) does not change the zero
level set and therefore the equality continues to hold on this interval. Iteratively we
conclude that the equality holds for all r > 0.

Proposition 5.8 yields a constant i1 = h(P, my, My, mgp;y) > 0 such that for
n > 1/h; we have uniform Holder continuity for A, (t) := f(; An(s) ds. Thus along
a subsequence A, locally uniformly converges to A € C!/2([0, o0)).

By viscosity solutions in the sense of Definition 3.2 below, we mean the general-
ization of viscosity solutions defined in [23] to a continuous A as in Definition 3.2,
using (3.6) in the sense of [23].

@ Springer



On volume-preserving crystalline mean. . . 763

Proposition 7.1 The functions

u = lim sup*u,, u:=lim inf,u,
n n

are aviscosity subsolution and a viscosity supersolution, respectively, of the crystalline
mean curvature flow V. = ¢ (n)(—kg + A') in the sense of Definition 3.2.

Proof We modify the proof of [21, Th. 8.9]. For § > 0 we can approximate every ¢,
by the smooth ¢, s(p) := (¢ * 1s) + 8|p|* and find viscosity solutions u, s of

ur = Y (—=Du)(—div D s(—Du) + 1,) (7.2)

with initial data u (-, 0) = ug as above. By the stability result for the viscosity solutions
of the smooth anisotropic mean curvature flow, u, s — u, locally uniformly. Note that
this approximation by solutions with uniformly elliptic operator — div D¢, 5(—Du)
is necessary in the proof of [21, Th. 8.9] to be able to use the perturbed test function
method.

Let us now take any ® € C([t1, ]) N Cl((tl, 1)) with ® > A on [t1, t»]. For n
sufficiently large, ® — A,, > 0 on [#1, 1] due to the local uniform convergence of A,
to A. For these n, by definition and by following the proof of Lemma 5.1 the function
Un.5(-; © — Ap) (see (3.3) for the notation) is a viscosity subsolution of

u; = Y (—Du)(— div D¢, 5(—Du) + ®")
in RN x (11, t2). We note that
Uns(,O —Ay) > Up(-,0—Ay) ass§—0
locally uniformly and, by Lemma B.1,

(O — A) = lim sup* 7, (-; © — Ay).
n

Therefore we can follow the proof of [21, Th. 8.9], with necessary modifications
to allow a time-dependent forcing done in [23], to conclude that u(; ® — A) is a
viscosity subsolution of (3.6). O

Lemma 7.2 u and u from Proposition 7.1 satisfy u(-,0) < ug < u(-, 0). In particular,
u=uin RN x [0, 00) and the subsequence u, converges to the continuous function
u := u locally uniformly.

Proof We need to construct barriers at 1 = 0 for u, that can be controlled in n
uniformly. Fix ¢ > 0 and choose ® € C‘([O, 1) with A < ® < A +¢in [0, 1].
As A, — A locally uniformly (along a subsequence), for large enough n we have
A, < ® < A, +&. We have that u,,(-; ® — A,,) is a subsolution of
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u; = ¥ (—Du)(— div Dg,(—Du) + @). (7.3)

Let us recall the positively one-homogeneous level set function ¢, of the Wulff
shape Wy, = {¢, < 1} defined as ¢, (x) := max{x - p: ¢,(p) <1, p € RN} By a
standard convex analysis, ¢, € C 2(RM\{0}) and due to the local uniform convergence

¢n — ¢, we deduce ¢, — ¢° locally uniformly. Let us define

2(N
vy (x, 1) 1= M(Pn\/qbr?(_x)z + ( m

HM My My,
%) Lo+ S (O (1) — ©(0).

We check that it is a classical supersolution on (RY \ {0}) x (0, 00). Indeed, we have
dyon(x, 1) = e (L 4 (1)),
Du, (x, 1) = My, 2= (= D (—x).

A standard convex analysis (see [6]) yields

N-—-1

— div D ppy (— Dy (x, 1) = — div D (DG (—x)) = P

and ¢, (Dg5(—x)) = 1. The latter yields | D¢ (—x)| < 71— and, using that @ <

1, also Y (—Dv,) < M#Z@’. We conclude that
Y (=D (x, D) (= div Dy (=D, (x, 1)) + (1)) = e (XL 1 0/ (1))
= d;v,(x, 1).

Therefore v, is a classical supersolution of (7.3) in (RV\0) x (0, c0). Since the first
term in v, is nondecreasing in ¢, we conclude that it is a viscosity supersolution in
RY x (0, 00).

Furthermore, as ¢, (—x) > M, ;ﬂ ! |x|, we observe that v, (x, 0) > |x| and therefore

for any fixed y € RV,

1y (x, 0; ©(0) — Ay (0)) = Up(x; O(0) — An(0))
< va(x —y,0) +do(y; O0) — A,(0), xeRY,

as both ug and g are 1-Lipschitz in space. By comparison principle,
U (x, 1) < vp(x — y, 1) +Uo(y; ©0) — A,(0))  for (x,1) € RY x [0, 1],

where the right-hand side converges locally uniformly to v(x — y, t) + ug(y; ©(0) —
A(0)). Here v is defined as v, but with ¢ instead of ¢,,. We deduce

lim sup* 2, (y,0) < v(y —,0) +uo(y; ©(0) — A(0)) =up(y; ©(0) — A(0))
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<up(y) + My |09 (0) — A(0)]
<uo(y) + Mye,

where we used that ug is 1-Lipschitz and that Wy, C EMV, for the second inequality.
Since ¢ > 0 was arbitrary, we conclude u(-, 0) < ug. The inequality for u can be
deduced analogously.

Following the argument in [26, Theorem 2.10], we can then show that # < u in
RN x [0, 00) and hence u := u = u. We conclude that u, converges to u locally
uniformly along a subsequence. O

Now we turn to the question of the volume of the zero super-level set of the limit
u. We will show that if the sets {u(-, 1) > 0} and {u(-, r) > 0} have the same volume,
then it must be |2g|. To this end, we fix @ < 0 and define the signed distance functions
similar to (6.1),

dy(x,t) := max(—sd(x, {u, (-, t) > 0}), a).

Following the proof of Lemma 6.1, this sequence is locally uniformly bounded and
equicontinuous. Thus by selecting a further subsequence if necessary, there exists a
continuous function d such that d,, — d locally uniformly.

Lemma 7.3 Let u be as in Lemma 7.2 and d be as introduced above. We have
{fu>0tCc{d>0}cCc{d=0}C{u=>0}.

Proof Observe that (7.1) yields sign u,, = signd,,. Letus fix (x, t) withu(x, t) > 0.By
continuity, there exists § > 0 with ming, ., u(-,#) > 0 and so by the locally uniform
convergence we have ming, . u,(-, 1) > 0 for sufficiently large n. In particular,
d,(x,t) > § and hence d(x,t) > .

A parallel argument verifies that u(x, t) < 0 implies d(x, ) < 0. The claim of the
theorem follows. O

Theorem 7.4 Let QQq satisfy (1.4) and let u be from Lemma 7.2. Set 2; := {u(-, t) > 0}.
If there is no fattening of {u(-, t) = 0} in measure, that is, if |{u(-, t) = 0}| = 0 for all
t >0, then ((2;)r>0, A) is a viscosity solution of (M).

Proof We can follow the proof of Theorem 1 with d,, in place of u” in (6.1) to show
that {d(-,#) = 0} can be locally expressed as a graph of a Lipschitz function and

{d(-, 1) > 0} = Qo]
By Lemma 7.3, for any # > 0

Hu, ) > 0} = {d (., 1) > O} < {u(-, 1) > O} + [{u(, 1) = O} = [{u(-, 1) > O}.
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We conclude that [{u(-, ) > 0}| = |Q2¢|. Now the theorem follows from the previous
characterization of u as a viscosity solution of V = ¥ (n)(—«y + A). O

7.2 With ¢@-regular mobility

In this section we assume ' to be ¢ regular, namely that there exists &9 > 0 and a
convex function n such that

v (v) =n) +e0p (V). (7.4)

(7.4) is equivalent to ensuring that, for a closed set E, positive level sets of distance
function d := dist¥’ (x, E) satisfy the interior Wulff-shape property. When ¢ is dif-
ferentiable, this property yields the curvature bound

(divz)4 < (N — 1)/(sod), where z := D¢ (Dd) (7.5)

(see [12,13] for further discussions on ¢-regularity). Based on this observation, a
notion of distributional solutions for the set evolution of V = ¢ (n)(—«y + A) was
introduced in [13] as well as its uniqueness, when A is in L7> ([0, 00)).

We are not able to obtain such regularity for the volume-preserving forcing term A’
for our limit flow, which only exists in the distributional sense. (In general it appears
difficult to obtain strong regularity properties for A in non-convex setting: see [26,
Example A.2]). Instead, here we will show that our limit satisfies a natural extension
of the distributional solutions in [12], with necessary modifications to address the
weaker regularity of our forcing term. We expect this notion to deliver uniqueness for
crystalline flows of this form (that is with fixed forcing A’ where its anti-derivative A
is merely in C ([0, T'])), however we do not pursue this issue here.

For ¢, as given earlier in the section, we define ¥, (v) := n(v) + €o¢, (V). Let us
denote its corresponding solution ((£2}');>0, A,) and define

dy(x, 1) == dist”" (x, Q") and d, (x, 1) := dist¥" (x, (Q7)), where dist” (x, E)
= inf —y).
;25 nx—y)

Note that due to the geometric properties we have on (2}');>¢ and the uniform Holder
continuity of A, (see Theorem 1), along a subsequence, Q2] converges to €2; locally
uniformly in Hausdorff distance, and d,,, Jn, A, convergetod, d , A locally uniformly
in space and time. Below we will show that the limiting flow ((£2;);>0, A) satisfies
the properties of distributional solutions for the crystalline flow.

Theorem 7.5 Let (Y, ¢n) be as given above, and let ((S2)s>0, A) be a subsequﬂitial
limit of ((2}):>0, Ap) as discussed above. Then the following holds for E; 1= Q;:

(a) Letd(x,t) := dist”’ (x, E,). Then there exists z € L (RN x (0, T)) such that
z € d¢(Dd) a.e., div z is a Radon measure in ¥ := UO<t<T(RN \ E;) x {t},
and

@ Springer



On volume-preserving crystalline mean. . . 767

(divz)™ e L®{d(x,1) > 8}) for every § € (0, 1). (7.6)

Moreover, for any smooth ¢ supported in ¥ we have

//d(—qb,)dxdt > //(z - D¢ — A¢y)dxdt. (7.7)

(b) The statements of (a) hold for E; replaced by Ez = RN\Qz and A replaced
by —A.
(c) 2| = || forallt > 0.

Remark 7.6 In Lemma 2.6 of [13], there is an additional term —Md¢ in the right-hand
side integrand of (7.7). This term is present due to the spatial dependence of the forcing
A in their case, and thus does not appear for our problem.

The following is an immediate consequence of properties (a)—(b), which constitutes
of the definition in [14] for the flow with the fixed forcing V = vy (n)(—«y + g) with
g=A.

Corollary 7.7 When A is a Lipschitz continuous function of time, (§2;)>0 is a solution
of the flow V = yr(n)(—«kg + A') in the sense of [14].

Our proof largely follows that of Theorem 2.8 in [13], with necessary modifications
made for the low regularity of A. We will only show (a) since (b) can be shown via
a parallel proof. (c) is a direct consequence of the following convergence:

sup d(x, 2;) — 0asn — oo, forallt > 0.
xeQy

Proof Let us consider a sequence of C! functions 6, that sits below A, and locally
uniformly converges to A. For instance we can choose én := A x 11/, with a standard
mollifier n and shift it down by e, := ||§n — Ayl to define 6, (Note that e, goes to
zero as n — oo due to the locally uniform convergence of A to A, ). By Definition 3.2

liy(x,t) = u( 1) = xgn(x),  whereu(-, 1) := xq,,

inf
XA —6) (1) Wy,

is a viscosity supersolution of V' = v (n)(—ky + 6,). We accordingly define
d, = dist”’" (x, E!), where E}' := fz_;’

From Lemma 2.6 of [13], d, satisfies (7.7) with z replaced by z, = D¢, (Dd,)
and A replaced by 6,,. From Theorem 1 which provides uniform spatial geometric
properties on 2} and uniform Holder continuity of d, over time, we know that E7}
converges to E; in the Kuratowski sense, and thus d,, locally uniformly converges to d
inRY x [0, 00). Moreover, z,,’s are uniformly bounded in L. (RN x [0, 00)) and thus
have a subsequential weak- limit z. Using this and the locally uniform convergence
of c?n, 6, tod, A, we can confirm that (7.7) holds for d and z.
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Now it remains to confirm that z € d¢(Dd) a.e. with (7.6). To this end, observe
that due to the uniform ¢, regularity of ¥, we have divz, < (N — 1)/(¢od,) for
some gp > 0 as pointed out in (7.5). Hence arguing as in Theorem 2.8 of [13] we can
conclude. m|
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Appendix A: Geometric properties

Here we show several geometric properties used in the paper. First we show that Py
given below is a root system:

Py = {pesh! ip=¢oV,and y = o W,}.
By definition of Py and the fact that W, = W_,, it can be shown that
p e Py, ifandonlyif —p e Py (A.1)
Recall the reflection with respect to a hyperplane containing the origin
Yp=Vn,0=1-2p®p

is a symmetric unitary operator and an involution. Furthermore, compositions of three
(or any odd number of) reflections are also reflections. From this observation, we show
that if p and ¢ are directions of reflection symmetry, then =W, (p) is also a direction
of reflection symmetry.

LemmaA.1 If p,q € Py, then =V, (p) € Py. In particular, Py is a root system.
Proof As W, is an involution and symmetric, we have

Y, V¥, x =¥, (\Iqu —2(Wyx - p)p) =x=2(x-Y,p)Vyp =Yy, px.
From |V, (p)| = |p| = 1 and (A.1), we conclude that £¥,(q) € Py. O

Lemma A.2 The perimeter of a set E satisfying (1.4) and B, C E C Bg(0) for some
r > 0and R > 0 is bounded by C = C(P,r, R) > 0.

Proof Set F := Bg(0) \ B,. There exists a finite number of points x;, | <i < m in
F such that

Fc |J B

1<i<m
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As E is a Lipschitz domain from Theorem 2.2, it suffices to show that HN-1 VEN
B, (x;)) is uniformly bounded for 1 < i < m. Here, HN=1is the (N — 1)-dimensional
Hausdorff measure. Either d E N B, (x;) is empty or it can be represented by a Lipschitz
graph. In particular, from the cone condition in Theorem 2.2, the Lipschitz constant
only depends on » and P and thus we conclude. O

Next, let us recall the uniform density from [27, Definition 4], which is, roughly
speaking, a quantitative definition for Ahlfors regular sets. Let ¢ € (0, 1) and so > 0.
We say that @ C R has (so, ¢)-uniform lower density if the estimate

_IB@ne
= B

0<c

holds for all s € (0, so) and x € 9€2. Similarly, €2 is said to have (sq, ¢)-uniform upper
density if

|Bs(x) N € _
[Bs()l

l—c<1.

When both conditions are satisfied together, 2 has (sg, ¢)-uniform density.

LemmaA.3 [27, Theorem 4]. Let @ C RN have (s, c)-uniform density. Then

N1
{x e RV :0 <d(x, Q) <s} <C(1+21) ¥ Per(Q)s foralls € (0, s0).
Here, C is a dimensional constant.

As a consequence of Theorem 2.2 and the above lemma, we conclude.

Proposition A.4 Suppose that E satisfies (1.4) and B, C E C Bg(0) for some r > 0
and R > 0. Then, there exists ¢ = ¢(P,r, R) > 0 such that

Hx e RN :0 <d(x,E) <s}| <cs (A.2)

foralls € (0,r). Here, B, is given in (2.7)

Proof We claim that E has (r, U3N )-uniform density for o3 given in (2.6). For all
s € (0,r), E has an s-interior cone and an s-exterior cone from Theorem 2.2. As
s-interior and exterior cones are contained in a ball of radius s and contains a ball of
radius o3s for o3 given in (2.6), we conclude that

0_31v§|Bs(x)mE|§1_U3N.
| Bs ()]
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Then, we apply Lemma A.3 and Lemma A.2 to conclude (A.2). O

Lemma A.5 Suppose that a bounded set E satisfies (1.4) and B, C E for somer > Q.
Then, there exist C = C(P) > 0 and ey = eo(P, r) > 0 such that

d(x,IT7) < Cesandd(x, TT) < Cse forall x € E and for all ¢ € (0, &)
(A3)

where T% := {x e RN : sd(x, E) < +e¢}.

Proof Set ¢y := o3r/2 and fix x € 9E. Theorem 2.2 yields that E contains x —
Cone, (A) given by some basis A C ‘P. This cone contains a ball of radius so3 centered
at xy '=x — 5y ZpeA p forany 0 < s <r.Fore € (0, g9), choose s := 2¢/03. As
B (xy) is contained in E, we have d(xs, 0E) > ¢ and thus x; € Z~. This yields that

£ (A4)
03

dx,17) = |x — x| =

[NSH ]

The second inequality can be handled similarly. O

A function f : RN — R is called positively one-homogeneous if
f(s&) =sf(&) forallé e RY and s > 0. (AS)

Recall the definition of the Wulff shape W in (1.1).

Lemma A.6 For positively one-homogeneous functions f, g : RN — Rwith f < g
we have

By (0) C Wp C W, C B, (0),
Here, m s, Mg are given in (5.6).
Proof Wy C W, is clear from the definition. For the ordering with B f(O) and
EMg (0), we note that B, (0) = W), for h(p) :=r|p| forany r > 0. O
Appendix B: Technical lemmas
LemmaB.1 Suppose that uy : RY x R — R is a locally-bounded sequence of
upper semi-continuous functions and let u := lim sup *;_,  ux. Let ry € C(R) be

a sequence of non-negative continuous functions such that ry — r locally uniformly
and let K C RN be a nonempty compact set. Then

sup u(-,t) = lim sup sup  ur(-, ). (B.1)
x+r(t)K k—o00 Xp+rr () K
(ks 2 )= (x, 1)
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Proof Fix (x,t) and suppose (x, tr) — (x,1).
Choose y € x+r(t)K suchthatu(y,t) = SUPy ik U5 1) and y; € xp+re(tr) K

such that ug (v, tx) = SUPy, 47 (1)K u(-, ).
Since {yx} is clearly bounded, we can consider a subsequence indexed by k,, so
that y;,, — z for some z and lim,, uk, (V,, , t,) = lim sup u (yk, ). Suppose that
k

r(t) > 0. We have r,, (#,,) > 0 for large m and therefore

r(t)

Ve (i)

Yk — Xk,) € T(OK.

Since the left-hand side converges to z —x, we have z —x € r(¢) K. On the other hand,
if r(¢t) = 0 then ry,, (t,) — 0 and hence z — x = lim,, (yx,, — xx,,) = 0 € r(H)K.
This implies that u(z, t) < u(y, t). Since u = lim sup * uy, we conclude that

lim sup uy (yi, tx) = linrln Wk Vi > ty) < (2, 1) < u(y, t).
k

As the sequence {(xx, tx)} was arbitrary, we conclude that the inequality > holds in
(B.1).
To show the equality, we consider a maximizing sequence, i.e., we choose
(v, tx) — (y,t) such that u(y,t) = lim supug(yk, tx). If r(r) > 0, we set
k

X = Yk — %(y — x). Clearly yx € x¢ + ri(tx)K and xp — x. If r(z) = 0, it

is sufficient to take any x; € yx — rr(fx) K and we still have x; — x = y. We then
have

lim sup sup  up(-, tx) > lim supug(yg, tx) = u(y,t) = sup u(-,1t).
k X+ () K x+r(t)K

This finishes the proof. O

LemmaB.2 Suppose that ¥, ¢ : RN — [0, 00) are positively one-homogeneous
convex functions, with zero only at p = 0 and suppose that ¢ € C*(RN\{0}). Suppose
that u is a viscosity subsolution of uy = ¥ (—Du)(— div D¢ (—Du) + A) for some A €
C(R). Then for any positive R € C'(R), u(-; R) from (3.3) is a viscosity subsolution
of uy = ¥ (—Du)(—div D¢(—Du) + A + R').

Proof Without loss of generality we may assume that u is upper semi-continuous. To
simplify the notation we write % (x, r) instead of u(x, t; R). Let ¢ be a smooth test
function such that i — ¢ has a maximum O at (X, 7). Recall that we need to show ¢; <

F*(f, Do, D*p)at (%, 7),where F(t, p, X) := ¥ (—p) (trace[D,z,qb(—p)X] + A+ R’),

p #0.
Due to the assumption we have

ex, ) >u(x,r) = max u(-,1)
x—R(HWy
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with equality at (£, 7). We now fix § € X — R(f) Wy, such that u(3, 7) = u(%, 7). Note
that from the definition R(t))% € R(t1)Wy, and so x — R(t)% € x — R(tO)Wy,
which yields

e, 1) > ux, 1) > ulx — R(t)%, )

for all x, ¢ with equality at (£, 7). Thus we deduce

G, 1) = o(x + RO 1) = ulx. 1)
for all x, ¢ with equality at (9, 7). In particular, u — ¢ has a local maximum at (9, £).
Now a direct computation yields D@(9, 1) = D(x, 1), D*’¢(3,1) = D*¢(X,1)
and

$(3,1) = @ (%, 1) + Do(%, 1) - %R/@, (B.2)

If Do(x,7) = 0 this simply yields ¢, (9, f) = ¢;(%, ) and we conclude that the
correct viscosity solution condition is satisfied for ¢ since u is a viscosity solution
with right-hand side F (¢, p, X) — ¥ (—p)R'(¢) by assumption.

Now suppose that Dg(%, f) # 0. As

@, 1) > ux, ) > u(3, i) =@, i) forx €y+ R(HWy,
we deduce that 3+ R() Wy, C {@(-, 1) > (X, 7)}. In particular, — De(%, 7) is an outer

normal to Wy, at (£ — )/ R(7). Therefore, by definitionof Wy, = {x : x-p < ¥/ (p) Vp}
and the fact that v is positively one-homogeneous and convex,

<>

N

which yields together with (B.2)
$(3,1) = @ (X, 1) — Y (=D (%, )R (1),

again yielding the correct viscosity condition for ¢ at (%, 7) from the viscosity solution
condition that ¢ satisfies at (9, 7).

We conclude that i is a viscosity subsolution of u; = ¥ (—Du)(— div D¢ (—Du) +
A+ R). O
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