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ABSTRACT

Mental or Cognitive fatigue (CF) is the exhaustion of the neuro-

logical system brought on by prolonged cognitive tasks. It causes

performance to decline in day-to-day life. Throughout this paper,

we present an experimental setup where we artificially induce cog-

nitive fatigue to participants. During the experimental process, we

collected electroencephalogram (EEG) signals from the subjects

that participated in the experiment. The goal of the study is to

detect the presence or absence of cognitive fatigue. Our proposed

solution was able to classify cognitive fatigue of the subjects with

an accuracy of 88.17%.

CCS CONCEPTS

• Computing methodologies → Machine learning; • Commu-

nication hardware, interfaces and storage → Signal processing

systems; Sensors and actuators.
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1 INTRODUCTION

Cognitive fatigue is a common phenomenon caused by prolonged

and demanding cognitive activity [12]. It is a weariness that devel-

ops over time and reduces an individual’s energy, motivation, and
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concentration, leading to several issues, including human errors

and a decline in performance in everyday life if not identified and

dealt with effectively. Moreover, it has been demonstrated that men-

tal fatigue has a detrimental impact on many aspects of one’s life,

including driving [9], athletic performance [32], decision-making

[37], hazard perception in cyclists [45], and others. Furthermore,

it is usually a primary symptom for multiple severe diseases like

Multiple Sclerosis [26], Parkinson’s Disease [20], Traumatic Brain

Injury [11], etc. Hence, the need for detection of cognitive fatigue

in our day-to-day lives is critical.

Most of the time, cognitive fatigue can occur due to intense

mental activity that may result in decreased attention and high-level

information processing [30]. Early detection of cognitive fatigue can

help experts provide targeted interventions. This phenomenon has

propelled a rise in the interest of cognitive fatigue detection. There

have been several attempts to assess cognitive fatigue with various

approaches. Most published research identifies cognitive fatigue

using subjective user surveys instead of a well-defined objective

measure [28, 35]. An emerging, alternative avenue for improving

our ability to assess health-related quality of life (HRQoL) is to

use objective data usually collected via sensors to create alternate

measures of relevant characteristics and traits [14]. In the recent

past, researchers have tried integrating physiological sensors in

their experiments to understand and analyze cognitive fatigue [22,

23]. The efforts to automate the detection of fatigue using sensors

have been promising as authors have tried to correlate the objective

signals from the sensors to the self-report subjective scores from

the participants.

This paper explores the relationship between self-reported, non-

pathological cognitive fatigue and physiological multivariate time-

series data acquired from a wearable commodity EEG sensor device

in healthy subjects. Machine learning and deep learning approaches

have been developed for time series classification such as Long

short-term memory (LSTM), Recurrent Neural Network (RNN), and

Convolutional Neural Networks (CNNs). The major contributions

of our work are defined as follows:

• A novel experimental setup to induce cognitive fatigue while

recording EEG data.

• A dataset collected from 21 healthy subjects.

• Analysis of existing ML models to classify whether a subject

is cognitively fatigued or not using EEG signals.
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The rest of the paper is organized as follows: Section 2 discusses

the related work. Section 3 explains the experimental setup. Sec-

tions 4 and Section 5 deal with the steps involved in data collection

and data annotation for the experiment, respectively. Section 6

addresses signal preprocessing, while Section 7 introduces the prob-

lem statement and methodology. Section 8 discusses the results

followed by the conclusion and future work in Section 9.

2 RELATED WORK

Over the years, several human factors such as facial expressions

[24], [34], speech [25], gait [33], physiological indicators like elec-

troencephalogram (EEG) recordings, and dermal resistances [15]

have been used to detect fatigue. However, non-physiological in-

dicators such as facial expressions are not always reliable since

they rely on people’s lifestyles and ethnic origins. Moreover, vision-

based fatigue detection from facial expressions presents certain

difficulties such as the lighting conditions of the surroundings and

tracking multiple non-rigid objects [18]. On the other hand, temper-

ature and humidity can have an impact on physiological responses

such as dermal resistance.

In the last few decades, a variety of techniques have been em-

ployed to detect cognitive fatigue. Some studies concentrate on

predicting cognitive fatigue using the fMRI data that were gathered

while patients were performing cognitive activity [44]. Many re-

searchers have attempted to detect cognitive weariness in vehicle

drivers. In [36], the authors have applied the K-means algorithm

to detect cognitive fatigue of the drivers from the collected skin

conductance (SC), oximetry pulse (OP), and respiration (RSP) data.

Research has also been carried out to identify driver fatigue in real

driving conditions using a hidden Markov model [16]. Moreover,

variations in upper body posture to detect cognitive fatigue has

been the subject of few studies [6]. Some researchers have also

attempted to detect mental fatigue using eye-tracking data of the

elder adults while they were watching videos [43]. Wearable de-

vices have been used in some studies to identify mental fatigue

[17]. In other cases, CNN and LSTM have been coupled together

to detect cognitive fatigue [41]. However, due to its reputation for

being more sensitive and reliable, several researchers have recently

shown interest in using EEG data to detect and assess cognitive

fatigue [10, 40].

EEG signals are frequently used in biomedical engineering and

neurological science research due to their non-invasiveness and low

cost. They have previously been utilized for the categorization of

emotions [29], stress detection [19], body movement detection [38],

and assessment purposes [4]. In the recent past, several EEG-based

approaches have been proposed for detecting cognitive fatigue.

EEG-based approaches have become one of the most popular meth-

ods for identifying CF due to its superior temporal resolution and

information richness [21].

3 EXPERIMENTAL SETUP

An experiment was designed and conducted in a way to induce

cognitive fatigue among the participants. The entire experimental

setup is illustrated in Figure 1.

Our study involved 21 participants out of which 16weremale and

5 were female with an average age of 23.75 years and ages ranging

Figure 1: Overall Experimental Setup.

from 21 to 35. The participants were asked to attend two sessions on

two different days for the study. They attended a morning session

and an evening session. We collected two sessions of data from 15

participants and one session of data from 6 participants.

3.1 Human Factors

The initial survey was conducted to gather demographic infor-

mation about the participants. At the end of each phase of the

experiment, the participants were asked to complete surveys using

the visual analog scale (VAS) to assess their current state of physi-

cal and mental fatigue. They were asked to assess their degree of

fatigue on a scale of 1 to 10 depending on how tired/fatigued they

felt, with 1 denoting the least and 10 the most amount of fatigue.

In total, all the participants had to take part in VAS questionnaires

four times. They completed a final assessment after the experiment

to rate the different tasks based on how much they contributed to

cognitive fatigue.

3.2 Fatigue Induction

In order to induce cognitive fatigue, the subjects were required to

complete a number of tasks. The several cognitive fatigue inducing

tasks that the participants had to perform are depicted in Fig 3.

The N-back task serves as a sequential cognitive test that evalu-

ates the capacity of a person to hold, modify, and manipulate data

in short-term memory. In an N-back task, stimuli are presented on

a screen one at a time (Figure 2) and the participants need to deter-

mine if each stimulus is the same as the one presented N steps back

in the sequence. It is acknowledged by therapists and specialists as

a crucial tool for inducing cognitive fatigue since it provides an op-

portunity to manipulate working memory demand [8]. The 2-back

task, which requires the subject to recall the stimulus that occurred

two steps back, was used for the study. The participants were ran-

domly displayed one letter at a time on a screen and instructed to

respond by pressing the Space Bar of the keyboard as soon as they

saw a letter that appeared two steps back. EEG recordings were

measured as the subjects participated in the 2-back task.

Virtual Reality (VR) task was also introduced in the experiment

to induce cognitive fatigue among the participants. As a part of

the VR task, the participants were asked to play two rounds of the

Beat Saber game wearing the Meta Quest headset. It is a Virtual

Reality rhythm game where the subjects had to move through a

132



An EEG-based Cognitive Fatigue Detection System PETRA ’23, July 05–07, 2023, Corfu, Greece

Figure 2: Demonstration of how N-back task is performed.

Figure 3: Different tasks performed by the participants to

induce CF.

futuristic world [39]. While doing so, they had to slice blocks as

they fly towards them unpredictably, and it is their job to destroy

the blocks by slicing through them without getting struck.

In order to maximize the fatigue induced, subjects also ran on

a treadmill (at a 15 degree incline) for three minutes. Physical

fatigue is shown to be related to cognitive fatigue [42]. Finally,

the participants had to take part in the second round of a 2-back

task where the EEG signals were measured once again using the

Muse S headband.

4 DATA COLLECTION

The EEG data were collected using a Muse-S [3] headband. It is

a tool that can give feedback on brain activity in real-time. The

electrodes in the Muse-S headband are positioned according to the

10ś20 electrode positioning system (See Figure 4). It is an interna-

tionally recognized method for describing how the scalp electrodes

are positioned during an EEG test. The position [7] for the data

collection is defined by the designated head points from the left

ear (TP9), left forehead (AF7), right forehead (AF8), and right ear

(TP10), with Fpz serving as the reference point .

Figure 4: Muse S EEG headband electrodes placements [7].

5 DATA ANNOTATION

According to the findings of the surveys conducted at the end of

each phase of the experiment, the participants were more cogni-

tively fatigued after the second round of the N-back task than they

were after the first round. The second round of the N-back task left

them feeling more fatigued since they had to perform a physical

task and play a VR game in between. Both the N-back task and the

VR game are effective methods for inducing cognitive fatigue in par-

ticipants. We labeled the EEG recordings collected during the first

block of the N-back task as ‘Non-Fatigued’ and those recorded dur-

ing the second block as ‘Fatigued’. As a result, our task of detecting

cognitive fatigue is simplified to a binary classification problem.

6 SIGNAL PREPROCESSING

Brainwaves are an indication of electrical activities happening in

the brain. They are often described in terms of frequency bands. The

different frequency bands are identified as 𝛿 (1ś4 Hz), 𝜃 (4ś8 Hz),

𝛼 (8ś12 Hz), 𝛽 (12ś30 Hz) and 𝛾 (30ś80 Hz) which are illustrated in

Figure 5 [1].

Figure 5: Different Brainwaves [1].

Different brainwaves are related to specific states and have partic-

ular functions. For example, delta waves are low-frequency waves

that are produced in deep sleep or meditation and are necessary for

natural healing and helping to feel completely rejuvenated. Theta

brainwaves are also generated during sleep but they are associated

with creativity and intuition and indicative of processes associ-

ated with memories, emotions, and feelings. Alpha brain waves

are produced when the brain is in a relaxed and calm state and

not focusing. Beta waves are linked with consciousness and active

thinking. Higher brain processes like intellect, problem-solving,

and concentration are linked to gamma waves.

We applied Fast Fourier Transform (FFT) to the collected raw

data to convert the signals to individual spectral components. FFT

is a discrete Fourier transform algorithm used in signal processing

that provides useful information about the signals by reducing the

complexity of DFT computations [31]. MuseLSL [5] library was

utilized to transform EEG data from the four electrodes into values

for each of the classic frequency bands (e.g. alpha, beta, delta, theta,

and gamma).
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7 PROBLEM STATEMENT AND

METHODOLOGY

Raw EEG data were converted to individual spectral components

using FFT. The EEG recordings were collected using the 4 electrodes

connected to the Muse headset. The EEG data from each electrode

contained different delta, theta, alpha, beta, and gamma frequency,

creating a 20-dimensional input space. The main objective is to

determine whether a person is cognitively fatigued or not using

different classification techniques.

EEGNet [27] is a small CNN architecture for EEG-based BCIs

that can be trained with very little data and used with a variety

of BCI paradigms. It provides features that can be interpreted neu-

rophysiologically. An EEG-specific network has been built using

Depthwise and Separable convolutions that incorporates a num-

ber of well-known EEG feature extraction ideas, including optimal

spatial filtering and filter-bank building, while also having fewer

trainable parameters to fit. The key advantages of using this model:

• High performance with limited training data

• Limited number of parameters required

Figure 6: EEGNet architecture [27].

This model efficiently generalizes across several paradigms and

performs well even with fewer parameters, indicating a more ef-

ficient use of model parameters. An overview of the model can

be found in Figure 6. The network initially utilizes a temporal

convolution to learn the frequency filters. Then a depthwise con-

volution, coupled to each feature map separately, is used to learn

the frequency-specific spatial filter. The separable convolution that

combines the depthwise convolution, is then used to learn a tempo-

ral summary for each feature map individually. Finally, a pointwise

convolution is employed to classify the input data by learning how

to combine the feature maps in an optimal way.

We used several other deep neural network models to see if they

could accurately classify whether the participants were cognitively

fatigued or not and compared the results to that of EEGNet. We

began by implementing a Recurrent Neural Network (RNN) which

is a type of neural network that allows prior outputs to be utilized

as inputs [2]. Additionally we implemented a Long Short-Term

Memory (LSTM) network, a sort of recurrent neural network that

can learn long-term order dependencies in sequence prediction

problems [13]. Furthermore, we tried to detect cognitive fatigue

using a one-dimensional convolutional neural network (1D-CNN).

8 EXPERIMENTS AND RESULTS

The participants were asked to identify the task that caused the

most cognitive weariness during the final survey. According to the

data gathered from the participants, the VR task caused the highest

cognitive fatigue, followed by the N-back and treadmill activities,

respectively, as depicted in Figure 7.

Figure 7: Percentage of CF inducing tasks according to user

survey.

The different machine learning models were implemented and

analyzed on a system with an Intel Core i7-8750 quad-core CPU,

16GB of RAM, and an NVIDIA GTX 1060 GPU with 120 Cuda cores

and 14GB of graphics memory. The dataset was split in a way

such that 85% of the data was used for training and the rest 15% for

testing. The models were trained using the aforementioned dataset

splits, and their accuracy is shown in Table 1.

A convolutional filter of size of (1,128) was used in the first block

of EEGNet. The filter length was selected to be half of the sampling

rate (here 256 Hz) of the data. The dropout probability in both

blocks of the model was set to be 0.2 to avoid over-fitting when

training on small sample sizes. The Adam optimizer with a learning

rate of 0.0001 has been chosen for the classification. For training

the dataset, a batch size of 16 and 100 epochs were used. For the

experiment, we selected 16 pointwise filters and 8 temporal filters.

Categorical Cross-entropy was used as the loss function. All other

models were initially trained with the default hyper-parameters

and later tuned to obtain better accuracy.

We compared the accuracy of EEGNet to that of other deep neural

networks like RNN, LSTM, and 1D-CNN, which are used to catego-

rize spatial or temporal data. Although RNN and LSTM are effective

at extracting features from temporal data, the extracted spectral

features from EEG signals contain both temporal and spatial com-

ponents. As a result, LSTM and RNN exhibited low performance on

our dataset. 1D-CNN also performed poorly on the given dataset.

EEGNet outperformed all these models achieving an accuracy of

88.17%. It has achieved higher degree of accuracy due to its ability

in performing well with little training data and extracting both

spatial and temporal features efficiently.

9 CONCLUSION AND FUTUREWORK

In this paper, we have proposed a novel experiment to induce cog-

nitive fatigue among the participants. Different machine learning

models have also been implemented to help us identify signs of

weariness from the EEG recordings. Results reveal that EEGNet
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Method Overall Accuracy

1D-CNN 63.62%

Recurrent Neural Network (RNN) 65.53%

Long Short-Term Memory (LSTM) 70.81%

EEGNet 88.17%

Table 1: Results Comparison.

performs significantly well even after having a small dataset. Our

sample included more men than women, and it would therefore

be valuable to replicate our results with a balanced sample in the

future. Future research will also focus on identifying cognitive fa-

tigue from EEG recordings collected from more than 4 electrodes,

as opposed to the Muse-S headband, which is expected to produce

better results.
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