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In linearized gravity with distributed matter, the background metric has no generic symmetries,
and decomposition of the metric perturbation into global normal modes is generally impractical.
This complicates the identification of the gauge-invariant part of the perturbation, which is a con-
cern, for example, in the theory of dispersive gravitational waves whose energy—momentum must be
gauge-invariant. Here, we propose how to identify the gauge-invariant part of the metric perturba-
tion and the six independent gauge invariants per se for an arbitrary background metric. For the
Minkowski background, the operator that projects the metric perturbation on the invariant subspace
is proportional to the well-known dispersion operator of linear gravitational waves in vacuum. For
a general background, this operator is expressed in terms of the Green’s operator of the vacuum
wave equation. If the background is smooth, it can be found asymptotically using the inverse scale

of the background metric as a small parameter.

I. INTRODUCTION

In many problems related to gravity, the complicated
structure of the Einstein field equations necessitates a
perturbative approach within which the spacetime met-
ric is split into a background metric and a small per-
turbation, and the equations are often linearized in the
perturbation metric [1-3]. While this approach allows
for a tractable answer for many interesting phenomena
such as gravitational waves (GWs) and Jeans theory [2,
Chap. 7], it also introduces a gauge freedom that has to
be dealt with. To be specific, let us consider the back-
ground metric to be gog = O(1) and the perturbation
metric to be hag = O(a), where a < 1 is a small param-
eter. A coordinate transformation z# — z'# =zt + &M,
with & = O(a), induces a metric transformation g.g —
g;B = gap — £e8op + O(a?), where £ is the Lie deriva-
tive along the vector field §#* [1] and g,z is the to-
tal spacetime metric. Within linearized gravity, where
O(a?) corrections are neglected and the background is a-
independent by definition, this implies g.g — g/, 5 = Yop
and hag — h/aﬁ = hag — £cgap. If hap is treated as a
tensor field on the unperturbed spacetime, so its indices
are manipulated using g.g as the metric, one also has

hoP — h'oP = poF  L£eg°F, (1)
and as a reminder,
Leg™® = —VoeP —vPer = —av(agh), (2)

The transformation (1) can be viewed as a gauge trans-
formation (with &* being the gauge field) and, by gen-
eral covariance, cannot have measurable effects. Thus,
the physical, gauge-invariant, part of h*? is defined only
up to the Lie derivative of ¢g®# along an arbitrary vec-
tor field, which is encoded by four functions (in a four-
dimensional spacetime). Because the symmetric tensor
heP is encoded by ten functions, this leaves room for six
gauge-invariant degrees of freedom.

The nonphysical components of the perturbation met-
ric obscure physical phenomena with coordinate arti-
facts, making it difficult to distinguish what is real and
what is not. Thus, it is important to be able to inden-
tify the gauge-invariant degrees of freedom for a given
metric perturbation and to represent the reduced equa-
tions of perturbation gravity in a gauge-invariant form.
This problem has attracted considerable interest in many
different contexts. In cosmological settings, the back-
ground can often be fixed to be Friedmann—Lemaitre—
Robertson—Walker metric, which then can be analyzed
using Bardeen’s formalism [2, 4-7] or other methods,
for example, using geodesic lightcone coordinates [8, 9].
Bardeen’s formalism has also been extended to second
and higher-order perturbations [10-13] that are relevant
for GWs produced in the early Universe, and also specif-
ically for inflationary cosmologies [14, 15]. One can take
the flat spacetime limit of Bardeen’s formalism to derive
the gauge-invariant degrees of freedom for the Minkowski
background [3, 16, 17]. Similarly, the gauge-invariant
perturbations have been studied for the Schwarzschild
and Kerr background as well [18-20].

While the analysis of isotropic backgrounds suffices for
many settings, problems that involve GW-—matter cou-
pling [21-35] require a more general analysis. Usually,
this coupling is studied by ignoring the backreation of
matter on metric oscillations [33, 36—40], because the in-
teraction of GWs with cold collisionless matter is weak
[29]. However, a more systematic theory is required to
accommodate, for example, thermal effects [41], alterna-
tive GW polarizations [42], and fluid viscosity [43]. In
particular, adequately describing linear transformations
of GW modes in inhomogeneous matter (known as mode
conversion for general waves [44]) requires that all grav-
itational perturbations be treated on the same footing
and the GW polarization be derived rather than assumed
a priori [45].

Ensuring the gauge invariance of the wave equation
reported in Ref. [45] requires identification of the gauge-
invariant variables for a general background metric. This



has been studied, for example, using the Arnowitt—
Deser—Misner (ADM) decomposition [46] for the back-
ground metric with a focus on application to the higher-
order perturbations [47] (see also Ref. [48]). However,
fundamental theory of general dispersive GWs must be
covariant, and also it cannot rely on symmetry consid-
erations [27] or normal-mode decomposition [46] that
are commonly used for vacuum GWs. As known from
plasma-wave theory [49], which deals with similar issues
for electromagnetic waves, these approaches become im-
practical once wave—matter coupling is introduced. (In
particular, the wave polarization changes continuously as
a function of the matter parameters [45], and the num-
ber of normal modes in the presence of matter is gener-
ally infinite [50, 51].) Thus, formulating GW theory in
a covariant gauge-invariant form remains an important
problem to solve.

Here, we explicitly identify the invariant part of a met-
ric perturbation on a general background metric within
linearized gravity. We start by showing that any metric
perturbation 2°? can be uniquely decomposed as

hef <TI0 sh® + 127 5h°, (3)

Z&;}tlfsré the operators Hinwg and Hgﬁ ~& are projectors that
T35 5+ 115755 = 0g,65,, (4a)

T sl e = T2, (4b)

MeP 510005, = 1127, (4c)

Ta T2 xe = TIgPosTT A = 0, (4d)

7 5£,97° =0, (4e)

127 5£,97° = £,9°° (4f)

Hlnv g8 — ﬁgﬁ,g% - ﬁﬁﬁz,gv& (4g)

(Parentheses in indices denote symmetrization, as usual,
and u* is any vector field.) In Sec. II, we present a
method for how to calculate the operators Hi€75 and
Haﬁw for general g,s. We also show that the gauge-
invariant part of a metric perturbation h*8 can be
calculated as Ha ngﬂ , while Haﬁe sh7% is the gauge-
dependent part representable as }ch“ﬁe , Where (* is a
vector field linear in %%, In Sec. III, we illustrate the
application of our results to the Minkowski background
as an explicitly solvable problem that allows benchmark-
ing our theory against known results.! We derive the six
gauge-invariant components of h*? and show the agree-
ment with the commonly known results. In addition, we
show that Hmvw is proportional to the dispersion opera-
tor of linear GWs in Minkowski vacuum. In Sec. IV, we
summarize our main results. Other auxiliary calculations
are presented in Appendices A through D.

1 For GW modes of certain types [45], the Minkowski-background
model can also be relevant for studies of GW-matter coupling.

II. EXPRESSIONS FOR THE OPERATORS
02 s AND TISP s

In this sectlon we derlve explicit expressions for the
operators Han’Y5 and H s for a general go5. We assume
the sign convention as 1n Refs. [1, 52], so

[V, V2)¢P = R*5¢P (5)

for any vector field £, where R* is the Ricci tensor. We
assume that the matter is localized, so that at sufficiently
large spatial distances (defined, say, in the center-of-mass
frame), R”3 vanishes and they satisfy outgoing bound-
ary conditions, i.e., no GWs are going in through a suf-
ficiently large spatial sphere. Specifically, since GWs are
vacuum tensor modes at infinity, we assume 8y—n'd; = 0,
where n? is normal to the spatial sphere (the polarization
does not have to be specified), and the Latin index ¢ rep-
resents spatial coordinates. We assume that this applies
to both R and h'*? and therefore to gauge fields as
well. Then, one can proceed as follows.

A. Special case

To motivate the machinery that will be introduced in
Sec. II B, let us first discuss an auxiliary problem. Con-
sider a vector field ™ that transforms the gauge of a
given metric perturbation A to the Lorenz gauge:

h/aﬁ - hozﬁ _ £ugo¢57 (6)
Vsh'*? =0, (7)

where the symbol = denotes definitions. Let us assume
for now that u® is divergence-free; i.e.,

Vou® = 0. (8)

Then, Eqgs. (2)—(7) yield
Qgu” = Vshe?, (9a)
Q%5 = 33V, V* — R4, (9b)

where we have used Eq. (5). The hyperbolic operator
Qs is similar to the one that appears in the driven
Maxwell’s equation for the Lorenz-gauge electromagnetic
vector potential in vacuum [53] except for the opposite
sign in front of the Ricci tensor. In the presence of mat-
ter, GWs are dispersive (vacuum waves can be considered
as a limit; see Sec. I1I), so Q* 3 is generally invertible for
fields of interest under the assumed boundary conditions.
Then, one can introduce a unique Green’s operator of
Eq. (9a) as

~

=% = (@)% (10)
and express the solution of Eq. (9a) as follows:

u® = %, Vsyh", (11)



where symmetrization with respect to the lower indices is
added for convenience and does not affect the result. (As
a side remark, the appearance of Green’s operator is not
unexpected here; cf. Ref. [47], where Green’s functions of
elliptic operators appear in a related problem for ADM-
parameterized backgrounds.) Finding (Q D g is equiv-
alent to finding waves generated by prescribed sources.
Similar calculations for driven Maxwell’s equation in var-
ious covariant gauges can be found in Ref. [54]. See also
Ref. [55].

Since, h?? is assumed to be such that the solution (11)
satisfies the constraint (8), Eq. (7) is satisfied by

BB = 7B sh1, (12)
where we defined
705 = 85,65 + 2VER (V). (13)

In combination with Eq. (6), these results yield that

hoB = 708 _sh7° 4 £,g%P (14a)
£,9°° = —2VEEA Vs h°, (14b)

and a direct calculation shows that (Appendix B)
B s Lug” = 0. (15)

Equation (15) is similar to Eq. (4e) and makes the decom-
position (14) close to Eq. (3), except it is constrained by
Eq. (8). This can be taken as a hint that 775 is close
to the sought s Hence, we approach the general
case as follows.

invyd-

B. General case

Now let us waive the Lorenz-gauge assumption (8) and
consider applying %“575 to £,9%° with a general u®. In
this case, Eq. (7) is not necessarily satisfied, but a direct
calculation shows that (Appendix B)?

%0‘575£u975 = VWEB)Mv“gwﬁqu. (16)

Hence, the operator

-~

s

invys — 7

_ v(a@é‘)uvugw (17)

automatically satisfies Eq. (4e). Let us substitute
Eq. (13) and rewrite this operator as follows:

_ fjes

B
Han’Y5 - 5?75 g 79

5) (18a)

2 Here and further, 9ag = Jap and R%g = R"‘B serve as multipli-
cation operators, and the assumed notation is ABf A(Bf) for
any operators A and B and function f that they act upon. For
example, Vp'gwés‘gugW =Vv# [gw(S( 'LLgW )l

127 5 = —2V©ER  Vj) + VOED Vig 5. (18b)
This satisfies Eqs (4a), (4f), and (4g). (The latter en-
sures that HmV =0 f*® = 0 for all anti-symmetric 77,
which is convenient.) The property (4c) is proven by a
direct calculation (Appendix C). Equation (4d) can be
derived from Egs. (4a) and (4c), and the remaining prop-
erty (4b) can then be obtained from Egs. (4a) and (4d).

Let us discuss how this intermediate result helps iden-
tify the invariant part of a metric perturbation. First,
notice that

27 k7" = —2V@ER Vg h? 4 VOED Vig. sk
— —avieeh)
= Leg*?, (19)

where we introduced

= 1=
(P =EP Vah? — 3 =6, Vhg,shY°. (20)

Hence, Eq. (3) can be rewritten as

hoP =gt 4 67, (21a)
wﬁ = T8 5h°, (21b)
¢ = TI2P h° = £og™f (21c)
Upon a gauge transformation (1), one obtains
BB = y/of 4 glof (22a)
WP = T8 sh0 = P LTI 5 Eeg™ = 427, (22b)

¢F =TI2P 5h° = %P + £eg™® = Leyeg™,
where we used Eqs. (4d)—(4f). This means that ¢~%,
which is encoded by the four functions ¢*, does not con-
tain gauge-independent information. Hence, any solution
that has nonzero ¢*# and zero ¥*? can be classified as
a coordinate artifact. In contrast, 1% is gauge-invariant
by Eq. (22b). By the argument presented in Sec. I, it is
encoded by six independent functions, or gauge-invariant
degrees of freedom. Also note that ¥*# does not neces-
sarily satisfy the Lorenz-gauge condition v6¢a6 =0.
Finding an explicit formula for the Green’s opera-
tor =~ s that determines ¢*? [Eq. (21b)] for a specific
background geometry is beyond the scope of this pa-
per, because our primary concern is the general frame-
work needed for a dispersive-GW theory. (This is sim-
ilar to the approach taken by others; for example, see
Refs. [47, 56, 57].) For a smooth background metric,
H%g can be found asymptotically within any predefined
accuracy using methods of the Weyl symbol calculus (Ap-
pendix A). The proof of existence of the exact opera-
tor and an asymptotic approximation of its Weyl sym-
bol is, as usual [44, 55], sufficient within fundamental
wave theory to properly define waves as dynamic ob-
jects. We elaborate on this subject in application to GWs
in Ref. [58]. Alternatively, recursive construction of a
parametrix can be used for small distances. This method

(22¢)



can yield a converging expansion of the Green’s opera-
tor even for arbitrary globally hyperbolic spacetimes [59].
An example using Hadamard parametrices can be found
in Ref. [54]. Also note that the very expression (21b)
for the invariant part of the metric perturbation is not
unique in general. In particular, any function of % is
also an invariant.

C. Six gauge invariants

The six independent functions still need to be ex-
tracted from the sixteen gauge-invariant functions ¢%.
To do so, let us consider h*# as a 16-dimensional (16-D)
field ~A®, or h in the index-free notation, of the form

h — (hOO7 hOl7 hOZ7 hOS7 th7 s h327 hSS)T7 (23)

where T denotes transpose. In other words,

ho = h®F hy = hs, (24)
{a, B} = u(a), {v,0} =u(b), (25)

where the index function ¢ is defined via
a) = {1+ |(a—=1)/4],1+ (a —1)mod4}.  (26)

(Here and further, Latin indices from the beginning of
the alphabet range from 1 to 16.) Let us define 5% as
a Hilbert space of one-component functions on the back-
ground spacetime with the usual inner product (,-);.
Then, the 16-D fields (23) can be considered as vectors
in the Hilbert space 5#74 that is the tensor product of 16
copies of 777, with the inner product

16

€)= / Aoy =gE " =3 (e, (27)

a=1

where g = detg,s. (Unlike in the rest of the paper,
summation is shown explicitly here in order to emphasme
the difference between (-,-) and (-,-);.) Then, Hmwg
induces an operator 11%, on %4 deﬁned via

[kt = 1122 sh7, (28)

invYd

where we again assumed the notation as in Eq. (25).
From Egs. (4), one finds that

1/_\[abl/_\[bc - ﬁam
ﬁab£ugb =0.

(29a)
(29b)

Equation (29a), which in the index-free notation can
be written as II%2 = H means that II is a projector.
(Note that I + H so the projector is not orthogonal
but oblique.) Hence, each eigenvalue of I is either zero
or unity and IT is diagonalizable. This means that IT can
be represented as

>

—VIv! (30)

where V is a diagonalizing transformation and the op-
erator J is such that each component of the vector Jh
equals either zero or the corresponding component of h
for any h. Like 2“4, the diagonalizing transformation
cannot be found exactly but can be found asymptotically
using methods of the Weyl symbol calculus if the inhomo-
geneity of the background metric is weak. In this sense,
our identification of the gauge invariants is intended as
an algorithm rather than as an explicit answer.

Each linear operator in %”16 is a 16 x 16 matrix of
operators on 4%,. Then, J must be represented by a
constant matrix J of the form

J =diag{1,1,...,1,0,0,...,0,0 }, (31)
N’ N, e’

n 16—n

where, for clarity, we have ordered the basis such that
the nonzero eigenvalues are grouped together and have
indices 1,...,n. The gauge-invariant part of h, which is
given by Eq. (21b), can now be expressed as 1,[1 TIh.
Using Eq. (30), one can also rewrite this as

Y=V T=JV i (32)

Because h is an arbitrary vector field parameterized by
16 functions and V is invertible, the field V—lh is also
parameterized by 16 functions. Then, W is parameterized
by n functions. But we know that 1) is parameterized by
6 functions (Sec. I), and thus so is ¥. Then, n = 6, and
the nonzero elements of ¥ are the sought invariants.

In summary, to find the gauge invariants, one needs
to find the diagonalizing transformation V“b that brings

[1%, to the form given by Eqgs. (30) and (31). Then, the
invariants can be found as
U = I (VPR s=1,2,...,6. (33)

III. EXAMPLE: MINKOWSKI BACKGROUND

Except for toy models, problems involving wave prop-
agation through inhomogeneous matter have no generic
symmetries, so case studies are of little interest within
the scope of this paper. What matter instead are the
existence theorems, local analysis, and asymptotics [44].
Hence, for an example, we will discuss only the simplest
solvable case here, specifically, the case of the Minkowski
background. Although interactions with matter gener-
ally curve the background, the Minkowski-background
model can be a valid approximation for gravitational
modes with a high refraction index [45]. In addition,
this example is instructive in that it allows direct bench-
marking of our framework against known results.

A. Gauge invariants

In vacuum, when R%g — 0, one_ has HY — =05V~ 2,
For the Mlnkowskl background H%3 is further surnph—



fied to
=% — —05072. (34)

Here, 972 is the operator inverse to 92 = 9,0H; i.e.,

@™ = 072¢" is the solution of 82p> = ¢ (Appendix A).

Formally, =2 is singular on free vacuum GWs, but the

vacuum case can still be considered as a limit (Sec. I11 B).
Using Eq. (34), one can rewrite Eqgs. (18a) as

/\io:f]’y‘; — (5&(5?) — 28*28(045(57)85) + 87280485975. (35)

Let us consider this operator in the Fourier representa-
tion, in which case it becomes a local matrix function of

. neB - pes
the wavevector k,; namely, 1L s = II s,

2k 5Pk BB
o o (v79)
Hin€75 - 5(755) - /f; + gy 12 (36)

Using that V,, — 9, — ik, in the Fourier representa-
tion [and in particular, £,g%° = —2ik{®u®)], the proper-
ties (4) are easily verified. (At k? = 0, the usual rules of
resonant-pole manipulation apply [54], but for the discus-
sion below, which is restricted to the spectral representa-
tion, these details are not important.) One also finds by
a direct calculation [60] that, as expected from Egs. (30)
and (31),
rank IT = 6. (37)
The invariant part of the metric perturbation (21b) is
now given by 4% = Hﬁﬁwghw, or explicitly,
k%k, EPE koks
] w
= hHP — = hoH = h, (38)
where h = tr h*#. Without loss of generality, let us as-
sume coordinates such that

F = (w,0,0,k), (39)

where k is the spatial wavenumber. Using this, the fact
that k% = k? —w?, and also Eq. (25), the 16-D vector
is found to be:

hOOkZ _ 2h03wk+ w2(h11 + h22 + hSS)
ROk — h13wk
RO%k? — h23wk
(hll +h22)kw
ROTK? — h13wk

¢a6 — hoB _

R (K2 — w?)

h12(k2 — w?)

»— i Pk — R132
k2 RO2k? — B2 wk
h12(k2 — w?)

h22(k2 — w?)

h02wk _ h23w2
(B 4 h22)kw
Pk — R132
h02wk _ h23w2
k2(_h00 + hll + h22) + 2h03wk _ h33w2

In order to extract the six gauge invariants from this
1, notice that the operator (28) is represented by a local
function of k,, Il = II, and thus so is the diagonaliz-
ing transformation (30). Specifically, V = V| and the
columns of the matrix V' are just the eigenvectors of IT:

V={(v; vg ... vig), v, = A0y, (40)
where A, € {0,1}. The calculation of these eigenvectors
and of the matrix V! can be automated [60], and the
six gauge invariants (33) are readily found to be

k2(_h00 + hll + h22) + 2wkh03 _ w2h33

K2 _ 2
wkh9t — W2p13
K2 _ 2
wkh2 — W2p23
= k2 — 2
wk(h11 + h22)
K2 _ 2
h22
h12

(41)

The coordinate representation of these invariants is found
by taking the inverse Fourier transform of Eq. (41).

Our result is in agreement with Eqs. (2.45)—(2.47) in
Ref. [3] (which operates with h,s instead of our h%F).
This is seen from the fact that any linear combinations of
our ¥* are gauge invariants too. In other words, instead
of W®, one can introduce the invariants as W¥* given by

v =C% ", rs=1,2

? ? R

6, (42)

or ¥ = C¥ in the index-free representation, where C
is an arbitrary matrix that may depend on k,. This is
particularly convenient at k%> = k? —w? — 0, when ¥
becomes singular. Specifically, by choosing

C = diag {k*, k* K* k*, 1,1}, (43)
we obtain invariants that are well-behaved at all k,:

K2(—h% 1 it 1 h22) 4 2wkh® — o,2h3
wkht — W?p!3
wkh?? — W%
wk(h' + h??)
7,22
p12

=1
Il

. (44)

As also mentioned in Sec. II B, these invariants are not
unique in that any function of them is an invariant too.

Let us also discuss why the original vectors 1 and ¥
are singular at k> — 0. In this limit, the vectors v,
[Eq. (40)] are well-behaved, and thus so is the matrix V.
However, they cease to be linearly independent at k% = 0,



so V! becomes singular, and as a result, IT becomes
singular too. This means that no finite invariant pro-
jection of a generic h®? can be defined in the Fourier
space at k> = 0. The corresponding gauge-dependent
part ¢ becomes singular as well in this limit, as seen
from Egs. (20) and (21c), where =%5 becomes singular
(Appendix A).? Still, our general formulation correctly
predicts the invariants (44) at zero k?, and these invari-
ants can be related to vacuum GWs as discussed in the
next section.

B. Free GWs in the Minkowski space

By comparing Eq. (35) with, for example, Eqgs. (5.4)
and (2.7) in Ref. [62], one finds that the equation for vac-
uum GWs in the Minkowski spacetime can be expressed
as

ﬁaﬁwgfﬂé =0, DQB 8 = 82HIHV75 (45)
In other words, in the special case of the Minkowski
spacetime, the dispersion operator Des ~s of vacuum
GWs is exactly 92 times the operator that projects a
metric perturbation on the invariant subspace. Thus,
as expected, using the operators introduced in this pa-
per, the wave equation for the GWs in vacuum can be
shown to directly specify the gauge invariants and natu-
rally weed out the gauge artifacts.
Let us also briefly discuss monochromatic waves,* in
which case, Eq. (45) becomes
EAIIY 5

invyd

K2 =0, (46)

where the matrix k2 [1°? is well-behaved for all k. Equa-

mv
tion (46) can be written as the following six of equations,

which determine the six gauge invariants (44):

k2h%0 + w(—2kh" + wh33) =0, (47a)
k2h%t — wkh!?® =0, (47b)

k2h%% — wkh??® =0, (47¢)
kw(h!t h22) 0, (47d)
E2(h — h?2%) =0, (47e)
E*h? = 0. (47f)

For k? # 0, Eqgs. (47) indicate that all the six invariants
(44) are zero, so only coordinate waves are possible in
this case. For k2 =0, Eqs. (47a)—(47d) yield

Ul =92 =93 =¥ =0, (48)

3 This is the same effect as the unlimited growth, at z# — oo, of
the gauge field that brings a generic h*f to the Lorenz gauge.
See Appendix A in conjunction with Eq. (11), which is commonly
known for the Minkowski background [61].

4 Cf. a similar discussion in Ref. [63], except their Eq. (3.6) de-
scribes the trace-reversed metric perturbation.

and in particular, h'' + h?? = 0. However, Eqs. (47e)
and (47f) are satisfied identically at k% = 0, so the other
two invariants,

@5 _ h22 _ _hll \II6 _ h12 _ h21 (49)
can be arbitrary and represent the two tensor modes of
the GWs in vacuum [3].

IV. CONCLUSIONS

In summary, we propose a method for identifying
the gauge-invariant part ©? of the metric perturba-
tion h*? within linearized gravity for an arbitrary back-
ground metric gos assuming that the inverse of a hy-
perbolic o erator Q%5 (9b). Specifically, we show that
PP = s hYd, Where e invyé 18 a linear operator given
by Eq. (18a). The six independent functions from the
sixteen gauge-invariant functions ¥*# can be found using
Eq. (33). These results lead to a gauge-invariant quasi-
linear theory of dispersive gravitational waves in an arbi-
trary background, as discussed in a companion paper [58]
(see also Ref. [55]). For the Minkowski background, the
well-known dispersion operator of linear GWs in vacuum
is proportional to Hmwg [Eq. (45)], and thus specifies
the gauge invariants directly streamlining the process of
removing the gauge artifacts. We also show that this
general formulation systematically yields the six known
gauge invariants for the Minkowski background.

This material is based upon the work supported
by National Science Foundation under the grant No.
PHY 1903130.

Appendix A: Asymptotic representation of éaﬁ

__ An asymptotic approximation for the Green’s operator
=3 as the inverse of Qa [Eq. (9b)] can be constructed
using methods of the Weyl symbol calculus. These meth-
ods may not be particularly popular in general relativity,
but they have become de facto standard in fundamental
wave theory [44] that shifts focus from specific wave equa-
tions to a more generic description applicable to waves in
any dispersive medium. A systematic application of the
Weyl symbol calculus involves mapping an operator to
a function called the Weyl symbol,® approximating this
symbol, and then mapping the result back to the oper-
ator space [55, 64, 65]. Finding Green’s operators by
inverting symbols of the dispersion operators is a com-
mon practice as well; for example, see Refs. [55, 66] for
a modern reformulation of classic results. These calcu-
lations can be done within any predefined accuracy for

5 For a homogeneous medium, the Weyl symbol of a given opera-
tor is obtained by replacing each 94 with —ik,. In an inhomo-
geneous medium, the procedure is more elaborate [44, 64].



smooth backgrounds. However, doing this carefully re-
quires introducing machinery that is beyond the scope of
this paper, so here we opt for a less rigorous but more
intuitive argument.

The operator =% defined in Eq. (10) can be written
in the index-free representation as

2= -(V2+ R, (A1)

where V? = V. V#, R is the operator whose coordinate
representation is the Ricci tensor R%g, and —1 denotes
the operator inverse. In order for this inverse to exist
(approximately), we assume the adiabatic limit. Specifi-
cally, we assume that the characteristic GW wavelength
A is much smaller than the characteristic radius L of the
spacetime curvature, i.e., when ¢ = A\/L <« 1. Assum-
ing the ordering A = O(1) and L = O(c '), one has
V? = O(1) and R = O(e?). Then,

E= -V 24V IRV 24 0(, (A2)

where V=2 is the inverse of V?; ie., ¢® = V~2¢° is
defined as the solution of V™ = ¢°.

Because the operators in Eqgs. (Al) and (A2) are in-
tended to act specifically on vector fields, one can also
write them explicitly. For example, in normal coordi-
nates, one has (Appendix D)

o~

R

Vi=9" - < (A3)
and the corresponding inverse is
V2= + % O RO+ O(Y, (A4)
so Eq. (A2) leads to
5 o2y %aﬂﬁ D210, (A5)

The operator 02 that enters here is understood as the
Green’s operator of the equation
3?0 = ¢~ (A6)
(This is the same equation that emerges in the well-
known linear gravity in the Minkowski background
[61]; see also Eq. (11).) Suppose that the right-
hand side of Eq. (A6) is quasimonochromatic, i.e.,
q> = Q%explif(x#)] with 95Q% = O(e¢) and gk, =
O(e), where k, = 9,0 is the local wavevector. Then,
872 = (k k")~ A, (A7)
where A = O(¢) is a differential operator to act on the
envelope Q. If k? = k,E* approaches zero, as would
be the case for GWs in the Minkowski vacuum, then ¢
grows indefinitely at z#* — oco. This is due to the fact
that at k? — 0, ¢© acts as a resonant driving force for .
No quasimonochromatic solution is possible in this case,
and % necessarily diverges at infinity. In particular,

this means that even if the Fourier spectrum of ¢ is
analytic but includes harmonics with &% = 0, the Fourier
spectrum of the corresponding ¢ is singular.

This indicates that the case k> = 0 cannot be treated
within the adiabatic approximation that we assume in
this paper. However, it still can be considered as a limit,
as discussed in Sec. II1. Also, no such issues arise in prob-
lems that involve GW-matter coupling, because then
k* # 0. In this case, the term A in Eq. (A7) can be
calculated too, but there is no need to do this explicitly
in the present paper. (The general approach to such cal-
culations is described, for example, in Ref. [64].) What
matters instead is that E is a well-defined object that, in
principle, can be found within any predefined accuracy.
As usual in fundamental wave theory [44], the zeroth-
order or first-order approximation of the Green’s opera-
tor often suffices for practical applications [55, 64, 66, 67].

Appendix B: Derivation of Egs. (15) and (16)

Using Eq. (13) for 7°° ; and Eq. (2) for £.,97°, one
obtains
798 s Lug? = — (6265 + VOEP,V;
+VPEY V) (Ve + Vou?). (B1)

Then using Eq. (5) in the above equation yields

7P sLug?® = =2V — oveER) (Vs V)W
— 2V VIVsu® — VOB V2
— vy —aveEA) (5IV? 4 RY5) W’
— 2VER) VIV su’, (B2)
Using Eq. (9b) for Q\aﬁ in combination with Eq. (10),
one obtains
%aﬁwdgugw — —oviod 4 2v(a§5)uéu5u5
—2V(eE VIV 50
= —2vey® 4 avg)y
—2VER VAV 50

— —aVER) ViVl (B3)

For Vsu® = 0, this leads to 7% ,5£,97 = 0, which is
Eq. (15). Otherwise, notice that

2V sud = 2957V7u5 = 2975V(7u5) = —gwg£ugv5. (B4)
Then, one can rewrite Eq. (B3) as
7P s Lug? = VOED Vg sL£,97°,  (B5)

which is precisely Eq. (16).



Appendix C: Derivation of Eq. (4c)
Using Eq. (18b), we get

2P 5I00°5, = 4VeED V5 VOED (v,
_ Qv(aéﬁ)(vvﬁ)v(véfnyvv%g
— Qv(agﬁ)uvung(vgm(/\vg)

+ VOER Vg sVOED Vg, (C1)

Let us simplify the individual terms on the right-hand
side separately. We start by expanding one pair of sym-
metrized indices to get

4v©eE v VOED LV,
— VBV, VIE LV, + 2VED V2EY V.,
_ 2v(a§5)vvvv5§5(>\v + 2v(a66)vv2§7(>\v5)
+2VEED Vs, VIES LV, (C2)

Recognizing that the operator would act on a rank-2 ten-
sor h*¢, we can use Eq. (5) for the commutator; hence,

4VeED V5 VOED(\V,) = 2VeER VIV,E°,\V,,
+2VEED (R + 6]V 22 \V.y.  (C3)
The terms in the parenthesis on the right-hand side of the
above equation can be expressed through Qa [Eq. (9b)],
which is also the inverse of =g [Eq. (10)]; hence
4v(a€5)( 4 v(v%&o\v
= oVER) VIV WV, — 2VeER) Q720 \V,,
= oVeED VIVE WV, - 2VeED (V.. (C4)
Using a similar process, the second term is found to be
2V(“§5)(7V5)V(7§5)1,V”g,\5
= VOED VeV, Vg + VIOEP VIEY, Vg5,
= VEED (R7s + 6]V 20,V gae
+ VER VIVE, VW gy
— —VER Vg, + VOEPD VIVES V..
(C5)
The third and the fourth terms are simply

2VER iy sVOED \V,) = 2V VIV, 20, V.,
V(“EmHV"ng(VE‘;)
Combining all these expressions, we get

2P 511005, = 2VeED VIVE V.,

SV gn. = VOEA) VIVZ0 Vg,

—2V@EA (V. + VOER Vig,,
_ylegms) vvv5€5 V” gre

—2v(eZP) v“vga Ve

+ V=P V“V5 vV 0. (C6)

Canceling the first term on the right-hand side with the
fifth term, and the fourth term with the sixth term, we
arrive at

ﬁgﬁ’ﬂsﬁgé)\e = _2v(a§6)(>\v6) + v(aéﬁ)ﬂvugka (C7)

Upon comparison with Eq. (18b), this leads to Eq. (4c).

Appendix D: Derivation of Eq. (A3)

For any vector field «*, one has

VPV gu® = VP (agua + rgkuk)
+ gBVng (8571, +F5>\u )

- gﬁwfg7 (Dpu™ + oyu M, (D1)

where ng are the Christoffel symbols. In normal coordi-
nates, the Christoffel symbols are zero, but their deriva-
tives are not. This leads to

V2u® = 8%u® + uhaﬁrgx (D2)
The derivatives of the Christoffel symbols can be ex-
pressed through the Riemann tensor R’,,, [68]:

1
Oy = =5 (R o + R, (D3)

Using the well-known symmetries of the Riemann tensor
and of the Ricci tensor R,, = R’;,,, one then finds that

(a7 1 1a% 1a% 1 1a%
9°TG, = -3 (R°\5" + R50\°) = -3k G

1 1 1 1
= R\ = —Z RP3% = —Z R\® = —= R%,.
g Py 3 ER
Hence, one can rewrite Eq. (D2) as
2, o 2, o 1 o B
Vuzau—§R5u7 (D4)
or equivalently, as
V), = 530° — L e D5
(V)5 = 8507 = 5 7. (05)

In the index-free representation, this leads to Eq. (A3).
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