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Abstract

We study regularity properties of the free boundary for solutions of the porous
medium equation with the presence of drift. We show the C1,α regularity of the
free boundary when the solution is directionally monotone in space variable in a
local neighborhood. The main challenge lies in establishing a local non-degeneracy
estimate (Theorem 1.3 and Proposition 1.5), which appears new even for the zero
drift case.

1. Introduction

Let us consider the drift-diffusion equation

"t = #"m + ∇ · (" "b) in Q := Rd × (0,∞), (1.1)

with a smooth vector field "b: Q → Rd , a non-negative initial data "(·, 0) = "0
and m > 1. The nonlinear diffusion term in (1.1) represents an anti-congestion
effect [5,7,14,24].

Our interest is in the regularity of the free boundary ∂{" > 0}, which is present
at all times if starting with a compactly supported initial data. We are motivated
by the intriguing fact that the free boundary regularity is open even for the trav-
elling wave solutions in two space dimensions, with a smooth and laminar drift
"b(x1, x2) = (sin x2, 0) (see [21]). Our analysis provides a starting point of the dis-
cussion in a general framework, but the full answer to this question remains open
(see Theorem 1.6 and the discussion below). The presence of the drift generates
several significant challenges that are new to the problem, as we will discuss below.

To illustrate the regularizing mechanism of the interface, let us write (1.1) in
the form of continuity equation

"t − ∇ · ((∇u + "b)") = 0,
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where

u = m
m − 1

"m−1. (1.2)

Hence formally the normal velocity for the free boundary can be written as

V = −(∇u + "b) · "n = |∇u| − "b · "n on (x, t) ∈ % := ∂{u > 0}, (1.3)

where "n = "nx,t is the outward normal vector at given boundary points. Given that
" solves a diffusion equation, it would be natural to expect that the free boundary
is regularized by the pressure gradient |∇u| if "b is smooth, as long as u stays non-
degenerate near the free boundary and topological singularities are ruled out. In
general neither can be guaranteed even with zero drift. Below we discuss our main
results and new challenges in the context of the literature. We will always assume
that

"b ∈ C3,1
x,t (Q) and "0 ∈ L1(Rd) ∩ L∞(Rd). (1.4)

Literature Let us first discuss the case "b = 0, and then our problem (1.1)
corresponds to thewell-knownPorousMediumEquation (PME). In this case a vast
amount of literature is available: we refer to the book [23]. What follows is a brief
discussion of several prominent results that are relevant to our results. Aronson
and Benilan [2] showed the semi-convexity estimate #u > −∞ for t > 0
which played a fundamental role in the regularity theory of (PME). In general
there can be a waiting time for degenerate initial data, where the free boundary
does not move and regularization is delayed. When the initial data u0 = u(·, 0)
has super-quadratic growth at the free boundary, Caffarelli and Friedman [9]
showed that there is no waiting time and the support of solution strictly expands in
time. There an expansion rate of the support was obtained, by showing that its free
boundary can be represented as t = S(x)where S is Hölder continuous. To discuss
further regularity results, it is natural to require some geometric properties of the
solution to rule out topological singularities such as merging of two fingers. The
C1,α regularity of the free boundary is established by Caffarelli and Wolanski
[10], under the assumption of non-degeneracy andLipschitz continuity of solutions.
Their assumptions are shown to hold after a finite time T0 > 0 by Caffarelli et
al. [11], where T0 is the first time the support of solution expands to contain its
initial convex hull. More recently, Kienzler explored the stability of solutions that
are close to the flat traveling wave fronts to (PME) [16]. Later Kienzler et al.
[17] improved this result and showed that solutions that are locally close to the
traveling waves are smooth; see further discussion on their result in comparison to
ours below Theorem 1.3.

When "b )= 0, few results are available on the free boundary regularity of (1.1).
With the exception of the particular choice "b = x , in general there appears to be
no change of coordinates that eliminates the drift dependence in (1.1). Numerical
experiments in [22] present the interesting possibility that an initially planar solu-
tion with smooth drift could develop corners without topological changes. However
the non-degeneracy of pressure or the free boundary regularity is unknown even
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for traveling wave solutions in R2 (see [21]). By comparison, well-posedness and
regularity theory for the solutions of (1.1) has been much better understood. Exis-
tence and uniqueness results are shown in [4,6] for weak solutions and in [18] for
viscosity solutions. Asymptotic convergence to equilibrium of (1.1) is shown in
[12] using energy dissipation when "b is the gradient of a convex potential. Recently
[15,19] proved Hölder continuity of solutions for uniformly bounded, but possibly
non-smooth drifts.

Discussion ofMainResults andDifficulties For our analysis, wewill consider
the pressure variable (1.2) and the equation it satisfies, which is

ut = (m − 1)u #u + |∇u|2 + ∇u · "b + (m − 1)u ∇ · "b (1.5)

in Q = Rd × (0,∞).
Wefirst show the semi-convexity (Aronsson–Benilan) estimate through a simple

but novel barrier argument on #u. This is where we use the C3
x norm of "b.

Theorem 1.1. (Theorem 3.1) Let ρ solve (1.1) in Q with (1.4), and let u be the
corresponding pressure variable given by (1.2). Then for some σ > 0, #u >

−σ
t − σ in the sense of distribution for all t > 0.

Next we discuss a weak non-degeneracy property in the event of zero initial
waiting time.With zero drift this corresponds to the strict expansion property of the
positive set, see section 14 [23]. In our case this property needs to be understood
in terms of the streamlines, defined as

X (t) := X (x0, t0; t) is the unique solution of the ODE{
∂t X (t) = −"b(X (t), t0 + t), t ∈ R,
X (0) = x0.

(1.6)

While the streamlines are a natural coordinate for us tomeasure the strict expan-
sion of the positive set over time, it does not cope well with the diffusion term in
the equation. The most delicate scenario occurs with degenerate pressure, where
the time range we need to observe is much larger than the space range. To deal with
such a case we need to carefully localize "b.

Theorem 1.2. (Theorem 4.4) Let u be as given in Theorem 1.1, and fix (x0, t0) ∈
% := ∂{u > 0} ∩ {t > 0}. Write

X (−s) := X (x0, t0;−s), (t := {u(·, t) > 0} and %t := ∂(t .

Then either of the following holds:

(Type one) X (−s) ∈ %t0−s for s ∈ (0, t0);

(Type two) there exist C∗,β > 1 and h > 0 such that for s ∈ (0, h)

u(x, t0 − s) = 0 if |x − X (−s)| ! C∗sβ ,

u(x, t0 + s) > 0 if |x − X (s)| ! C∗sβ .
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Moreover, if

(0 is a bounded domain with Lipschitz boundary, and

u0(x) " γ (d(x,(C
0 ))

2−ς for some γ , ς > 0,
(1.7)

then any point on % is of type two.

The growth condition in (1.7) is optimal, since there is a stationary solution
to (1.1) with a corner on its free boundary and with quadratic growth (see Theo-
rem 7.3).

Next we proceed to show the non-degeneracy property of u, as it is essential
for the regularity of its free boundary. This step presents the most challenging and
novel part of our analysis. To illustrate the difficulties, let us briefly go over themain
components of the celebrated arguments in [11], which provides non-degeneracy
of solutions for (PME) for times t > T0. One key ingredient in their analysis was
the scale invariance of the equation under the transformation

uε,A(x, t) :=
1+ Aε

(1+ ε)2
u((1+ ε)x, (1+ Aε)t + B) for any A, B, ε > 0.

In [11] uε,A was compared to u to obtain the space-time directional monotonicity

x · ∇u + (At + B)ut " 0 on %. (1.8)

Applying (1.3) with "b = 0, we then have

|∇u| = V = ut
|∇u| " 1

(At + B)
ν · ( x

|x | ) on %,

where the first equality is from (1.3), the second equality is due to the level set
formulation of the normal velocity, and the last inequality is due to (1.8) and the
fact that ∇u is parallel to the negative normal −ν on the free boundary. Thus the
non-degeneracy follows if we know that the free boundary is a Lipschitz graph with
respect to the radial direction. This was shown in [11] for t > T0 by the celebrated
moving planes arguments, and thus we can conclude.

For nonzero drift, neither scaling invariance nor the moving planes method is
available due to the inhomogeneity in "b. In fact it is not reasonable to expect con-
sistent free boundary behavior for large times, except possibly when "b is a potential
vector field. Still, it is reasonable to expect that, without topological singularites
and waiting time, the diffusive nature of the Eq. (1.5) regularizes the free boundary.
With this in mind we show a local non-degeneracy result under the assumption of
directional monotonicity and zero waiting time.

Let us define the spatial cone of directions

Wθ,µ :=
{
y ∈ Rd :

∣∣∣∣
y
|y| − µ

∣∣∣∣ ! 2 sin
θ

2

}
with axis µ ∈ Sd−1 and θ ∈ (0,π/2].

(1.9)

We say that u is monotone with respect to Wθ,µ if u(·, t) is non-decreasing along
directions in Wθ,µ. Using the notation Qr := {|x | ! r}× (−r, r), we say that % is
of type two in Qr if all points on % ∩ Qr are of type two.
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Theorem 1.3. (Local Non-degeneracy, Corollary 5.7) Let " be a weak solution
to (1.1) in Q2, where % is of type two, and let u be the pressure. Suppose in Q2,
#u > −∞ and u is monotone with respect to Wθ,µ for some θ and µ. Then there
exists κ∗ > 0 such that

lim inf
ε→0+

u(x + εµ, t)
ε

" κ∗ for (x, t) ∈ % ∩ Q1.

For the proof we adopt a local barrier argument introduced in [13] in the context
of the Hele–Shaw flow. Heuristically speaking the barrier argument illustrates the
fact that the nondegeneracy property of positive level sets propagates to the free
boundary as the positive set expands out in diffusive free boundary problems.

As mentioned above, in the zero drift case [17] considered solutions that are
locally close to a planar traveling wave solution. Their assumption in particular
endows a discrete small-scale flatness and non-degeneracy. It was shown there that
over time the flatness improves in its scale to yield the smoothness of the solutions.
It was conjectured there whether a cone monotonicity assumption could replace
proximity to the planar travelling waves. While we do not pursue improvement of
flatness in scale, our result yields a positive partial answer to this question.

Building on the above non-degeneracy result, we proceed to study the free
boundary regularity. To prevent sudden changes in the evolution caused by changes
in the far-away region, we assume that, in the weak sense,

ut ! A (µ · ∇u + u + 1) in Q1 for some A > 0. (1.10)

Theorem 1.4. (Theorem 6.1) Let u be given as in Theorem 1.3. If in addition (1.10)
holds, then u is Lipschitz continuous and % is C1,α in Q 1

2
.

The proof of the above theorem is given in Section 6. The novel ingredient in
this section is the following result, which propagates the non-degeneracy of the
solution at the free boundary to nearby positive level sets.

Proposition 1.5. (Propagation of non-degeneracy, Proposition 6.3) Under the
assumption of Theorem 1.4, there exist δ < 1

2 and c1 > 0 such that

∇µu(x, t) " c1 in {u > 0} ∩ Qδ.

Fromhere, the proof of Theorem1.4 largely follows the iterative argument given
in [10], which compares in different scales the solution with its shifted version. For
nonzero drifts (1.5) changes under coordinate shifts, and thus a notablemodification
is necessary in the iteration procedure. See Remark 6.9.

Now we address the traveling wave solutions discussed earlier in the introduc-
tion.

Theorem 1.6. Let α : R → R be a smooth and bounded function. Let u solve (1.5)
in Q = R2 × (0,∞) with "b = (α(x2), 0) and the initial data u0(x) = u(x, 0) =
(x1)+, under linear growth condition at infinity. Then % is locally uniformly C1,α

in Q.



1182 Inwon Kim & Yuming Paul Zhang

In [21] the existence of travelingwave solutions are shownwith the above choice
of "b. We consider the initially planar solution that was used in [22] to approximate
the travelingwaves. Our argument yields an exponentially decaying lower bound on
the nondegeracy of u. While it rules out the possibility of finite time singularity for
the approximate solutions, the free boundary regularity of travelling wave solutions
remains open.

Lastly we present some examples which illustrate new types of free boundary
singularities generated by drifts.

Theorem 1.7. (Theorem 7.3 and 7.4). There is "b ∈ C3
x (Rd) such that (1.5) has a

stationary profile with a corner on its free boundary. There is a continuous spatial
vector field "b such that an initially smooth solution to (1.5) develops singularity on
the free boundary in finite time.

2. Preliminaries

◦ Notations

• B(x, r) := {x ∈ Rd : |x | ! r}, Br := B(0, r), Q = Rd × (0,∞) and
Qr := Br × (−r, r).

• Throughout the paper we denote σ as various universal constants, by which we
mean constants that only depend onm, d, ‖"b‖C3,1

x,t
, and ‖"0‖L1(Rd )+‖"0‖L∞(Rd )

if " solves (1.1) in Q, and ‖"‖L∞(Qr ) if " is only assumed to be a solution in
Qr . By saying “X only depends on σ”, we mean that X only depends on the
above universal constants.

• We useC to represent constants whichmight depend on universal constants and
other constants that are given in the assumptions of corresponding theorems.

• For a continuous, non-negative function u:Rd × (0,∞) → R, we denote

((u) := {u > 0}, (t (u) := {u(·, t) > 0}

and

%t (u) := ∂(t , %(u) :=
⋃

t∈(0,∞)

(%t × {t}).

When it is clear from the context we will omit the dependence on u.
• We write

∮

B(x,r)
f (y)dy := 1

|B(x, r)|

∫

B(x,r)
f (y)dy,

where |B(x, r)| is the volume of B(x, r).
• ∇ := ∇x , and ∇̂ := (∇, ∂t ). We also denote fi := ∂xi f , fi j := ∂2xi x j f .

• For ν, µ ∈ Rd\{0}, the angle between them are denoted by

〈ν, µ〉 := arccos
(

ν · µ
|ν||µ|

)
∈ [0,π ].
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For µ ∈ Rd , ν ∈ Rd+1 and θ ∈ [0,π/2], we define the space and space-time
cones by

Wθ,µ := {p ∈ Rd : 〈p, µ〉 ! θ}, Ŵθ,ν := {p ∈ Rd+1: 〈p, ν〉 ! θ}. (2.1)

◦ Notions of Solutions and Their Smooth Approximations. Next we recall the
notion of weak solutions and their properties, including their smooth approxima-
tions that will be used in this paper.

Definition 2.1. Let "0 be a non-negative function in L∞(Rd) ∩ L1(Rd), and let
T > 0. We say that a non-negative and bounded function ":Rd × [0, T ] → [0,∞)

is a subsolution (resp. supersolution) to (1.1) with initial data "0 if

" ∈ C([0, T ], L1(Rd)), " "b ∈ L2([0, T ] × Rd) and "m ∈ L2(0, T, Ḣ1(Rd))

(2.2)

and
∫ T

0

∫

Rd
" φtdxdt " (resp. !)

∫

Rd
"0(x)φ(0, x)dx

+
∫ T

0

∫

Rd
(∇"m + " "b)∇φ dxdt, (2.3)

for all non-negative φ ∈ C∞
c (Rd × [0, T )).

We say " is a weak solution to (1.1) if it is both sub- and supersolution of (1.1).
We also say that u := m

m−1"
m−1 is a solution (resp. super/sub solution) to (1.5) if

" is a weak solution (resp. super/sub solution) to (1.1).

The well-posedness result of general degenerate parabolic type equations is
established in [1,2,6,7]. Kim and Zhang [19] proved the uniform in time L∞-
estimate of solutions (though "b = "b(x) in the paper, the same proof applies to
"b ∈ L∞(Q)). [3,4] proved the Hölder regularity of solutions.

Theorem 2.1. (Theorem 1.7, [1], Theorem 1.1, [19]) Let "0 be as given in Defini-
tion 2.1. When "b ∈ L∞(Q), then there exists a weak solution " to (1.1) with initial
data "0. Moreover " is uniformly bounded for all t " 0 with a bound depending
only on m, d, ‖"b‖∞, and ‖"0‖L1 + ‖"0‖L∞ .

Theorem 2.2. (Theorem 1, [4]) Suppose " is a non-negative, bounded weak solu-
tion to (1.1) in Q1. Then " is Hölder continuous in Q 1

2
.

Theorem 2.3. (Theorem 2.2, [1]) Suppose U is an open subset ofRd and "b ∈ C1,0
x,t .

Let "̄, " be respectively a subsolution and a supersolution of (1.1) in U ×R+ such
that "̄ ! " a.e. in the parabolic boundary of U × R+. Then "̄ ! " in U × R+.

Remark 2.4. Following fromTheorem2.3,we have comparison principle for (1.5):
suppose ū, u are respectively a subsolution and a supersolution of (1.5) inU ×R+

such that ū ! u a.e. on the parabolic boundary ofU ×R+. Then ū ! u inU ×R+.
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In our analysis it is often convenient to work with classical solutions of (1.1),
which is made possible by the following result (we will rely on this approximation
lemma in Theorem 3.1 and in Section 5):

Lemma 2.5. (Section 9.3 [23]) Let U be either B1 or Rd , and consider "0 ∈
L1(U )∩ L∞(U )∩C(U ). Let " be a weak solution of (1.1) in U × [0, 1] that is in
C(U × [0, 1]) with initial data "0. Then there exists a sequence of strictly positive,
classical solutions "k of (1.1) such that "k → " locally uniformly in U × (0, 1] as
k → ∞.

Proof. Let us consider U = B1. Consider "0,k = "0 + 1
k and let "k be the weak

solution to (1.1) in U with initial data "0,k and Dirichlet boundary condition "k =
" + 1

k on ∂U × (0, 1]. Note that

ψ(x, t) := 1
k
exp(−‖∇ · "b‖∞t)

is a subsolution to (1.1) inU × (0, 1] with ψ ! 1
k on the parabolic boundary. Thus

from the comparison principle it follows that

"k(x, t) " ψ(x, t) > 0.

Since "k is uniformly bounded away from zero in U × [0, 1], (1.1) is uniformly
parabolic. In view of the standard parabolic theory, it follows that "k is smooth in
U × (0, 1]. The proof for locally uniform convergence of "k to " is parallel to that
of Lemma 9.5 in [23]. /0

To end this section, we state the following technical lemma which is used for
comparison:

Lemma 2.6. SetU := B1 orRd , and let T > 0. Letψ be a non-negative continuous
function defined in U × [0, T ] such that

(a) ψ is smooth in its positive set and in the set we haveψt −#ψm −∇ ·("bψ) " 0,
(b) ψα is Lipschitz continuous for some α ∈ (0,m),
(c) %(ψ) has Hausdorff dimension d.

Then

ψt − #ψm − ∇ · ("bψ) " 0 in U × [0, T ]

in the weak sense i.e. for all non-negative φ ∈ C∞
c (U × [0, T ))

∫ T

0

∫

Rd
ψ φtdxdt !

∫

Rd
ψ(0, x)φ(0, x)dx +

∫ T

0

∫

Rd
(∇ψm + ψ "b)∇φ dxdt.

(2.4)

We postpone the proof to the “Appendix”.
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3. Regularity of the Pressure

In this section we establish two basic properties for the pressure variable u
that we will frequently use in the rest of the paper. We begin by obtaining the
fundamental estimate.

Theorem 3.1. Let u be a solution of (1.5) in Rd × [0,∞) with non-negative initial

data u0 such that u
1

m−1
0 ∈ L1(Rd)∩L∞(Rd). Then there exists a universal constant

σ such that

#u(x, t) > −σ

t
− σ for every (x, t) ∈ Rd × (0,∞) (3.1)

in the sense of distribution.

Proof. By Lemma 2.5, it is enough to consider positive smooth solutions with
positive smooth initial data. If (3.1) holds for the approximated smooth solutions,
from the locally uniform convergence of the approximation we can conclude.

Assume that u is positive and smooth, and consider p := #u. By differentiating
(1.5) twice, we get

pt = (m − 1)u#p + 2m∇u · ∇ p + (m − 1)p2 + 24 ui j ui j

+ ∇ p · "b + 24 ui j bij + ∇u · #"b + (m − 1)
(
p∇ · "b + 2∇u · ∇(∇ · "b)+ u#(∇ · "b)

)
.

By Young’s inequality,
∣∣∣(m − 1)p∇ · "b + 24 ui j bij

∣∣∣ ! m − 1
2

p2 + 4|ui j |2 + σm

!
(
m − 1
2

− 1
d

)
p2 + 24 |ui j |2 + σm;

∣∣∣∇u · #"b + 2(m − 1)(∇u · ∇(∇ · "b)
∣∣∣ ! m|∇u|2 + σm;

(m − 1)
(
u#(∇ · "b)

)
! σm.

Thus we obtain

pt − (m − 1)u#p − 2m∇u · ∇ p

−
(
m − 1
2

+ 1
d

)
p2 − ∇ p · "b + m|∇u|2 + σm " 0.

Viewing u as a known function, we may write the above quasilinear parabolic
operator of p as L0(p) and so we have L0(p) " 0. Below will construct a barrier
for this operator to obtain a lower bound for p.

Since u is smooth, then there exists τ > 0 such that #u(·, 0) " − 1
τ . By

Theorem 2.1, u is uniformly bounded by a universal constant and we denote it as
σ0. Let w := − σ1

t+τ + u − σ2 for some σ1 " 1, σ2 " σ0 to be determined later.
Then p " w at t = 0.
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Direct computation yields

L0(w) = σ1

(t + τ )2
+ ut − (m − 1)u#u − 2m|∇u|2 −

(
m − 1

2
+ 1

d

)

(
− σ1

t + τ
+ u − σ2

)2

− ∇u · "b + m|∇u|2 + σm.

Now we use the Eq. (1.5), and σ2 " σ0 to obtain

L0(w) ! σ1

(t + τ )2
− (m − 1) |∇u|2 −

(
m − 1
2

+ 1
d

) (
− σ1

t + τ
+ u − σ2

)2

+ σm

! σ1

(t + τ )2
−

(
m − 1

2
+ 1

d

)
σ 2
1

(t + τ )2
−

(
m − 1
2

+ 1
d

)
(σ2 − u)2 + σm

! 0,

where the last inequality holds if we choose σ1 := d and σ2 := σ0 + (2dσ )1/2.
HenceL0(w) ! 0 ! L0(p), and from the comparison principle forL0 we conclude
that

#u = p " w " − σ1

t + τ
− σ2.

After taking τ → 0, we obtain that (3.1) holds for smooth solutions. We can
conclude by Lemma 2.5. /0

Remark 3.2. Using the same barrier in the proof of the lemma, it can be seen that
if #u0 " −C0 in the sense of distribution, then #u " − σ1

t+(1/C0)
− σ2 in the

distribution sense for all time.

Next we prove a useful property: the consistency of positivity set of a solution
along streamlines over time. The proof is parallel to the proof of Lemma 3.5 [20]
where they used a barrier argument. Recall that we denote (t = {u(·, t) > 0}.

Lemma 3.3. Let u solve (1.5) with #u > −∞ in Q2. Then for X (x, t; s) given in
(1.6) and for c0 := 1

2(1+‖"b‖∞)
the following is true:

(X ((t , t; s) ∩ B1) ⊆ (t+s for all t ∈ (−1, 1 − c0) and s ∈ (0, c0].

If u solves (1.5) in Rd × [0,∞) with initial data u0 given as in Theorem 3.1,
then

X ((t , t; s) ⊆ (t+s for all s, t > 0.

Proof. In view of Theorem 3.1, the second statement follows easily from the first
one. To prove the first statement, it is suffices to show that for all x ∈ (t and
s ∈ (0, c0], if X (x, t; s) ∈ B1 then u(X (x, t; s)) > 0.

If x ∈ Bc
3
2
, by the choice of c0,

|X (x, t; s)| " |x | − ‖"b‖∞s > 1 for all s ∈ (0, c0].
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Thus we take x ∈ (t ∩ B 3
2
and then X (x, t; s) is inside the domain B2 for all

s ∈ (0, c0]. By Theorem 2.2, u is continuous in Q2. Then we can suppose for
contradiction that there exists s0 ∈ (0, c0] such that

u(X (x, t; s), t + s) > 0 for all s ∈ (0, s0) and u(X (x, t; s0), t + s0) = 0.

Suppose #u " −C0 in Q2. Note that (1.5) is uniformly parabolic in any
compact subset of {u > 0}, due to the continuity of u. Therefore by the standard
parabolic theory, u is smooth in(∩Q2. It follows from (1.5) that for all s ∈ (0, s0),

∂su(X (x, t; s), t + s) = (ut + ∇u · "b)(X (x, t; s), t + s)

" (−C0(m − 1)u + |∇u|2 + (m − 1)u∇ · "b)(X (x, t; s), t + s)

" −Cu(X (x, t; s), t + s)

where C := (m − 1)(C0 + ‖∇ · "b‖∞). This yields

u(X (x, t; s), t + s) " e−Csu(x, t) > 0, (3.2)

which, after taking s → s0 < 1, contradicts the assumption that u(X (x, t; s0), t +
s0) = 0. /0

4. Regularity of the Free Boundary

In this section we study finer properties on expansion of the positive set {u > 0}
along the streamlines associated with the drift "b. We largely follow the ideas in [9]
applied to the zero drift case, and obtain corresponding statements (Lemma 4.1 and
4.2) for our problem.

Lemma 4.1. Let u be given as in Theorem 3.1, and let η0 > 0. For any t0 " η0 there
exist τ0, c0 depending only on η0 and universal constants such that the following
holds: for any R > 0 and τ ∈ (0, τ0), if

u(·, t0) = 0 in B(x0, R) and
∮

B(X (x0,t0;τ ),R)
u(x, t0 + τ )dx ! c0R2

τ
, (4.1)

then

u(x, t0 + τ ) = 0 for x ∈ B(X (x0, t0; τ ), R/6). (4.2)

Proof. For simplicity, suppose x0 = 0, t0 = 0, and consider the rescaled function

ũ(x, t) := τ

R2 u(Rx, τ t) with "b′(x, t) := τ

R
"b(Rx, τ t), X̃(t) := 1

R
X (0, 0; τ t).

(4.3)

Then ũ satisfies

ũt = (m − 1)ũ#ũ + |∇ũ|2 + ∇ũ · "b′ + (m − 1)ũ ∇"b′.
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Theorem 3.1 yields

#u " −C0 = −C0(η0) for t " η0. (4.4)

Set ε := C0τ0 so that #ũ = τ#u " −ε. From our assumption, it follows that
∮

B(X̃(1),1)
ũ(x, 1)dx ! c0.

Using this and that ũ + ε|x |2/(2d) is subharmonic, we find for x ∈ B(X̃(1), 1
2 ),

ũ(x, 1) ! −ε|x |2
2d

+
∮

B(X̃(1), 12 )
ũ(y, 1)+ ε|y|2

2d
dy

! 2d
∮

B1
ũ(y, 1)dy + σε ! 2dc0 + σε.

(4.5)

Now consider

v(x, t) := ũ(x + X̃(t), t).

Then #v " −ε. Moreover, observe that v is the weak solution of

L1(v) := vt − (m − 1)v#v − |∇v|2 − ∇v · ("b′(x + X̃ , t) − "b′(X̃ , t))
−(m − 1)v∇ · "b′(x + X̃ , t) = 0.

We used Definition 2.1 as the notion of weak solutions, where "b is replaced by
"b′(x + X̃ , t)− "b′(X̃ , t). Since the operator L1 is locally uniformly parabolic in its
positive set, v is smooth in the set due to the standard parabolic theory. From the
above equation, v satisfies the following in the classical sense in its positive set:

vt (x, t) " −ε(m − 1)v + |∇v|2 − στ |∇v||x | − στv

" −ε(m − 1)v − στv − στ 2|x |2.

Here the first inequality is due to the fact that |∇ "b′| ! τσ and the second inequality
follows from Young’s inequality. Because v is continuous and non-negative, the
above estimate also holds weakly in the whole domain.

Since ε = C0τ " τ , we obtain

vt (x, t) " −σε v(x, t) − σε2|x |2, (4.6)

and thus by Gronwall

v(x, 1) " eσε(t−1)v(x, t) − σ (1 − eσε(t−1))ε |x |2
" e−σεv(x, t) − σε in B 1

2
× (0, 1).

Using (4.5), we conclude that for all (x, t) ∈ B 1
2

× (0, 1) and some σ " 1,

v(x, t) ! eσεv(x, 1)+ eσεσε = eσεũ(x + X̃(t), 1)+ eσεσε

! eσε(2dc0 + 2σε) ! σ (c0 + ε).
(4.7)
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if ε is sufficiently small.
To conclude we proceed with a barrier argument applied to the operator L1.

Define

ϕ(x, t) := λ

(
t
36

+ (|x | − 1/3)
6

)

+

and we aim at showing L1(ϕ) " 0 weakly. Using Lemma 2.6 to (m−1
m ϕ)

1
m−1 , the

corresponding density variable of ϕ, and the Lipschitz continuity of ϕ, we find that
to show ϕ is a supersolution of L1, it suffices to prove L1(ϕ) " 0 in the positive
set of ϕ.

Notice

∇ϕ · ("b′(x + X̃ , t)+ "b′(X̃ , t)) − (m − 1)ϕ∇ · "b′(x + X̃ , t) ! σε|∇ϕ| |x | + σεϕ,

so direct computations yield that if

1
λ

"
(
t
6
+ |x | − 1

3

) (
(m − 1)(d − 1)|x |−1 + σε

λ

)
+ 1+ σε

λ2
, (4.8)

then L1(ϕ) " 0 for 1
3 − t

6 < |x | < 1
2 in the classical sense. The inequality (4.8)

is valid for t ∈ (0, 1) provided that we take 0 < ε 3 λ 3 1. With this choice of
ε, λ, we get L1(ϕ) " 0 in |x | < 1

2 weakly. By the assumption v(x, 0) = 0 in B 1
2

and thus v ! ϕ on |x | ! 1
2 , t = 0. On the lateral boundary |x | = 1

2 , t ∈ (0, 1), by
(4.7) if c0, ε are small enough depending on universal constants we have

v ! σ (c0 + ε) ! λ

36
! ϕ.

Hence by comparison principle for the operatorL1 (see Remark 2.4) in B 1
2
× (0, 1)

we have v ! ϕ. In particular,

ũ(x + X̃(1), 1) = v(x, 1) ! ϕ(x, 1) = 0

for |x | < 1
6 , and we have proved the lemma. /0

Remark 4.2. One can check that the conclusion of the lemma also holds in a local
setting: If u solves (1.5) with #u " −C0 in Q1 for some C0, then there exist
τ0, c0, σ such that (4.1) implies (4.2) for any R ∈ (0, σ ) and τ ∈ (0, τ0). Here
τ0, c0 depend only on C0 and universal constants, and σ is universal. This local
version of the lemma will be used in Lemma 6.2.

Lemma 4.3. Let u be as in Theorem 3.1, and let η0 > 0. For any t0 " η0 and any
c1 > 0, there exist λ, c2, τ0 > 0 depending on c1, η0 and universal constants such
that the following holds: for any R > 0 and 0 < τ ! τ0, if

∮

B(x0,R)
u(x, t0)dx " c1

R2

τ
, (4.9)

then

u(X (x0, t0; λτ ), t0 + λτ ) " c2
R2

τ
. (4.10)
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Proof. Let C0 be as in (4.4), and set (x0, t0) = (0, 0) by shifting coordinates. We
consider the corresponding density variable "(x, t) := (m−1

m u(x, t))
1

m−1 and its
rescaled version

"̃(x, t) :=
( τ

R2

) 1
m−1

"(Rx, τ t).

Let "b′, X̃ be as in (4.3) and let ε = C0τ as in the proof of Lemma 4.1. Then "̃

solves the re-scaled density equation

"̃t = #"̃m + ∇ · ("̃ "b′).

The fundamental estimate onu implies that#"̃m " −ε"̃ in the sense of distribution.
Let us define ξ(x, t) := "̃(x + X̃ , t) and Y (t) :=

∫
B1

ξm(x, t)dx . Below we
study properties on the growth rate of Y using properties of "̃, namely we derive
(4.12) and (4.13). We then use these estimates to argue by a contradiction to prove
our main statement.

First let us show thatY (λ) stays sufficiently positive if ελ is small. Since X̃(0) =
0, our assumption yields that

Y (0) =
∮

B1
ξm(x, 0)dx = σ

( τ

R2

) m
m−1

∮

B(0,R)
"m(x + X̃(0), 0)dx

= σ

∮

B(0,R)

( τ

R2 u
) m

m−1
(x, 0)dx

" σ

(
τ

R2

∮

B(0,R)
u(x, 0)dx

) m
m−1

" σc
m

m−1
1 =: c′

1.

Due to (4.6) and v(x, t) = m
m−1ξ

m−1(x, t), for ε small enough

(ξm)t " −σεξm − σε2|x |2ξ " −σεξm − σε for x ∈ B1 ∩ {ξ > 0}. (4.11)

Consequently,

Y (t) " e−σεt Y (0) − σεt " e−σελc′
1 − σελ >

c′
1

2
∼ c

m
m−1
1 (4.12)

for t ∈ (0, λ] if ελ 3σ 1.
Next we obtain an upper bound for the growth of Y over time. /0

Claim. For some universal constants σ1, σ2 and γ ,

e−σ1εt
∫ t

0
Y (s)ds ! σ2

(∫ t

0
ξm(0, s)ds + εγ + Y

1
m

)
. (4.13)

Proof of the Claim. As in [9], we introduce the Green’s function in a unit ball so
that G solves

#G = −σdδ(x)+ σd IB1 and G = |∇G| = 0 on ∂B1. (4.14)
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Let us only discuss the dimension d " 3, where G is defined as

G(x) = |x |2−d − 1 − d − 2
2

(1 − |x |2). (4.15)

We want to differentiate
∫
B(X̃ ,1) G(x − X̃)"̃(x, t)dx with respect to t . Since

G(x − X̃) = 0 on ∂B(X̃ , 1),
(∫

B(X̃ ,1)
G(x − X̃)"̃(x, t)dx

)′
=

∫

B(X̃ ,1)
∇G(x − X̃) · "b′(X̃)"̃ dx

+
∫

B(X̃ ,1)
G(x − X̃) "̃t dx

=
∫

B(X̃ ,1)
∇G(x − X̃) · ("b′(X̃) − "b′(x))"̃ dx

+
∫

B(X̃ ,1)
#G(x − X̃) "̃m dx =: A1 + A2.

(4.16)

Since ∇"b′ " −σε Id ,

A1 = −
∫

B(X̃ ,1)
(d − 2)(|x − X̃ |−d − 1)(x − X̃) · ("b′(X̃) − "b′(x))"̃ dx

" −σε

∫

B(X̃ ,1)
(d − 2)(|x − X̃ |−d − 1)|x − X̃ |2"̃ dx

" −σε

∫

B(X̃ ,1)
G(x − X̃)"̃ dx .

(4.17)

As for A2, applying (4.14), we obtain

A2 = −σd "̃m(X̃ , t)+ σ

∫

B(X̃ ,1)
"̃m(x, t) dx . (4.18)

Using (4.17), (4.18), we find, for some universal σ > 0
(∫

B(X̃ ,t)
G(x − X̃)"̃(x, t)dx

)′
" −σd "̃m(X̃ , t)+ σ

∫

B(X̃ ,t)
"̃m(x, t) dx

− σε

∫

B(X̃ ,t)
G(x − X̃) "̃(x, t)dx .

Hence we derive

eσεt
∫

B1
G(|x |)ξ(x, t)dx " −σd

∫ t

0
eσεsξm(0, s)ds

+ σ

∫ t

0

∫

B1
eσεsξm(x, s) dxds,

which simplifies to
∫ t

0
e−σεt Y (s)ds ! σ

∫

B1
G(|x |)ξ(x, t)dx + σ

∫ t

0
ξm(0, s)ds. (4.19)
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Now following the proof of Lemma 2.3 [9], using (4.19) and the integrability
property of G, we can obtain the upper bound

∫
B1

Gξ dx to conclude. We omit the
computation since it is parallel to [9]. /0

Going back to the proof of Lemma 4.3, let us suppose that our statement is false,
which means u(X (λτ ), λτ ) < c2 R2

τ for any choice of λ, c2, τ0, where X (t) :=
X (0, 0; t). Later we will pick the constants satisfying

λ 5 1, c
m

m−1
2 λ 3 1, ελ 3 1.

In terms of ξ = "̃(· + X̃ , ·), we have

ξm(0, λ) ! σ (m) c
m

m−1
2 .

Since ελ 3 1, by (4.11) again, we obtain

ξm(0, t) ! σeσελc
m

m−1
2 + σελ for t ∈ (0, λ].

If follows from (4.13) that for all t ∈ (0, λ] and some σ = σ (σ2),

e−σ1εt
∫ t

0
Y (s)ds ! σ (eσελc

m
m−1
2 λ + ελ2 + εγ + Y

1
m ).

Recall (4.12), and we have

σY
1
m " σc

1
m−1
1 " σ (eσελc

m
m−1
2 λ + ελ2 + εγ ). (4.20)

Hence we get for t ∈ (0, λ] and some universal σ > 0,

σY
1
m " e−σ1εt

∫ t

0
Yds.

Writing Z(t) :=
∫ t
0 Y (s)ds, in view of (4.12) we obtain Z(λ

2 ) " c3λ with

c3 :=
1
2
(e−σελc′

1 − ελ) " σc
m

m−1
1 > 0.

Solving the ODE problem

σ Z ′ " e−σεt Zm, with Z
(

λ

2

)
" c3λ

shows that

Z
(
t + λ

2

)
"

(
(c3λ)1−m − f (t)

) 1
1−m

, for t ∈ (0,
λ

2
] (4.21)

where

f (t) :=
∫ t+λ/2

λ/2
σe−σεsds = σe−σλε/2 (e

σεt − 1)
σε

.
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Since σε 3 1,

f (t) " σ t − σεt2.

It is obvious that f is monotone increasing in t . Notice the right-hand side of
(4.21) goes to +∞ as

t → f −1((c3λ)1−m)

which is impossible provided that f −1((c3λ)1−m) ! λ
2 . However if λ " C(c3, σ )

and ελ 3 1, we indeed have

f
(

λ

2

)
" σ

λ

2
− σε

λ2

4
" (c3λ)1−m, (4.22)

which leads to a contradiction.
We proved that ξm(0, λ) ! σ (m) c

m
m−1
2 . Since c3 only depends on c1, σ , the

choices of λ, c2, ε only depend on c1, σ . We conclude the lemma with τ0 = ε/C0,
λ satisfying (4.22), and c2, ε satisfying (4.20) and ελ 3⊂ 1. /0

For any (x0, t0) ∈ %, we use the notation

ϒ(x0, t0) := {(X (x0, t0;−s), t0 − s), s ∈ (0, t0)} .

Theorem 4.4. For a given point (x0, t0) ∈ % with t0 " η0 > 0, the following is
true:

(1) Either (a) ϒ(x0, t0) ⊂ % or (b) ϒ(x0, t0) ∩ % = ∅.
(2) If (b) holds, then there exist positive constants C∗,β, h such that for all s ∈

(0, h)

"(x, t0 − s) = 0 if |x − X (x0, t0;−s)| ! C∗sβ;
"(x, t0 + s) > 0 if |x − X (x0, t0; s)| ! C∗sβ .

Here β only depends on η0 and universal constants. If (b) holds for (x0, t0) ∈ %,
we say (x0, t0) is “of the second type” free boundary point.

Sketch of the proof The proof is parallel to those for Theorems 3.1–3.2 [9],
based on the Lemmas 4.1 and 4.3. Let us only sketch the proof for part (1) below.

If the assertion of (1) is not true, then we can find t0 > t1 > t2 > 0 such that
t0 − t1 5 t1 − t2 and

x0 ∈ %t0 , x1 := X (x0, t0; t1 − t0) ∈ %t1, x2 := X (x0, t0; t2 − t0) /∈ %t2 .

Consequently u(·, t2) = 0 in B(x2, R) for some R > 0. Since x1 = X (x2, t2; t1 −
t2), by Lemma 4.1,

∮

B(x1,R)
u(x, t1)dx " c0R2

t1 − t2
.

Since t0−t1 5 (t1−t2), Lemma4.3 yields u(x0, t0) = u(X (x1, t1; t0−t1), t0) > 0,
which is a contradiction. /0
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When the initial data grows faster than quadratically near its free boundary
and the boundary is Lipschitz, it is possible to characterize the constants C∗, h in
above theorem in terms of time variable. Note that using both assumptions in (1.7),
Lemma 3.3, and Lemma 4.3 yields that X ((0, 0; t) ⊆ (t for all t > 0. Thus by a
compactness argument, iteratively using Theorem 4.4 and arguing as in the remark
on Theorem 3.2 in [9], we have the following theorem:

Theorem 4.5. Suppose (1.7). Then any point x0 ∈ %t0 with t0 > 0 is of the second
type and the constants C∗, h in Theorem 4.4 (2) only depend on t0, (1.7), and
universal constants.

5. Monotonicity Implies Non-degeneracy

In this sectionwe discuss non-degeneracy property of solutions in local settings.
We start with the following theorem:

Theorem 5.1. Let u solve (1.5) in Q2 with #u " −C0. Suppose that % is of type
two in Q2, and that

u is monotone with respect to Wθ,µ in Q2 for some θ ∈ (0,π/2) and µ ∈ Sd−1.

(5.1)

Then there exist constants C, ε0 > 0 such that we have

u(X (x, t;Cε) − εµ, t+Cε) > 0 for (x, t) ∈ % ∩ Q1 and for ε < ε0.

Remark 5.2. The constants C, ε0 in Theorem 5.1 only depend on

C0, θ,C∗, h,β, and universal constants, (5.2)

whereC∗, h,β are constants given in Theorem 4.4. In the global setting, an estimate
of C0 can be found in Theorem 3.1.

Let us also mention that Theorem 2.2 allows us to consider continuous local
solutions.

The central ingredient of the proof is a barrier argument motivated from [13]
in the context of Hele–Shaw flow. The barrier argument illustrates the fact that in
diffusive free boundary problems the nice regularity properties of u propagate from
positive level sets to the free boundary as the positive set expands out. This argument
in our setting corresponds to the proof of (5.35). Compared to the Hele–Shaw flow
which is driven by a harmonic function, our solutions features a nonlinear diffusion
that degenerates near the free boundary and thus it requires more careful arguments.
On the other hand, we will benefit from the weak formulation of the problem using
the density formula (see G below.)

For u as given above we consider

v(x, t) := u(x + X (t), t), where X (t) := X (0, 0; t) is given in (1.6). (5.3)
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Then v is a weak solution of L2(·) = 0, where the operator L2 is given by

L2( f ) := ∂t f − (m − 1) f # f − |∇ f |2 − ∇ f · ("b(x + X (t), t)

− "b(X (t), t)) − (m − 1) f ∇ · "b(x + X (t), t).
(5.4)

Since the operator L2 is the same as in (1.5) with "b replaced by "b(x + X (t), t) −
"b(X (t), t)), the notion of sub- and supersolution is given in Definition 2.1.

Below we construct a supersolution for the operator L2 for the aforementioned
barrier argument, using a inf-convolution construction introduced first by [8]. Since
the supersolution to be constructed is a rescaled inf-convolution of v [see (5.8)],
comparison of the two functions gives a space-time monotonicity of v, yielding the
theorem. To this end, we will use both smooth approximations of u and the density
version of the equation L2.

We beginwith some basic properties of the inf-convolution of smooth functions.
Let ψ, h ∈ C∞(B2) with 0 < ψ < 1

2 and h " 0. Define

f (x) := inf
B(x,ψ(x))

h(y), (5.5)

which is Lipschitz continuous. The proofs of the next two lemmas are in the
appendix.

Lemma 5.3. Let h and f be as given in (5.5). Furthermore, suppose #h " −C
for some C ∈ R and ‖∇ψ‖∞ ! 1. Then there are dimensional constants σ1 > 0
and σ2 " 3 such that if ψ satisfies

#ψ " σ1|∇ψ |2
|ψ | in B2,

we have

# f (·) − (1+ σ2‖∇ψ‖∞)#h(y(·))
! σ2‖∇ψ‖∞C in B1 in the sense of distribution,

where y(·) satisfies that f (·) = h(y(·)) a.e. in B1.

Lemma 5.4. Let h, f be as given in (5.5). Then for a.e. x ∈ B1 we have

|∇ f (x) − ∇h(y)| = |∇h(y)||∇ψ(x)| if f (x) = h(y) and y ∈ B(x,ψ(x)).

Now for aweak solution u to (1.5) in Q2, let {uk}k be its smooth approximations
as given in Lemma 2.5. In particular uk is positive in Q2 for each k. Set vk(x, t) :=
uk(x + X (t), t) and introduce the corresponding density variable of vk as

ξk(x, t) :=
(
m − 1
m

vk(x, t)
) 1

m−1

=
(
m − 1
m

uk(x + X (t), t)
) 1

m−1

. (5.6)

We define the density version of the operator L2 as G(ξ) := L2(v) where ξ =
(m−1

m v)
1

m−1 i.e.

G( f ) := ∂t f − # f − ∇ · ( f ("b(x, t) − f (x + X (t), t))),
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and thus G(ξk) = 0.
Let ϕ:Rd → (0,∞) be a smooth function and σ1, σ2 be from Lemma 5.3. For

some constants α, A0,M0 " 1 to be determined, we define

wk(x, t) := eA0εt inf
y∈B(x,Rε(x,t))

vk(y + rεµ, pε(t)), (5.7)

w(x, t) := eA0εt inf
y∈B(x,Rε(x,t))

v(y + rεµ, pε(t)), (5.8)

and

ηk(x, t) := eA1εt inf
y∈B(x,Rε(x,t))

ξk(y + rεµ, pε(t)) with A1 :=
A0

m − 1
, (5.9)

where

Rε(x, t) := εϕ(x)(1 − αt) (5.10)

pε(t) := (1+ σ2M0ε)

(
eA0εt − 1

A0ε

)
. (5.11)

Then wk is Lipschitz continuous, and

ηk(x, t) =
(
m − 1
m

wk(x, t)
) 1

m−1

.

Thus to show that wk is a supersolution for L2, it suffices to show that ηk is a
supersolution for G.

We will apply Lemmas 5.3, 5.4 with

h = ξmk (· + rεµ, pε) and ψ = Rε(·, t).

Based on these lemmas we estimate the density equation G(ηk) in the weak sense,
to go around the potential lack of smoothness for inf-convolutions, to conclude.

Wewill choose the constants A0 = A0(M0) and α = α(M0) in Proposition 5.5,
the constants M0, r and the function ϕ in the proof of Theorem 5.1.

Proposition 5.5. Let uk, wk be defined from above, and suppose that uk satisfies
#uk " −C0 in Q2. Fix any M0 " 1 and consider ϕ: B2 → R such that

{
#ϕ = σ1|∇ϕ|2

|ϕ| ,
r
M0

! ϕ(·) ! rM0, ‖∇ϕ‖∞ ! M0 for some r ∈ (0, 1).
(5.12)

Then there exist positive constants A0,α, τ depending only on M0 and univer-
sal constants such that for all ε < 1

M0
the function wk given in (5.7) is a weak

supersolution of

L2(wk) " 0 in Br × (0, τ ).
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Proof. Let ξk, ηk be from (5.6), (5.9) respectively. As discussed before to prove
the statement, it suffices to show that G(ηk) " 0 weakly in Br × (0, τ ).

Below we estimate each term in G(ηk) in Br × (0, τ ) using ξk . We begin with
some preliminary estimates on ηk .

Since uk is smooth and positive, ξk is also smooth and positive. From the
definition of the inf-convolution, it follows that ηk is Lipschitz continuous. Since
#uk " −C0, direct computation yields that

#(ξmk ) " −σC0ξk for some σ = σ (m) > 0. (5.13)

Let us set the constants

A0 := σ3M0(1+ C0), α := σ3M2
0 (5.14)

for some σ3 " σ2 to be determined, and

τ := min
{

1
2A0

,
1

2A1
,

1
σ2M0

,
1
5α

}
. (5.15)

By definition of ηk , there is z(x) satisfying

|z(x) − x | ! |Rε| + rε ! 2M0rε, (5.16)

such that

ηk(x, t) = g(t) ξk(z(x), pε(t)),

where we use the notation g(t) := eA1εt .
It follows from the definition of pε(t) in (5.11) that

p′
ε(t) = (1+ σ2M0ε)g(t)m−1 (5.17)

and

0 ! pε(t) − t ! σM0tε ! σε for 0 < t < τ. (5.18)

We now proceed to estimating each terms in G(ηk), starting with ∂tηk . All esti-
mates in the domain Br (0)× (0, τ ). In the rest of the proof, for simplicity, X (t) :=
X (0, 0, ; t), pε, ηk denotes the values of them at (x, t), and ξk, ∂tξk,∇ξk,#ξk
denotes the values of them evaluated at point (z(x), pε(t)).

In [20], ∂tηk is computed in the viscosity sense. Since our ηk is Lipschitz
continuous, the same computation carries out almost everywhere in Br × (0, τ ).
We have

∂tηk " A1ε ηk − ∂t Rε |∇ηk | + (p′
ε)g ∂tξk . (5.19)

Applying (5.10), (5.17) and the assumption that ϕ " r
M0

, (5.19) implies

∂tηk " A1ε ηk +
αrε
M0

|∇ηk | + (1+ σ2M0ε)gm∂tξk . (5.20)
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From the assumptions on ϕ, ‖Rε‖∞ ! rM0ε, ‖∇Rε‖∞ ! M0ε. We now apply
Lemma 5.3 with h = ξmk (· + rεµ, pε) and ψ = Rε(·, t). From (5.12) and (5.13),
the following holds in the sense of distribution:

−#ηmk " −(1+ σ2‖Rε‖∞)gm#ξmk − σ2‖∇Rε‖∞C0ξk

" −(1+ σ2M0ε)gm#ξmk − σM0C0ε ηk .
(5.21)

Next we consider the terms coming from the drift. Due to Lemma 5.4,

|∇ηk − g∇ξk | = |∇Rε||g∇ξk | ! M0εg|∇ξk |,

since ε < 1
M0

, we have |∇ηk − g∇ξk | ! σM0ε|∇ηk |. This implies that for t ! τ ,
∣∣∇ηk − (1+ σ2M0ε)gm∇ξk

∣∣ ! σM0ε|∇ηk |. (5.22)

Next, using the regularity of "b and |x | ! r , we have
∣∣∣"b(x + X (pε), pε) − "b(X (pε), pε)

∣∣∣ ! ‖D"b‖∞r ! σr, (5.23)

and, by (5.16),
∣∣∣"b(x + X (pε), pε) − "b(z + X (pε), pε)

∣∣∣ ! σM0rε. (5.24)

Then (5.22)–(5.24) imply

− ∇ηk ·
(
"b(x + X (pε), pε) − "b(X (pε), pε)

)

" −(1+ σ2M0ε)gm∇ξk ·
(
"b(x + X (pε), pε) − "b(X (pε), pε)

)
− σM0rε|∇ηk |

" −(1+ σ2M0ε)gm∇ξk ·
(
"b(z + X (pε), pε) − "b(X (pε), pε)

)
− σM0rε|∇ηk |.

(5.25)

Parallel computations yield

− ηk∇ · "b(x + X (pε))

" −(1+ σ2M0ε)gmξk∇ · "b(x + X (pε)) − σ ηk
∣∣g − (1+ σ2M0ε)gm

∣∣ ‖D"b‖∞

" −(1+ σ2M0ε)gmξk∇ · "b(z + X (pε)) − σM0ε ηk − σ ηk ‖D2 "b‖∞M0rε

" −(1+ σ2M0ε)gmξk∇ · "b(z + X (pε)) − σM0ε ηk .

(5.26)

Combining the estimates (5.20), (5.21), (5.25) and (5.26), we have

G̃(ηk) := ∂tηk − #ηmk − ∇
(
ηk ·

(
"b(x + X (pε), pε) − "b(X (pε), pε)

))

" A1ε ηk +
αrε
M0

|∇ηk | + (1+ σ2M0ε)gm(∂tξk − #ξmk )

− (1+ σ2M0ε)gm ∇
(
ξk ·

(
"b(z + X (pε), pε) − "b(X (pε), pε)

))

− σM0(1+ C0)ε ηk − σM0rε|∇ηk |.
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Since G(ξk) = 0 we obtain

G̃(ηk) " A1ε ηk +
αrε
M0

|∇ξk | + (1+ σ2M0ε)gmG(ξk(·, ·))(z, pε)

− σM0(1+ C0)ε ηk − σM0rε|∇ηk |
= C1ε ηk + C2rε|∇ηk |,

where

C1 := A1 − σM0(1+ C0), C2 :=
α

M0
− σM0. (5.27)

Finally we proceed from G̃(ηk) to G(ηk) to get
G(ηk) " G(ηk) − G̃(ηk)+ C1ε ηk + C2r |∇ηk |

" C1ε ηk + C2rε|∇ηk | − ηk

∣∣∣∇ · "b(x + X (pε), pε) − ∇ · "b(x + X (t), t)
∣∣∣

− |∇ηk |
∣∣∣"b(x + X (pε), pε) − "b(X (pε), pε) − ("b(x + X (t), t) − "b(X (t), t))

∣∣∣
︸ ︷︷ ︸

V0:=

.

(5.28)

Let us estimate V0 as follows:

V0 =
∣∣∣∣

∫ pε

t
∂s "b(x + X (s), s) − ∂s "b(X (s), s)ds

∣∣∣∣

!
∫ pε

t

∣∣∣
(
(D"b)(x + X (s), s) − (D"b)(X (s), s)

)
"b(X (s))

∣∣∣

+
∣∣∣(∂t "b)(x + X (s), s) − (∂t "b)(X (s), s)

∣∣∣ ds

! σ |x |
∫ pε

t
‖D2 "b‖∞‖"b‖∞ + ‖D∂t "b‖∞ds ! σrε.

Similarly,
∣∣∣∇ · "b(x + X (pε), pε) − ∇ · "b(x + X (t), t)

∣∣∣

!
∫ pε

t

∣∣∣(D∇ · "b)(x + X (s), s)"b(X (s))
∣∣∣ +

∣∣∣(∂t∇ · "b)(x + X (s), s)
∣∣∣ ds

! σ
(
‖D2 "b‖∞‖"b‖∞ + ‖D∂t "b‖∞

)
ε.

Thus it follows from (5.28) that, if C1 " σ , C2 " σ ,

G(ηk) " (C1 − σr)ε ηk + (C2 − σ )rε|∇ηk | " 0 in BR × (0, τ ). (5.29)

In view of (5.27),C1,C2 " σ if σ3 in (5.14) is chosen to be large enough depending
only on universal constants. Hence with this choice of σ3 we have proved that
G(ηk) " 0 in the sense of distribution in Br × (0, τ ). From the Lipschitz continuity
of ηk we conclude that G(ηk) " 0 weakly in Br × (0, τ ).

Lastly, it is not hard to see that the choices of A0,α, τ are independent of r and
k. /0
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Corollary 5.6. Let u be from Theorem 5.1, and let v and w be given by (5.3) and
(5.8) respectively. Suppose that the assumptions in Proposition 5.5 are satisfied.
Then for any open set U ⊆ Br , if w " v on the parabolic boundary of U × (0, τ ),
then

w " v in U × (0, τ ).

Proof. Let {uk}k be the smooth approximations of u and uk " u. Let vk(x, t) =
uk(x+X (t), t) andwk be from (5.7). It follows from the proposition thatL2(wk) "
0 weakly in Br × (0, τ ). We have wk " w due to the fact that uk " u. Then by
the assumption, wk " v on the parabolic boundary of U × (0, τ ). By comparison
principle for L2, we get wk " v in U × (0, τ ). Due to Lemma 2.5, uk converges
locally uniformly to u, and so wk converges locally uniformly to w. We conclude
by sending k → ∞. /0

Now we are able to prove Theorem 5.1.

Proof of Theorem 5.1. Let σ1 be given in Lemma 5.3, and let ; be the unique
solution of






#(;−σ1+1) = 0 in B 1
2
\Bsin θ/10

; = Ad,θ on ∂Bsin θ/10

; = 1
2
sin θ on ∂B 1

2
.

Here Ad,θ is chosen sufficiently large so that

;
(
y + µ

5

)
" 3 for all y ∈ Bsin θ/10. (5.30)

Then ; satisfies #; ≤ σ1|∇;|2
; and for some M0(θ, d) " 1

1
M0

! ; ! M0, ‖∇;‖∞ ! M0 in B 1
2
.

With this M0, let A0,α, τ be as given in Proposition 5.5.
Fix any (x̂, t̂) ∈ Q1 ∩ % and let C∗, h,β be from Theorem 4.4 and τ be from

(5.15). We will show that the support of the solution strictly expands relatively to
the streamlines at (x̂, t̂).

Let δ = δ(θ,C0) > 0, which will be chosen as a constant satisfying (5.42) and
(5.44). Define

tδ := min{τ, h, δ}, (5.31)

and

rδ := min
{
C∗t

β
δ ,

1
4

}
> 0. (5.32)

Due to Theorem 4.4,

u(x, t̂ − tδ) = 0 for x ∈ B(X (x̂, t̂;−tδ), rδ). (5.33)
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Fig. 1. The local domain

After translation, we assume (X (x̂, t̂;−tδ), t̂ − tδ) to be the origin. Using the
notation X (t) = X (0, 0; t), we have

(X (tδ), tδ) = (X (X (x̂, t̂;−tδ)), t̂ − tδ; tδ), tδ) = (x̂, t̂) ∈ %(u).

Let v be as given in (5.3), and thenL2(v) = 0 weakly in Q 1
2
, whereL2 is given

in (5.4). It follows from (5.33) that

v(x, 0) = 0 in Brδ . (5.34)

For P := − rδ
5 µ, set ϕ(x) := rδ;( x−P

rδ
).

Let w be defined as in (5.8) with the above ϕ and r = rδ:

w(x, t) := eA0εt inf
B(x,εϕ(x)(1−αt))

u(y + rδεµ+ X (pε(t)), pε(t))

= eA0εt inf
B(x,εϕ(x)(1−αt))

v(y + rδεµ, pε(t)).

Next denote the cylindrical domain (see Fig. 1)

4 := (B(P,
rδ
2
)\B(P, rθ )) × [0, tδ],

where rθ := rδ
10 sin θ . We claim that

w " v in 4. (5.35)

Roughly speaking, (5.35) states that the nondegeneracy property of u propagates
from the positive set to the free boundary, as the positive set expands out relative
to the streamlines.

The proof of (5.35) will be given below. We first discuss its consequences.
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Using (5.15) and (5.30),

ϕ(x) = rδ;
(
x
rδ

+ µ

5

)
" 3rδ for x ∈ Brδ

10
(0).

From this, it follows that for all |x | ! rδε
5 ! rδ

10 ,

−rδεµ ∈ B
(
x,

12
5
rδε

)
+ rδεµ ⊆ B(x, εϕ(x)(1 − αtδ))+ rδεµ.

In the inclusion, we used that αtδ ! 1
5 . Then using (5.35) and the definition of w,

we get for |x | ! rδε
5 ,

eA0εtδ v(−rδεµ, pε(tδ)) " eA0εtδ inf
B(x,εϕ(x)(1−αtδ))

v(y + rδεµ, pε(tδ))

" w(x, tδ) " v(x, tδ).

From (5.11) it follows that pε(tδ) = tδ + cε for some c = c(tδ, σ ) which is
independent of ε. Thus

u(−rδεµ+ X (tδ + cε), tδ + cε) " e−A0εtδ sup
|x |!rδε/5

u(x + X (tδ), tδ).

Recall that (X (tδ), tδ) = (x̂, t̂) ∈ %(u) and X (tδ + cε) = X (X (tδ), tδ; cε). We
proved

u(−rδεµ+ X (x̂, t̂; cε), t̂ + cε) > 0,

which implies

u(X (·, · ; cε) − rδεµ, · +cε) > 0 on % ∩ Q1.

Now we proceed to prove our claim. /0

Proof of (5.35). Here we apply Corollary 5.6 with the choice of U := B(P, rδ
2 )\

B(P, rθ ). To this end, it suffices to show that w " v on the parabolic boundary of
4.

First observe that from (5.34),

w(x, 0) " 0 = v(x, 0) in B
(
P,

rδ
2

)
.

Since v(0, tδ) = u(X (tδ), tδ) = 0 and due to Lemma 3.3,

v(0, t) = u(X (t), t) = 0 for t ∈ [0, tδ].

Due to the cone monotonicity assumption (5.1),

w " v = 0 in B(P, rθ ) ⊂ B
(
P,

rδ
5
sin θ

)
× [0, tδ].

Hence to show (5.35), it remains to show that w " v on ∂B(P, rδ
2 ) × [0, tδ].
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By definition of ϕ, we have ϕ(x) = rδ
2 sin θ on ∂B(P, rδ/2). From (5.14), we

know A0 " σ2M0. It follows that for x ∈ ∂B(P, rδ/2),

w(x, t) " eσ2M0ε inf
y∈B

(
x,rε(1−αt) sin θ

2

) v(y + rδεµ, pε(t))

= eσ2M0ε inf
y∈B

(
x, rδε

2 sin θ
) u(y + rδεµ+ X (pε(t)), pε(t))

=: eσ2M0εV1(x, t).

(5.36)

In view of (5.1), we have

inf
B(x,rδεsin θ)

u(y + rδεµ+ X (t), t) " v(x, t).

Thus it remains to show that

eσ2M0εV1(·, ·) " inf
B(·,rδεsin θ)

u(y + rδεµ+ X (·), ·)

on ∂B(P,
rδ
2
) × [0, tδ]. (5.37)

Take any (x, t) ∈ ∂B(P, rδ
2 ) × [0, tδ], and denote

z := z(y, ε) = y + rδεµ+ X (t) for any y ∈ B
(
x,

rδε
2

sin θ
)
.

With this notation we can rewrite V1(x, t) as

inf
y∈B

(
x, rδε

2 sin θ
) u(z − X (pε(t))+ X (t), pε(t)). (5.38)

By (5.18) and (5.31), we know

sε(t) := pε(t) − t ! σδε. (5.39)

Then

|X (z, t; sε(t)) − z − X (pε(t))+ X (t)| = |X (z, t; sε(t)) − X (z, t; 0) − X (X (t), t; sε(t))
+ X (X (t), t; 0)|

=
∣∣∣∣∣

∫ sε(t)

0
"b(X (z, t; h), h) − "b(X (X (t), t; h), h)dh

∣∣∣∣∣

!
∫ sε(t)

0

(
‖D"b‖∞|X (z, t; h) − X (X (t), t; h)|

)
dh.

(5.40)

Note that, for some universal σ ,

|X (z, t; h) − X (X (t), t; h)| ! |X (z, t; 0) − X (X (t), t; 0)| + σh

= |z − X (t)| + σh

! σrδ + σh.
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Therefore, (5.40) and (5.39) imply that

|X (z, t; sε(t)) − z − X (pε(t))+ X (t)| ! σrδsε(t)+ σ sε(t)2

! σ (δrδε + δ2ε2) ! rδε
2

sin θ,
(5.41)

where the last inequality holds if

δ ! sin θ

4σ
and ε ! rδ sin θ

4σδ2
. (5.42)

Using (5.38), (5.39), and (5.41), it follows that

V1(x, t) " inf
y∈B(x,rδεsin θ)

u(X (z, t; sε(t)), t + sε(t)).

Due to (3.2), for C := (m − 1)(C0 + ‖∇ · "b‖∞),

inf
y∈B(x,rδεsin θ)

u(X (z(y), t; sε(t)), t + sε(t))

" e−Csε(t) inf
y∈B(x,rδεsin θ)

u(y + rδεµ+ X (t), t).

In view of (5.36), we derive

w(x, t) " eσ2M0εe−Csε(t) inf
B(x,rδεsin θ)

u(y + rδεµ+ X (t), t). (5.43)

Using (5.39) again shows

eσ2M0ε−Csε(t) " eσ2M0ε−Cσδε " 1 if δ ! σ

1+ C0
. (5.44)

Nowafter fixing δ = δ(θ,C0) > 0 such that (5.42) and (5.44) hold,we can conclude
with (5.37) and then the claim (5.35). /0

In view of the velocity law (1.3), non-degeneracy follows once we know that
the positive set of the solution is strictly expanding relatively to the streamlines. In
the next theorem, we are going to show that indeed the solution u grows linearly
near the free boundary.

Corollary 5.7. Under the conditions of Theorem 5.1, there exist ε0, κ∗ > 0 depend-
ing only on constants in (5.2) such that, for all ε ∈ (0, ε0),

u(x + εµ, t) " κ∗ε for all (x, t) ∈ % ∩ Q1. (5.45)

Proof. Let c0 be fromLemma4.1 andC be fromTheorem5.1.Define κ := c0 sin2 θ
4C .

We first claim that for all ε > 0 sufficiently small

sup
y∈B(x,ε)

u(y, t) " κε for (x, t) ∈ % ∩ Q1. (5.46)

We argue by contradiction. Suppose that the above claim is false. Then for any
ε0 > 0 there exist ε ∈ (0, ε0] and (x̂, t̂) ∈ % ∩ Q1 such that (5.46) fails.
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Set t1 := t̂ − Cε and consider the map X (·, t1;Cε):Rd → Rd , which is
an isomorphism when ε0 is small enough. Since the positive set of u is strictly
expanding relatively to the streamlines, we have

u(X (x, t1;Cε), t̂) > 0 for x ∈ B1 ∩ %t1 .

Using the conemonotonicity condition (5.1) and the fact that u(x̂, t̂) = 0, it follows
that (x̂ + R+µ) ∩ %t1 )= ∅. Therefore there exists (x1, t1) ∈ % such that

X (x1, t1;Cε) = x̂ + C1εµ for some C1 > 0.

Due to (5.1) again, we have

d(x1 − cεµ,%t1) " cε sin θ for all c " 0. (5.47)

In view of Theorem 5.1, for all ε sufficiently small

u(X (x1, t1;Cε) − εµ, t1 + Cε) > 0.

Therefore, combining with the fact that

u(X (x1, t1;Cε) − C1εu, t1 + Cε) = u(x̂, t̂) = 0,

we obtain C1 " 1.
Next define

x2 := X (x̂, t̂;−Cε), f (t) := X (x̂ + C1εµ, t̂; t) − X (x̂, t̂; t).
Due to (1.6),

| f ′(t)| ! ‖Dx "b‖∞| f (t)| = σ | f (t)|, f (0) = C1εµ and f (−Cε) = x1 − x2.

Thus

|x1 − x2 − C1εµ| = | f (−Cε) − f (0)| ! σCC1ε
2.

Using this, (5.47) and the fact that C1 " 1, if ε ! ε0 is sufficiently small compared
to C , it follows that

d(x2,%t1) " C1ε sin θ

2
" ε sin θ

2
=: R,

which yields

u(·, t1) = 0 in B(x2, R). (5.48)

Note that t1 + Cε = t̂ and X (x2, t1;Cε) = x̂ from definition. Therefore the
failure of (5.46) implies that

∮

B(X (x2,t1;Cε),R)
u(x, t̂)dx =

∮

B(x̂,R)
u(x, t̂)dx ! κε = c0R2

Cε
. (5.49)

In the last equality, we used that κ = c0 sin2 θ
4C .
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With (5.48)–(5.49), we are able to apply Lemma 4.1 to get

u(x, t̂) = 0 in B(X (x2, t1;Cε), R/6) = B(x̂, R/6),

which is in contradiction with the assumption that (x̂, t̂) ∈ %. We proved (5.46). It
can be seen from the proof that ε0 only depends on constants in (5.2).

Now we show (5.45). Let us take γ ∈ (0, 1) to be small enough depending only
on θ such that B(µ, γ ) ⊆ Wθ,µ, which implies that, for any ε ∈ (0, 1),

εµ ∈
⋂

z∈B(0,γ ε)

{z +Wθ,µ}. (5.50)

Fix any (x, t) ∈ % ∩ Q1, and set κ∗ := κγ . By (5.46), there exists ε0 > 0 such
that

sup
y∈B(x,γ ε)

u(y, t) " κ∗ε for any ε ∈ (0, ε0].

Therefore we can find y ∈ B(x, γ ε) that u(y, t) " κ∗ε. It follows from (5.50) that
x + εµ ∈ y +Wθ,µ. Due to (5.1), we conclude with

u(x + εµ, t) " κ∗ε for any (x, t) ∈ % ∩ Q1 and ε ∈ (0, ε0].

/0

6. Flatness Implies Smoothness

In this section we prove the following theorem:

Theorem 6.1. Let u be as given in Theorem 5.1. If (1.10) holds in Q1, then u
is Lipschitz continuous and % ∩ Q 1

2
is a d-dimensional C1,α surface for some

α ∈ (0, 1).

The conemonotonicity and (1.10) provide sufficientmonotonicity properties for
the solution to rule out topological singularities and to localize the regularization
phenomena driven by the diffusion in the interior of the domain. We follow the
outline for the zero drift built on [10,11], while we elaborate on the differences.
Most notable difference is in establishing Proposition 6.3.

Lemma 6.2. Under the conditions of Theorem 6.1, u is Lipschitz continuous in Q1,
and % ∩ Q1/2 is a d-dimensional Lipschitz continuous surface.

Proof. First let us prove that u is Lipschitz continuous in Q1. Since u satisfies a
parabolic equation locally uniformly in its positive set, u is smooth in {u > 0}.
From the equation and #u " −C0, we obtain

ut " |∇u|2 − σ (C0 + 1)u + ∇u · "b in {u > 0}, (6.1)
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where σ is universal. Above estimate combined with condition (1.10) yields

(A + σ )|∇u| + C(C0, A, σ ) u + A " |∇u|2,
which turns into a bound on |∇u| in {u > 0}. From (1.10), we also get a bound on
|ut |. Notice the bounds are independent of the ellipticity constants of the equation
satisfied by u. Indeed we have,

|∇u| + |ut | ! C in Q1 ∩ {u > 0} (6.2)

for someC only depending on A,C0 and universal constants. Since u is continuous
and nonnegative, it is not hard to see that the same estimate holds weakly in Q1.

Next we turn to the Lipschitz continuity of %, using the cone monotonicity and
Lipschitz continuity of u. The spatial cone monotonicity of u implies that for each
t ∈ (−1, 1), %t is a Lipschitz continuous graph in Rd . Thus it remains to show that
for each τ ∈ (−1, 1), %t+τ ∩ B 1

2
is in a Cτ neighbourhood of %t ∩ B1 for some

C > 0. To this end, it is enough to show the following: for (x, t) ∈ % ∩ Q 1
2
and

for τ > 0 sufficiently small, we have

d(x,(t+τ ) and d(x, {u(·, t + τ ) = 0}) ! Cτ. (6.3)

To show (6.3) let us fix (x, t) ∈ % ∩ Q 1
2
. Observe that from Lemma 3.3 there

exists C > 0 such that, if τ > 0 is small,

d(x,(t+τ (u)) ! Cτ.

Thus it remains to show the second inequality in (6.3). Let C1 > 0 be a sufficiently
large constant to be chosen later. From the cone monotonicity

u(·, t) = 0 in B(y, R),

where y := x − C1τµ and R := C1 sin θ τ . By the Lipschitz continuity of u,

sup
z∈B(X (y,t;τ ),R)

u(z, t + τ ) ! u(X (y, t; τ ), t)+ C(R + τ )

! u(y, t)+ σCτ + C(1+ C1 sin θ)τ

( since |X (y, t; τ ) − y|
! ‖"b‖∞τ )

! C C1 τ,

where C depends on Lip(u) and ‖"b‖∞. Thus, for c0 given in Lemma 4.1,
∮

B(X (y,t;τ ),R)
u(z, t + τ )dz ! CC1τ ! (c0 C2

1 sin
2 θ) τ = c0

R2

τ
,

where the last inequality holds ifC1 is large enough compared to 1/c0, 1/θ, Lip(u),
‖"b‖∞. Remark 4.2 then yields for small τ ,

u(x − C1τµ, t + τ ) = 0

and therefore (6.3) is proved. /0
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Now we start proving the C1,α regularity of the free boundary. By considering
ũ(x, t) := 2u(x0+ 1

2 x, t0+ 1
2 t) for any (x0, t0) ∈ Q 1

2
∩%, we can assume (0, 0) ∈ %

and u is a solution in Q1. Then to prove the rest of Theorem 6.1, it suffices to show
that % is C1,α at point (0, 0).

The following proposition propagates the free boundary non-degeneracy in
Corollary 5.7 to the nearby level sets:

Proposition 6.3. Assume the conditions of Theorem 6.1 and (0, 0) ∈ %. Then there
exist constants 0 < δ1 <

1
2 and c1 > 0 such that

∇µu(x, t) " c1 a.e. in Qδ1 ∩ ((u).

Proof. Fix a sufficiently small δ > 0 to be determined and pick (x̂, t̂) ∈ {u >

0} ∩ Qδ . Let h := d(x̂,%t̂ ) < δ. From Lemma 6.1, %(u) is space-time Lipschitz
continuous, and actually it can be written as the graph of xν = Fu(x⊥, t) where
xν := x · ν and x⊥ ∈ {x · ν = 0}. Let us denote the space-time Lipschitz constant
of Fu as C , and choose C2 := C + 1. Then

d(x̂,%t̂−h) ! (C2 − 1)h.

Denote (y, s) such that s = t̂−h, y ∈ %s andd(x̂, y) = d(x̂,%s) ! (C2−1)h. Thus
B(y, h) ⊆ B(x̂,C2h). Also by Lipschitz continuity of%s in space, ∂B(y, h)∩{u >

0} is of strictly positive measure Ch with C independent of h.
By the divergence theorem,

∮

B(y,h)∩{u>0}
∇µu(x, s)dx " σ

h

∮

∂B(y,h)∩{u>0}
u(x, s)µ · nxdx

where nx is the outward pointing unit normal on ∂B(y, h). So in view of (5.45) and
the assumption that u is monotone with respect to Wθ,µ, we have

∮

B(y,h)∩{u>0}
∇µu(x, s)dx " κ

for some κ > 0 only depending on κ∗ and C2.
Let us define

(r := {(x, t) ∈ (, d((x, t), ∂() > r}. (6.4)

Fix γ ∈ (0, 1
2 ) to be a small constant only depending on κ such that

∮

B(y,h)∩(γ h
∇µu(x, s)dx " κ

2
.

Therefore there exists a point

z ∈ B(y, h) ∩ (γ h ⊂ B(x̂,C2h) ∩ (γ h

such that

∇µu(z, s) " κ

2
. (6.5)
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We will apply Harnack inequality to φ := ∇µu, using the fact that it solves a
locally uniform parabolic equation in the positive set of u.

Let us consider {u > 0} and then u isC1 inside the open region. Differentiating
(1.5) in {u > 0}, we can check that φ satisfies the following parabolic equation

φt = (m − 1)φ#u + (m − 1)u#φ + (2∇u + "b) · ∇φ + (m − 1)φ∇ · "b + f,

where

f := ∇u · ∇µ"b + (m − 1)u∇ · ∇µ"b.

Since u is Lipschitz continuous and "b is smooth, f is uniformly bounded. Then the
new function

φ̃ := φeC3(t−s) + ‖ f ‖∞(t − s) with C3 := (m − 1)(C0 + ‖∇ · "b‖∞)

satisfies

φ̃t " (m − 1)u#φ̃ + (2∇u + "b) · ∇φ̃. (6.6)

Let us define

4h
1 := (γ h ∩

(
B(x̂,C2h) × (−h + t̂, t̂ )

)
,

4h
2 := (γ h/2 ∩

(
B(x̂, 2C2h) × (−2h + t̂, t̂ )

)
,

where (r is as given in (6.4). Then we have

(x̂, t̂), (z, s) ∈ 4h
1 ⊆ 4h

2 .

For any (x, t) ∈ 4h
2 , it is

γ h
2 away from %, and then by the cone monotonicity and

(5.45) we have

u(x, t) " κ∗γ h
2

. (6.7)

Consider w(x, t) := φ̃(xh + x̂, th + s). Since t̂ − s = h, we have

w(0, 1) = φ̃(x̂, t̂), and w(z′, 0) = φ̃(z, s) with z′ := z − x̂
h

.

Denote

41 := (4h
1 − (x̂, s))/h, 42 := (4h

2 − (x̂, s))/h.

Then41,42 are domains with Lipschitz boundary with Lipschitz constant depend-
ing only on C, σ , and

(0, 1), (z′, 0) ∈ 41 ⊆ 42,

Also writing 4i (t) = {x | (x, t) ∈ 4i } for i = 1, 2, we get

42(t)+ B γ
2

⊆ 41(t) for t ∈ (−h + t̂, t̂).
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From (6.6), w satisfies

wt " (m − 1)
u
h

#w + (2∇u + "b) · ∇w,

and the operator here is uniformly parabolic in42, due to (6.7). ApplyingHarnack’s
inequality to w in 41 ⊆ 42, we get

w(0, 1) " cw(z′, 0)

for some constant c = c(θ, κ∗,C2) > 0. Write the above inequality in terms of φ

to obtain

φ(x̂, t̂)eC3(t̂−s) + ‖ f ‖∞(t̂ − s) " c φ(z, s),

which is larger than cκ
2 , due to (6.5).

Since t̂ − s = h ! δ, further assuming δ to be small enough, we get φ(x̂, t̂) "
cκ
4 > 0. Finally we conclude that ∇µu " cκ

4 > 0 in ( ∩ Qδ .
/0

Next we show the strict monotonicity of u along the streamlines.

Lemma 6.4. Let u be given as in Proposition 6.3. Then there exist δ2 ∈ (0, δ1) and
c2 > 0 such that, for v(x, t) := u(x + X (t), t) with X (t) = X (0, 0; t), we have

vt " c2 in Qδ2 ∩ {v > 0}.

Proof. By definition, v solves L2(v) = 0, where L2 is as given in (5.4). By the
equation, we have

∂tv " −C0(m − 1)v + 1
2
|∇v|2 − 4|"b(x + X (t)) − "b(X (t))|2 − (m − 1)v‖∇"b‖∞

" −σC0δ +
c21
2

− 4|x |2‖∇"b‖2∞ − Cδ

" −σC0δ +
c21
2

− σδ2 − Cδ in Qδ,

where the second inequality comes from the fact that v ! Cδ due to (6.2), and the
third inequality follows from Proposition 6.3.

Since c1 is independent of δ, the last quantity is positive if δ = δ2 is small
enough compared to C0, c1, the Lipchitz constant of u and universal constants. We
thus conclude. /0

Now we are ready to follow the celebrated iteration procedure given in [10].
Their argument describes the enlargement of cone of monotonicity as we zoom in
near a free boundary point. More precise discussions are below.

Our reference point is (0, 0) ∈ %, and let v be from Lemma 6.4. For δ ∈ (0, δ2),
define

vδ(x, t) :=
1
δ
v(δx, δt), "bδ(x, t) := "b(δx, δt), Xδ :=

1
δ
X (δt). (6.8)
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Then Xδ is the streamline generated by "bδ starting at (0, 0). We have that vδ is a
solution to L2(·) = 0 with "b, X replaced by "bδ, Xδ . From Lemmas 6.2–6.4, we
have for some L > 0 independent of δ [depending on constants in (5.2)] such that

0 ! vδ ! L ,
1
L

! |∇vδ|, ∇µvδ, ∂tvδ ! L , #vδ " −δL in Q1. (6.9)

Denoting σ as the C2 norm of "b, we have

‖"bδ‖∞ ! σ, ‖∇"bδ‖∞ + ‖∂t "bδ‖∞ ! σδ, ‖D2 "bδ‖∞ + ‖∇∂t "bδ‖∞ ! σδ2. (6.10)

Let Ŵθ,ν be given as in (2.1). We say v has the cone of monotonicity Ŵθ,ν in
Q1 if

∇̂pv " 0 in Q1 for all p ∈ Ŵθ,ν .

The next lemma, yielding the initial cone of monotonicity for vδ , can be proven
using (6.9)–(6.10) with a parallel proof to Proposition 2.1 of [10]. Let us denote
the positive time direction as ed+1.

Lemma 6.5. Let vδ be as given in (6.8). Then there exists θ0 > 0 such that

∇̂pvδ " 1
2L

in Q1 for all p ∈ Ŵθ0,µ0 ∩ Sd+1,

where µ0 := 1√
2
[(µ, 0)+ ed+1] and L is as given in (6.9).

Now we begin our iteration procedure. Fix some J (L) ∈ (0, 1) to be chosen
later, define

vk(x, t) :=
1
J k

vδ(J kx, J kt) for k ∈ N+. (6.11)

Then vk satisfies

∂tvk − (m − 1)vk#vk − |∇vk |2 − ∇vk · ("bk(x + Xk(t), t) − "bk(Xk(t), t))

−(m − 1)vk∇ · "bk(x + Xk(t), t) = 0, (6.12)

where "bk(x, t) := "bδ(J kx, J kt), Xk(t) := 1
J k Xδ(J kt).

Due to (6.9)–(6.10) the following holds in Q1:

(Ak) 0 ! vk ! L , #vk " −Lδ, |∇vk | + |∂tvk | ! L;

(Bk) ∇µvk, ∂tvk " 1
L ;

(Ck) ‖"bk‖∞ ! σ, ‖∇"bk‖∞ + ‖∂t "bk‖∞ ! σδ J k, ‖D2 "bk‖∞ + ‖∇∂t "bk‖∞ !
σδ2 J 2k .

The main step in the proof of Theorem 6.1 is to show the following property
inductively.
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(Dk) there exist s ∈ (0, 1) and µk ∈ Rd+1 such that for θk := π
2 − sk(π

2 − θ0),

∇̂pvk " 1
2L

Jk in Q1 for all p ∈ Ŵθk ,µk ∩ Sd . (6.13)

Once establishing (Dk), it shows that the cone of monotonicity Ŵθk ,µk for vk has
strictly increasing θk , converging to π/2 as k → ∞. The rate of its increasing
angles leads to the C1,α regularity of the free boundary.

In [10], (6.13) is stated with the weaker requirement ∇̂pvk " 0. However for us
the competition between diffusion and drift requires a stronger inductive property:
see Remark 6.9. This extra observation follows from the enlargement of cones as
well as the non-degeneracy of the solution.

We will proceed with several lemmas that lead to the enlargement of cones in
Proposition 6.10. The proofs of the lemmas will be postponed until after the proof
of the Proposition.

First we show that some improvements on monotonicity can be obtained on the
set {vk = ε}. Recall L from (6.9).

Lemma 6.6. (Enlargement of Cones) For any ε ∈ (0, 1), there exist positive con-
stants r ! 1

10 , δ0 < δ2, and C depending only on ε, L , σ such that the following
holds. For any δ ∈ (0, δ0), J ∈ (0, 1) and k " 0, let vk be as given in (6.11), and
suppose that vk satisfies (Dk). Then for any γ ∈ (0, ε), p ∈ Ŵθk ,µk ∩ Sd and
τ := Cε−1 cos〈 p, ∇̂vk(µ,−2r) 〉, we have

vk ! ε in Q2r ; and vk((x, t)+ γ p)

" (1+ τγ )vk on (B 3
4

× (−2r, 2r)) ∩ {v = ε}.

Next we show that this improvement can propagate to the zero level set of v.

Lemma 6.7. Let ε > 0 be small enough depending only on L , σ . Take r, vk, τ from
Lemma 6.6. If w is a supersolution of (6.12) such that w " vk in Q1, and for some
γ ∈ (0, ε),

w " (1+ τγ )vk in (B 1
2

× (−2r, 2r)) ∩ {vk = ε},

then we have

w " (1+ τγ )vk in (B 1
4

× (−2r, 2r)) ∩ {vk ! ε}.

Lastly we further improve the monotonicity in a smaller domain of size r .

Lemma 6.8. Let ε, r, vk, τ, w, γ be as in Lemma 6.7. There exists a small κ > 0
depending only on L , σ such that the following holds. Consider any smooth function
φ : Rd → R+ such thatφ is supported in B2r andφ, |∇φ|, |D2φ| ! κτγ . If vk ! ε

in Q2r then we have

w(x, t) " vk(x + (t + 2r)φ(x)µ, t) in Q2r .



Porous Medium Equation with a Drift: Free Boundary Regularity 1213

Remark 6.9. In [10] for the zero drift case, w in the above lemmas is chosen as a
translation of vk to derive monotonicity properties of vk . Since our equation is not
translation invariant, we instead choose w of the form vk((x, t) + p) + Et with
E > 0. To control the extra term Et we rely on the inductive property (Dk). The
order between vk, w is still enough to derive the Proposition below.

Now we state the main proposition.

Proposition 6.10. (Improvement of monotonicity) There exist constants J, s ∈
(0, 1) such that the following holds for all k " 0. Let vδ be as given in (6.8) with
δ ∈ (0, δ0) and δ0 from Lemma 6.6. Suppose (0, 0) ∈ % and (6.9)–(6.10). Then
there exist a monotone family of cones Ŵθk ,µk with θk = π

2 − sk(π
2 − θ0) such that

∇̂pvδ " (2L)−1 J k in QJk ∩ {vδ > 0} for all p ∈ Ŵθk ,µk ∩ Sd .

TheC1,α regularity of% at (0, 0) is a result of the relation θk = θk−1+S(π/2−
θk−1) which describes quantitatively the enlargement of cone of monotonicity of
solutions near the free boundary. Then Theorem 6.1 follows. We omit detailed
discussion of this part since it is parallel to Theorem 1 in [10].

Proof. Fix a small ε > 0 such that the conclusion of Lemma 6.7 holds, and let r, δ0
be as given in Lemma 6.6. Then ε, δ0, r only depend on L and universal constants.
Define τ as in Lemma 6.6. Let vk be as in (6.11), and set "bk, Xk as before and we
take J ! r to be determined. It is straightforward that for all k " 0, (Ak) − (Ck)

hold. When k = 0, due to Lemma 6.5, (D0) holds for v = v0.
Let us suppose that (Dk) holds for some k " 0 with µk, θk " θ0 i.e. the

hypothesis of Lemmas 6.6–6.8 are satisfied. We will show (Dk+1).
For any γ ∈ (0, ε) and a unit vector p ∈ Ŵθk ,µk , define

w̃(x, t) := vk((x, t)+ γ p).

Note that w̃ " vk in Q1 due to Dk . Next, (6.12) implies that

L2(w̃) " −γ
(
|∇w̃||∇̂p "bk(x + Xk)| + (m − 1)w̃|∇ · ∇̂p "bk |

)
.

By (Ak) − (Ck) and the fact that |∂t Xk | ! |"bk | ! σ , we have

L2(w̃) " −γ (σδL Jk) =: −γ Ek .

Then for w := w̃ + Ek(t + 2r), we have w " vk in Q2r .
In view of Lemma 6.6, vk ! ε in Qr and w satisfies the hypothesis of

Lemma 6.7. Let τ be defined as in Lemma 6.6, and let κ < κ0 be from Lemma 6.8.
We select a smooth function φ:Rd → R+ such that φ is supported in B2r , and
φ, |∇φ|, |D2φ| ! κτγ , and

φ " σr2κτγ in Br for some universal σ. (6.14)

Clearly such φ exists.
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It follows from Lemmas 6.6–6.8 that

w(x, t) " vk(x + (t + 2r)φ(x)µ, t) in Q2r .

By (Bk) and (6.14), for c′ := σr3κ
L we have

w(x, t) " vk(x, t)+
t + 2r
L

φ(x) " vk(x, t)+ c′τγ in Qr .

This implies that

∇̂pvk(x, t) = lim
γ→0

vk((x, t)+ γ p) − vk(x, t)
γ

" lim
γ→0

w(x, t) − vk(x, t)
γ

− 3Ekr

" c′τ − σδL Jkr in Qr ∩ {vk > 0}.

Using the definition of τ , we obtain

∇̂pvk(x, t) = C1 cos〈 p, ∇̂vk(µ,−2r)〉 − σδL Jkr, (6.15)

where C1 := c′Cε−1 only depending on L , σ (since ε is fixed).
It follows from (Ak) and (Dk) that

cos〈 p, ∇̂vk(µ,−2r)〉 = ∇̂pvk

|∇̂vk |
(µ,−2r) " 1

L
∇̂pvk(µ,−2r) " 1

2L2 J
k . (6.16)

Taking δ to be small enough only depending on L and σ , (6.15) yields

∇̂pvk(x, t) " C1

2
cos〈 p, ∇̂vk(µ,−2r)〉 in Qr ∩ {vk > 0}.

Thus in Qr ∩ {vk > 0},

cos〈 p, ∇̂vk(x, t)〉 =
∇̂pvk

|∇̂vk |
(x, t) " C1

2L
cos〈 p, ∇̂vk(µ,−2r)〉. (6.17)

For p ∈ Sd+1, set

ρ(p) := C1

8L
cos〈 p, ∇̂vk(µ,−2r)〉.

For any q ∈ B(p, ρ(p)) we have sin〈 p, q 〉 ! ρ(p) and thus

cos〈 q, ∇̂vk(x, t)〉 " cos〈 p, ∇̂vk(x, t)〉 − 2 sin〈 p, q 〉

" C1

2L
cos〈 p, ∇̂vk(µ,−2r)〉 − 2ρ(p) ( by (6.17))

= C1

4L
cos〈 p, ∇̂vk(µ,−2r)〉.



Porous Medium Equation with a Drift: Free Boundary Regularity 1215

In view of (Ak) and (6.16), we get

∇̂qvk(x, t) " C1

4L2 cos〈 p, ∇̂vk(µ,−2r)〉 " C1

8L4 J
k .

Since the above holds for all q ∈ B(p, ρ(p)), there exists a larger cone Ŵθk+1,µk+1

for some µk+1 ∈ Rd+1, S ∈ (0, 1) and θk+1 = θk + S( 12π − θk) such that

∇̂pvk(x, t) " C1

8L4 J
k for all unit vector p ∈ Ŵθk+1,µk+1 and (x, t) ∈ Qr .

Here S is independent of k, because ρ(p) only depends on the angle between p and
∇̂vk(µ,−2r). From the iterative definition of θk , we obtain θk = π

2 − sk(π
2 − θ0)

with s = 1 − S. We refer readers to [8,10] for more details.
Let J := min{C1/(4L3), r}. Recalling vk+1(x, t) = 1

J vk(J x, J t), we obtain
for all unit p ∈ Ŵθk+1,µk+1

∇̂pvk+1(x, t) = ∇̂pvk " C1

8L4 J
k " 1

2L
Jk+1 for (x, t) ∈ Q1 ∩ {vk+1 > 0}.

We checked (Dk+1) and therefore by induction we conclude the proof of the theo-
rem. /0

Now we give the proofs of Lemmas 6.6–6.8. To simplify notations, we write
v := vk , "b := "bk and X := Xk in the that follow proofs.

Proof of Lemma 6.6. First note that if r ! ε
2L , then v ! ε in Q2r from (Ak) and

the fact that 0 ∈ %0. Next observe that in Q1, g := ∇̂pv solves

gt = (m − 1)g#v + 2∇v · ∇g + (m − 1)v#g

+∇g · ("b(x + X) − "b(X))+ (m − 1)g∇ · "b
+∇v · ∇̂p "b(x + X)+ (m − 1)v∇ · ∇̂p "b. (6.18)

By the condition (Ak)(Ck),

|∇v · ∇̂p "b(x + X)| + |(m − 1)v∇ · ∇̂p "b| ! σδL Jk .

Now we apply Harnack’s inequality to g, using (6.18), in (B 7
8

× [−3r, 3r ]) ∩
{v " 1

2ε}. As done in Proposition 2.2 in [10], if we restrict to a smaller region
(B 3

4
× (−2r, 2r))∩ {v " ε} for r small enough (depending on ε), there exist C,C ′

(depending on L , r, ε) such that

∇̂pv(x, t) " C∇̂pv(µ,−2r) − C ′δ J k .

By (Dk), we have ∇̂pv(µ,−2r) " J k . Thus we can select δ small enough such
that for some C > 0

∇̂pv(x, t) " C∇̂pv(µ,−2r) in (B 3
4

× (−2r, 2r)) ∩ {u " ε}. (6.19)

To show the assertion, we need to show

v((x, t)+ γ p) − v(x, t)
γ

" τv(x, t) = τε,

which holds by the definition of τ and (6.19). /0
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Proof of Lemma 6.7. Let f ∈ C1(B 1
2
) be a non-negative function such that

f = 0 in B 1
4
; f = ε on ∂B 1

2
; |∇ f | ! 10ε; |# f | ! 10ε.

For α ∈ (−2r, 2r), define

ξ(x, t) := v(x, t)+ τγ (v(x, t)+ ε(t + α) − f (x))+.

We claim that ξ is a subsolution in 4 := (B 1
2
× (−2r,−α))∩ {v ! ε} if ε is small

enough, independent of r . Let us follow [10] and only point out the differences
coming from the drift. We recall the operator L2 defined in (5.4) and denote the
drift independent part as L̃ to get

L̃(ξ) := ξt − (m − 1) ξ #ξ − |∇ξ |2. (6.20)

Let g(s) := τγ s+ and thus g′ = τγ χ{s>0}, g′′ " 0 in the sense of distribution.
Below, we write g = g(v + ε(t + α) − f ). Direct computations yield

ξt = (v + g)t = (1+ g′)vt + εg′,
∇ξ = ∇(v + g) = (1+ g′)∇v − g′∇ f.

Following the computations in Lemma 3.1 of [10] and using |∇v| " 1
L , we

obtain

L̃(ξ) ! (1+ g′)L̃(v) −
(
L−2 − Cε

)
g′ with C only depending on L and σ.

Since L2(ξ) = L̃(ξ) − ∇ξ · ("b(x + X) − "b(X)) − (m − 1)ξ∇ · "b, then

L2(ξ) ! (1+ g′)L̃(v) −
(
L−2 − Cε

)
g′ − ∇ξ · ("b(x + X) − "b(X)) − (m − 1)ξ ∇ · "b

= (1+ g′)L2(v)+ g′∇ f · ("b(x + X) − "b(X)) − (m − 1)(g − g′)∇ · "b −
(
L−2 − Cε

)
g′

= g′∇ f · ("b(x + X) − "b(X)) − (m − 1)g∇ · "b −
(
L−2 − Cε − (m − 1)∇ · "b

)
g′.

By (Ck), we have ‖"b‖∞ ! σ, ‖∇"b‖∞ ! σδ J k . Since we assumed δ ! ε and
J < 1, ‖∇"b‖∞ ! σε. Also for (x, t) ∈ 4, s := v + ε(t + α) − f ! ε and hence
g(s) ! εg′(s). We get

|g′∇ f · ("b(x + X) − "b(X))+ (m − 1)g∇ · "b| ! σε2g′ in Q 1
2
.

Thus L2(ξ) ! 0 if ε is small enough depending only on L , σ .
The rest of the proof follows from the proof of Proposition 2.3 [10], where we

compare w and ξ in 4 to conclude that

w(x,−α) " (1+ τγ )v(x,−α) in B 1
4

∩ {v ! ε}

for all α ∈ (−2r, 2r). /0
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Proof of Lemma 6.8. Based on (Ak),(Bk) and the elliptic regularity estimate
applied to v, one can argue as in Lemma 3.2 of [10] to conclude that

vDi jv " −C4, for all i, j = 1, . . . , d in Q2r , (6.21)

where C4 depends only on L , universal constants and the Lipschitz constant of
%(v). We will use this fact in the computation below.

Define

h(x, t) := (1+ τγ )v(x + (t + 2r)φµ, t), y := x + (t + 2r)φµ.

Note that |y−x | ! κτγ . Lemma 6.7 implies thatw " h on the parabolic boundary
of

4 := (B 1
4

× (−2r, 2r)) ∩ {v ! ε}.

We claim that L2(h) ! 0 in 4. Write τ ′ := τγ . We have

ht = (1+ τ ′)(vt + vµφ),

∇h = (1+ τ ′)
(
∇v + vµ(t + 2r)∇φ

)
,

#h = (1+ τ ′)
(
#v + 2(t + 2r)∇vµ · ∇φ + vµµ(t + 2r)2|∇φ|2 + vµ(t + 2r)#φ

)
,

From (6.21) and the computations in Proposition 2.4 [10]

L̃(h) ! (1+ τ ′)L̃(v)(y, t) − τ ′
(
L−1 − Cκ

)

where L̃ is given by (6.20) and C depends only on m, L ,C4, σ . Thus

L2(h) ! (1+ τ ′)L̃ v(y, t) − τ ′ (L−1 − Cκ
)
− ∇h ·

(
"b(x + X) − "b(X)

)

− (m − 1)h∇ · "b(x + X)

= (1+ τ ′)L2(v)(y, t) − τ ′ (L−1 − Cκ
)
− (1+ τ ′)∇v ·

(
"b(x + X) − "b(y + X)

)

− (m − 1)(1+ τ ′)v(y, t)∇ ·
(
"b(x + X) − "b(y + X)

)

− (1+ τ ′)vµ(t + 2r)∇φ) ·
(
"b(x + X) − "b(X)

)

! −τ ′ (L−1 − Cκ
)
+ (1+ τ ′)|∇v|‖D"b‖∞|x − y| + (m − 1)(1+ τ ′)v‖D2 "b‖∞|x − y|

+ (1+ τ ′)
∣∣vµ

∣∣ (t + 2r) |∇φ| ‖∇"b‖∞|x |.

Now apply (Ck) and since δ ! ε, we have ‖D"b‖∞ ! σε, ‖D2 "b‖∞ ! σε2. Since
|∇φ| ! κτ ′, we obtain

L2(h) ! −τ ′
(
L−1 − Cκ

)
− σ Lεκτ ′ − σ Lεrκτ ′ − σ Lε2κτ ′

! −τ ′
(
L−1 − Cκ − σ Lκ

)
! 0 in 4,

if κ is small enough. By comparison principle applied to w and h in Q2r we can
conclude that

w(x, t) " h(x, t) " v(x + (t + 2r)φ(x)µ, t) in Q2r .

/0
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7. Discussion of Traveling Waves and Potential Singularities

In this section we discuss evolution of solutions in two space dimensions, in
several explicit scenarios.

7.1. A Discussion on Traveling Waves

For simplicity, we restrict to two space dimensions d = 2. The drift is chosen
as

"b(x1, x2) := (α(x2), 0), where α is Lipschitz and bounded. (7.1)

When α is periodic andmax{α} < c, it is shown in [21] that there exist traveling
wave solutions of the form U (x + cte1) for the corresponding pressure equation
(7.2), with the growth condition limx1→∞ U (x)

x1
= c. While Lipschitz regularity of

the solutions are established therein, the free boundary regularity and possibility of
a corner remain open.

Our regularity analysis cannot address the traveling waves themselves, but we
are able to say that such singularity, if at all, is of asymptotic nature.More precisely,
we show that dynamic solutions, used in [22] to approximate the travelling waves,
stay smooth in any finite time interval.

Theorem 7.1. Let u solve (1.5) in R2 × (0,∞), with "b given in (7.1), with the
initial data u0(x) = (x1)+. Further impose that u(x,t)

x1
→ 1 as x1 → ∞. Then the

following holds:

(a) u is uniformly Lipschitz continuous in R2 × [0,∞).
(b) For any fixed T > 0, there exists τ0(T ) > 0 such that for all t ∈ [0, T ] and

τ ! τ0

∂x1u ± τ∂x2u " 0.

(c) u is non-degenerate, and %(u) is C1,α in R2 × [0, T ].

Proof. Let us rewrite (1.5) with our choice of "b:

∂t u − (m − 1)u #u − |∇u|2 − α(x2) ∂x1u = 0. (7.2)

Define ϕ(x, t) := (x1+σ1t)+ with σ1 := sup |α|+ 1. Then ϕ is a supersolution of
(7.2) with the same initial data as u, and thus u ! ϕ. In particular, for any ε > 0

u(x − σ1εe1, ε) ! ϕ(x − σ1εe1, ε) = (x1)+ = u(x, 0), (7.3)

where we denote the positive x1 direction as e1.
For ε > 0 let uε(x, t) := u(x − σ1εe1, t + ε). From (7.3), it follows that

uε(·, 0) ! u0. Since uε also solves (7.2), by comparison principle it follows that
uε ! u, and thus

ut − σ1ux1 ! 0.
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Above inequality with (6.1) yields that u is uniformly Lipschitz continuous in space
and time.

Next to show (b), for ε > 0 and σ2 := sup |∂x2α| we define

w(x, t) := sup
|y−x |!εe−σ2 t

u(y − εe1, t).

For each x , pick y = y(x, t) that realizes the supremum. As in the proof of
Lemma 5.4, for a.e. (x, t) ∈ R2 × (0,∞) we have

wt (x, t) = (ut − σ2εe−σ2t |∇u|)(y, t).

Therefore for a.e. (x, t) ∈ R2 × (0,∞),

wt − (m − 1)w#w − |∇w|2 − ∇w · "b − (m − 1)w∇ · "b
! −σ2εe−σ2t |∇w| + |∇w| sup

"y∈B(x,εe−σ2 t )

|"b(y − εe1) − "b(x)|

! (−σ2εe−σ2t + εe−σ2t‖α′‖∞)|∇w| ! 0,

where for the second equality above we used the fact that "b only depends on x2.
Thus w is a subsolution. Since w(·, 0) ! u0, the comparison principle for (7.2)
yields w ! u. In particular we have

u(x, t) " sup
|y|!εe−σ2T

u(x + y − εe1, t) for 0 ! t ! T,

which yields (b) with τ ! tan(arcsin(e−σ2T )). Since (a)-(b) imply (1.10) and that
u is cone monotone, Proposition 6.3 and Theorem 6.1 yield (c). /0

Remark 7.2. Let us consider the travelling wave solution u(x, t) = U (x+cte1) of
(7.2) with smooth and periodic α, studied in [21]. It was shown there that, assuming
non-degeneracy, the free boundary %0 = ∂{U (x) > 0} can be represented by a
Lipschitz graph x1 = f (x2).

Our analysis shows that under the same assumption the graph function f is at
least C1,α . Indeed |∇U | is globally bounded due to Theorem 1 of [21] and thus
(1.10) holds for u. Now Theorem 6.1 applies to yield the desired regularity of f .
This improvement suggests that singularity of the free boundary such as corner
formulation could happen only when non-degeneracy fails.

The rest of the section discusses examples of singular solutions that are not
present in the zero drift problem. First we discuss global-time persistence and
aggravation of corners.

Theorem 7.3. There exist solutions u1, u2 to (1.5) in Q with bounded smooth spa-
tial vector fields and non-negative, Lipschitz initial data such that

1. u1 is stationary and %(u1) has a corner at the origin.
2. There is a corner of shrinking angles on %(u2).
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Proof. Write (x, y) as the space coordinate. Let

"b := −∇;(x, y) for some smooth function ;,

and then it can be checked directly that

u1 := max{;, 0}

is a stationary solution to (1.5). Notice %0(u1) is the 0-level set of ; and we claim
that if ; is degenerate, the interface can be non-smooth.

For example, we can take

;(x, y) = g(x)g(y)

where g is a function on R that it is only positive in (0, 1). Then ∂{u1 > 0} is a
square. In particular, ∂{u1 > 0} contains a Lipschitz corner at the origin.

Next we show (2). Take "b := (ax, by) (for a moment) and

ϕ(x, y, t) :=
{

λ(t)(x2 − k(t)y2)+ if x > 0,
0 otherwise ,

where

λ(t) = eσ1t , k(t) = k0et for some σ1, k0 > 0.

Then the %t (ϕ) contains a corner with vertex at the origin.
Let us show that ϕ is a supersolution to (1.1) for t ∈ (0, 1/σ1). Due to

Lemma 2.6, we only need to check this for x > k1/2|y|.

L(ϕ) := ϕt − (m − 1)ϕ#ϕ − |∇ϕ|2 − ∇ϕ · "b − (m − 1)ϕ∇ · "b
= (x2 − ky2)λ′ − λk′y2 − (m − 1)λ2(x2 − ky2)(2 − 2k) − 4λ2x2 − 4λ2k2y2

− 2aλx2 + 2bkλy2 − (m − 1)λ(x2 − ky2)(a + b)

= (x2 − ky2)(λ′ − λ2(m − 1)(2 − 2k) − λ(m − 1)(a + b) − 2a − 4λ2)

+ λy2(2bk − k′ − 4λk − 4λk2 − 2ak)

" (x2 − ky2)λ (σ1 − σ (λ,m, k0, a, b))+ λy2k((2b − 1) − (4λ + 4λk + 2a)).
(7.4)

Now we fix a and take b such that

2b − 1 " 4λ + 8λk0 + 2a " 4λ + 4λk(t)+ 2a,

if σ1 " 10 and t ! 1/σ1. Next we further take σ1 to be large enough such that,
the first part of (7.4) is also non-negative. We conclude that for t ∈ (0, 1/σ1), ϕ is
indeed a supersolution and its support contains a corner with angles shrinking from

2 arctan(k
− 1

2
0 ) to 2 arctan(k(t)−

1
2 ).

Now consider a solution u2 with initial data u0 such that u0 = ϕ(x, y, 0) in B1
and u0 ! ϕ(x, y, 0). By comparison, ϕ " u2 for all times and so

(t (u2) ⊂ (t (ϕ) ⊂ {x > k1/2(t)|y|}.



Porous Medium Equation with a Drift: Free Boundary Regularity 1221

Since "b = 0 at the origin, the origin is a one-point streamline. By Lemma 3.3,
0 ∈ (t (u2) for all t " 0. Thus %t (u2) has a shrinking corner for a short time.
Lastly since u2 is compactly supported, we can truncate "b to be bounded which
does not affect u2 and its support. /0

Next we consider formation of corners and cusps over time.

Theorem 7.4. There is a solution u to (1.5) in Q with some bounded continuous
vector field and non-negative, bounded and Lipshitz initial data u0 such that:

1. %0(u) is smooth.
2. %t (u) contains a corner/a cusp for a range of time.

Proof. First we consider "b := −(x + |y|, y). We will construct a supersolution
for this choice of "b. For some σ0, σ1, ε > 0, set λ(t) = σ0 eσ1t , α(t) = εt and

ϕ(x, y, t) := λ(t)x(x − α(t)|y|)+.
When t = 0, the support of ϕ is a half-plane, while for any t > 0 there forms a
corner on %t (ϕ).

In the positive set of ϕ (x > α|y|), we have
L(ϕ) = λ′x(x − α|y|) − λα′x |y| − (m − 1)λ2x(x − α|y|)(2 − αxδy) − λ2

∣∣∣∣

(
2x − α|y|,αx y

|y|

)∣∣∣∣
2

+ λ

(
2x − α|y|,αx y

|y|

)
· (x + |y|, y)

+ 2(m − 1)λx(x − α|y|).
Here δy is the Dirac mass of variable y. Since δy " 0, the above simplifies to

"(x − α|y|)(λ′x − 2(m − 1)λ2x + 2(m − 1)λx) − λα′x |y|
− λ2|(x − α|y|)+ x |2 − λ2α2x2

+ λ((x − α|y|)+ x)(x + |y|) − λαx |y|
"(x − α|y|)(λ′x − 2mλ2x + 2(m − 1)λx − λ2(x − α|y|)) − λ2x2 − λ2α2x2

+ λx(x + |y|) − (λα + λα′)x |y|.

Select σ1 = 4m, σ0 ! 1
2e

−4m, ε ! 1/4 and thenλ′ " 2(m−1)λ+2mλ2. Therefore
for t ∈ [0, 1],

L(ϕ) " −(λ2 + λ2α2)(x − α|y|)2 + λx2 + (λ − λα − λα′)x |y|
" (λ − λ2(1+ ε2t2))|x |2 + λ(1 − ε − εt)x |y| " 0.

In the last inequality we used that λ ! 1
2 , ε + εt ! 1

2 .
Thus ϕ is a supersolution in R2 × [0, 1]. Now u0 = ϕ(x, y, 0) in B1 and u be a

solution with initial data u0. Then by comparison we conclude that a corner forms
on %t (u) for t > 0.

Next we show the possibility of the formation of cusps. Consider

"b := (x log x − 10x1−δ, 0).
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which is continuous but not Lipschitz continuous at x = 0. In particular in our
barrier argument we will use approximations to avoid the origin. For some σ2 is
large enough, let

α(t) := 1+ τ (τ − t), λ := eσ2t

and let τ, δ > 0 be such that

1 > δ " 2τ 2

1 − τ 2
, τ ! 1

2
, e2σ2τ ! 1. (7.5)

For ε ∈ (0, 1), set

ϕε(x, y, t) :=
{

λ(t)(x2 − (|y| + ε)2α(t))+ if x " 0,
0 otherwise.

Then as ε → 0, for x " 0,

ϕε(x, y, t) → ϕ(x, y, t) := λ(t)(x2 − |y|2α(t))+.
Directly from the definition, the support of ϕ is smooth when α > 1, while a cusp
appears when α = 1 i.e. t > τ . Set the domain

4ε :=
⋃

t∈[0,2τ ]

((
1
2

" x " (|y| + ε)α(t)
)

× {t}
)
.

Let us check that ϕε is a supersolution to (1.5) in 4ε. Notice

∂y(|y| + ε)2α = 2α(|y| + ε)2α−1 y
|y| ,

∂yy(|y| + ε)2α = 2α(2α − 1)(|y| + ε)2(α−1) + 2α(|y| + ε)2α−1δy

≥ 2α(2α − 1)(|y| + ε)2(α−1).

By direct computation, in 4

L(ϕε) " (x2 − (|y| + ε)2α)(λ′ − λ2(m − 1)(2 − 2α(2α − 1)(|y| + ε)2(α−1))

− λ(m − 1)∇ · "b)
− λα′(|y| + ε)2α log(|y| + ε)2 − λ2(4|x |2 + 4α2(|y| + ε)4α−2)

− 2λ
((

x,−2α(|y| + ε)2α−1 y
|y|

)
· "b

)

Note we can assume α " 1
2 and ∇ · "b ! σ for some universal σ in 4, and therefore

the above

" (|x |2 − (|y| + ε)2α)(λ′ − 2λ2(m − 1) − σλ(m − 1))

− λα′(|y| + ε)2α log(|y| + ε)2

− λ2(4(|y| + ε)2α + 4α2(|y| + ε)4α−2)+ 2λ(−x2 log x + 10x2−δ)

=: A1 + A2 + A3 + A4.
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To have A1 " 0, we only need

λ = eσ2t ! e2σ2τ ! 2 and σ2 " (σ + 4)(m − 1).

Using that r2 log r is negative and decreasing for r ∈ [0, 1
2 ] and (7.5), we have

A2 = λτ (|y| + ε)2α log(|y| + ε)2 (α′ = −τ )

" 4λτ (|y| + ε)2α log(|y| + ε)α (α " 2−1)

" 4λτ x2 log x " 2λx2 log x (x " (|y| + ε)α, 2τ ! 1).

Also note by (7.5), we have λ ! 1,α ! 1+ τ 2 ! 2, 4α − 2 " α(2 − δ). So

A3 = −4λ2(|y| + ε)2α − 4λα2(|y| + ε)4α−2

" −4λx2 − 16λ2x (2α−1)/α " −20λx2−δ.

In all 44
i=1Ai " 0. We proved that ϕε is a supersolution in 4ε, so by Lemma 2.6,

it is a supersolution in B 1
2

× [0, 2τ ].
Now forh ∈ (0, 1),we selectuh0,ε to be smoothwith initial datauh0,ε = h ϕε(·, 0)

in Bh and uh0,ε = 0 in Bc
2h . Let u

h
ε solve (1.1) with vector field "b and initial data

uh0,ε. By finite propagation property, we can take h to be small enough such that for
all ε ∈ (0, 1)

uhε (·, t) = 0 on (∂B 1
2
) × [0, 2τ ].

By comparison (which is valid since "b is smooth in 4ε), uhε ! ϕε in B 1
2

× [0, 2τ ].
Now passing ε → 0 gives a solution uh with initial data hϕ(·, 0) in Bh such that
uh ! ϕ for t ∈ [0, 2τ ]. As before we conclude by the geometry of ((ϕ) and
Lemma 3.3 that a cusp appears for τ < t < 2τ . /0
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Appendix A: Proof of Lemma 2.6

Let us only consider the case whenU = Rd . The case ofU = B1 follows similarly.
Fix one non-negative φ ∈ C∞

c (Rd × [0, T )). Denote

U0 := {φ > 0} ∩ {ψ > 0}.

For any ε > 0, take finitely many space time balls Ui , i = 1, . . . , n such that

1. for each i " 1, |Ui | ! εd+1 and Ui is in the ε-neighbourhood of %(ψ),
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2. {Ui }i=1,...,n is an open cover of %(ψ) ∩ {φ > 0}.
Since %(ψ) is of dimension d, we can assume

n # ε−d . (A.1)

Take a partition of unity {ρi , i = 0, . . . , n} which is subordinate to the open cover
{Ui }i"0. Then for i " 1,

|∇ρi | + |∂tρi | # 1/ε. (A.2)

By the assumption, ψ is a supersolution in the interior of its positive set. And since
ε can be arbitrarily small, to show (2.4) we only need to show

Iε :=
n(ε)∑

i=1

(∫ T

0

∫

Rd
ψ (φρi )t − (∇ψm + ψ "b)∇(φρi ) dxdt −

∫

Rd
ψ(0, x)φ(0, x)ρidx

)
→ 0

as ε → 0.
By property 1 of Ui and the regularity assumption on ψ , in all Ui , i " 1 we have

ψ ! Cε
1
α , |∇ψm | ! Cψm−α|∇ψα| ! Cε

m−α
α .

Now from (A.1), (A.2) and α < m, it follows that

|Iε| ! Cε−d
(∫∫

Ui

1
ε
(ψ + |∇ψm |) dxdt +

∫

Ui∩{t=0}
ψ(0, x)dx

)

! C(ε
1
α + ε

m−α
α + ε)

which indeed converges to 0 as ε → 0.

Appendix B: Sketch of the proof of Lemma 5.3

We follow the idea of Lemma 9 [8] and compute

# f (0) = limr→0

(∮

Br
f (x) − f (0)dx

)
.

Without loss of generality, suppose locally near the origin that

f (x) = inf
|ν|=1

h (x + ψ(x)ν) ,

because otherwise # f (0) = 0. Choosing an appropriate system of coordinates, we
can have

f (0) = h(ψ(0)en);
∇ψ(0) = αe1 + βen .



Porous Medium Equation with a Drift: Free Boundary Regularity 1225

We will evaluate f (x) by above by choosing ν(x) = ν∗(x)
|ν∗(x)| where

ν∗(x) := en +
βx1 − αxn

ψ(0)
e1 +

γ

ψ(0)

(
4d−1
i=2 xi ei

)

where γ satisfies

(1+ γ )2 = (1+ β)2 + α2.

With this choice of ν, we define y := x + ψ(x)ν(x) and so y(0) = ψ(0)en . After
direct computations (also see [8]), we can write

y = Y∗(x)+ ψ(0)en + o(|x |2)

such that the first-order term, except the translation ϕ(0)en , satisfies

Y∗(x) := x + (αx1 + βxn)en + (βx1 − α)e1 + γ4d
i=1xi ei .

Hence Y∗(x) is a rigid rotation plus a dilation and we have

∣∣∣∣
D(Y∗ − x)

Dx

∣∣∣∣ ! σ‖∇ψ‖∞. (B.1)

Then
∮

Br
f (x) − f (0)dx !

∮

Br
h(y(x)) − h(y(0))dx

!
∮

Br
h(y(x))

− h(Y∗(x)+ y(0))dx +
∮

Br
h(Y∗(x)+ y(0)) − h(y(0))dx .

By the condition on ψ and the computations done in Lemma 9 [8], the first term is
non-positive.
Since h is smooth, the second term converges to

(∣∣∣∣
DY∗
Dx

∣∣∣∣
x=0

)2

(#h)(y(0)) as r → 0.

Now, using (B.1) and the assumption that #h " −C and ‖∇ψ‖∞ ! 1, we get

∮

Br
f (x) − f (0)dx !

∮

Br
h(Y∗(x)+ y(0)) − h(y(0))dx

! (1+ σ‖∇ψ‖∞)(#h)(y(0))+ σ‖∇ψ‖∞C.

Thus we have finished the proof.
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Appendix C: Proof of Lemma 5.4

Let us suppose x = 0 and f (0) = h(y) for a unique y. We only compute ∂1 f (0) =
∂x1 f (0). If ∇h(y) = 0, it is not hard to see

∂1 f (0) = ∂1h(y) = 0.

Next suppose ∇h(y) )= 0. We know that h obtains its minimum over B(0,ψ(0))
at point y ∈ ∂B(0,ψ(0)). Let us assume

y = (y1, y2, 0, . . . , 0), and thus |y1|2 + |y2|2 = (ψ(0))2.

For smooth h, it is not hard to see that

∇h(y) = −ky with k = |∇h|
ψ(0)

.

Near point y

h(x) − h(y) = −ky1(x1 − y1) − ky2(x2 − y2)+ o(|x − y|).

To estimate w((δ, 0, . . . , 0)), consider the leading terms:

A(δ) := −ky1(x1 − y1) − ky2(x2 − y2)

= −ky1(x1 − δ) − ky2x2 + ky21 + ky22 − ky1δ.

By a standard argument, under the constrain

|x1 − δ|2 + |x2|2 + |x3|2 + · · · + |xn|2 ! ψ(δ, 0, . . . , 0)2,

A(δ) achieves its minimum at

x1 = y1ψ(δ, 0, . . . , 0)/(y21 + y22 )
1
2 + δ, x2 = y2ψ(δ, 0, . . . , 0)/(y21 + y22 )

1
2

with value

−kψ(δ, 0, . . . , 0)(y21 + y22 )
1
2 + ky21 + ky22 − ky1δ

= −kψ(δ, 0, . . . , 0)ψ(0)+ kψ(0)2 − ky1δ.

Thus

∂1 f (0) = lim
δ→0

A(δ)/δ = −kψ(0) ∂1ψ(0) − ky1.

Notice that ∂1h(y) = −ky1. So we find

∂1 f (0) − ∂1h(y) = −kψ(0) ∂1ψ(0) = −|∇h| ∂1ψ(0).

This leads to the conclusion.
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