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Abstract

We study regularity properties of the free boundary for solutions of the porous
medium equation with the presence of drift. We show the C!'¢ regularity of the
free boundary when the solution is directionally monotone in space variable in a
local neighborhood. The main challenge lies in establishing a local non-degeneracy
estimate (Theorem 1.3 and Proposition 1.5), which appears new even for the zero
drift case.

1. Introduction

Let us consider the drift-diffusion equation
0 =A" +V-(0b) inQ:=R!x(0,00), (1.1)

with a smooth vector field b: 0 — R9, a non-negative initial data o(-, 0) = gg
and m > 1. The nonlinear diffusion term in (1.1) represents an anti-congestion
effect [5,7,14,24].

Our interest is in the regularity of the free boundary {0 > 0}, which is present
at all times if starting with a compactly supported initial data. We are motivated
by the intriguing fact that the free boundary regularity is open even for the trav-
elling wave solutions in two space dimensions, with a smooth and laminar drift
l;(xl , X2) = (sinx3, 0) (see [21]). Our analysis provides a starting point of the dis-
cussion in a general framework, but the full answer to this question remains open
(see Theorem 1.6 and the discussion below). The presence of the drift generates
several significant challenges that are new to the problem, as we will discuss below.

To illustrate the regularizing mechanism of the interface, let us write (1.1) in
the form of continuity equation

01 — V- ((Vu+b)o) =0,
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where

w= 2 _om-l, (1.2)
m—1

Hence formally the normal velocity for the free boundary can be written as
V=—(Vu+b) ii=|Vul—b-ii on(x,t)el:=a{u>0}, (13)

where 7 = 71y, is the outward normal vector at given boundary points. Given that
o solves a diffusion equation, it would be natural to expect that the free boundary
is regularized by the pressure gradient |Vu| if b is smooth, as long as u stays non-
degenerate near the free boundary and topological singularities are ruled out. In
general neither can be guaranteed even with zero drift. Below we discuss our main
results and new challenges in the context of the literature. We will always assume
that

beCyl(Q) and oo L'(RY) NL¥RY). (1.4)

Literature Let us first discuss the case b = 0, and then our problem (1.1)
corresponds to the well-known Porous Medium Equation (P M E). In this case a vast
amount of literature is available: we refer to the book [23]. What follows is a brief
discussion of several prominent results that are relevant to our results. ARONSON
and BENILAN [2] showed the semi-convexity estimate Au > —oo fort > 0
which played a fundamental role in the regularity theory of (PME). In general
there can be a waiting time for degenerate initial data, where the free boundary
does not move and regularization is delayed. When the initial data uyp = u(-, 0)
has super-quadratic growth at the free boundary, CAFFARELLI and FRIEDMAN [9]
showed that there is no waiting time and the support of solution strictly expands in
time. There an expansion rate of the support was obtained, by showing that its free
boundary can be represented as t = S(x) where S is Holder continuous. To discuss
further regularity results, it is natural to require some geometric properties of the
solution to rule out topological singularities such as merging of two fingers. The
C1¢ regularity of the free boundary is established by CAFFARELLI and WOLANSKI
[10], under the assumption of non-degeneracy and Lipschitz continuity of solutions.
Their assumptions are shown to hold after a finite time 7y > 0 by CAFFARELLI et
al. [11], where Ty is the first time the support of solution expands to contain its
initial convex hull. More recently, Kienzler explored the stability of solutions that
are close to the flat traveling wave fronts to (PME) [16]. Later KIENZLER et al.
[17] improved this result and showed that solutions that are locally close to the
traveling waves are smooth; see further discussion on their result in comparison to
ours below Theorem 1.3.

When b # 0, few results are available on the free boundary regularity of (1.1).
With the exception of the particular choice b= X, in general there appears to be
no change of coordinates that eliminates the drift dependence in (1.1). Numerical
experiments in [22] present the interesting possibility that an initially planar solu-
tion with smooth drift could develop corners without topological changes. However
the non-degeneracy of pressure or the free boundary regularity is unknown even
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for traveling wave solutions in R2 (see [21]). By comparison, well-posedness and
regularity theory for the solutions of (1.1) has been much better understood. Exis-
tence and uniqueness results are shown in [4,6] for weak solutions and in [18] for
viscosity solutions. Asymptotic convergence to equilibrium of (1.1) is shown in
[12] using energy dissipation when bis the gradient of a convex potential. Recently
[15,19] proved Holder continuity of solutions for uniformly bounded, but possibly
non-smooth drifts.

Discussion of Main Results and Difficulties For our analysis, we will consider
the pressure variable (1.2) and the equation it satisfies, which is

up=(m—DulAu+|Vul> +Vu-b+@m—DuV-b (1.5)

in 0 =R? x (0, 00).
We first show the semi-convexity (Aronsson—Benilan) estimate through a simple
but novel barrier argument on Au. This is where we use the C; norm of b.

Theorem 1.1. (Theorem 3.1) Let p solve (1.1) in Q with (1.4), and let u be the
corresponding pressure variable given by (1.2). Then for some o > 0, Au >

—% — o in the sense of distribution for all t > 0.

Next we discuss a weak non-degeneracy property in the event of zero initial
waiting time. With zero drift this corresponds to the strict expansion property of the
positive set, see section 14 [23]. In our case this property needs to be understood
in terms of the streamlines, defined as

X(t) := X (xp, to; t) is the unique solution of the ODE
0X() =—b(X(1),10+1), 1€R,

1.6
X(0) = xo. (16)

While the streamlines are a natural coordinate for us to measure the strict expan-
sion of the positive set over time, it does not cope well with the diffusion term in
the equation. The most delicate scenario occurs with degenerate pressure, where
the time range we need to observe is much larger than the space range. To deal with
such a case we need to carefully localize b.

Theorem 1.2. (Theorem 4.4) Let u be as given in Theorem 1.1, and fix (xg, ty) €
I':=0{u > 0}N{t > 0}. Write

X(—s) = X(x0, t0; —5), S :={u(,t) >0} and T;:=0%.
Then either of the following holds:
(Type one) X (—s) € I'yy—s for s € (0, tp);
(Type two) there exist Cy, B > 1 and h > 0 such that for s € (0, h)

u(x, 10 —5) =0 if|x — X(—s)| < Cus?,
uC,to+5) >0 iflx — X(s)| < CysP.



1180 InwoN Kim & YUMING PAUL ZHANG

Moreover, if

Qq is a bounded domain with Lipschitz boundary, and

o (1.7)
uo(x) 2 y(d(x,Qy))""° forsomey, s >0,

then any point on I' is of type two.

The growth condition in (1.7) is optimal, since there is a stationary solution
to (1.1) with a corner on its free boundary and with quadratic growth (see Theo-
rem 7.3).

Next we proceed to show the non-degeneracy property of u, as it is essential
for the regularity of its free boundary. This step presents the most challenging and
novel part of our analysis. To illustrate the difficulties, let us briefly go over the main
components of the celebrated arguments in [11], which provides non-degeneracy
of solutions for (P M E) for times ¢t > Tp. One key ingredient in their analysis was
the scale invariance of the equation under the transformation

14 Ae

mu((l +é&)x,(1+ Ae)t +B) forany A, B,e > 0.
£

In [11] u., 4 was compared to u to obtain the space-time directional monotonicity

ug A(x, 1) =

x-Vu+ (At +Bu; 20 onT. (1.8)

Applying (1.3) with b = 0, we then have

Ur 1 X
= 2 v-(—) onT,

|Vu| = (At + B) x|
where the first equality is from (1.3), the second equality is due to the level set
formulation of the normal velocity, and the last inequality is due to (1.8) and the
fact that Vu is parallel to the negative normal —v on the free boundary. Thus the
non-degeneracy follows if we know that the free boundary is a Lipschitz graph with
respect to the radial direction. This was shown in [11] for ¢ > Tj by the celebrated
moving planes arguments, and thus we can conclude.

For nonzero drift, neither scaling invariance nor the moving planes method is
available due to the inhomogeneity in b. In fact it is not reasonable to expect con-
sistent free boundary behavior for large times, except possibly when bisa potential
vector field. Still, it is reasonable to expect that, without topological singularites
and waiting time, the diffusive nature of the Eq. (1.5) regularizes the free boundary.
With this in mind we show a local non-degeneracy result under the assumption of
directional monotonicity and zero waiting time.

Let us define the spatial cone of directions

|Vul =V

0
Y H’ < 2sin 5} with axis 1« € S¥! and 6 € (0, 7/2].

Wo,u = {y e R%:
: N

(1.9)

We say that u is monotone with respect to Wy, if u(-, t) is non-decreasing along
directions in Wy, ,,. Using the notation Q, := {|x| < r} x (—r, r), we say that I" is
of type two in O, if all points on I" N Q, are of type two.
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Theorem 1.3. (Local Non-degeneracy, Corollary 5.7) Let o be a weak solution
to (1.1) in Qo, where T is of type two, and let u be the pressure. Suppose in Q»,
Au > —o0 and u is monotone with respect to Wy, for some 6 and 1. Then there
exists Ky > 0 such that

liminf “CTELD S el N0,

e—>01 €

For the proof we adopt a local barrier argument introduced in [13] in the context
of the Hele-Shaw flow. Heuristically speaking the barrier argument illustrates the
fact that the nondegeneracy property of positive level sets propagates to the free
boundary as the positive set expands out in diffusive free boundary problems.

As mentioned above, in the zero drift case [17] considered solutions that are
locally close to a planar traveling wave solution. Their assumption in particular
endows a discrete small-scale flatness and non-degeneracy. It was shown there that
over time the flatness improves in its scale to yield the smoothness of the solutions.
It was conjectured there whether a cone monotonicity assumption could replace
proximity to the planar travelling waves. While we do not pursue improvement of
flatness in scale, our result yields a positive partial answer to this question.

Building on the above non-degeneracy result, we proceed to study the free
boundary regularity. To prevent sudden changes in the evolution caused by changes
in the far-away region, we assume that, in the weak sense,

ur S A(u-Vu+u+1) in Qg for some A > 0. (1.10)

Theorem 1.4. (Theorem 6.1) Let u be given as in Theorem 1.3. If in addition (1.10)
holds, then u is Lipschitz continuous and T is CY% in Q 1.

The proof of the above theorem is given in Section 6. The novel ingredient in
this section is the following result, which propagates the non-degeneracy of the
solution at the free boundary to nearby positive level sets.

Proposition 1.5. (Propagation of non-degeneracy, Proposition 6.3) Under the
assumption of Theorem 1.4, there exist § < % and c1 > 0 such that

Vuu(x,t) 2 c; infu > 0}N Qs.

From here, the proof of Theorem 1.4 largely follows the iterative argument given
in [10], which compares in different scales the solution with its shifted version. For
nonzero drifts (1.5) changes under coordinate shifts, and thus a notable modification
is necessary in the iteration procedure. See Remark 6.9.

Now we address the traveling wave solutions discussed earlier in the introduc-
tion.

Theorem 1.6. Leto : R — R be a smooth and bounded function. Let u solve (1.5)
in Q = R2 x (0, 00) with b= (x(x2), 0) and the initial data uo(x) = u(x,0) =
(x1)4, under linear growth condition at infinity. Then T is locally uniformly C'-*

in Q.
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_In[21] theexistence of traveling wave solutions are shown with the above choice
of b. We consider the initially planar solution that was used in [22] to approximate
the traveling waves. Our argument yields an exponentially decaying lower bound on
the nondegeracy of u. While it rules out the possibility of finite time singularity for
the approximate solutions, the free boundary regularity of travelling wave solutions
remains open.

Lastly we present some examples which illustrate new types of free boundary
singularities generated by drifts.

Theorem 1.7. (Theorem 7.3 and 7.4). There is b € C3(R?) such that (1.5) has a
stationary profile with a corner on its free boundary. There is a continuous spatial
vector field b such that an initially smooth solution to (1.5) develops singularity on
the free boundary in finite time.

2. Preliminaries

o Notations

e B(x,r) == {x € R? : |x| £ r}, B, := B(0,r), Q = R% x (0, 00) and
Oy == By X (—r,1).

e Throughout the paper we denote o as various universal constants, by which we
mean constants that only depend onm, d, ”b”C“ and [looll 11 ray+ 00 [l oo (re)

if o solves (1.1) in Q, and |l||z=(g,) 1f o is only assumed to be a solution in
Q,. By saying “X only depends on o”, we mean that X only depends on the
above universal constants.
e We use C to represent constants which might depend on universal constants and
other constants that are given in the assumptions of corresponding theorems.
e For a continuous, non-negative function u: RY x (0, 00) — R, we denote

Q) :={u >0}, Q) :={u(,t) >0}
and

D) =02, Tw:= [J @ xh.

te(0,00)

When it is clear from the context we will omit the dependence on u.
o We write

1
dy i= —— dy,
?i(x,r) FOdy |B(x, r)| B(x,r)f(y) Y

where | B(x, r)| is the volume of B(x, r).
o V.= Vx,andV = (V, 9;). We also denote f; := 0y, f, fij = x,x,f‘

e Forv, u € R4 \{0}, the angle between them are denoted by

(v, i) := arccos ( e ) e [0, m].
(]|l
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For u € R?, v e R and 6 € [0, /2], we define the space and space-time
cones by

Wo,=(peRi(p,u) £0), Wo,:={peR™:(p,v) <0} 2.1)

o Notions of Solutions and Their Smooth Approximations. Next we recall the
notion of weak solutions and their properties, including their smooth approxima-
tions that will be used in this paper.

Definition 2.1. Let g9 be a non-negative function in LR N LY (R?), and let
T > 0. We say that a non-negative and bounded function g: R¢ x [0, T'] — [0, c0)
is a subsolution (resp. supersolution) to (1.1) with initial data gg if

0eC(0,T], L"(RY)), 0b € L2([0, T] x RY) and o™ € L2(0, T, H'(R%))
(2.2)

and

T
/ / 0 dudxds = (resp. <) / 00(X) (0, x)dx
0 R4 R4
T
+ / / (Vo" + 05)Véb dxdr, (23)
0 R4

for all non-negative ¢ € C2° (R x [0, T)).
We say g is a weak solution to (1.1) if it is both sub- and supersolution of (1.1).
We also say that u := mm_ i Q’"‘l is a solution (resp. super/sub solution) to (1.5) if

o is a weak solution (resp. super/sub solution) to (1.1).

The well-posedness result of general degenerate parabolic type equations is
established in [1,2,6,7]. Kim and Zhang [19] proved the uniform in time L°-
estimate of solutions (though b= b(x) in the paper, the same proof applies to
be L°(Q)). [3,4] proved the Holder regularity of solutions.

Theorem 2.1. (Theorem 1.7, [1], Theorem 1.1, [19]) Let 0o be as given in Defini-
tion 2.1. When b € L°°(Q), then there exists a weak solution ¢ to (1.1) with initial
data 9. Moreover ¢ is uniformly bounded for all t = 0 with a bound depending
onlyonm,d, ||b|leo, and [[0oll 1 + lloll L

Theorem 2.2. (Theorem 1, [4]) Suppose o is a non-negative, bounded weak solu-
tion to (1.1) in Q1. Then o is Holder continuous in Q%

Theorem 2.3. (Theorem 2.2, [1]) Suppose U is an open subset of R¢ andb € C ;:?
Let 0, ¢ be respectively a subsolution and a supersolution of (1.1) in U x R* such
that o < o a.e. in the parabolic boundary of U x R. Then o < ¢ in U x R*.

Remark 2.4. Following from Theorem 2.3, we have comparison principle for (1.5):
suppose ii, u are respectively a subsolution and a supersolution of (1.5)in U x R™
such that # < u a.e. on the parabolic boundary of U x RT. Thenu < uin U x R™.
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In our analysis it is often convenient to work with classical solutions of (1.1),
which is made possible by the following result (we will rely on this approximation
lemma in Theorem 3.1 and in Section 5):

Lemma 2.5. (Section 9.3 [23]) Let U be either By or R4, and consider 0o €
LY U)YNL>®WU)NC). Let ¢ be a weak solution of (1.1) in U x [0, 1] that is in
C(U x [0, 1]) with initial data 0. Then there exists a sequence of strictly positive,
classical solutions oy of (1.1) such that ox — o locally uniformly in U x (0, 1] as
k — oo.

Proof. Let us consider U = Bj. Consider oo x = 00 + % and let g be the weak
solution to (1.1) in U with initial data ¢ x and Dirichlet boundary condition gy =
0+ 1 ondU x (0, 1]. Note that

1 -
Vi, 1) = 2 exp(= IV - Dlloot)

is a subsolution to (1.1) in U x (0, 1] with ¢ < % on the parabolic boundary. Thus
from the comparison principle it follows that

ok(x,1) = Y (x, 1) > 0.

Since g is uniformly bounded away from zero in U x [0, 1], (1.1) is uniformly
parabolic. In view of the standard parabolic theory, it follows that g, is smooth in
U x (0, 1]. The proof for locally uniform convergence of g to o is parallel to that
of Lemma 9.5in [23]. O

To end this section, we state the following technical lemma which is used for
comparison:

Lemma 2.6. SetU := By orR%, andletT > 0. Letyr be a non-negative continuous
function defined in U x [0, T] such that

(a) ¥ is smooth in its positive set and in the set we have Yy; — AYy™ —V - (E ¥) 20,
(b) ¥ is Lipschitz continuous for some a € (0, m),
(c) '(Y) has Hausdorff dimension d.

Then
Y — AY™ =V (b)) Z0inU x [0, T]
in the weak sense i.e. for all non-negative ¢ € C°(U x [0, T))
T T .
/ / v ¢prdxdt §/ ¥ (0, x)¢ (0, x)dx ~|—/ / (VY™ + ¢ b)V¢ dxdz.
0 R4 R4 0 R4
2.4)

We postpone the proof to the “Appendix”.
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3. Regularity of the Pressure

In this section we establish two basic properties for the pressure variable u
that we will frequently use in the rest of the paper. We begin by obtaining the
fundamental estimate.

Theorem 3.1. Let u be a solution of (1.5) in R? x [0, 00) with non-negative initial
1

data ug such that ué"f' elL! (Rd) N LOO(Rd). Then there exists a universal constant
o such that

Au(x,t) > —% — o forevery (x,t) € R? x (0, o0) 3.1

in the sense of distribution.

Proof. By Lemma 2.5, it is enough to consider positive smooth solutions with
positive smooth initial data. If (3.1) holds for the approximated smooth solutions,
from the locally uniform convergence of the approximation we can conclude.
Assume that u is positive and smooth, and consider p := Au. By differentiating
(1.5) twice, we get
pr = (m— DulAp+2mVu-Vp+ (m— l)p2 + 2% ujjuij
+Vp b +28ubl + Vu - Ab+ (m — 1)
(pv.13+2w.V(v.5)+uA(v-E)).

By Young’s inequality,

- . —1
‘(m — l)pV~b+22u,'jb‘j‘ < msz—i- Z|u,~j|2+am
m—1 1
= <T - E) 2+22 |ul'j|2+om;

’w CAb+2(m — 1) (Vu - V(V - 13)’ < m|Vul + om:
(m — 1) (uA(V : B)) <om.
Thus we obtain

pr —(m — DulAp —2mVu -Vp

—1 1 >
—(mT—i-E)pz—Vpob—i—mlvmz—i—am20.

Viewing u as a known function, we may write the above quasilinear parabolic
operator of p as Lo(p) and so we have Lo(p) = 0. Below will construct a barrier
for this operator to obtain a lower bound for p.

Since u is smooth, then there exists T > 0 such that Au(-,0) = —%. By
Theorem 2.1, u is uniformly bounded by a universal constant and we denote it as
op. Let w := —-%2L 4+ u — o, for some o1 = 1,02 = oy to be determined later.

=
Then p 2 watt =0.
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Direct computation yields

g m—1 1
Lo(w) = m +u; — (m— DulAu — 2m|Vu|2 - (T + E)

2
(—L +u —02> —Vu -b+m|Vu|2+am.
T

Now we use the Eq. (1.5), and 05 = oy to obtain

_ 2
Lo(w) < 2L —(m—l)qulZ—(Ll 1)<—i+u—az> +om

(t +1)? 2 d t+1
o m—1 1\ o} m—1 1 )
< _ — _ _ _
=G+ 02 ( 2 +d) (+1)2 3 Tg)lermwitom
<0,

where the last inequality holds if we choose o1 := d and 0 = op + (2do)'/2,
Hence Lo(w) < 0 £ Lo(p), and from the comparison principle for Lo we conclude
that

Au=pzwz—[‘j
T

— 03.

After taking T — 0, we obtain that (3.1) holds for smooth solutions. We can
conclude by Lemma 2.5. O

Remark 3.2. Using the same barrier in the proof of the lemma, it can be seen that
if Aug = —Cp in the sense of distribution, then Au = —H(‘ITW — 07 in the
distribution sense for all time.

Next we prove a useful property: the consistency of positivity set of a solution
along streamlines over time. The proof is parallel to the proof of Lemma 3.5 [20]
where they used a barrier argument. Recall that we denote 2; = {u(-, t) > 0}.

Lemma 3.3. Let u solve (1.5) with Au > —oo in Q. Then for X (x, t; s) given in
. 1 o .
(1.6) and for ¢ := YN the following is true:
(X(2,t;8) N By) € Qsyg forallt € (—1,1 —co) and s € (0, cp].

If u solves (1.5) in R4 x [0, 0o) with initial data ug given as in Theorem 3.1,
then

X(Q2,t;5) C Qys foralls,t > 0.

Proof. In view of Theorem 3.1, the second statement follows easily from the first
one. To prove the first statement, it is suffices to show that for all x € €, and
s € (0,cl,if X(x,t;5) € By thenu(X(x,1t;s)) > 0.
If x € B¢, by the choice of ¢,
2

X (x,t;8)] = |x| — ||E||Oos > 1 foralls € (0, col.
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Thus we take x € Q; N B% and then X (x, t; s) is inside the domain B; for all

s € (0, col. By Theorem 2.2, u is continuous in Q. Then we can suppose for
contradiction that there exists so € (0, co] such that

u(X(x,t;s8),t+s)>0foralls € (0,s9) and u(X(x,t;s9),t+s9) =0.

Suppose Au = —Cp in Q3. Note that (1.5) is uniformly parabolic in any
compact subset of {# > 0}, due to the continuity of u. Therefore by the standard
parabolic theory, « is smooth in 2N Q». It follows from (1.5) that for all s € (0, sp),

u(X(x,158), 1 +5) = (uy + Vu-b)(X(x,1;8), 1+ 5)
> (=Co(m — Du + |Vul> + (m — DuV - b)Y (X (x,1; ), f +5)
> —Cu(X(x,t;5),t+5)

where C := (m — 1)(Co + ||V - blso). This yields
u(X(x,t;5),t+5) = e Sulx, 1) >0, (3.2)

which, after taking s — so < 1, contradicts the assumption that u (X (x, ¢; s¢), t +
so) =0. 0O

4. Regularity of the Free Boundary

In this section we study finer properties on expansion of the positive set {u > 0}
along the streamlines associated with the drift b. We largely follow the ideas in [9]
applied to the zero drift case, and obtain corresponding statements (Lemma 4.1 and
4.2) for our problem.

Lemma 4.1. Let u be given as in Theorem 3.1, and let no > 0. For any ty 2 ng there
exist 1g, co depending only on nog and universal constants such that the following
holds: for any R > 0 and t € (0, 1), if

. C()R2
u(-,1t9) =0in B(xg, R) and ulx,to+17)dx < ——, 4.1)
B(X (x0,t0;7),R) T

then
ux,to+1)=0 forx € B(X(xp,?; 1), R/6). 4.2)
Proof. For simplicity, suppose xo = 0, fo = 0, and consider the rescaled function
(e 1) = —u(Rx.tt) with B(x.1) == ZB(Rx.71). K1) = ~X(0,0: 71)
u(x,1) := —u(Rx, x,t) := —=b(Rx, 1), = —X(0,0; t1).
R2 R R
4.3)

Then u satisfies

ii; = (m — DiiAdi + |Vi|> + Vi - b + (m — Da Vb'.
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Theorem 3.1 yields
Au 2 —Co = —Co(no) for t = np. (4.4)

Set ¢ := Cytp so that At = TAu = —e&. From our assumption, it follows that

% ) i(x, DHdx < cp.
B(X(1),1)

Using this and that u + 8|x|2/(2d) is subharmonic, we find for x € B(f((l), %),

2 2
- e|xX - £
i, 1) < 21 +y§~ a1+ 204,
B(X().D)

2d 2d
4.5)

< Zdyg i(y, Ddy + oe <29y + oe.
By

Now consider
v(x, 1) == d@(x + X(1),1).
Then Av = —e. Moreover, observe that v is the weak solution of
L1(0) :=v; — (m — DvAv — |Vv]2 = Vu- ' (x + X, 1) — b (X, 1))
—(m— DoV -b(x+X,1)=0.

We used Definition 2.1 as the notion of weak solutions, where b is replaced by
b'(x + X, 1) — b'(X, t). Since the operator L is locally uniformly parabolic in its
positive set, v is smooth in the set due to the standard parabolic theory. From the
above equation, v satisfies the following in the classical sense in its positive set:
vi(x, 1) = —e(m — v + |Vv|? —o1|Vol|x| — otV
> —g(m— v —otv—ot?|x|.
Here the first inequality is due to the fact that |V b | £ to and the second inequality
follows from Young’s inequality. Because v is continuous and non-negative, the

above estimate also holds weakly in the whole domain.
Since ¢ = Cyt = T, we obtain

vi(x,t) = —oev(x, 1) —oe|x|?, (4.6)
and thus by Gronwall
v(x, 1) = e Dyx, 1) — o (1 — 0 Dyg |x)?
> e %u(x,t) —oein B% x (0, 1).
Using (4.5), we conclude that for all (x, t) € B% x (0, 1) and some o = 1,

v(x, 1) < e%Cux, 1) +eCoe = e“Ci(x + X(1), 1) + Co¢
< %8 (2%0 +206) < o (co + €).

A7)
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if ¢ is sufficiently small.
To conclude we proceed with a barrier argument applied to the operator L.

Define
(Ix| —1/3)
o(x, t)—)»(36+—6 )+

and we aim at showing £ (p) = 0 weakly. Using Lemma 2.6 to (mm;lw)ﬁ, the
corresponding density variable of ¢, and the Lipschitz continuity of ¢, we find that
to show ¢ is a supersolution of Ly, it suffices to prove £;(¢) = 0 in the positive
set of .

Notice

Vo (B'(x+ X, 1)+ b (X, 1) — (m— DoV -b'(x + X, 1) < 06|Vo| |x| + oe0,

so direct computations yield that if

1 _
- _<6+|x|——) (0n =@ =Dl +T)+1+ 4.8)
then Li(p) = 0 for 1 3= 5 < |x] < 2 in the classical sense. The inequality (4.8)

is valid for ¢ € (0, 1) prov1ded that we take 0 < ¢ < A < 1. With this choice of
&, A, we get L1(p) 2 0in |x| < weakly By the assumption v(x,0) = 0 in B1

and thus v < g on |x| < 2,t = 0 On the lateral boundary |x| = 2,t € (0, 1), by
(4.7) if cg, ¢ are small enough depending on universal constants we have

A
< < =<
veolote) =29
Hence by comparison principle for the operator £; (see Remark 2.4) in B 1 X ©, 1
we have v < ¢. In particular,

ix+ XM, D =vx1) <k, 1)=0
for |x| < %, and we have proved the lemma. 0O

Remark 4.2. One can check that the conclusion of the lemma also holds in a local
setting: If u solves (1.5) with Au = —Cy in Q) for some Cyp, then there exist
70, €0, 0 such that (4.1) implies (4.2) for any R € (0,0) and T € (0, 79). Here
79, co depend only on Cq and universal constants, and o is universal. This local
version of the lemma will be used in Lemma 6.2.

Lemma 4.3. Let u be as in Theorem 3.1, and let ng > 0. For any ty = ny and any
c1 > 0, there exist A, c2, 19 > 0 depending on c1, no and universal constants such
that the following holds: for any R > 0 and 0 < 1 < 1, if

R2
f u(x, t9)dx = ci—, (4.9)
B(xg,R) T

then

R2
u(X (xo, t0; A7), 10 + AT) = co—. (4.10)
T
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Proof. Let Cy be as in (4.4), and set (xq, tp) = (0, 0) by shifting coordinates. We
1

consider the corresponding density variable o(x, t) := (%u(x, t))m—T and its

rescaled version

1

o(x,t) = (%)m o(Rx, Tt).

Let l;’, X be as in (4.3) and let ¢ = Cgt as in the proof of Lemma 4.1. Then o
solves the re-scaled density equation

or = A" + V- (2D).

The fundamental estimate on i implies that Ag™ > —gg in the sense of distribution.
Let us define &£(x, 1) := o(x + X, and Y (1) := fBl EM(x, t)dx. Below we
study properties on the growth rate of Y using properties of o, namely we derive
(4.12) and (4.13). We then use these estimates to argue by a contradiction to prove
our main statement.
Firstlet us show that Y (1) stays sufficiently positive if € is small. Since X ) =
0, our assumption yields that

m

T

0 = ¢ &0t =0 (5)"

B R?

T \meT
—c (—u) (x, 0)dx
i(O,R) R?

- =i
>0 <_2f u(x, O)dx) Zocl =ic].
R% JBo, R

Due to (4.6) and v(x, t) = %Em_l(x, t), for & small enough

55 0™ (x + X (0), 0)dx
B(0,R)

(E™); = —0et™ — 02 |x|?E = —0eE™ —oeforx € BiN{E >0} (4.11)

Consequently,

/ m

c
Y(t) Z e 'Y (0) —oet Z e ] —oer > 31 ~cp! (4.12)

fort € (0, A]if el <, 1.
Next we obtain an upper bound for the growth of Y over time. 0O

Claim. For some universal constants oy, 03 and y,

t t |
e_”‘”f Y(s)ds < oy (/ EM™0, s)ds +&¥ + Ym> . (4.13)
0 0

Proof of the Claim. As in [9], we introduce the Green’s function in a unit ball so
that G solves

AG = —048(x) +04l, and G =|VG|=00ndB;. (4.14)
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Let us only discuss the dimension d = 3, where G is defined as
d—2
Gx)= x> %-1- T(l — |x[%). (4.15)

We want to differentiate f B&.1) Gix — X )o(x, t)dx with respect to ¢. Since
G(x —X)=00ndB(X, 1),

i
(/ G(x — X)b(x, t)dx) = / VG(x — X) - b'(X)ddx
B(X,1) B(X.D)
+/ . G(x—X)p,dx
B&x.b (4.16)
= / VG(x — X) - (0'(X) — b'(x))ddx
B(X,1)
+/ AG(x — X) 3" dx =: A| + As.
B(X,1)
Since V' > —oely,
A= —/ (d —2)(x — X — D(x - X) - B'K) — ()@ dx
B(X,1)
z—oe/ @ —2)(lx - X~ = Dix — X% d @17
B(X,1)
> —08/ G(x — X)g dx.
B(X,1)
As for Aj, applying (4.14), we obtain
Ay = —0q 0™ (X, 1) + a/ " (x, 0 dx. (4.18)

B(X,1)

Using (4.17), (4.18), we find, for some universal o > 0

(/ _ G(x—i()@(x,r)dx) g—adém(i,zwro/ 9"(x, 1) dx
B(X,t)

B(X.1)
— 08/ - Gk — X)6(x, t)dx.
B(X.1)

Hence we derive

t
6‘08l/ G(|x]é(x, t)dx = —ad/ e?EE™(0, s)ds
B 0

t
—i—o/ / e?®E™ (x, 5) dxds,
0 JB

which simplifies to

t t
/ e 7Y (s)ds S0 / G(lxDE(x. dx +o / §7(0,5)ds. (419)
0 By 0
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Now following the proof of Lemma 2.3 [9], using (4.19) and the integrability
property of G, we can obtain the upper bound || B, G£ dx to conclude. We omit the
computation since it is parallel to [9]. O

Going back to the proof of Lemma 4.3, let us suppose that our statement is false,
which means u(X (A1), A7) < czRTZ for any choice of A, ¢z, T9, where X (¢) :=
X (0, 0; t). Later we will pick the constants satisfying

m

A1, ik, er<kl.

Interms of &€ = o(- + f(, -), we have

m

£"(0.2) S om)cy T
Since eA < 1, by (4.11) again, we obtain
E"(0,1) < oe” el +oenfort € (0, Al

If follows from (4.13) that for all r € (0, A] and some o = o (02),

m

t
e ! / Y(s)ds < o (e h + eh? &7 + Yin).
0

Recall (4.12), and we have

1 _m_
o¥m = ol o) A+ en’ +67), (4.20)

Hence we get for t € (0, A] and some universal o > 0,
1 t
oYm 267”1”/ Yds.
0
Writing Z(t) := fot Y (s)ds, in view of (4.12) we obtain Z(%) > c3) with
1 _m_
c3 = E(e”’“‘c’l —ed) Zoc" >0.
Solving the ODE problem
/ —o &t 7zm . A
ocZ Ze zZ", with Z > = c3h
shows that
=T A
z (r T —) > ((m)‘*m - f(t)) T forr e (0.5] 4.21)
where

t+X1/2 (e(rst _ 1)
f@) = / ce 7%ds = ge M 7
22 oe
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Sinceoe K 1,
f(t) 2ot —oet’.

It is obvious that f is monotone increasing in 7. Notice the right-hand side of
(4.21) goes to 400 as

t— et

which is impossible provided that f~!((c31)! ™) < % However if A = C(c3, 0)
and e\ < 1, we indeed have

A A e e
f <2) > 02 o¢ 1 > (c3r) ™, (4.22)
which leads to a contradiction.

We proved that £”(0, 1) < o(m) cﬁ”ﬁ . Since c¢3 only depends on ¢y, o, the
choices of 1, ¢, € only depend on ¢, 0. We conclude the lemma with 79 = ¢/Cy,
A satisfying (4.22), and c3, ¢ satisfying (4.20) and eA KC 1. O

For any (xg, 7o) € I', we use the notation

m

T (x0, to) := {(X (x0, to; —5), 10 —5), s € (0,10)}.

Theorem 4.4. For a given point (xo, t9) € T with ty = no > 0, the following is
true:

(1) Either (a) Y (xg, tg) C " or (b) Y (x0,2) N T =@.
(2) If (b) holds, then there exist positive constants Cy, B, h such that for all s <
(0, h)
o(x, 10 =) =0 if |x— X(x0,10:;—5)| < Cys?:
o, fo+5) >0 if |x = X(xo, f0: $)| < Cus”.

Here B only depends on nog and universal constants. If (b) holds for (xg, t9) € T,
we say (xg, to) is “of the second type” free boundary point.

Sketch of the proof The proof is parallel to those for Theorems 3.1-3.2 [9],
based on the Lemmas 4.1 and 4.3. Let us only sketch the proof for part (1) below.

If the assertion of (1) is not true, then we can find 79 > #; > t, > 0 such that
to—t1 >t — 1 and

x0 € Iy, x1:= X(x0,205t1 —10) € 'y, x2:= X(x0,f0; 12 — 1t0) & I'p,.

Consequently u(-, o) = 0 in B(x, R) for some R > 0. Since x| = X (x2, f2; t] —
1), by Lemma 4.1,

coR?
% u(x,t)dx = oz
B(x1,R) h—=n

Since tg—t1 > (t1—t2), Lemmad4.3 yields u(xo, t9) = u(X (x1, t1; to—11), o) > O,
which is a contradiction. O




1194 InwoN Kim & YUMING PAUL ZHANG

When the initial data grows faster than quadratically near its free boundary
and the boundary is Lipschitz, it is possible to characterize the constants Cy, & in
above theorem in terms of time variable. Note that using both assumptions in (1.7),
Lemma 3.3, and Lemma 4.3 yields that X(Q_o, 0;1) € , forall > 0. Thus by a
compactness argument, iteratively using Theorem 4.4 and arguing as in the remark
on Theorem 3.2 in [9], we have the following theorem:

Theorem 4.5. Suppose (1.7). Then any point xo € I'y, with tg > 0 is of the second
type and the constants Cy, h in Theorem 4.4 (2) only depend on ty, (1.7), and
universal constants.

5. Monotonicity Implies Non-degeneracy

In this section we discuss non-degeneracy property of solutions in local settings.
We start with the following theorem:

Theorem 5.1. Let u solve (1.5) in Q, with Au = —Cy. Suppose that T is of type
two in Q», and that

u is monotone with respect to Wy, in Q2 for some 6 € (0, 7/2) and u € §41

G.D
Then there exist constants C, g > 0 such that we have
u(X(x,t;Ce) —en,t+Ce) > 0for (x,t) € I' N Q1 and for ¢ < gy.
Remark 5.2. The constants C, gg in Theorem 5.1 only depend on
Co, 0, Cy, h, B, and universal constants, (5.2)

where Cy, h, § are constants given in Theorem 4.4. In the global setting, an estimate
of Cg can be found in Theorem 3.1.

Let us also mention that Theorem 2.2 allows us to consider continuous local
solutions.

The central ingredient of the proof is a barrier argument motivated from [13]
in the context of Hele-Shaw flow. The barrier argument illustrates the fact that in
diffusive free boundary problems the nice regularity properties of u propagate from
positive level sets to the free boundary as the positive set expands out. This argument
in our setting corresponds to the proof of (5.35). Compared to the Hele-Shaw flow
which is driven by a harmonic function, our solutions features a nonlinear diffusion
that degenerates near the free boundary and thus it requires more careful arguments.
On the other hand, we will benefit from the weak formulation of the problem using
the density formula (see G below.)

For u as given above we consider

v(x,t) :=u(x + X(),t), where X(¢) := X (0, 0;¢) is given in (1.6). (5.3)
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Then v is a weak solution of £,(-) = 0, where the operator £ is given by

Lo(f) =8 f —m—VfAf = V> =Vf-(bx+X0),1)

. . (5.4)
—b(X(@),t)) —(m—1DfV-bx+ X(1),1).

Since the operator £; is the same as in (1.5) with b replaced by l;(x + X(),1) —
b(X (1), 1)), the notion of sub- and supersolution is given in Definition 2.1.

Below we construct a supersolution for the operator £, for the aforementioned
barrier argument, using a inf-convolution construction introduced first by [8]. Since
the supersolution to be constructed is a rescaled inf-convolution of v [see (5.8)],
comparison of the two functions gives a space-time monotonicity of v, yielding the
theorem. To this end, we will use both smooth approximations of «# and the density
version of the equation L.

We begin with some basic properties of the inf-convolution of smooth functions.

Lety, h € C®°(By) with0 < ¢ < % and & = 0. Define

= inf h 55
f ) s, 692 (5.5)

which is Lipschitz continuous. The proofs of the next two lemmas are in the
appendix.

Lemma 5.3. Let h and [ be as given in (5.5). Furthermore, suppose Ah = —C
for some C € R and ||V |lco S 1. Then there are dimensional constants op > 0
and oy 2 3 such that if Y satisfies

o1|Vy |

Ay > VD
V= [l

in By,

we have
Af() = A+ a2l VYileo) AR(y(-)
S »||VY¥leoC  in By in the sense of distribution,
where y(-) satisfies that f(-) = h(y(-)) a.e. in Bj.
Lemma 5.4. Let h, f be as given in (5.5). Then for a.e. x € By we have
IVf(x) = VR = [VRWIIVY ()| if f(x) = h(y) and y € B(x, ¥ (x)).

Now for a weak solution u to (1.5) in Q», let {uy }; be its smooth approximations
as given in Lemma 2.5. In particular uy is positive in Q5 for each k. Set vy (x, t) :=
ur(x + X (1), t) and introduce the corresponding density variable of vy as

m—1 = m—1 =
E(x, 1) = ( vk (x, t)> = ( ur(x + X (1), t)) - (5.6
m m

We define the density version of the operator £ as G(§) := L,(v) where & =

1,
(’”T_lv)mfl ie.

G(f) =0 f —Af =V - (fb(x,1) — f(x + X(1), 1)),
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and thus G(&) = 0.
Let ¢: RY — (0, 00) be a smooth function and o, 0, be from Lemma 5.3. For
some constants o, Ag, My = 1 to be determined, we define

. Apet .
,1) = inf eu, 1)), 5.7
w(x,t) :=e BOE ) vk (y + rep, pe(t)) (5.7

AT inf  u(y +rep, pe(t)), (5.8)

w(x,t) :=e
yeB(x,R:(x,1))

and
Ajet . . Ag
nk(x, 1) :=e"! inf §(y +rep, pe(t)) with Ay := , (5.9)
YEB(x,Re (x,1)) m—1
where
Re(x,1t) :=ep(x)(1 — at) (5.10)
erst —1
pg(t) = (1 + oo Mye) (A—Og> . (5.11)

Then wy is Lipschitz continuous, and

m—1 T
n(x, 1) = ( wk(x,t)) .
m

Thus to show that wy is a supersolution for £,, it suffices to show that n; is a
supersolution for G.
We will apply Lemmas 5.3, 5.4 with

h=&"(-+reu, ps) and ¥ = Re(-,1).

Based on these lemmas we estimate the density equation G () in the weak sense,
to go around the potential lack of smoothness for inf-convolutions, to conclude.

We will choose the constants Ag = Ag(Mp) and @ = a(Mj) in Proposition 5.5,
the constants M, r and the function ¢ in the proof of Theorem 5.1.

Proposition 5.5. Let uy, wi be defined from above, and suppose that uy satisfies
Auy = —Cy in Q3. Fix any My 2 1 and consider ¢: By — R such that

_ ailVeP?
Ap =" (5.12)
o S () =rMy, |IVolleo = My for somer € (0,1).

Then there exist positive constants Ag, «, T depending only on My and univer-
sal constants such that for all ¢ < MLO the function wy given in (5.7) is a weak
supersolution of

Lo(wi) 20 in B, x (0, 7).
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Proof. Let &, ni be from (5.6), (5.9) respectively. As discussed before to prove
the statement, it suffices to show that G(n;) = 0 weakly in B, x (0, 7).

Below we estimate each term in G(n) in B, x (0, 7) using & . We begin with
some preliminary estimates on 7.

Since u, is smooth and positive, & is also smooth and positive. From the
definition of the inf-convolution, it follows that 7y is Lipschitz continuous. Since
Auy = —Cy, direct computation yields that

A(§") 2 —o Coé for some o = o (m) > 0. (5.13)
Let us set the constants
Ag :=o3My(1 + Cp), o := 03M§ (5.14)

for some 03 = o5 to be determined, and

T = min{L, L, L, i} (5.15)
240 2A1 oMy Sa
By definition of 7, there is z(x) satisfying
|z(x) — x| £ |Re| +1e S 2Myre, (5.16)
such that
nk(x, 1) = g(1) &k (z(x), ps(1)),
where we use the notation g(¢) := e41¢!,
It follows from the definition of p(f) in (5.11) that
pe(t) = (1 + o2 Moe)g ()" (5.17)
and
0 p.(t) —t < oMpyte Soe forO0 <t <. (5.18)

We now proceed to estimating each terms in G (1), starting with 9, 7. All esti-
mates in the domain B, (0) x (0, 7). In the rest of the proof, for simplicity, X (¢) :=
X(0,0,;1), pe, nk denotes the values of them at (x, t), and &, 0;&k, V&, A&y
denotes the values of them evaluated at point (z(x), p.(t)).

In [20], 9,;n is computed in the viscosity sense. Since our 1y is Lipschitz
continuous, the same computation carries out almost everywhere in B, x (0, 7).
We have

I = Are i — 8 Re |Vi| 4 (pL)g 9. (5.19)

Applying (5.10), (5.17) and the assumption that ¢ = MLO’ (5.19) implies

are
O = Are i + Elvnkl + (1 + 0o Moe)g" 9;&. (5.20)
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From the assumptions on ¢, || R¢|lco < rMps, ||[VR oo < Mps. We now apply
Lemma 5.3 with h = S,T(- + rew, pe) and ¥ = R, (-, t). From (5.12) and (5.13),
the following holds in the sense of distribution:

—An 2 —(1+ 02l Relloc) g™ A& — 02l V Relloc Cobi

5.21
—(1 + o2 Moe)g" A" — o MoCoe 1. ( )

v v

Next we consider the terms coming from the drift. Due to Lemma 5.4,

IVik — g V&l = IVR:||gVE| < Moeg| V&l

since & < MLO, we have |V, — gV&| < o Mpe|Vny|. This implies that for r < 7,
Vi — (1 + 02Moe) g™ Vék | < o Moe| Vi (5.22)
Next, using the regularity of b and |x| < r, we have

<|IDb||oor < o, (5.23)

(E(x + X(pe), pe) — b(X(pe), pe)
and, by (5.16),

< oMyre. (5.24)

B+ X (o), pe) = bz + X (po). po)
Then (5.22)—(5.24) imply

= V- (B + X (pe), pe) = B(X (o), o))

1\

~(1 +02Moe)g" Ve - (BCx + X (pe). pe) = B(X (o). po)) — o More| V|

V

> —(1402M0e)g" Ve - (B + X(pe). pe) = BX(pe), pe)) — o More| V.
(5.25)
Parallel computations yield
— eV - b(x + X (pe))
—(1 + 02 Moe)g™ &V - b(x + X (pe)) — o i |g — (1 + 02 Moe)g™ | 1 Dblloo
—(1 + 02 Moe)g™ &V - b(z + X (pe)) — 0 Mog n — o i |ID?bllsc More
—(1 + 02 Moe)g" &V - b(z + X (pe)) — 0 Mog ..

v v v

(5.26)
Combining the estimates (5.20), (5.21), (5.25) and (5.26), we have
G 1= i — An! =V (e (B + X (o), po) = BX (pe), po)))
B are m m
= Ajeng + %'V”"' + (1 +02Moe)g™ (86 — Ag)

— (1 oMee)g" V (& (B + X(po), po) = BX (pe). po) ) )
— o Mo(l + Co)e i — o More|Vig|.
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Since G (&) = 0 we obtain

GO = Avemy + %Wm + (1 + 02 Mo)g" G (- )) (2, pe)

—oMy(1 + Co)e ni — o More| V|
= C1e nx + Care|Vinl,

where
Ci:= Ay —oMy(1 +Cp), Coi= % — oM. (5.27)
0
Finally we proceed from 5 (nx) to G(n) to get

GOm) 2 Gm) = Gm) + Cre e+ Cor |V
2 Cre e+ Corel Vil = e |V - bx + X (o), po) = V- blx + X0, )|

— Vel b + X (pe), pe) — BX (pe), pe) — (b(x + X (1), 1) — b(X (1), r))\ :

Vo=

(5.28)

Let us estimate Vj as follows:

Vo =

Pe N N
/ osb(x + X (5),5) — dsb(X (s), s)ds

t

< (@B + X ). 5) — (DBX (). 9) X ()
+ @Bk + X(9),9) = @BX (), )| ds
< olx| /pe | D?bllscliBlloc + | Da;bllocds < ore.
Similarly, [

|V B+ X(po), pe) = V- bx + X (1), )|

Pe
= /
t

< o (I1D%Blloclblloc + 1D3Blc ) e.

(DV - b)(x + X (s), s)E(x(s»] + \(atv -B)(x + X(s). 5)| ds

Thus it follows from (5.28) that, if C; =2 o, C» = o,
Gm) 2 (Cr —or)eng + (C2 —o)re|Vi| 2 0in Bg x (0,7).  (5.29)

In view of (5.27), C1, C2 = o if 03 in (5.14) is chosen to be large enough depending
only on universal constants. Hence with this choice of o3 we have proved that
G(nr) 2 01in the sense of distribution in B, x (0, t). From the Lipschitz continuity
of n; we conclude that G(n;) = 0 weakly in B, x (0, 7).

Lastly, it is not hard to see that the choices of Ag, «, T are independent of r and
k. O
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Corollary 5.6. Let u be from Theorem 5.1, and let v and w be given by (5.3) and
(5.8) respectively. Suppose that the assumptions in Proposition 5.5 are satisfied.
Then for any open set U C By, if w = v on the parabolic boundary of U x (0, 7),
then

w=v inUx(0,1).

Proof. Let {u;}; be the smooth approximations of u and uy = u. Let vi(x, 1) =
uy (x+ X (1), 1) and wy, be from (5.7). It follows from the proposition that £ (wy) =
0 weakly in B, x (0, t). We have w; = w due to the fact that uy = u. Then by
the assumption, wi = v on the parabolic boundary of U x (0, 7). By comparison
principle for £;, we get wx = v in U x (0, 7). Due to Lemma 2.5, u; converges
locally uniformly to u, and so wy converges locally uniformly to w. We conclude
by sending k — co. O

Now we are able to prove Theorem 5.1.

Proof of Theorem 5.1. Let o1 be given in Lemma 5.3, and let ® be the unique
solution of

A@ Yy =0 in B1\Bsino/10
O =Agp on 9 Bsing /10

1
® = —sinb ondB;.

2 2

Here Ay g is chosen sufficiently large so that

® (y n %) >3 forall y € Bung)10. (5.30)
Then @ satisfies AP < % and for some My(0, d) = 1

1
— S ® < My, |[VP|ooc =My inBj.
My 2

With this My, let Ag, @, T be as given in Proposition 5.5.

Fix any (%,7) € Q; NT and let C*, i, B be from Theorem 4.4 and t be from
(5.15). We will show that the support of the solution strictly expands relatively to
the streamlines at (%, £).

Let§ = §(0, Cp) > 0, which will be chosen as a constant satisfying (5.42) and
(5.44). Define

ts := min{r, h, 6}, (5.31)
and
) g 1
rs :=min  Cyty, 7 > 0. (5.32)

Due to Theorem 4.4,

u(x,t—ts) =0 forx € B(X(X,1; —t5),rs). (5.33)
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L,

Fig. 1. The local domain

After translation, we assume (X (X, 7; —t5),7 — t5) to be the origin. Using the
notation X (r) = X (0, 0; t), we have

(X (t5), 15) = (X (X (X, 15 —13)), T — 155 15), 1s) = (X, 1) € T'(u).

Let v be as given in (5.3), and then £, (v) = 0 weakly in Q%, where £, is given
in (5.4). It follows from (5.33) that

v(x,0) =0 in B,,. (5.34)

For P := ="y, set p(x) := rng(xr;P).

Let w be defined as in (5.8) with the above ¢ and r = rs:

w(x, 1) i= eA0¥! inf u(y + rsep + X (pe (), pe(t))
B(x,ep(x)(1—at))

inf v(y +rseu, 1)).
Bleo e (v +rsep, pe(t))

— erst

Next denote the cylindrical domain (see Fig. 1)
rs
X = (B(P, 5)\B(P, re)) % [0, t5],

where rp := {3 sin 6. We claim that
wZvin X. (5.35)

Roughly speaking, (5.35) states that the nondegeneracy property of u propagates
from the positive set to the free boundary, as the positive set expands out relative
to the streamlines.

The proof of (5.35) will be given below. We first discuss its consequences.
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Using (5.15) and (5.30),

) > 3ry forx € Brs (0).
5 10
From this, it follows that for all |x| < %% <

12
—rsepL € B <x, ?r(ss) +rsep C B(x, ep(x)(1 — ats)) + rseu.

0(x) = rs® (f + 2
rs

rs
10°

In the inclusion, we used that ats < % Then using (5.35) and the definition of w,
we get for [x| < %5,

e y(—rsep, pe(ts)) = eA0%h inf V(Y + 5L, pelts))
B(x,ep(x)(1—ats))
= w(x, t5) = v(x, ts).

From (5.11) it follows that p.(ts) = ts + ce for some ¢
independent of ¢. Thus

c(ts, o) which is
u(—rsep + X(ts +ce), ts +ce) Z e 200 sup  u(x + X (1), t5).
Ix|Srse/5

Recall that (X (15),t5) = (£,7) € I'(w) and X (ts + ce) = X (X (t5), t5; ce). We
proved

u(—rsep + XX, 1;ce), f +ce) >0,
which implies

u(X(,-;ce) —rsep,-+ce) >0 onl' N Q.
Now we proceed to prove our claim. O

B(P, rg). To this end, it suffices to show that w = v on the parabolic boundary of
3.

Proof of (5.35). Here we apply Corollary 5.6 with the choice of U := B(P, )\
First observe that from (5.34),

w(x,0) = 0= v(x,0)in B (P, rﬁ) .
Since v(0, t5) = u(X(ts), ts) = 0 and due to Lemma 3.3,

v(0,1) =u(X((),t) =0fort € [0, t5].

Due to the cone monotonicity assumption (5.1),

. rs .
w=2v=0in B(P,ry) C B (P, gsm@) x [0, t5]

Hence to show (5.35), it remains to show that w = v on dB(P, ) x [0, ts].
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By definition of ¢, we have ¢(x) = %‘5 sin® on dB(P, rs/2). From (5.14), we

know Ag = o3 My. It follows that for x € dB(P, r5/2),
wx, 1) = eMoe inf v(y + rsep, pe(t))

in g
yeB(x,rs(laxt)%)

oMo inf u(y 4 rsep 4+ X (pe(2)), pe(r))  (5:36)
yeB(x,%sinG)

=: e2Mfy (x, 1),

=e

In view of (5.1), we have

inf  u(y+rsep+ X (@), 1) 2 v(x, 1).
B(x,rsesin0)

Thus it remains to show that

e?MEY ()2 inf u(y 4 rsep+ X(), 1)
B(-,rsesin0)

on 9B(P, %‘S) % [0, 15]. (5.37)
Take any (x, ) € dB(P, ) x [0, ts5], and denote
rse .
z:=z(y,e) =y +rseu+ X() foranyye B (x, 751119) .

With this notation we can rewrite Vi (x, t) as

inf u(z — X(pe(1)) + X (@), pe(1)). (5.38)

yeB(x,% sin0)
By (5.18) and (5.31), we know
se(t) = pe(t) —t < oée. (5.39)
Then

|X (2, 1;5¢(1)) — 2 = X(pe (1)) + X (O] = 1X (2, 1; 5:(1)) — X (2,2, 0) — X (X (1), 15 5¢(1))
+ X(X(0),1;0)

se (1) N
/ b(X(z,1;h), h) — b(X(X (1), t; h), h)dh
0

e (1) N
< / (IDBllolX (2, 13 1) = X (X (1), 13 )| ) i,
0
(5.40)

Note that, for some universal o,

[ X(z,t;h) — X(X(@),t; )] S |X(z,1;0) — X(X(),1;0)| +0oh
— |z = X()| +oh
Sors+oh.
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Therefore, (5.40) and (5.39) imply that

1X (2, 15 5:()) — 2 = X(pe () + X ()] < 0r55:(t) + 05:(1)°

5.41
< o (8rse +8%e%) < % sin 9,( )

where the last inequality holds if

sin 0 rs sin @
an < .
4o = 4082

Using (5.38), (5.39), and (5.41), it follows that

(5.42)

Vilx,t) 2 inf u(X(z, t; 5:(1)), t + s¢(2)).

yeB(x,rsesin )
Due to (3.2), for C := (m — 1)(Co + |V - blloo),

inf )M(X(Z(y),t;se(t))at+S€(t))

yeB(x,rsesin 6

> ¢ O inf )u(y +rsep+ X (@), 1).

yeB(x,rsesin @
In view of (5.36), we derive

w(x, 1) = ¢®2Moeg=Cs:(1) inf  u(y +rsep+ X(@),1). (5.43)
B(x,rsesin6)

Using (5.39) again shows

o

e Moe=Caell) > gnMoe=Code > - jf 5 < : (5.44)

- - ~14+Co
Now after fixing § = §(0, Co) > 0O suchthat (5.42) and (5.44) hold, we can conclude
with (5.37) and then the claim (5.35). O

In view of the velocity law (1.3), non-degeneracy follows once we know that
the positive set of the solution is strictly expanding relatively to the streamlines. In
the next theorem, we are going to show that indeed the solution u grows linearly
near the free boundary.

Corollary 5.7. Under the conditions of Theorem 5.1, there exist &g, k. > 0 depend-
ing only on constants in (5.2) such that, for all ¢ € (0, &9),

u(x +&u, 1) 2 kye forall (x,t) e TN Q. (5.45)
Proof. LetcgbefromLemmad4.1 and C be from Theorem 5.1. Define x := %.
We first claim that for all ¢ > 0 sufficiently small
sup u(y,t) Z ke for(x,t) e "N Q. (5.46)
yeB(x,¢)

We argue by contradiction. Suppose that the above claim is false. Then for any
go > 0 there exist ¢ € (0, &g] and (£, f) € ' N Q1 such that (5.46) fails.
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Set t; := f — Ce and consider the map X (-, 71; Ce): RY — R?, which is
an isomorphism when &g is small enough. Since the positive set of u is strictly
expanding relatively to the streamlines, we have

u(X(x,1;Ce), 7)) >0 forx e B NTy.

Using the cone monotonicity condition (5.1) and the fact that u(x, f) = 0, it follows
that (£ + R* ) N Ty, # ¥. Therefore there exists (x;,#) € I" such that

X(x1,t1;Ce) =x + Crep for some Cy > 0.
Due to (5.1) again, we have
d(x; —cep,Ty) = cesing  forallc 2 0. (5.47)
In view of Theorem 5.1, for all ¢ sufficiently small
u(X(xp,t1;Ce) —eu, t; + Ce) > 0.
Therefore, combining with the fact that
u(X (x1,t; Ce) — Creu, t; + Ce) = u(®, 1) =0,

we obtain C; = 1.
Next define

Xy =X, 1; —Ce), f(t):=X@&+Crep, ;1) — XX, 1;1).
Due to (1.6),
1f O] £ [IDxbllool fO)] = 01 fO)]. f(0) = Crepand f(—Ce) = x; — x.
Thus
x1 —x2 — Crep| = | f(—=Ce) — f(0)| £ o CCye.

Using this, (5.47) and the fact that C; = 1, if ¢ < g is sufficiently small compared
to C, it follows that

Ciesinf > esinf _.
2 - 2

d(x2, Ty) 2

which yields
u(-,t1) =01in B(x2, R). (5.48)

Note that #; + Ce = 7 and X (x, t; C¢) = % from definition. Therefore the
failure of (5.46) implies that

n . R?
yg u(x, t)dx = yg u(x,Hdx S ke = wr (5.49)
B(X (x2,11:C8), R) B(&,R) Ce

. o
In the last equality, we used that k = “37— 0
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With (5.48)—(5.49), we are able to apply Lemma 4.1 to get
u(x,f) =0 in B(X(x2,11; Ce), R/6) = B(X, R/6),

which is in contradiction with the assumption that (£, /) € I". We proved (5.46). It
can be seen from the proof that ¢y only depends on constants in (5.2).

Now we show (5.45). Let us take y € (0, 1) to be small enough depending only
on 6 such that B(u, y) € Wy ., which implies that, for any ¢ € (0, 1),

ene [ {z+ Woul (5.50)
zeB(0,y¢)

Fix any (x,¢) € ' " Q1, and set k. := k. By (5.46), there exists &g > 0 such
that

sup u(y,t) = kye forany e € (0, go].
YEB(x,y¢)

Therefore we can find y € B(x, y¢) that u(y, ) 2 «e. It follows from (5.50) that
x+ep €y+ Wy . Dueto (5.1), we conclude with

u(x +&u,t) = ke forany (x,1) e TN Qpand e € (0, g].

6. Flatness Implies Smoothness

In this section we prove the following theorem:

Theorem 6.1. Let u be as given in Theorem 5.1. If (1.10) holds in Q1, then u
is Lipschitz continuous and I' N Q 1 is a d-dimensional CY% surface for some

a e (0,1).

The cone monotonicity and (1.10) provide sufficient monotonicity properties for
the solution to rule out topological singularities and to localize the regularization
phenomena driven by the diffusion in the interior of the domain. We follow the
outline for the zero drift built on [10,11], while we elaborate on the differences.
Most notable difference is in establishing Proposition 6.3.

Lemma 6.2. Under the conditions of Theorem 6.1, u is Lipschitz continuous in Q1,
and I' N Q12 is a d-dimensional Lipschitz continuous surface.

Proof. First let us prove that u is Lipschitz continuous in Q1. Since u satisfies a
parabolic equation locally uniformly in its positive set, u is smooth in {u > 0}.
From the equation and Au = —Cy, we obtain

uy 2> |Vu|2—a(Co+1)u+Vu‘l;in {u > 0}, 6.1)
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where o is universal. Above estimate combined with condition (1.10) yields
(A+0)|Vu| + C(Co, A, 0)u+ A Z |Vul,

which turns into a bound on |Vu| in {# > 0}. From (1.10), we also get a bound on
|u;|. Notice the bounds are independent of the ellipticity constants of the equation
satisfied by u. Indeed we have,

[Vul+ lu;| £C in Q1 N{u > 0} (6.2)

for some C only depending on A, C and universal constants. Since u is continuous
and nonnegative, it is not hard to see that the same estimate holds weakly in Q.
Next we turn to the Lipschitz continuity of I", using the cone monotonicity and
Lipschitz continuity of u. The spatial cone monotonicity of u implies that for each
t € (—1, 1), I'; is a Lipschitz continuous graph in R4, Thus it remains to show that
foreacht € (—1,1), 'y N B% is in a C't neighbourhood of I'; N B; for some

C > 0. To this end, it is enough to show the following: for (x,¢) e ' N Q0 1 and
for T > O sufficiently small, we have

d(x,.:) and d(x,{u(-,t+7)=0}) <Cr. (6.3)

To show (6.3) let us fix (x, ) e ' N Q%. Observe that from Lemma 3.3 there
exists C > 0 such that, if T > 0 is small,

d(x, Q1)) = Cr.

Thus it remains to show the second inequality in (6.3). Let C; > 0 be a sufficiently
large constant to be chosen later. From the cone monotonicity

u(-,1) =0in B(y, R),
where y := x — Citu and R := Cj sin 6 7. By the Lipschitz continuity of u,

sup u(z, t+71) SuX(y,t;1),t)+C(R+1)
2€B(X(y,t;T),R)

Su(y,t)+0Ct+C(+Cysind)t
(since | X (y, 1;T) — ¥l

< bllsot)

SCCir,

where C depends on Lip(u) and ||1;||oo. Thus, for co given in Lemma 4.1,
R2
f u(z,t +1)dz £ CC1t < (¢o C3sin0) T = cp—,
B(X(y,t;7),R) T

where the last inequality holds if C; is large enough compared to 1/co, 1/6, Lip(u),
I16|loo- Remark 4.2 then yields for small 7,
u(x—-Citu,t+1t)=0

and therefore (6.3) is proved. 0O
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Now we start proving the C'¢ regularity of the free boundary. By considering
u(x,t) := 2u(xo+%x, to—i—%t) for any (xo, t9) € Q%OF,Wecanassume 0,00el’
and u is a solution in Q1. Then to prove the rest of Theorem 6.1, it suffices to show
that T" is C1-¢ at point (0, 0).

The following proposition propagates the free boundary non-degeneracy in
Corollary 5.7 to the nearby level sets:

Proposition 6.3. Assume the conditions of Theorem 6.1 and (0, 0) € I'. Then there
exist constants 0 < §; < % and c; > 0 such that

Vuu(x,t) 2 cp ae. in Qs; NQ2u).

Proof. Fix a sufficiently small § > 0 to be determined and pick (£,7) € {u >
0}N Qs. Let h := d(x,T;) < 8. From Lemma 6.1, I"(u) is space-time Lipschitz
continuous, and actually it can be written as the graph of x, = F,(x*, r) where
x, :=x-vand x € {x - v = 0}. Let us denote the space-time Lipschitz constant
of F, as C, and choose C, := C + 1. Then

d(%,T;_;) < (Cy — Dh.

Denote (v, s) suchthats = f—h, y € I'sandd(%, y) = d(X, T'y) £ (C—1)h. Thus
B(y, h) € B(x, C2h). Also by Lipschitz continuity of [y in space, d B(y, h) N{u >
0} is of strictly positive measure Ch with C independent of /.

By the divergence theorem,

o
f V,u(x, s)dx 2 —f u(x,s)u - nydx
B(y,h)N{u>0} h dB(y,h)N{u=>0}

where n, is the outward pointing unit normal on d B(y, /). So in view of (5.45) and
the assumption that # is monotone with respect to Wy ,, we have

f Vyu(x, s)dx 2 «
B(y,h)N{u>0}

for some k > 0 only depending on k, and Cj.
Let us define

Q= {(x,1) € Q,d((x,1),9Q) > r}. 6.4)

Fix y € (0, %) to be a small constant only depending on « such that

% Vyu(x, s)dx 2
B(y,h)NQrh

Therefore there exists a point

X

z€B(y,h)yn Q"™ c B(%, Coh)y n Q"
such that

Vuu(z,s) 2 =. (6.5)

NSNS
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We will apply Harnack inequality to ¢ := V,u, using the fact that it solves a
locally uniform parabolic equation in the positive set of u.

Let us consider {# > 0} and then u is C! inside the open region. Differentiating
(1.5) in {u > 0}, we can check that ¢ satisfies the following parabolic equation

¢ = (m — DpAu+ (m — DuAd + 2Vu +b) - Vé + (m — D@V - b + f,
where
fi=Vu-Vub+(m—1)uv-V,b.

Since u is Lipschitz continuous and bis smooth, f is uniformly bounded. Then the
new function

¢ 1= e 4 || flloot =) with C3 := (m — 1)(Co + IV - blloo)
satisfies
¢ = (m — DulAp + 2Vu + b) - V. (6.6)
Let us define
2= Q"0 (B, Coh) x (—h +1,1)),
8= QM2 0 (B(R,2C2h) x (=2h +1,1)),
where Q" is as given in (6.4). Then we have
(%,1), (z,s) € Zf c =k

For any (x, 1) € £/, itis VTh away from I', and then by the cone monotonicity and
(5.45) we have

Ksyh

1) =
u(x,t) 2 >

6.7)

Consider w(x, 1) := ¢(xh + %, th + ). Since f — s = h, we have

A

— X

w0, 1) = ¢&,7), andw(z,0) =d(z,5) withz = >
Denote
= (S = &, 8)/h, Ty = (24— (%,)/h.

Then X1, X, are domains with Lipschitz boundary with Lipschitz constant depend-
ing only on C, o, and

0,1),(z,0) € £1 € %o,
Also writing X; () = {x | (x,1) € X;} fori = 1,2, we get

(1) + By € Bi(1) fort € (—h + f,1).
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From (6.6), w satisfies
wy > (m— l)%Aw +QVu+b)-Vuw,

and the operator here is uniformly parabolic in X5, due to (6.7). Applying Harnack’s
inequality to w in X1 C ¥,, we get
w(0, 1) 2 cw(Z',0)

for some constant ¢ = ¢(6, kx, C2) > 0. Write the above inequality in terms of ¢
to obtain

DR, e 4 [ floo =) = ch(z,5),

which is larger than -, due to (6.5).
Since f — s = h < §, further assuming § to be small enough, we get ¢ (X, )
< > 0. Finally we conclude that V,u = % > 0in QN Qs.

1\

Next we show the strict monotonicity of u along the streamlines.

Lemma 6.4. Let u be given as in Proposition 6.3. Then there exist 8 € (0, 81) and
c2 > 0 such that, for v(x, t) ;= u(x + X (t), t) with X(¢t) = X (0, 0; 1), we have

v = ¢y in Qs, N{v >0}

Proof. By definition, v solves £;(v) = 0, where £, is as given in (5.4). By the
equation, we have

1 - - -
dv = —Co(m — v + EIVUI2 —41b(x + X (1)) — b(X(1)]* — (m — Dv||Vb|
c? -
> —0Cod + 71 — 4|x?|Vb|2, — C8

e .
~0Cod + - — 08~ C6 in Qs,

1\

where the second inequality comes from the fact that v < C§ due to (6.2), and the
third inequality follows from Proposition 6.3.

Since ¢ is independent of §, the last quantity is positive if § = & is small
enough compared to Co, c1, the Lipchitz constant of # and universal constants. We
thus conclude. O

Now we are ready to follow the celebrated iteration procedure given in [10].
Their argument describes the enlargement of cone of monotonicity as we zoom in
near a free boundary point. More precise discussions are below.

Our reference point is (0, 0) € I', and let v be from Lemma 6.4. For § € (0, §>),
define

1 - - 1
vs(x. 1) = <v(Bx.80), by(x.1) :=b(x.80). Xp:=SX(Br). (68
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Then X5 is the streamline ggnerated by l;(; staging at (0, 0). We have that vs is a

solution to £7(-) = 0 with b, X replaced by bs, Xs. From Lemmas 6.2-6.4, we

have for some L > 0 independent of § [depending on constants in (5.2)] such that
1

0sv =L, I < [Vusl, Vuvs, dvs S L, Avs 2 =SL in Q1. (6.9)

Denoting o as the C? norm of B, we have

165100 < 0, 1Vbslloo + 185 lloe < 08, 1D?bslloc + IVbsllec < 8%, (6.10)

Let Wg),, be given as in (2.1). We say v has the cone of monotonicity Wg,v in

Q1 if
Vou =0 inQforall pe Wp,.

The next lemma, yielding the initial cone of monotonicity for vs, can be proven
using (6.9)—(6.10) with a parallel proof to Proposition 2.1 of [10]. Let us denote
the positive time direction as e .

Lemma 6.5. Let vs be as given in (6.8). Then there exists 8y > 0 such that

A 1

Vyus 2 5L in Q1 forallpe WGo,uo nsa+t,

where [ = JLE[(M, 0) + eq+1] and L is as given in (6.9).

Now we begin our iteration procedure. Fix some J(L) € (0, 1) to be chosen
later, define

1
ve(x, 1) = ﬁv(;(ka, Jkt)  fork e N*. (6.11)

Then vy, satisfies

dvx — (m — Do Avg — [Vorl> = Vg - (i (x + Xi(0), 1) — b (Xi (1), 1))
—(m — l)ka~I;k(x+Xk(t),t) =0, (6.12)

where by (x, 1) 1= bs(J*x, J*1), Xi (1) == L X5(J*0).
Due to (6.9)—(6.10) the following holds in Q1:
(A0 =y =L, Ay = —L6S, V| +10vk] = L
(Br) Vv, dvx 2

>

1

L
(C) 1Bk lloo € 0, 1 VDilloo + 1Bk oo < 08J%, Dby lloo + V0 bk [0 <
082 J%k,

The main step in the proof of Theorem 6.1 is to show the following property
inductively.
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(Dy) there exist s € (0, 1) and ux € R4*! such that for 6 := z —sk(% —6p),
A 1 ~
Vour 2 ZJ" inQ; forall p e Wy, NS’ (6.13)

Once establishing (Dy), it shows that the cone of monotonicity ng, we for vy has
strictly increasing 6y, converging to /2 as k — oo. The rate of its increasing
angles leads to the C+* regularity of the free boundary.

In [10], (6.13) is stated with the weaker requirement \Y pUk 2 0. However for us
the competition between diffusion and drift requires a stronger inductive property:
see Remark 6.9. This extra observation follows from the enlargement of cones as
well as the non-degeneracy of the solution.

We will proceed with several lemmas that lead to the enlargement of cones in
Proposition 6.10. The proofs of the lemmas will be postponed until after the proof
of the Proposition.

First we show that some improvements on monotonicity can be obtained on the
set {vy = ¢}. Recall L from (6.9).

Lemma 6.6. (Enlargement of Cones) For any ¢ € (0, 1), there exist positive con-
stants r < 10, 80 < 82, and C depending only on ¢, L, o such that the following
holds. For any 8 € (0,89), J € (0, 1) and k = 0, let v be as glven in (6. 11) and
suppose that Vi satlsﬁes (Dy). Then for any y € (0,¢), p € ng we N S84 and

7 := Ce ! cos(p, Vvk(,u, —2r) ), we have

v S e in Qo and vi((x,t) +yp)
> 1+ ty)v on (B% x (=2r,2r)) N{v = ¢&}.

Next we show that this improvement can propagate to the zero level set of v.

Lemma 6.7. Let ¢ > 0 be small enough depending only on L, o. Take r, v, T from
Lemma 6.6. If w is a supersolution of (6.12) such that w 2 vy in Q1, and for some
y €(0,¢),

w2 (1+Ty)vgin (B% x (=2r,2r)) N {vx = &},
then we have
w = (14 ty)vin (B% x (=2r,2r)) N {v; < &}
Lastly we further improve the monotonicity in a smaller domain of size r.

Lemma 6.8. Let ¢, r, v, T, w, ¥y be as in Lemma 6.7. There exists a small k > 0
depending only on L, o such that the following holds. Consider any smooth function
¢ : R4 — R* suchthat ¢ is supportedin Bar and ¢, |V |, |D*¢| < kty. Ifvp < ¢
in Qo then we have

wx, 1) Z v (x + ( + 20 (), 1) in Qo
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Remark 6.9. In [10] for the zero drift case, w in the above lemmas is chosen as a
translation of vy to derive monotonicity properties of v. Since our equation is not
translation invariant, we instead choose w of the form v ((x, t) + p) + Et with
E > 0. To control the extra term Et we rely on the inductive property (Dy). The
order between v, w is still enough to derive the Proposition below.

Now we state the main proposition.

Proposition 6.10. (Improvement of monotonicity) There exist constants J,s €
(0, 1) such that the following holds for all k = 0. Let vs be as given in (6.8) with
8 € (0, 80) and 8o from Lemma 6.6. Suppose (0,0) € T and (6.9)—(6.10). Then

there exist a monotone family of cones W, ., with 6 = 5 — sk (5 —6o) such that

@pvg > L)'k in O Nfvs >0} forallpe ng,uk nse.

The C1- regularity of I at (0, 0) is a result of the relation 6y = 6x_1+ S(r/2 —
0r—1) which describes quantitatively the enlargement of cone of monotonicity of
solutions near the free boundary. Then Theorem 6.1 follows. We omit detailed
discussion of this part since it is parallel to Theorem 1 in [10].

Proof. Fix asmall ¢ > 0 such that the conclusion of Lemma 6.7 holds, and let r,
be as given in Lemma 6.6. Then ¢, &9, r only depend on L and universal constants.
Define 7 as in Lemma 6.6. Let v; be as in (6.11), and set by, X as before and we
take J < r to be determined. It is straightforward that for all k = 0, (Az) — (Cx)
hold. When k = 0, due to Lemma 6.5, (D) holds for v = vy.

Let us suppose that (D) holds for some k = 0 with ug, 6 = 6 i.e. the
hypothesis of Lemmas 6.6—6.8 are satisfied. We will show (Djy41).

For any y € (0, ¢) and a unit vector p € ng’ > define

w(x, 1) = ve((x, 1) + yp).

Note that w = vy in Q1 due to Dy. Next, (6.12) implies that
£2() 2 =y (IVBIVbiCx + X0l + 0n = DBV - ,bil)

By (Ax) — (Cx) and the fact that |9, Xy | < |l;k| < o, we have
Lo(i) = —y(o8LI*) =: —y Ey.

Then for w := w + E (¢t + 2r), we have w = vg in Q»,.

In view of Lemma 6.6, vy < ¢ in Q, and w satisfies the hypothesis of
Lemma 6.7. Let 7 be defined as in Lemma 6.6, and let k < kg be from Lemma 6.8.
We select a smooth function ¢: R — R such that ¢ is supported in B,,, and
¢.1V¢|.|D*p| < kTy, and

¢ 2 (TVZK‘[)/ in B, for some universal o. (6.14)

Clearly such ¢ exists.
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It follows from Lemmas 6.6—6.8 that
wx, 1) 2 v(x + (¢ +2r)¢(x)p, 1) in Q.

By (Bx) and (6.14), for ¢ := "’LS" we have

r+2
W 1) 2 00,0+ G 2 v, 1)+ Ty in O

This implies that

ve((x, 1) +yp) — ve(x, 1)

@pvk(x, t) = lim

y—0 Y
, 1) — , 1
> Jim LD T WD S
y—0 Y
>t —o8LJ*r in O, N {v; > 0}.

Using the definition of 7, we obtain
Vv (x, 1) = Cy cos{ p, Vug (i, —2r)) — o 8LJ*r, (6.15)

where C; := ¢’Ce~! only depending on L, o (since ¢ is fixed).
It follows from (Ay) and (Dy) that

~ V,v [N 1
cos{ p, Vur(u, —2r)) = lf’ kl(u, =2r) Z V0, =2r) 2 5 7.(6.16)
Uk

Taking § to be small enough only depending on L and o, (6.15) yields
o Ci o .
Vpur(x, 1) 2 > cos{ p, Vg (i, =2r)) in Q, N {vx > 0}.

Thus in Q, N {v; > 0},

A \Y C A
cos( p, Vur(x,1)) = Apvk (x,0) 2 i cos( p, Vur(u, =2r)).  (6.17)
Vgl 2L

For p € S%*1 set

C A
p(p) 1= g cos{ p. Vvl =2r)).
For any g € B(p, p(p)) we have sin{ p, ¢ ) < p(p) and thus

cos{q, Vug(x, 1)) = cos( p, Vug(x, 1)) — 2sin{ p, q )

1\

C A
i cos( p, Vur(u, =2r)) = 2p(p) (by (6.17))

< cos( p, Vu(u, =2r)
— , Vug (e, =2r)).
4L P VU
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In view of (Aj) and (6.16), we get

A Ci A Ci 4
Voue(x, 1) 2 2 cos{p, Vur(u, =2r)) 2 o7 J"
Since the above holds for all ¢ € B(p, p(p)), there exists a larger cone ng L
for some iy € Rt S e (0, 1) and Gx41 = 6 + S(%n — Oy) such that
~ C ~
Vpur(x,t) > 8_L14Jk for all unit vector p € Wy, | 1., and (x, 1) € Q;.
Here § is independent of k, because p(p) only depends on the angle between p and
Vi (e, —2r). From the iterative definition of 6, we obtain 6y = 7 — sk (5 —6o)
with s = 1 — S. We refer readers to [8, 10] for more details.
Let J = min{Cl/(4L3), r}. Recalling vg41(x, 1) = }vk(Jx, Jt), we obtain
for all unit p € Wy, 1
= 2 Ci |
Vg1 (x, 1) = Vpug 2 WJ 2 ij for (x,1) € Q1 N {vgy1 > 0}
We checked (Dy+1) and therefore by induction we conclude the proof of the theo-
rem. 0O

Now we give the proofs of Lemmas 6.6-6.8. To simplify notations, we write
v = Vg, b := by and X := Xy in the that follow proofs.

Proof of Lemma 6.6. First note that if » < 57, then v < & in Q, from (A;) and
the fact that O € I'g. Next observe thatin Q1, g := Vv solves
gr=m—1)gAv+2Vv-Vg+ (m —1vAg
+Vg - (bl + X) = (X)) + (m — DgV - b
+Vu - V,b(x + X) + (m — vV - V,,b. (6.18)
By the condition (A)(Cy),
Vv - V,b(x + X)| + [(m — )V - V,b| < o SLJ*.
Now we apply Harnack’s inequality to g, using (6.18), in (B% x [=3r,3r]) N

v 2 %8}. As done in Proposition 2.2 in [10], if we restrict to a smaller region
(B% x (=2r,2r)) N{v = &} for r small enough (depending on &), there exist C, C’
(depending on L, r, €) such that

Vou(x, 1) = CVyo(u, —2r) — C'8J%.

By (D), we have @pv(ﬂ, —2r) 2 J*. Thus we can select § small enough such
that for some C > 0

Vyu(x, 1) 2 CV,u(i, —2r) in (By x (=2r.2r)N{uZe).  (6.19)

To show the assertion, we need to show
v((x, 1) +yp) —v(x, 1)
14
which holds by the definition of t and (6.19). O

= tv(x,t) = te,
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Proof of Lemma 6.7. Let f € C'(B 1 ) be a non-negative function such that

f=0in By; fzsonBB%; IVl <10s; |Af] < 10e.

7
For @ € (—2r, 2r), define
§Ce, ) ==v(x, 1) +ty(wx, 1) + e +a) — f(x))+.

We claim that £ is a subsolution in ¥ := (B% x (=2r, —a)) N{v < g} if ¢ is small
enough, independent of r. Let us follow [10] and only point out the differences
coming from the drift. We recall the operator £, defined in (5.4) and denote the
drift independent part as £ to get

L) =& — (m— 1) AF — |VE". (6.20)

Let g(s) := tys4 and thus ¢’ = Ty x(s=0}, & = 0 in the sense of distribution.
Below, we write g = g(v + ¢(f + o) — f). Direct computations yield

E&=w+gr=0+g)v +eg,
VE=Vw+g =(1+g)Vv—g'VFf.

Following the computations in Lemma 3.1 of [10] and using |Vv| = %, we
obtain

LE) S +¢)Lw) — (L_2 - Cs) ¢’ with C only depending on L and o.

Since £2(8) = L(§) — VE - (b(x + X) — b(X)) — (m — EV - b, then

L2(8) < (1+g)L(w) — (L7 = Ce) g’ — V& - (b(x + X) —b(X)) — (m — 1§V - b
=1+ gV + gV f-(blx+X)—b(X) — (m—1)(g—g)V-b— (L™~ Ce)g'
=g VI (b(x+X) —b(X)) — (m — 1)gV - b — (L—Z—Ce—(m—l)v.é)g/.
By (Cy), we have 16llse < 0, IVblloo < 08JF. Since we assumed § < ¢ and

J < 1,||Vblleo £ 0s. Also for (x,t) € X,5 :=v + et + @) — f < ¢ and hence
g(s) = eg'(s). We get

§'Vf - (bx + X) = b(X) + (m — gV -b| 0 in Q.
Thus £(¢) < 0if ¢ is small enough depending only on L, o.
The rest of the proof follows from the proof of Proposition 2.3 [10], where we
compare w and £ in ¥ to conclude that

wx, —a) 2 1+ ty)v(x, —a) in B% N{v < ¢}

for all @ € (—2r, 2r). O
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Proof of Lemma 6.8. Based on (A),(Br) and the elliptic regularity estimate
applied to v, one can argue as in Lemma 3.2 of [10] to conclude that

vDjjv 2 —Cy, foralli,j=1,...,d inQy, (6.21)

where C4 depends only on L, universal constants and the Lipschitz constant of
I"'(v). We will use this fact in the computation below.
Define

hix,t) ;= +ty)v(x + (+2rou,t), y:=x+ {+2r)pu.

Note that |y —x| < «7y.Lemma 6.7 implies that w = & on the parabolic boundary
of

Y= (B% x (=2r,2r)) N{v < ¢}
We claim that £5(h) < 0in . Write t/ := ty. We have

hi = A+ 1) + vud),
Vh=(1+1)(Vv+u,(t+2r)Ve),
Ah = (141 (Av +2( + 21V - V + vt +2r)* V> + v, (¢ +2r)Ag)

From (6.21) and the computations in Proposition 2.4 [10]
Em = (1 +HEw .0 -7 (L7 = cx)
where £ is given by (6.20) and C depends only on m, L, Cy4, o. Thus
L200 £ A+ vy, = (L7 = Ck) = Vi (b + X) = b(X))
—(m — DAV -b(x + X)
=1+ )Ly, ) — 7 (L7 = Ck) = (1 +7)Vu- (E(x +X) - b(y+ X))
= n = DA+, 0V - (b + X) = by + X))
— (4 Tl +2099) - (Ber + X) = b))
< =7/ (L7 = Ck) + (L + )|Vl Dblloolx = yl + (m = D(1 + )] D*blloolx — |
+ (4 ) | (¢ +2r) V@] VD lloolx]-

Now apply (Cy) and since § < &, we have ||Dl;||oo < os, ||D213||oo < o&2. Since
V| < kt/, we obtain

Lo(h) £ -7 (L_1 - C/c) —oLekt —oLerkt —oLe*kt

A

7 (L—1 —Cr— OLK) <0 inx,

if k is small enough. By comparison principle applied to w and /4 in Q7 we can
conclude that

w(x, 1) 2 h(x,t) Z v(x + (t +2r)p(x)u, 1) in Qa;.
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7. Discussion of Traveling Waves and Potential Singularities

In this section we discuss evolution of solutions in two space dimensions, in
several explicit scenarios.

7.1. A Discussion on Traveling Waves

For simplicity, we restrict to two space dimensions d = 2. The drift is chosen
as

B(xl, x2) 1= (a(x2), 0), where « is Lipschitz and bounded. (7.1)

When « is periodic and max{«} < c,itis shown in [21] that there exist traveling
wave solutions of the form U (x + ctep) for the corresponding pressure equation
(7.2), with the growth condition limy, — Ux(x ) = ¢. While Lipschitz regularity of
the solutions are established therein, the free boundary regularity and possibility of
a corner remain open.

Our regularity analysis cannot address the traveling waves themselves, but we
are able to say that such singularity, if at all, is of asymptotic nature. More precisely,
we show that dynamic solutions, used in [22] to approximate the travelling waves,
stay smooth in any finite time interval.

Theorem 7.1. Let u solve (1.5) in R? x (0, 00), with b given in (7.1), with the

initial data uo(x) = (x1)4. Further impose that %lt) — 1 as x; > o0. Then the

following holds:

(a) u is uniformly Lipschitz continuous in R? x [0, c0).
(b) For any fixed T > 0, there exists to(T) > 0 such that for all t € [0, T] and
<1

Ay u £ 7du 2 0.
(¢) u is non-degenerate, and I" (u) is Cl®inR? x [0, T].
Proof. Let us rewrite (1.5) with our choice of b:
oru — (m — Du Au — |Vu|2 —a(x2) o u =0. (7.2)

Define ¢(x, t) := (x1 + o1t)4 with o1 := sup || + 1. Then ¢ is a supersolution of
(7.2) with the same initial data as u, and thus u < ¢. In particular, for any & > 0

u(x —oeer, ) < p(x —oygey, &) = (x1)+ = u(x, 0), (7.3)

where we denote the positive x; direction as ej.

For ¢ > 0 let u®(x,t) := u(x — oj€e;,t + ¢€). From (7.3), it follows that
u®(-,0) < ug. Since u® also solves (7.2), by comparison principle it follows that
u® < u, and thus

U —ojuy, <0.
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Above inequality with (6.1) yields that « is uniformly Lipschitz continuous in space
and time.
Next to show (b), for ¢ > 0 and 02 := sup |9y, | we define

w(x,t) = sup u(y —eeyq, t).
ly—x|See™2!

For each x, pick y = y(x,t) that realizes the supremum. As in the proof of
Lemma 5.4, for a.e. (x, 1) € R? x (0, c0) we have

wi(x, 1) = (u; — o2ge” "' |Vul)(y, 1).
Therefore for a.e. (x,1) € R? x (0, 00),

wy — (m— DwAw — |Vw|2—Vw~l;—(m—1)wV-l;
< —opee ™ |Vw| + [Vw|  sup  |b(y — se1) — b(x)|

YEB(x,ce792")

(—o2ee™ +ee” ||| oc) VW] £ 0,

A

where for the second equality above we used the fact that b only depends on x;.
Thus w is a subsolution. Since w(-,0) < ug, the comparison principle for (7.2)
yields w < u. In particular we have

u(x,t) 2 sup u(x+y—cgep,t)for0<e ST,
Iy|Seemo2T

which yields (b) with 7 < tan(arcsin(e~27)). Since (a)-(b) imply (1.10) and that
u is cone monotone, Proposition 6.3 and Theorem 6.1 yield (¢). O

Remark 7.2. Let us consider the travelling wave solution u(x, t) = U (x +ctej) of
(7.2) with smooth and periodic «, studied in [21]. It was shown there that, assuming
non-degeneracy, the free boundary I'g = 9{U(x) > 0} can be represented by a
Lipschitz graph x| = f(x2).

Our analysis shows that under the same assumption the graph function f is at
least C1*. Indeed |VU| is globally bounded due to Theorem 1 of [21] and thus
(1.10) holds for u. Now Theorem 6.1 applies to yield the desired regularity of f.
This improvement suggests that singularity of the free boundary such as corner
formulation could happen only when non-degeneracy fails.

The rest of the section discusses examples of singular solutions that are not
present in the zero drift problem. First we discuss global-time persistence and
aggravation of corners.

Theorem 7.3. There exist solutions u1, us to (1.5) in Q with bounded smooth spa-
tial vector fields and non-negative, Lipschitz initial data such that

1. uy is stationary and " (u1) has a corner at the origin.
2. There is a corner of shrinking angles on T" (uy).



1220 InwoN Kim & YUMING PAUL ZHANG

Proof. Write (x, y) as the space coordinate. Let
b= —V®(x, y) for some smooth function P,
and then it can be checked directly that
u := max{®d, 0}

is a stationary solution to (1.5). Notice ['g(u1) is the O-level set of ® and we claim
that if & is degenerate, the interface can be non-smooth.
For example, we can take

D(x,y) =gx)g®y)

where g is a function on R that it is only positive in (0, 1). Then a{u; > 0} is a
square. In particular, d{u >q0} contains a Lipschitz corner at the origin.
Next we show (2). Take b := (ax, by) (for a moment) and

_ [ —kmyHs ifx >0,
Px, y, 1) = { 0 otherwise ,

where
A1) = eV, k(1) = koe' for some o1, ko > 0.

Then the I';(¢) contains a corner with vertex at the origin.
Let us show that ¢ is a supersolution to (1.1) for # € (0, 1/07). Due to
Lemma 2.6, we only need to check this for x > k12 [y].
L(9) == ¢ — (m — DpAg — Vo> = Vo b — (m — DV - b
= (2 —ky?)N — Ay — (m — DA (x? — ky?) (2 — 2k) — 43%x% — 422Ky
— 2aix? 4 2bkry? — (m — DA(x? — ky*)(a + b)
=2 —ky?)(W = A2(m — 1)(2 = 2k) — A(m — 1)(a + b) — 2a — 4)?)
+ Ay2(2bk — k' — 4xk — 40k* — 2ak)
> 2 —ky)A (o1 — o (hym, ko, a, b)) + Ay2k((2b — 1) — (41 + 41k + 2a)).
(7.4)
Now we fix a and take b such that

2b — 1 = 4h + 8xko + 2a = 4h + 4)k(t) + 2a,

if oy 2 10 and r £ 1/0. Next we further take o} to be large enough such that,
the first part of (7.4) is also non-negative. We conclude that for ¢ € (0, 1/o07), ¢ is
indeed a supersolution and its support contains a corner with angles shrinking from

_1
2arctan(k, ) to 2 arctan(k(t)_%).
Now consider a solution u; with initial data ug such that ug = ¢(x, y, 0) in By
and up < ¢(x, y, 0). By comparison, ¢ = uy for all times and so

Qi (u2) C Q(p) C {x > k'2@)]yl).
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Since b = 0 at the origin, the origin is a one-point streamline. By Lemma 3.3,
0 € Q;(up) for all 1 = 0. Thus I';(u3) has a shrinking corner for a short time.
Lastly since uy is compactly supported, we can truncate b to be bounded which
does not affect u, and its support. O

Next we consider formation of corners and cusps over time.

Theorem 7.4. There is a solution u to (1.5) in Q with some bounded continuous
vector field and non-negative, bounded and Lipshitz initial data ugy such that:

1. To(u) is smooth.
2. I't(u) contains a corner/a cusp for a range of time.

Proof. First we consider b= —(x + |y], ¥). We will construct a supersolution
for this choice of b. For some oy, o1, &€ > 0, set A(t) = 09 e°!!, a(t) = &t and

(0(357 Y, t) = )\.(Z‘)X(X - Ol(t)|y|)+

When ¢ = 0, the support of ¢ is a half-plane, while for any ¢ > 0 there forms a
corner on I'; ().
In the positive set of ¢ (x > «|y|), we have

L(p) = Mx(x —aly) — re'x|y| — (m — DA2x(x — aly))(2 — axdy) — 12

'(2)( —alyl, axl>
|yl

+2(m — Dix(x — alyl).

2
+ A <2x - alyl,ax&—|> (X +ylhy)

Here 8, is the Dirac mass of variable y. Since §, = 0, the above simplifies to

Z(x —a|lyD\x —2(m — 1)A2x +2(m — DAx) — ro'x|y|
=22 —aly) + I = 22a?x?
+ A((x —aly]) +x)(x + |y]) — rax]y|
>(x —a|lyDWx — 2mA%x +2(m — Dix — Az(x —aly]) — A2x? — 22a%x?
+ Ax(x 4 |yD) — Qe 4 2a)x|yl.
Selecto| = 4m, o9 < %e""”, e < 1/4andthen )’ = 2(m—1)A+2mA?. Therefore
forr € [0, 1],
L(p) = =7 + 22 (x — aly)? +ax? + (A — ra — ra)x]y]
> =220 422 |x> + A1 — e —e)x|y| = 0.
In the last inequality we used that A < % e+et < %
Thus ¢ is a supersolution in R2 x [0, 1]. Now ug = ¢(x,y,0)in By andu be a
solution with initial data uo. Then by comparison we conclude that a corner forms

on I';(u) fort > 0.
Next we show the possibility of the formation of cusps. Consider

b:= (xlogx — 10x'~%, 0).
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which is continuous but not Lipschitz continuous at x = 0. In particular in our
barrier argument we will use approximations to avoid the origin. For some o> is
large enough, let

at) =1+1(r — 1), A 1=

and let 7, § > 0 be such that

>8> 1 22T < 1. (7.5)

Fore € (0, 1), set

MO =yl + 2Dy, ifx 20,
0

(pe(xa Vs t) = { otherwise.

Then as ¢ — 0, forx = 0,

Pe(x, ¥, 1) = @(x, v, 1) i= A()(x? — |y D).

Directly from the definition, the support of ¢ is smooth when « > 1, while a cusp
appears when o = 1 i.e. t > 7. Set the domain

1
= U ((5 > x 2 (Iyl +s>“<’>> x {r}) :

1€[0,27]
Let us check that ¢, is a supersolution to (1.5) in ¥,. Notice
>
Iyl
dyy(Iy] + )% = 2a(2a — DIyl +&)* ™" 4 2a(ly| +£)** 5,

> 202a — 1)(|y| +&)*@ V.

Ay (lyl +&)* = 2a(ly| + &) !

By direct computation, in X
Lge) Z (% = (Iyl+ &)™) = 22 (m — )2 — 20 — D(|y| +)**7V)
—A(m — 1)V - b)
— 2/ (|y| + &)™ log(ly| + &)* — A2(@4[x|* + 4’ (|y| + &)** )

— 2 <<x —2a(ly| + a)Wlﬁ) : 13)

Note we can assume o = % and V- b < o for some universal ¢ in X, and therefore
the above

> (Ix* = (Iyl + &)W — 223 (m — 1) — o A(m — 1))
— 1/ (|y] + &)** log(ly| + £)*
—22@(~ly| + )% + 40> (Jy| + &)* %) + 2h(—x log x + 10x>7°%)
= A1+ Ay + A3 + Ag.
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To have A} = 0, we only need
A =e" <" <2andoy = (0 +4)(m — 1).

Using that 72 log r is negative and decreasing for r € [0, %] and (7.5), we have

Az = At (lyl + &)* log(|y| + &) @ =—1)
> 4rt(lyl + )* log(|y| + &)* (@=27h
> 4rtx’logx = 2ax?log x (x = (yl+ &% 2t <1).

Also note by (7.5), wehave A < 1, £ 14+ 12 <2, 40 —2 2 (2 — ). So

Az = =42 (lyl+ )™ — 4ra’(ly| + )% 2
> —dax? — 1612 xCe=D/e > _ppxx?793,
In all 21.4=1A,- = 0. We proved that ¢, is a supersolution in ¥, so by Lemma 2.6,
it is a supersolution in B% x [0, 27].
Now forh € (0, 1), we select ug . tobe smooth with initial data ”g,s =h (-, 0)

in By, and ug’ . = 0in BS,. Let ui’ solve (1.1) with vector field b and initial data

ug’ .- BY finite propagation property, we can take / to be small enough such that for
alle € (0, 1)

ul(.1)y=0 on (9By) x [0,27].

By comparison (which is valid since b is smooth in Ye), uﬁ < ¢@.inB 1 x [0, 27].

Now passing ¢ — 0 gives a solution u” with initial data ho(-,0) in By, such that
ul < ¢ fort € [0,21]. As before we conclude by the geometry of Q2 (¢) and
Lemma 3.3 that a cusp appears fort < < 27. 0O
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Appendix A: Proof of Lemma 2.6

Let us only consider the case when U = R?. The case of U = B follows similarly.
Fix one non-negative ¢ € C2° (Rd x [0, T)). Denote

Up:={¢d >0} N{y > 0}.
For any ¢ > 0, take finitely many space time balls U;,i = 1, ..., n such that

1. foreachi > 1, |U;| £ &4t and U is in the e-neighbourhood of I'(y),
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2. {Ui}i=1,...n is an open cover of I'(y/) N {¢ > 0}.

Since I'(y) is of dimension d, we can assume

nse (A.1)

Take a partition of unity {0;,i = 0, ..., n} which is subordinate to the open cover
{Ui};>o- Then fori = 1,

IVoil + 0 pi] S 1/e. (A2)

By the assumption, v is a supersolution in the interior of its positive set. And since
& can be arbitrarily small, to show (2.4) we only need to show

n(e) T
I = Z <f / Y (ppi)r — (VY™ + ¥ b)V(gp;) dxdt — / ¥ (0, x)¢ (0, X)pidX) -0
i \Jo JRd Rd

ase — 0.
By property 1 of U; and the regularity assumption on ¥, in all U;, i = 1 we have

¥ < Cew, VY™ < Cy" VY| S Ce"e

Now from (A.1), (A.2) and @ < m, it follows that

1| < Ce™¢ (// l(l/f + Vy™|) dxdt +f 1/f(0,X)dX>
Ui € Uin{r=0}

< C(en 46" 1 6)

which indeed converges to 0 as ¢ — 0.

Appendix B: Sketch of the proof of Lemma 5.3

We follow the idea of Lemma 9 [8] and compute

Af(0) =Tim, g (% fx) - f(O)dX> .
B,
Without loss of generality, suppose locally near the origin that
f) = linl h(x+¢(x)v),
V|=

because otherwise A f(0) = 0. Choosing an appropriate system of coordinates, we
can have

f(©0) = h(¥(0)en);
V¥ (0) = aey + Bey,.
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We will evaluate f(x) by above by choosing v(x) = I‘\Zg ;I where

. Bx1 — axy Y -1 _
W) = e e+ (Ei=2 x,e,)

where y satisfies
A+ =0+p8"+a’.

With this choice of v, we define y := x + ¥ (x)v(x) and so y(0) = ¥ (0)e,. After
direct computations (also see [8]), we can write

Y = Yi) + ¥ 0)en + o(|x]?)
such that the first-order term, except the translation ¢(0)e,, satisfies
Yi(x) i= x + (ax1 + Bxn)en + (Bx1 — a)er + y 2L xie;.

Hence Y, (x) is a rigid rotation plus a dilation and we have

S oIV oo (B.1)

DYy, — x)
Dx

Then

yi F() — fO)dx < 7§ By () — h(y(0))dx

B,

= y{ h(y(x))
B,

—h(Y(x) + y(0))dx + f h(Y:(x) 4+ y(0)) — h(y(0))dx.

B,

By the condition on ¥ and the computations done in Lemma 9 [8], the first term is
non-positive.
Since h is smooth, the second term converges to

DY,
Dx

Now, using (B.1) and the assumption that Ah = —C and ||V |leo < 1, we get

2
) (Ah)(y(0)) asr — 0.
x=0

?i J) = f0)dx = ﬁ h(Yy(x) 4+ y(0)) — h(y(0))dx
S (L+0lVYlle) (AR (y(0)) + oIV [l C.

Thus we have finished the proof.
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Appendix C: Proof of Lemma 5.4

Letus suppose x = 0 and f(0) = h(y) for aunique y. We only compute 91 f(0) =
Oy, f(0). If VA(y) = 0, it is not hard to see

91 £(0) = d1h(y) =0.

Next suppose VA (y) # 0. We know that & obtains its minimum over B(0, ¥ (0))
at point y € dB(0, ¥ (0)). Let us assume

y=(y1,y2,0,...,0), andthus [y|* + [y2* = (¥ (0))*.

For smooth #4, it is not hard to see that

Vh(y) = —k Withk—ﬂ
V=T ~ Y0

Near point y
h(x) — h(y) = —ky1(x1 — y1) — ky2(x2 — y2) + o(]x — y|).
To estimate w((4, O, ..., 0)), consider the leading terms:

A(S) = —ky1(x1 — y1) — ky2(x2 — y2)
= —ky1(x1 — 8) — kyaxa + kyf + ky3 — ky16.

By a standard argument, under the constrain
er = 87 + x2l + e3P - |2 S 96,0, 002,
A(8) achieves its minimum at
0= Y E.0,.0)/0F + DT 6, 12 = 0¥ (.0, 0/0F + )2
with value

1
—kyr(8,0,...,0)(y7 +y3)2 4+ ky? 4+ ky3 —ky8
= —k¥(5,0,...,000(0) + kv (0)> — ky6.

Thus
01 f(0) = (ggnO A(8)/8 = —ky(0) 91 (0) — kyi.
Notice that d14(y) = —ky1. So we find

91f(0) = d1h(y) = —kyr(0) 919 (0) = —=[Vh| 31 (0).

This leads to the conclusion.
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