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In linearized gravity with distributed matter, the background metric has no generic symmetries, 
and decomposition of the metric perturbation into global normal modes is generally impractical. 
This complicates the identification of the gauge-invariant part of the perturbation, which is a con­
cern, for example, in the theory of dispersive gravitational waves whose energy-momentum must be 
gauge-invariant. Here, we propose how to identify the gauge-invariant part of the metric perturba­
tion and the six independent gauge invariants per se for an arbitrary background metric. For the 
Minkowski background, the operator that projects the metric perturbation on the invariant subspace 
is proportional to the well-known dispersion operator of linear gravitational waves in vacuum. For 
a general background, this operator is expressed in terms of the Green’s operator of the vacuum 
wave equation. If the background is smooth, it can be found asymptotically using the inverse scale 
of the background metric as a small parameter.

I. INTRODUCTION

In many problems related to gravity, the complicated 
structure of the Einstein field equations necessitates a 
perturbative approach within which the spacetime met­
ric is split into a background metric and a small per­
turbation, and the equations are often linearized in the 
perturbation metric [1-3]. While this approach allows 
for a tractable answer for many interesting phenomena 
such as gravitational waves (GWs) and Jeans theory [2, 
Chap. 7], it also introduces a gauge freedom that has to 
be dealt with. To be specific, let us consider the back­
ground metric to be gag = 0(1) and the perturbation 
metric to be hag = 0(a), where a < 1 is a small param­
eter. A coordinate transformation + £M,
with = 0(a), induces a metric transformation gay — 
g^ = ga5 - ga5 + 0(a2), where is the Lie derive- 
tive along the vector field [1] and gay is the to­
tal spacetime metric. Within linearized gravity, where 
0(a2) corrections are neglected and the background is a- 
independent by definition, this implies gaf} — g'a^ = gaf} 
and hag —— hG = hag — £gap. If hag is treated as a 
tensor field on the unperturbed spacetime, so its indices 
are manipulated using gag as the metric, one also has

haa — h'*a = haa + gaa, (1)

and as a reminder,

gaa = —Va€a — Va r = —2V(a^. (2)

The transformation (1) can be viewed as a gauge trans­
formation (with being the gauge field) and, by gen­
eral covariance, cannot have measurable effects. Thus, 
the physical, gauge-invariant, part of h“a is defined only 
up to the Lie derivative of g“a along an arbitrary vec­
tor field, which is encoded by four functions (in a four­
dimensional spacetime). Because the symmetric tensor 
h“a is encoded by ten functions, this leaves room for six 
gauge-invariant degrees of freedom.

The nonphysical components of the perturbation met­
ric obscure physical phenomena with coordinate arti­
facts, making it difficult to distinguish what is real and 
what is not. Thus, it is important to be able to inden- 
tify the gauge-invariant degrees of freedom for a given 
metric perturbation and to represent the reduced equa­
tions of perturbation gravity in a gauge-invariant form. 
This problem has attracted considerable interest in many 
different contexts. In cosmological settings, the back­
ground can often be fixed to be Friedmann-Lemaitre- 
Robertson-Walker metric, which then can be analyzed 
using Bardeen’s formalism [2, 4-7] or other methods, 
for example, using geodesic lightcone coordinates [8, 9]. 
Bardeen’s formalism has also been extended to second 
and higher-order perturbations [10-13] that are relevant 
for GWs produced in the early Universe, and also specif­
ically for inflationary cosmologies [14, 15]. One can take 
the flat spacetime limit of Bardeen’s formalism to derive 
the gauge-invariant degrees of freedom for the Minkowski 
background [3, 16, 17]. Similarly, the gauge-invariant 
perturbations have been studied for the Schwarzschild 
and Kerr background as well [18-20].

While the analysis of isotropic backgrounds suffices for 
many settings, problems that involve GW-matter cou­
pling [21-35] require a more general analysis. Usually, 
this coupling is studied by ignoring the backreation of 
matter on metric oscillations [33, 36-40], because the in­
teraction of GWs with cold collisionless matter is weak 
[29]. However, a more systematic theory is required to 
accommodate, for example, thermal effects [41], alterna­
tive GW polarizations [42], and fluid viscosity [43]. In 
particular, adequately describing linear transformations 
of GW modes in inhomogeneous matter (known as mode 
conversion for general waves [44]) requires that all grav­
itational perturbations be treated on the same footing 
and the GW polarization be derived rather than assumed 
a priori [45].

Ensuring the gauge invariance of the wave equation 
reported in Ref. [45] requires identification of the gauge- 
invariant variables for a general background metric. This
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has been studied, for example, using the Arnowitt- 
Deser-Misner (ADM) decomposition [46] for the back­
ground metric with a focus on application to the higher- 
order perturbations [47] (see also Ref. [48]). However, 
fundamental theory of general dispersive GWs must be 
covariant, and also it cannot rely on symmetry consid­
erations [27] or normal-mode decomposition [46] that 
are commonly used for vacuum GWs. As known from 
plasma-wave theory [49], which deals with similar issues 
for electromagnetic waves, these approaches become im­
practical once wave-matter coupling is introduced. (In 
particular, the wave polarization changes continuously as 
a function of the matter parameters [45], and the num­
ber of normal modes in the presence of matter is gener­
ally infinite [50, 51].) Thus, formulating GW theory in 
a covariant gauge-invariant form remains an important 
problem to solve.

Here, we explicitly identify the invariant part of a met­
ric perturbation on a general background metric within 
linearized gravity. We start by showing that any metric 
perturbation haf can be uniquely decomposed as

=n"f ^ hY6 +0^6 hY6, (3)

where the operators n0^and I!are projectors that 
satisfy

Y6 + naaY6 = ^f), (4a)

nanv Y6 = n;nVAs, (4b)
nY6Ae = n^Ae, (4c)

n anvY6 ng6Ae=naaY6 nnv Ae=0, (4d)

Y6 £ugY6 = 0, (4e)
n^^Y^ £«gY6 = £«g"a, (4f)

%gY6 =Aa^,g6Y = A6:,gY6. (4g)

(Parentheses in indices denote symmetrization, as usual, 
and uM is any vector field.) In Sec. II, we^present a 
method for how to calculate the operators n0^ and 
IIa6Y6 for general gaf. We also show that the gauge- 
invariant part of a metric perturbation haf can be 
calculated as H“V75 hY&, while H^aY6 hY& is the gauge- 
dependent part representable as £gaf, where ZM is a 
vector field linear in haf. In Sec. III, we illustrate the 
application of our results to the Minkowski background 
as an explicitly solvable problem that allows benchmark­
ing our theory against known results.1 We derive the six 
gauge-invariant components of haf and show the agree­
ment with the commonly known results. In addition, we 
show that n0VYd is proportional to the dispersion opera­
tor of linear GWs in Minkowski vacuum. In Sec. IV, we 
summarize our main results. Other auxiliary calculations 
are presented in Appendices A through D.

1 For GW modes of certain types [45], the Minkowski-background 
model can also be relevant for studies of GW-matter coupling.

II. EXPRESSIONS FOR THE OPERATORS
nAND

In this section, we derive explicit expressions for the 
operators H“V75 and Hfor a general gaf. We assume 
the sign convention as in Refs. [1, 52], so

V, Va]Za = R^ (5)

for any vector field £“, where R“f is the Ricci tensor. We 
assume that the matter is localized, so that at sufficiently 
large spatial distances (defined, say, in the center-of-mass 
frame), R“f vanishes and they satisfy outgoing bound­
ary conditions, i.e., no GWs are going in through a suf­
ficiently large spatial sphere. Specifically, since GWs are 
vacuum tensor modes at infinity, we assume d0 —n®d® = 0, 
where n® is normal to the spatial sphere (the polarization 
does not have to be specified), and the Latin index i rep­
resents spatial coordinates. We assume that this applies 
to both haf and h'“a and therefore to gauge fields as 
well. Then, one can proceed as follows.

A. Special case

To motivate the machinery that will be introduced in 
Sec. IIB, let us first discuss an auxiliary problem. Con­
sider a vector field ua that transforms the gauge of a 
given metric perturbation haf to the Lorenz gauge:

h/af = — £ugaa, (6)
V h/af = 0, (7)

where the symbol =. denotes definitions. Let us assume 
for now that ua is divergence-free; i.e.,

VaUa = 0. (8)

Then, Eqs. (2)-(7) yield

uf = Vf , (9a)
== —J^V^V^ — Raf, (9b)

where we have used Eq. (5). The hyperbolic operator 
is similar to the one that appears in the driven 

Maxwell’s equation for the Lorenz-gauge electromagnetic 
vector potential in vacuum [53] except for the opposite 
sign in front of the Ricci tensor. In the presence of mat­
ter, GWs are dispersive (vacuum waves can be considered 
as a limit; see Sec. III), so Qaf is generally invertible for 
fields of interest under the assumed boundary conditions. 
Then, one can introduce a unique Green’s operator of 
Eq. (9a) as

= (Q-i)af (10)

and express the solution of Eq. (9a) as follows:

ua = Sa(Y V6)hY6, (11)
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where symmetrization with respect to the lower indices is 
added for convenience and does not affect the result. (As 
a side remark, the appearance of Green’s operator is not 
unexpected here; cf. Ref. [47], where Green’s functions of 
elliptic operators appear in a related problem for ADM- 
parameterized backgrounds.) Finding (Q-1)“f is equiv­
alent to finding waves generated by prescribed sources. 
Similar calculations for driven Maxwell’s equation in var­
ious covariant gauges can be found in Ref. [54]. See also 
Ref. [55].

Since, h7<5 is assumed to be such that the solution (11) 
satisfies the constraint (8), Eq. (7) is satisfied by

h/af = , (12)

where we defined

^a = af) + 2V(aSf)(Y V{). (13)

In combination with Eq. (6), these results yield that

haf = hYa + , (14a)
= -2V(aSf)(Y Va)h^, (14b)

and a direct calculation shows that (Appendix B)

= 0. (15)

Equation (15) is similar to Eq. (4e) and makes the decom­
position (14) close to Eq. (3), except it is constrained by 
Eq. (8). This can be taken as a hint that 7r“f7a is close 
to the sought H. Hence, we approach the general 
case as follows.

B. General case

Now let us waive the Lorenz-gauge assumption (8) and 
consider applying 7r“f7a to £„g“f with a general ua. In 
this case, Eq. (7) is not necessarily satisfied, but a direct 
calculation shows that (Appendix B)2 * * *

^a = V(aSf)^97a . (16)

Hence, the operator

A"f.7a = ^a - V(aSf)^V%a (17)

automatically satisfies Eq. (4e). Let us substitute 
Eq. (13) and rewrite this operator as follows:

^ = % af) - %f7a, (18a)

2 Here and further, gap = gap and Rap = Rap serve as multipli­
cation operators, and the assumed notation is ABf = A(Bf) for
any operators A and B and function f that they act upon. For
example, V^g7a£^g7^ = V^[g7a(£ugY*)].

naf7a == -2V(aSf)(7V{) + V(aSf)^V^g7a. (18b)

This satisfies Eqs. (4a), (4f), and (4g). (The latter en­
sures that nOnW g7j f75 = 0 for all anti-symmetric f75, 
which is convenient.) The property (4c) is proven by a 
direct calculation (Appendix C). Equation (4d) can be 
derived from Eqs. (4a) and (4c), and the remaining prop­
erty (4b) can then be obtained from Eqs. (4a) and (4d).

Let us discuss how this intermediate result helps iden­
tify the invariant part of a metric perturbation. First, 
notice that

H^a = -2V(aSf)(7 Va)h75 + V(aSf)^V%a
= -2V(aZf)

= £(, (19)

where we introduced

Zf = Sf (7Va) - 1 Sf^V^7a hYa. (20)

Hence, Eq. (3) can be rewritten as

haf = ^af + ^af, (21a)
== naf.75 hY5, (21b)

^af = H^a hY5 = £( gaf. (21c)

Upon a gauge transformation (1), one obtains

h/af = ^/af + ^/af, (22a)
^/af = 7a h/Y5 = ^af + n"f.7a £(gaf = ^af, (22b)
^/af = H^a h/Ya = ^af + gaf = £(+( gaf, (22c)

where we used Eqs. (4d)-(4f). This means that ^“f, 
which is encoded by the four functions ZM, does not con­
tain gauge-independent information. Hence, any solution 
that has nonzero ^“f and zero A“f can be classified as 
a coordinate artifact. In contrast, A“f is gauge-invariant 
by Eq. (22b). By the argument presented in Sec. I, it is 
encoded by six independent functions, or gauge-invariant 
degrees of freedom. Also note that A“f does not neces­
sarily satisfy the Lorenz-gauge condition Vf A“f = 0.

Finding an explicit formula for the Green’s opera­
tor S“f that determines A“f [Eq. (21b)] for a specific 
background geometry is beyond the scope of this pa­
per, because our primary concern is the general frame­
work needed for a dispersive-GW theory. (This is sim­
ilar to the approach taken by others; for example, see 
Refs. [47, 56, 57].) For a smooth background metric, 
Saf can be found asymptotically within any predefined 
accuracy using methods of the Weyl symbol calculus (Ap­
pendix A). The proof of existence of the exact opera­
tor and an asymptotic approximation of its Weyl sym­
bol is, as usual [44, 55], sufficient within fundamental 
wave theory to properly define waves as dynamic ob­
jects. We elaborate on this subject in application to GWs 
in Ref. [58]. Alternatively, recursive construction of a 
parametrix can be used for small distances. This method
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can yield a converging expansion of the Green’s opera­
tor even for arbitrary globally hyperbolic spacetimes [59]. 
An example using Hadamard parametrices can be found 
in Ref. [54]. Also note that the very expression (21b) 
for the invariant part of the metric perturbation is not 
unique in general. In particular, any function of ^“f is 
also an invariant.

C. Six gauge invariants

The six independent functions still need to be ex­
tracted from the sixteen gauge-invariant functions ^“f. 
To do so, let us consider haf as a 16-dimensional (16-D) 
field ha, or h in the index-free notation, of the form

h = (h00, h01, h02, h03, h10,..., h32, h33)?, (23)

where T denotes transpose. In other words,

ha = haf, hb = h^a, (24)
{a ^} = l(a), {Y a} = l(b), (25)

where the index function i is defined via

i(a) = {1 + [(a - 1)/4j, 1 + (a - 1) mod4}. (26)

(Here and further, Latin indices from the beginning of 
the alphabet range from 1 to 16.) Let us define H as 
a Hilbert space of one-component functions on the back­
ground spacetime with the usual inner product (•, •}1. 
Then, the 16-D fields (23) can be considered as vectors 
in the Hilbert space H16 that is the tensor product of 16 
copies of H1, with the inner product

16

dW-gC ^ (&,ya)i, (27)
0=1

where g = det gaf. (Unlike in the rest of the paper, 
summation is shown explicitly here in order to emphasize 
the difference between (•, •} and (•, •}1.) Then, n0^y5 
induces an operator IIab on H16 defined via

nabhb == n;^Ya hYa, (28)

where we again assumed the notation as in Eq. (25). 
From Eqs. (4), one finds that

n0bHbc = nac, (29a)
nab£ugb = 0. (29b)

Equation (29a), which in the index-free notation can 
be written as H2 ^= II, means that H is a projector. 
(Note that IIt = H, so the projector is^not orthogonal 
but oblique.) JHence, each eigenvalue of H is either zero 
or unity and II is diagonalizable. This means that H can 
be represented as II

II = ^J —-1, (30)

where j is a diagonalizing transformation and the op­
erator J is such that each component of the vector Jh 
equals either zero or the corresponding component of h 
for any h. Like Saf, the diagonalizing transformation 
cannot be found exactly but can be found asymptotically 
using methods of the Weyl symbol calculus if the inhomo­
geneity of the background metric is weak. In this sense, 
our identification of the gauge invariants is intended as 
an algorithm rather than as an explicit answer.

Each linear operator in H16 is a 16 x 16 matrix of 
operators on H1. Then, J must be represented by a 
constant matrix J of the form

J = diag {1,1,1, 0, 0,..., 0,0 }, (31)

where, for clarity, we have ordered the basis such that 
the nonzero eigenvalues are grouped together and have 
indices 1,..., n. The gauge-invariant part of h, which is 
given by Eq. (21b), can now be expressed as 0 = Hh. 
Using Eq. (30), one can also rewrite this as

0 = — #, ^ = J—-1h. (32)

Because h is an arbitrary vector field parameterized by 
16 functions and — is invertible, the field — -1h is also 
parameterized by 16 functions. Then, # is parameterized 
by n functions. But we know that 0 is parameterized by 
6 functions (Sec. I), and thus so is #. Then, n =6, and 
the nonzero elements of # are the sought invariants.

In summary, to find the gauge invariants, one needs 
to find the diagonalizing transformation Vab that brings 
nab to the form given by Eqs. (30) and (31). Then, the 
invariants can be found as

= Jsb(V-1)bchc, s = 1,2,..., 6. (33)

III. EXAMPLE: MINKOWSKI BACKGROUND

Except for toy models, problems involving wave prop­
agation through inhomogeneous matter have no generic 
symmetries, so case studies are of little interest within 
the scope of this paper. What matter instead are the 
existence theorems, local analysis, and asymptotics [44]. 
Hence, for an example, we will discuss only the simplest 
solvable case here, specifically, the case of the Minkowski 
background. Although interactions with matter gener­
ally curve the background, the Minkowski-background 
model can be a valid approximation for gravitational 
modes with a high refraction index [45]. In addition, 
this example is instructive in that it allows direct bench­
marking of our framework against known results.

A. Gauge invariants

In vacuum, when Raf ^ 0, on^has S“f ^ -aa V-2. 
For the Minkowski background, Saf is further simpli-

(^} =
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fied to
§af ^ -j°d-2. (34)

Here, d-2 is the operator inverse to d2 = dMdM; i.e., 
= d-2qa is the solution of d2ya = qa (Appendix A). 

Formally, d-2 is singular on free vacuum GWs, but the 
vacuum case can still be considered as a limit (Sec. IIIB). 

Using Eq. (34), one can rewrite Eqs. (18a) as

Ya = - 2 d-2d("jgda) + g^a. (35)

Let us consider this operator in the Fourier representa­
tion, in which case it becomes a local matrix function of
the wavevector k^; namely, nO^Ya = Ya,

n; v Ya 4Y < -
2k(ajf)k

k2
(Y ka^ kak^
---------- + gY^k .̂ (36)

Using that VM ^ ^ ikM in the Fourier representa­
tion [and in particular, £ug“^ = -2ik(au^], the proper­
ties (4) are easily verified. (At k2 = 0, the usual rules of 
resonant-pole manipulation apply [54], but for the discus­
sion below, which is restricted to the spectral representa­
tion, these details are not important.) One also finds by 
a direct calculation [60] that, as expected from Eqs. (30) 
and (31),

rank H = 6. (37)
The invariant part of the metric perturbation (21b) is

now given by 0a^ = HO^a hYa, or explicitly,

0°f = h°f k2 h
k^ k^

~kr ha^ +
kak^, 
—h, (38)

where h = tr ha^. Without loss of generality, let us as­
sume coordinates such that

ka = (w, 0,0, k), (39)

In order to extract the six gauge invariants from this 
0, notice that the operator (28) is represented by a local 
function of kM, II = H, and thus so is the diagonaliz­
ing transformation (30). Specifically, — = —, and the 
columns of the matrix — are just the eigenvectors of H:

— = (V1 V2 ... V16), nvo = A0V0, (40)

where Aa E {0,1}. The calculation of these eigenvectors 
and of the matrix —-1 can be automated [60], and the 
six gauge invariants (33) are readily found to be

/k2(-h00 + h11 + h22) + 2wkh03 - w2h33 \ 
k2 - w2 

wkh01 - w2h13

k2 - w2

wkh02 - w2h23

k2 - w2 .

wk(h11 + h22) 
k2 - w2 

h22 

h12

(41)

The coordinate representation of these invariants is found 
by taking the inverse Fourier transform of Eq. (41).

Our result is in agreement with Eqs. (2.45)-(2.47) in 
Ref. [3] (which operates with ha^ instead of our ha^). 
This is seen from the fact that any linear combinations of 
our are gauge invariants too. In other words, instead 
of ^s, one can introduce the invariants as 0s given by

0s ^Csr0r, r,s = 1,2,...,6, (42)

h =

V

where k is the spatial wavenumber. Using this, the fact 
that k2 = k2 - w2, and also Eq. (25), the 16-D vector 0 
is found to be:

0
1

k2

/ h00k2 - 2h03wk + w2(h11 + h22 + h33) \ 
h01k2 - h13wk 
h02k2 - h23wk 
(h11 + h22)kw 
h01k2 - h13wk 
h11(k2 - w2) 
h12(k2 - w2) 

h01wk - h13w2 
h02k2 - h23wk 
h12(k2 - w2) 
h22(k2 - w2) 

h02wk - h23w2 
(h11 + h22)kw 
h01wk - h13w2 
h02wk - h23w2

\k2(-h00 + h11 + h22) + 2h03wk - h33w2/

or h = Ch in the index-free representation, where C 
is an arbitrary matrix that may depend on kM. This is 
particularly convenient at k2 = k2 - w2 ^ 0, when h 
becomes singular. Specifically, by choosing

C = diag {k2,k2,k2,k2,1,1}, (43)

we obtain invariants that are well-behaved at all kM:

Zk2(-h00 + h11 + h22) + 2wkh03 
wkh01 - w2h13 
wkh02 — w2h23

V

wk(h11 + h22)
h22

h12

w2h33\

(44)

/
As also mentioned in Sec. II B, these invariants are not 
unique in that any function of them is an invariant too.

Let us also discuss why the original vectors 0 and h 
are singular at k2 ^ 0. In this limit, the vectors 
[Eq. (40)] are well-behaved, and thus so is the matrix —. 
However, they cease to be linearly independent at k2 = 0,
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so —-1 becomes singular, and as a result, H becomes 
singular too. This means that no finite invariant pro­
jection of a generic h“g can be defined in the Fourier 
space at k2 = 0. The corresponding gauge-dependent 
part becomes singular as welHn this limit, as seen 
from Eqs. (20) and (21c), where S“g becomes singular 
(Appendix A).3 Still, our general formulation correctly 
predicts the invariants (44) at zero k2, and these invari­
ants can be related to vacuum GWs as discussed in the 
next section.

B. Free GWs in the Minkowski space

By comparing Eq. (35) with, for example, Eqs. (5.4) 
and (2.7) in Ref. [62], one finds that the equation for vac­
uum GWs in the Minkowski spacetime can be expressed 
as

D “\a hYa = 0, D^a = d2^^. (45)

In other words, in the special case of the Minkowski 
spacetime, the dispersion operator D“^y5 of vacuum 
GWs is exactly d2 times the operator that projects a 
metric perturbation on the invariant subspace. Thus, 
as expected, using the operators introduced in this pa­
per, the wave equation for the GWs in vacuum can be 
shown to directly specify the gauge invariants and natu­
rally weed out the gauge artifacts.

Let us also briefly discuss monochromatic waves,4 in 
which case, Eq. (45) becomes

k2 n^a hYa = 0, (46)

where the matrix k2 H“V is well-behaved for all kM. Equa­
tion (46) can be written as the following six of equations, 
which determine the six gauge invariants (44):

k2 h00 + w(-2kh03 + wh33) = 0, (47a)
k2h01 - wkh13 = 0, (47b)
k2h02 - wkh23 = 0, (47c)
kw(h11 + h22) = 0, (47d)
k2(h11 - h22)= 0, (47e)

k2h12 =0. (47f)

For k2 = 0, Eqs. (47) indicate that all the six invariants 
(44) are zero, so only coordinate waves are possible in 
this case. For k2 = 0, Eqs. (47a)-(47d) yield

’F1 = 2 = 3 = tk4 = 0, (48)

3 This is the same effect as the unlimited growth, at nT ^ ro, of 
the gauge field that brings a generic ha@ to the Lorenz gauge. 
See Appendix A in conjunction with Eq. (11), which is commonly 
known for the Minkowski background [61].

4 Cf. a similar discussion in Ref. [63], except their Eq. (3.6) de­
scribes the trace-reversed metric perturbation.

and in particular, h11 + h22 = 0. However, Eqs. (47e) 
and (47f) are satisfied identically at k2 = 0, so the other 
two invariants,

F5 = h22 = -h11, F6 = h12 = h21, (49)

can be arbitrary and represent the two tensor modes of 
the GWs in vacuum [3].

IV. CONCLUSIONS

In summary, we propose a method for identifying 
the gauge-invariant part of the metric perturba­
tion h“g within linearized gravity for an arbitrary back­
ground metric ga^assuming that the inverse of a hy­
perbolic operator (9b). Specifically, we show that 

= H“nVYa hYa, where H“VYa is a linear operator given 
by Eq. (18a). The six independent functions from the 
sixteen gauge-invariant functions can be found using 
Eq. (33). These results lead to a gauge-invariant quasi- 
linear theory of dispersive gravitational waves in an arbi­
trary background, as discussed in a companion paper [58] 
(see also Ref. [55]). For the Minkowski background, the 
well-known dispersion operator of linear GWs in vacuum 
is proportional to n“Voa [Eq. (45)], and thus specifies 
the gauge invariants directly streamlining the process of 
removing the gauge artifacts. We also show that this 
general formulation systematically yields the six known 
gauge invariants for the Minkowski background.

This material is based upon the work supported 
by National Science Foundation under the grant No. 
PHY 1903130.

Appendix A: Asymptotic representation of S“g

^ An asymptotic approximation for the Green’s operator 
S“g as the inverse of <5“g [Eq. (9b)] can be constructed 
using methods of the Weyl symbol calculus. These meth­
ods may not be particularly popular in general relativity, 
but they have become de facto standard in fundamental 
wave theory [44] that shifts focus from specific wave equa­
tions to a more generic description applicable to waves in 
any dispersive medium. A systematic application of the 
Weyl symbol calculus involves mapping an operator to 
a function called the Weyl symbol,5 approximating this 
symbol, and then mapping the result back to the oper­
ator space [55, 64, 65]. Finding Green’s operators by 
inverting symbols of the dispersion operators is a com­
mon practice as well; for example, see Refs. [55, 66] for 
a modern reformulation of classic results. These calcu­
lations can be done within any predefined accuracy for

5 For a homogeneous medium, the Weyl symbol of a given opera­
tor is obtained by replacing each da with -ika. In an inhomo­
geneous medium, the procedure is more elaborate [44, 64].
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smooth backgrounds. However, doing this carefully re­
quires introducing machinery that is beyond the scope of 
this paper, so here we opt for a less rigorous but more 
intuitive argument.

The operator S“g defined in Eq. (10) can be written 
in the index-free representation as

S = -(V2 + R )-1, (A1)

where V2 = VMVM, R is the operator whose coordinate 
representation is the Ricci tensor g, and -1 denotes 
the operator inverse. In order for this inverse to exist 
(approximately), we assume the adiabatic limit. Specifi­
cally, we assume that the characteristic GW wavelength 
A is much smaller than the characteristic radius L of the 
spacetime curvature, i.e., when e = A/L < 1. Assum­
ing the ordering A = O(1) and L = O(e-1), one has 
V2 = O(1) and R = O(e2). Then,

S = -V-2 + V-2R V-2 + O(e4), (A2)

where V-2 is the inverse of V2; i.e., = V-2q“ is
defined as the solution of V2y“ = q“.

Because the operators in Eqs. (A1) and (A2) are in­
tended to act specifically on vector fields, one can also 
write them explicitly. For example, in normal coordi-
nates, one has (Appendix D)

V2 = d2 - R, (A3)

and the corresponding inverse is

V-2 = d-2 + 3 d-2Rd-2 + O(e4), (A4)

so Eq. (A2) leads to

S = -d-2 + 2 d-2R d-2 + O(e4). (A5)

The operator d-2 that enters here is understood as the 
Green’s operator of the equation

d2y“ = q“. (A6)

(This is the same equation that emerges in the well- 
known linear gravity in the Minkowski background 
[61]; see also Eq. (11).) Suppose that the right- 
hand side of Eq. (A6) is quasimonochromatic, i.e., 

exp[i#(a^)] with dgQ" = O(e) and dgka = 
O(e), where ka = dag is the local wavevector. Then,

d-2 = (k^k^ )-1 + /A, (A7)

where A = O(e) is a differential operator to act on the 
envelope Q“. If k2 = kMkM approaches zero, as would 
be the case for GWs in the Minkowski vacuum, then 
grows indefinitely at ^ to. This is due to the fact 
that at k2 ^ 0, acts as a resonant driving force for y“. 
No quasimonochromatic solution is possible in this case, 
and necessarily diverges at infinity. In particular,

this means that even if the Fourier spectrum of is 
analytic but includes harmonics with k2 = 0, the Fourier 
spectrum of the corresponding is singular.

This indicates that the case k2 = 0 cannot be treated 
within the adiabatic approximation that we assume in 
this paper. However, it still can be considered as a limit, 
as discussed in Sec. III. Also, no such issues arise in prob­
lems that involve GW-matter coupling, because then 
k2 =0. In this case, the term A in Eq. (A7) can be 
calculated too, but there is no need to do this explicitly 
in the present paper. (The general approach to such cal­
culations is described, for example, in Ref. [64].) What 
matters instead is that S is a well-defined object that, in 
principle, can be found within any predefined accuracy. 
As usual in fundamental wave theory [44], the zeroth- 
order or first-order approximation of the Green’s opera­
tor often suffices for practical applications [55, 64, 66, 67].

Appendix B: Derivation of Eqs. (15) and (16)

Using Eq. (13) for tt“ gYa and Eq. (2) for £ugYa, one 
obtains

gYa £ugYa = -(J"jg + V“S g Y Va

+ VgSaYVa) (VYua + VauY). (B1)

Then using Eq. (5) in the above equation yields

TagYa£ugYa = -2V(aug) - 2V(aSg)Y [Va, VY] ua

- 2V(aSg)YVYVaua - V(aSg)YV2uY

= -2V(aug) - 2V(aSg)Y (J7V2 + RYa) ua

- 2V(aSg)YVYVaua. (B2)

Using Eq. (9b) for Q“g in combination with Eq. (10), 
one obtains

TagYa £«gYa = -2V(aug) + 2V(aSg)^Qra ua

- 2V(aSg)^V^Vaua
= -2V(aug) + 2V(a jg )ua

- 2V(aSg)^V^Vaua
= -2V(aSg)^V^Va ua. (B3)

For Vau5 = 0, this leads to gYa£ugYa = 0, which is
Eq. (15). Otherwise, notice that

2Va ua = 2gaY VYua = 2gYa V(Y ua) = -gYa £«gYa. (B4)

Then, one can rewrite Eq. (B3) as

TagYa £ugYa = V(aSg )^V^gYa £ugYa, (B5)

which is precisely Eq. (16).
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Appendix C: Derivation of Eq. (4c)

Using Eq. (18b), we get

n"gYa nY\e = 4V(aSg)(Y Va)V(Y Sa)(^V,)
- 2V(aSg)(YVa)V(YSa)vVvgAc

- 2V(aSg)^V^gYaV(YSa)(AV,)
+ V(aSg)^gYa V(Y Sa)v Vv gAc. (C1)

Let us simplify the individual terms on the right-hand 
side separately. We start by expanding one pair of sym­
metrized indices to get

- 2V(“Sg)(AVc) + V(“Sg)^V^gAc
- V(aSg)YVYVaSavVvgAc
- 2V(:Sg)^Va§a (AVc)
+ V(aSg)^V^Va Sav Vv gAc. (C6)

Canceling the first term on the right-hand side with the 
fifth term, and the fourth term with the sixth term, we 
arrive at

n" gYanYaAc = -2V(aSg)(AVc) + V(aSg)^V^gAc. (C7)

Upon comparison with Eq. (18b), this leads to Eq. (4c).

4V(aS g)(Y Va)V(Y Sa)(AVc)
= 2V(aSg)Y Va VY Sa (AVc) + 2V(aS g)Y V2SY (AVc) 
= 2V(aSg)Y VY Va Sa (AVc) + 2V(aS g)Y V2SY (AVc) 

+ 2V(aSg)Y [Va, VY]Sa(AVc). (C2)

Recognizing that the operator would act on a rank-2 ten­
sor hAc, we can use Eq. (5) for the commutator; hence,

4V(aSg)(Y Va) V(Y Sa)(AVc) = 2V(aSg)Y VY Va Sa (AVc) 
+ 2V(aSg)Y (RYa + JYV2) Sa(AVc). (C3)

The terms in the parenthesis on the right-hand side of the 
above equation can be expressed through Q“g [Eq. (9b)], 
which is also the inverse of S“g [Eq. (10)]; hence,

Appendix D: Derivation of Eq. (A3)

For any vector field u“, one has

VgVg ua = Vg (dgua + r°AuA)
= dg (dgu“ + r“AuA)

+ g g Y r"p (dgup + r gAuA)

- gg Y rgY (dpu“ + r“AuA), (D1)

where L“Y are the Christoffel symbols. In normal coordi­
nates, the Christoffel symbols are zero, but their deriva­
tives are not. This leads to

V2u“ = d2u“ + uAdg r“A. (D2)

4V(aS g)(Y Va)V(Y S a)(A Vc)
= 2V(aSg)YVYVaSa(AVc) - 2V(aSg)YQYaSa(AVc)
= 2V(aSg)YVYVaSa(AVc) - 2V(aSg)(AVc). (C4)

Using a similar process, the second term is found to be

2V(aS g)(Y Va)V(Y Sa)v Vv gAc

= V(“Sg )Y Va VY Sav VV gAc + V(“Sg )Y V2SYv VV gAc

= V(aSg)Y (RYa + JYV2) SavVvgAc

+ V(aSg )Y VY Va Sav Vv gAc 

= -V(aS g)^V^gAc + V(“S g)Y VY Va Sav Vv gAc.
(C5)

The third and the fourth terms are simply

2V(aSg)^V^gYa V(Y Sa)(AVc) = 2V(aSg )^V^Va Sa (AVc), 
V(aSg)^ V^gYa V(Y Sa)v VvgAc = V(aSg)^V^Va Sa^ Vv gAc.

Combining all these expressions, we get

The derivatives of the Christoffel symbols can be ex­
pressed through the Riemann tensor [68]:

= - 3 (rpCTMv + ). (D3)

Using the well-known symmetries of the Riemann tensor 
and of the Ricci tensor , one then finds that

dg r“A = -1 (RaAgg + R“gAg) = -1 R“gAg 

1 1 11 
= - 3 RAgag = - 3 Rg Ag“ = - 3 RAa = - 3 RaA.

Hence, one can rewrite Eq. (D2) as

V2= d2u“ - 1 R“gug, (D4)

or equivalently, as

(V2)“g = J"d2 - 3 g. (D5)

n "gYa n YaAc 2V(aS g)Y VY Va Sa (AVc) In the index-free representation, this leads to Eq. (A3).
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