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I. ABSTRACT

Deep learning-based (DL-based) models have shown to be
powerful tools for wireless interference identification (WII).
However, one of the key concerns toward using these models
in practical systems is that they perform poorly when they
are encountered with signals coming from new sources not
previously observed during the training phase. In a real-
world communication system, the interference identifier will
frequently face new unknown signals due to the existence
of many wireless transmitters. This renders the conventional
DL-based models impractical as a WII tool unless they go
through a new training phase. Retraining the model is not only
inefficient, but it can also be not feasible in some cases (e.g.,
at end-user devices) as the training phase consumes time and
resources and requires large amounts of data. We present a new
approach for data-driven WII systems using meta- learning
to address the lack of adaptability in conventional DL-based
models to new (not previously seen) signals. We show that by
using meta-learning, we are able to identify signals coming
from not previously observed technologies and frequencies
using just a handful of new samples, a task that is not generally
possible with conventional DL models. Finally, we analyze
and compare the performance of the presented meta-learning
model in multiple different settings using raw I/Q samples
and Fast Fourier Transform of I/Q samples. Based on our
experiments, we show that the proposed meta-learning scheme
outperforms the conventional deep learning models for WII
when there are just a few samples available for training1.

II. INTRODUCTION

Traditionally, the physical layer has been grounded upon
solid mathematics and information theory. In many cases, the
methods proposed based upon these pillars are theoretically
proven to be optimal based on a few prior assumptions that
define the effective parameters. The issue is that, in practical
settings, model-based approaches may fail in accurately mod-
eling some system components and parameters such as chan-
nels and hardware impairments. Thus, these methods deem
ineffective in new environments in the presence of unknown
channel models or other sources of uncertainties such as time
and frequency offsets. Moreover, these optimization-driven
model-based solutions can suffer from high computational
complexity.

1This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-20-1-0090 and the National
Science Foundation under Grant Numbers ECCS-2202972. Approved for
Public Release; Distribution Unlimited: AFRL-2022-3094.

In these non-linear and dynamic settings where we can
not correctly capture all details theoretically with mathemat-
ical models, data-driven approaches and, more specifically,
neural network models can be potential solutions as they
have been shown to be universal function approximators [1].
While neural network models are not mathematically traceable
in general, they can capture the non-linearities that lie in
physical layer context to a reasonable extent. Neural network
models have been recently utilized in a variety of well-
known problems in physical layer-related applications such as
autoencoder-based waveform design, and modulation detection
[2], [3], [4], [5].

Interference in communication systems can be caused by
various sources, including non-cooperative coexisting tech-
nologies, communication devices operating in adjacent chan-
nels, or jammers. Identifying sources of interference signals
which is the goal of wireless interference identification (WII)
is a key step of interference management strategies for coexis-
tence technologies. WII also has an essential role in detecting
intentional radio frequency interference (RFI) or jamming to
enhance the security of communication networks [6]. Classical
machine learning techniques which are built upon knowledge-
based extracted features such as transform-based features (e.g.,
short-time Fourier transform) or statistical features have been
utilized for interference detection, and classification in various
communication systems [7]. However, these methods fail to
offer the expected interference detection and identification
accuracy as they rely on expert knowledge and engineered
features.

Deep learning approaches with the capability of automated
feature learning and latent representation from raw data have
shown significant performance in wireless interference detec-
tion in different communication systems. In recent works, the
performance of multiple neural networks architectures such
as convolutional neural networks (CNN) and long short-term
memory (LSTM) for WII have been investigated in unlicensed
frequency bands such as the 2.4 GHz [8], [9]. However, these
deep learning-based models suffer from a lack of general-
ization. That means when a conventional DL-based model
is trained on a specific dataset, it often achieves a relatively
high accuracy on the corresponding test set. However, if the
classifier is encountered with new data collected from different
transmitters or a new environment, it will fail to perform
accurate classification unless it goes through a training phase
again. The re-training phase indeed is a costly process in
terms of required time and computational resources. Taking
into account that in real-world situations, the classifier will
encounter waveforms from unknown transmitters not observed
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before in the training dataset, we can see that this lack of
adaptability in such classifiers is a critical issue, and if left
unaddressed, it can limit the application of DL-based WII
models in real-world applications.

In this paper, we address the problem of lack of adaptability,
which exists in a majority of existing DL-based WII models,
by developing a meta learning-based WII technique for coexis-
tence management in the 2.4 GHz ISM band using the dataset
collected in [9]. In meta-learning, instead of learning a single
task with a specific dataset, the aim is to learn the learning
process itself. In other words, the model learns how to adapt
quickly to a new task with a new dataset. To talk in the context
of transmitter classification in wireless interference identifica-
tion, a model trained using meta-learning would be able to
classify among transmitters that have not been observed before
during the offline training. This will make this model more
adaptable in real-world scenarios compared to conventional
DL-based models. Therefore, the main contribution of this
paper is to develop a meta-learning model for cross-technology
wireless interference identification to train a model which is
adaptable to tasks and classes from technologies that have not
been observed previously, just by observing a few samples for
each new task. To the best of our knowledge, no prior work has
used meta-learning for classification tasks in cross-technology
wireless interference identification. This use of meta-learning
will let the classifiers reach a better generalization point and
potentially make Dl-based classification approaches in the
physical layer viable in real-world scenarios where the models
need to be highly adaptable.

The rest of this paper is structured as follows: Section
3 discusses the previous works on DL-based classification
approaches in the context of physical layer problems and
wireless interference identification. In Section 4, a brief in-
troduction to meta-learning and model agnostic meta-learning
approach is provided, and then our proposed meta-learning-
based methodology to solve the issue of adaptability in DL-
based WII is described. In Section 5, the scenarios used
to evaluate the performance of the proposed meta-learning
model and their results are discussed, followed by concluding
remarks in Section 6.

III. RELATED WORK

In [8], a CNN-based model was used for classifying ten dif-
ferent single carrier modulation schemes based on their radio
frequency time-series data. The CNN-based model achieved
competitive results with respect to a few other traditional
schemes used for modulation classification, slightly beating
them in terms of classification accuracy both in high and low
SNRs.

The authors in [9] proposed a CNN-based model for wire-
less interference identification, where the model was trained to
classify among 15 classes of each denoting a different channel
from 3 technologies of IEEE 802.11 b/g, IEEE 802.15.4, and
IEEE 802.15.1, using raw I/Q samples. The identification task
is performed based on 128 I/Q Samples with a duration of
12.8 µs on a 10MHz bandwidth. Building upon [9], in [10]
other DL-based models such as LSTM, ResNet, and Convo-
lutional Long- Short Term Deep Neural Network (CLDNN)
were tested on the same dataset, all giving relatively high
classification accuracy. They also focused on decreasing the
training-phase time for the CNN model, achieving a model

which is trained in approximately 60% of the previous CNN-
based model training time while giving comparable accuracy.

In [11], the authors focused on improving the adaptability of
current DL-based models for WII by decreasing the calculation
cost of the neural network model and thus, decreasing the
training time. They divided a CNN model into several blocks,
each having its output. The model is designed such that based
on the difficulty of the given output, an appropriate depth
of blocks is chosen so that unnecessary resources are not
allocated.

While the existing works around solving classification tasks
in the context of physical layer using neural networks have
been promising, current models lack adaptability in the sense
that they can perform well on the tasks that they were trained
on and the classes that they have observed during training.
However, they will perform poorly if they are encountered
with unknown classes and new classification tasks unless they
go through training again. This issue makes these models
unsuitable in real-world scenarios where the classifier may
receive signals from sources with unknown or new modulation
schemes or technologies. This concern for adaptability has
been previously addressed using meta-learning in physical
layer. In [12], an introduction to meta-learning methods with
the application to communication systems is given. Also, two
specific use cases of meta-learning in supervised learning
for demodulation and unsupervised learning for transmission
and reception are discussed. In [13], instead of training an
autoencoder on a fixed channel or a fixed set of channels
similar to the prior works, an autoencoder is trained using
meta-learning with the goal of adaptability so that it becomes
applicable to different types of channels rather than being
applicable just to a fixed type of channel. Furthermore, in
[14], a meta-learning approach is proposed for specific emitter
identification. However, to the best of our knowledge, no
existing work has used meta-learning to address the issue
of unadaptability for supervised classification tasks that are
defined in the context of cross-technology interference identi-
fication.

IV. METHODOLOGY

Our goal in this paper is to address the lack of adaptability
in the existing DL-based WII models. We intend to develop a
DL-based WII that can adapt quickly to new tasks and classes
that have never been seen before during the training phase
using a meta-learning approach. In this section, the concept
of meta-learning, the meta-learning model that we used, and
how we defined a meta-learning problem in the context of WII
are discussed.

A. Meta Learning
Conventional deep learning models are designed to handle

one task with an objective (i.e., a supervised learning problem)
over a dataset which is divided into a training set and a testing
set. After training the model on the training set, the model
is expected to perform relatively well on the test set too. In
contrast, in meta-learning or also popularly known as ’learning
to learn’, the objective is to improve a learning model (known
as the base learner/learner/inner model) such that it can adapt
to new tasks quickly while using a limited amount of data.
In other words, the objective is to learn the learning process
itself. Contrary to conventional deep learning models, which
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in each iteration, we observe a batch of training samples, in
meta-learning, we observe a batch of new tasks, each with a
different objective, a train set (known as support set), and a test
set (known as query set). For each task, the model trains on
the corresponding support set, learning to do the task at hand.
This is commonly known as the adaptation phase or the inner
loop. After that, the loss function on that task is calculated
using the query set. The necessary changes to the model are
then applied based on the calculated loss of the tasks and the
outer objective of the meta-learning model. This part is known
as the outer loop. It should be noted that the outer objective
function in a meta-learning model is different from the inner
objective function of each task.

B. Model-Agnostic Meta-Learning (MAML)
Multiple algorithms have been proposed to accomplish the

goal of meta-learning, which is to provide a model that is able
to adapt to new tasks fairly quickly. Model-Agnostic Meta-
Learning (MAML) [15] is one of such algorithms. A general
block diagram of MAML is shown in Figure 1. In MAML,
the idea is to find an initial set of parameters for the inner
model from which adapting to new tasks would be as fast as
possible. To define this process formally, MAML considers an
inner model f with a set of parameters θ denoted by fθ.

In the inner loop, for each adaptation phase to a new task
Ti, the model parameters θ are updated to θ′ (steps 1, 2 and 3
in Figure 1). The equation below shows this updating phase if
one gradient step is taken, but it can be generalized to cases
where multiple gradient steps are taken as well.

θ
′

i = θ − α∆θLTi(fθ) (1)

where α is the step size.
In the outer loop, the objective function is defined as below:

min
θ

∑
Ti∼p(T )

LTi

(
fθ′

i

)
=

∑
Ti∼p(T )

LTi
(fθ−α∇θ

LTi
(fθ)) (2)

Where we aim to optimize f ′
θ with respect to θ which is the

initial set of parameters that the inner model uses to adapt to
each task.

And finally the outer loop optimization (meta-optimization)
is formulated as follows (steps 4, 5 and 6 in Figure 1):

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi

(
fθ′

i

)
(3)

where β is a hyper-parameter known as meta-step size.
During the meta-testing phase, for each task, the adaptation

is performed, and the loss function on that task is calculated,
but θ or the inner model’s initial set of parameters is not
updated in contrast to the meta-training phase.

C. Proposed Meta learning-based WII Model
The first step toward forming a meta-learning model is to

define the tasks that the model needs to tackle. We define each
task to be a classification task among n different classes where
for each class, there are a limited number of samples that the
model can train on, denoted by k. More formally, this problem
is called an N -way k-shot classification.

Moreover, we divide the classes into two groups, where one
group is used to create tasks for the meta-training phase, and
the other group is used to create tasks for the meta-testing

TABLE I
STRUCTURE OF INNER MODEL

Layer Input Parameters Activision Function

1D Convolution 2 * 128

kernel size = 3
64 out channels

stride = 1
padding =1

ReLU

1D Average Pooling 64*128 kernel size = 3 -

1D Convolution 64 * 42

kernel size = 3
512 out channels

stride = 1
padding =1

ReLU

1D Average Pooling 512* 42 kernel size = 3 -

1D Convolution 512 * 14

kernel size = 3
1024 out channels

stride = 1
padding =1

ReLU

1D Average Pooling 1024 * 14 kernel size = 3 -
Dense Layer 4096 128 neurons ReLU
Dense Layer 128 4 neurons Softmax

phase. This way, we will be able to test the extent of our
model’s adaptability as the classes in meta-testing tasks will be
unknown to the model. The proposed WII model is developed
based on the MAML method described in Section IV-B, where
a CNN model with 3 convolution layers and 2 dense layers is
used in the inner model. Details of the inner model structure
can be seen in Table I and details about parameters are shown
in II.

Fig. 1. Block diagram of MAML. Numbers 1-6 and 7-11 correspond
to the steps taken in meta-training and meta-testing, respectively.

V. EXPERIMENTS AND RESULTS

A. Dataset
In this study, we used the dataset generated by an

SMBV100A vector signal generator in [9] that consists of
sample vectors of 128 complex-valued baseband I/Q samples
corresponding to 15 different classes. These classes represent
packet transmissions of IEEE 802.11 b/g, IEEE 802.15.4, and
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TABLE II
MODEL PARAMETERS

Parameter Value
Loss Function CrossEntropy

Optimizer Adam
Inner Step Size 0.02
Outer Step Size 0.001

Outer Decay Rate 0.97 per 10 Epochs
# Inner Adaptations 5

Batch Size 48

IEEE 802.15.1 spanning different physical layer specifications
with overlapping frequency channels within the 2.4 GHz ISM
band. Information about the classes and their corresponding
technology and frequency can be seen in Table III. The sample
vectors for each class are captured from an SNR range of -20
dB to 20 dB with a step size of 2 dB and there are a total of 715
sample vectors for each class in each SNR. These I/Q samples
have also been transformed to the frequency domain using Fast
Fourier Transform (FFT) and so the frequency domain data of
these samples are also available [16].

TABLE III
DESCRIPTION OF 15 CLASSES USED IN THE DATASET.

Class ID Technology Center Frequency Channel Width
0 IEEE 802.15.1 2422 MHz 1 MHz
1 IEEE 802.15.1 2423 MHz 1 MHz
2 IEEE 802.15.1 2424 MHz 1 MHz
3 IEEE 802.15.1 2425 MHz 1 MHz
4 IEEE 802.15.1 2426 MHz 1 MHz
5 IEEE 802.15.1 2427 MHz 1 MHz
6 IEEE 802.15.1 2428 MHz 1 MHz
7 IEEE 802.15.1 2429 MHz 1 MHz
8 IEEE 802.15.1 2430 MHz 1 MHz
9 IEEE 802.15.1 2431 MHz 1 MHz

10 IEEE 802.11 b/g 2422 MHz 20 MHz
11 IEEE 802.11 b/g 2427 MHz 20 MHz
12 IEEE 802.11 b/g 2432 MHz 20 MHz
13 IEEE 802.15.4 2425 MHz 2 MHz
14 IEEE 802.15.4 2430 MHz 2 MHz

B. Experimental Scenarios
For our experiments, we utilize both the raw I/Q samples

and their FFT transformations available in [9]. Moreover, for
each type of input, we define two scenarios which differ in the
classes that are excluded from the meta-training tasks. The two
scenarios are as follows:

• Scenario 1: The experiment is designed as a 4-way n-
shot classification, where 4 denotes the number of classes
in each task and n represents number of samples for
each class. Five out of 15 classes are excluded from
the meta-training tasks and for meta-testing tasks, only
those five unseen classes are used. These five classes
are selected from all of the three technologies that are
available in the dataset, meaning that while the model is
encountered with classification tasks on unseen classes,
those unseen classes are not corresponding to entirely
unknown technologies.

• Scenario 2: The experiment is designed as a 4-way n-
shot classification. Five classes are excluded from the
meta-training tasks and for meta-testing tasks, only those
5 unseen classes are used. These five selected classes
are the only classes which represent IEEE 802.15.4 and

TABLE IV
ACCURACY OF META-LEARNING MODEL WITH 95% CONFIDENCE

INTERVAL IN MULTIPLE SETTINGS.

1 SHOT
IQ FFT

Scenario 1 2 1 2
High SNR 97.22± 0.25 78.53 ± 0.56 95.62 ± 0.47 78.15 ± 0.55
Mid SNR 89.23 ± 0.43 73.18 ± 0.61 94.76 ± 0.36 80.30 ± 0.49
Low SNR 30.11 ± 0.67 39.15 ± 0.64 38.19 ± 0.68 40.19 ± 0.66

2 SHOT
IQ FFT

Scenario 1 2 1 2
High SNR 98.45± 0.13 81.10 ± 0.45 98.85 ± 0.12 85.02 ± 0.35
Mid SNR 95.63 ± 0.26 77.56 ± 0.74 96.67 ± 0.25 82.79 ± 0.38
Low SNR 32.58 ± 0.46 42.54 ± 0.48 44.47 ± 0.50 43.15 ± 0.52

5 SHOT
IQ FFT

Scenario 1 2 1 2
High SNR 99.35 ± 0.04 87.28 ± 0.30 99.35 ± 0.05 88.98 ± 0.32
Mid SNR 96.79 ± 0.12 83.54 ± 0.32 98.82 ± 0.12 86.11 ± 0.28
Low SNR 36.20 ± 0.31 44.44 ± 0.36 54.64 ± 0.35 46.27 ±0.37

IEEE 802.11 b/g that are excluded from the training tasks,
meaning that the model will be tested by classification
tasks among classes representing completely unknown
technologies to the model.

Multiple reasons led us to define the tasks in both scenarios
as a 4-way classification. Firstly, while conventional models
often benefit from having large amounts of training data,
meta-learning models benefit from large amounts of different
tasks to train on so that they can become well-generalized to
distinctive tasks. To show the capability of the meta-learning
model in identification of new classes with a few samples,
we set aside one third of available classes (i.e., 5 classes) for
the meta-testing tasks, thus left with 10 classes for the meta-
training tasks. In this case, choosing 5-way classification tasks
would have maximized the number of different tasks we would
observe in meta-training (

(
10
5

)
=252), however, it would have

resulted in just one distinctive task for meta-testing (
(
5
5

)
=1),

which is not desirable. By choosing a 4-way classification, we
ended up with having

(
10
4

)
= 210 different meta-training tasks

and
(
5
4

)
= 5 different meta-testing tasks.

C. Results
Table IV indicates the classification accuracies of our meta-

learning model during the meta-testing phase in different
settings. The model was trained on data corresponding to 3
SNR ranges using either the FFT data or the I/Q sample data
from [16]. High SNR, mid SNR, and low SNR correspond to
data in SNR ranges of -20 to -14 dB, -2 to 4 dB, and 14 to 20
dB, respectively. Moreover, for each of these six combinations,
the two scenarios explained earlier were tested using either 1,
2 or 5 samples per class to train the meta-learning model. It
should be emphasized that the classes in meta-testing tasks
did not overlap with the classes used in meta-training tasks.

A few observations can be made from this Table. Firstly,
the meta-learning model performed better in the first scenario
compared to the second scenario. This is logical as in scenario
2, the model had to classify between classes corresponding to
not previously observed communication technologies (IEEE
802.15.4 and IEEE 802.11 b/g technologies were not seen in
the training set), but in scenario 1, none of the communication
technologies were new to the model. Thus, it seems that the
model was able to reach a better generalization for all the
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classes of all three technologies in scenario 1. It can also be
concluded from Table IV that the model will perform better
when the model is trained on input data from high SNR ranges.
This result was also observed for conventional deep learning
models used in WII and modulation classification works [4],
[9], [11]. Furthermore, it can be observed that the higher the
number of shots, the higher the accuracy will be, which is
logical.

Regarding the performance of the model when different
input data types are used (i.e., raw IQ samples or the FFT
transformations), no strong statements can be given to pinpoint
one as superior over the other. Nevertheless, it is worth noting
that the model showed better robustness to high noise levels
when FFT data were used. This can be seen in table IV, where
FFT cases have higher accuracy in low SNR ranges than their
IQ counterparts.

To denote the higher adaptability of meta-learning over
conventional deep learning in the context of WII, a comparison
has to be made between the two. A meta-learning model
goes through several sets of training on different tasks during
the meta-training phases. Then it has to adapt itself to a
new task created from unseen classes during the meta-testing
phase by training on only a handful of samples from the
corresponding task. To have a fair comparison, we consider
a conventional model already trained on a specific task, that
has to adapt to a new task by training on only a handful of
samples from the new task. This can be regarded as transfer
learning. Furthermore, we will also consider a conventional
model without any prior offline training that has to adapt to a
new task by also training on just a few samples.

Figures 2 and 3 compare the accuracy of the meta-learning
model (MAML), the conventional deep learning model with
prior training (denoted as transfer learning), and the conven-
tional deep learning model without prior training in different
SNRs. The model structure used for the conventional deep
learning and transfer learning is the same as the inner model
used for the MAML model (model structure can be seen in
table I). The results seen in Figures 2 and 3 correspond to
results based on scenario one and scenario two, respectively,
which were explained previously. Each sub-plot in figures
2 and 3 indicates the results when a different number of
samples were given to the models to train on (one, two,
and five samples per class, i.e., 1-shot, 2-shot, and 5-shot
classification). It should be noted once again, that none of
the tasks and classes observed in these experiments were
previously observed by the MAML model during the meta-
training phase.

As it can be seen from figures 2 and 3, it is clear that for
every case, MAML outperforms the conventional models with
prior training (transfer learning) and without prior training
in terms of accuracy. As expected, all models have higher
accuracies in 5-shot cases compared to 2-shot and 1-shot cases.
However, the conventional models are drastically hindered
in cases where less data is available. The difference in the
conventional models’ performances between the 1-shot cases
and the 5-shot cases are larger compared to the same difference
in performance for MAML. In other words, MAML can learn
to do a new task way more efficiently than the conventional
model by using less data while giving higher accuracy since it
has learned to learn new tasks quickly during its meta-training
phase. This denotes the adaptability of meta-learning, which

is desired for WII in a real-world situation where the model
has to adapt to new tasks quickly.

Furthermore, since just a handful of samples were used
to train the models, the models’ performances depend on
how well those few samples represent the test set. Thus,
randomness is higher when less data is used to train the
models, and so, we can observe fluctuations for all models to
some extent in figures 2 and 3. Nevertheless, MAML seems
to be much more stable in all cases as these fluctuations are
way more visible for the conventional model and the transfer
learning model, especially in 1-shot results. This stability
could be an indicator of the generalization that MAML has
reached during its meta-training phase.

(a) 1 Shot

(b) 2 Shot

(c) 5 Shot

Fig. 2. Accuracy of the trained meta-learning model (MAML) compared to
conventional DL model with and without prior learning based on scenario
1. Sub-figures a,b and c represent cases, where the number of samples per
class used to train the models (number of shots) were one, two, and five,
respectively.
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(a) 1 Shot

(b) 2 Shot

(c) 5 Shot

Fig. 3. Accuracy of the trained meta-learning model (MAML) compared to
conventional DL model with and without prior learning based on scenario
2. Sub-figures a,b and c represent cases, where the number of samples per
class used to train the models (number of shots) were one, two, and five,
respectively.

VI. CONCLUSION

This paper addressed the lack of adaptability that exists in
current DL-based approaches in wireless interference identifi-
cation by utilizing meta-learning.

To mimic a practical situation, we considered a coexistence
system where the interference identifier has to adapt to new
signals from unknown technologies and frequencies using just
a handful of samples. To evaluate the impact of a meta-
learning-based WII solution, we compared the performance
of a meta-learning model against a conventional DL model in
the coexistent system explained above. The dataset we used
included data from three different wireless technologies (IEEE
802.15.1, IEEE 802.11 b/g, and IEEE 802.15.4) operating
in frequencies from 2422 MHz to 2430 MHz. Our findings
show that we can significantly outperform conventional deep

learning for WII by using meta-learning, especially when there
are just a few samples for the models to train on. Moreover,
even though training on just a few samples introduces high
randomness to the DL models in general, we showed that
meta-learning would be less impacted by that randomness as
it reaches higher stability in results.
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