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This paper presents quasilinear theory (QLT) for classical plasma interacting with inho­
mogeneous turbulence. The particle Hamiltonian is kept general; for example, relativistic, 
electromagnetic, and gravitational effects are subsumed. A Fokker-Planck equation for 
the dressed ‘oscillation-center’ distribution is derived from the Klimontovich equation and 
captures quasilinear diffusion, interaction with the background fields, and ponderomotive 
effects simultaneously. The local diffusion coefficient is manifestly positive-semidehnite. 
Waves are allowed to be off-shell (i.e. not constrained by a dispersion relation), and a 
collision integral of the Balescu-Lenard type emerges in a form that is not restricted to 
any particular Hamiltonian. This operator conserves particles, momentum, and energy, 
and it also satisfies the Lf-theorem, as usual. As a spin-off, a general expression for 
the spectrum of microscopic fluctuations is derived. For on-shell waves, which satisfy a 
quasilinear wave-kinetic equation, the theory conserves the momentum and energy of 
the wave-plasma system. The action of nonresonant waves is also conserved, unlike in 
the standard version of QLT. Dewar’s oscillation-center QLT of electrostatic turbulence 
(1973, Phys. Fluids 16, 1102) is proven formally as a particular case and given a concise 
formulation. Also discussed as examples are relativistic electromagnetic and gravitational 
interactions, and QLT for gravitational waves is proposed.
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1. Introduction
1.1. Background

Electromagnetic waves are present in plasmas naturally, and they are also launched 
into plasmas using external antennas, for example, for plasma heating and current drive 
(Stix 1992; Fisch 1987; Pinsker 2001). Nonlinear effects produced by these waves are often 
modeled within the quasilinear (QL) approximation, meaning that the nonlinearities are 
retained in the low-frequency (‘average’) dynamics but neglected in the high-frequency 
dynamics. Two separate paradigms exist within this approach.

In the first paradigm., commonly known as ‘the’ QL theory (QLT), the focus is made 
on resonant interactions. Nonresonant particles are considered as a background that 
is homogeneous in spatial (Vedenov et. al. 1961; Drummond & Pines 1962; Kennel & 
Engelmann 1966; Register & Oberman 1968, 1969) or generalized coordinates (Kaufman 
1972; Eriksson & Helander 1994; Catto et al. 2017); then the oscillating fields can be 
described in terms of global modes. This approach has the advantage of simplicity, 
but its applications are limited in that real plasmas are never actually homogeneous in 
any predefined variables (and, furthermore, tend to exhibit nonlinear instabilities in the 
presence of intense waves). The ‘ponderomotive’ dynamics determined by the gradients 
of the wave and plasma parameters is lost in this approach; then, spurious effects can 
emerge and have to be dealt with (Lee et al, 2018).

The second paradigm, successfully captures the ponderomotive dynamics by introducing 
effective Hamiltonians for the particle average motion (Gaponov & Miller 1958; Motz & 
Watson 1967; Cary & Kaufman 1981; Kaufman 1987; Dodin 2014). But as usual in 
perturbation theory (Lichtenberg & Lieberman 1992), those Hamiltonians are by default 
singular for resonant interactions. Thus, such models have limited reach as well, and 
remarkable subtleties are still found even in basic QL problems. For example, it is still 
debated (Ochs & Fisch 2021a; Ochs 2021) to which extent the QL effects that remove 
resonant particles while capturing their energy (Fisch & Rax 1992) also remove charge 
along with the resonant particles thereby driving plasma rotation (Fetterman & Fisch 
2008). This state of affairs means, arguably, that a clear comprehensive theory of QL 
wave-plasma interactions remains to be developed — a challenge that must be faced.

The first framework that subsumed both resonant and nonresonant interactions in 
inhomogeneous plasmas was proposed by Dewar (1973) for electrostatic turbulence in 
nonmagnetized plasma and is known as ‘oscillation-center’ (OC) QLT. It was later 
extended by McDonald et. al, (1985) to nonrelativistic magnetized plasma. However,
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both of these models are partly heuristic and limited in several respects. For example, 
they are bounded by the limitations of the variational approach used therein, and they 
separate resonant particles from nonresonant particles somewhat arbitrarily (see also 
(Ye & Kaufman 1992)). Both models also assume specific particle Hamiltonians and 
require that waves be governed by a QL wave-kinetic equation (WKE), i.e. be only 
weakly dissipative, or ‘on-shell’. (Somewhat similar formulations were also proposed, 
independently and without references to the OC formalism, in (Weibel 1981; Yasseen 
1983; Yasseen & Vaelavik 1986).) This means that collisions and microscopic fluctuations 
are automatically excluded. Attempts to merge QLT and the WKE with theory of 
plasma collisions were made (Register & Oberman 1968; Schlickeiser & Yoon 2014; Yoon 
et al. 2016) but have not yielded a local theory applicable to inhomogeneous plasma. In 
particular, the existing models rely on global-mode decompositions and treat complex 
frequencies heuristically. Thus, the challenge stands.

Related problems are also of interest in the context of gravitostatic interactions (Cha- 
vanis 2012; Hamilton 2020; Magorrian 2021), where inhomogeneity of the background 
fields cannot be neglected in principle (Binney & Tremaine 2008). (To our knowledge, 
OC QLT analogs have not been considered in this field.) Similar challenges also arise in 
QLT of dispersive gravitational waves (Garg & Dodin 2021a, 2020). Hence, one cannot 
help but wonder whether a specific form of the particle Hamiltonian really matters for 
developing QLT or it is irrelevant and therefore should not be assumed. Since basic theory 
of linear waves is independent of Maxwell’s equations (Tracy et al. 2014; Dodin & Fisch 
2012; Dodin et al, 2017), a general QLT might be possible too, and it might be easier to 
develop than a zoo of problem-specific models.

1.2. Outline
Here, we propose a general QLT that allows for plasma inhomogeneity and is not 

restricted to any particular Hamiltonian or interaction field. By starting with the Klimen­
tovich equation, we derive a model that captures QL diffusion, interaction with back­
ground fields, and ponderomotive effects simultaneously. The local diffusion coefficient 
in this model is manifestly positive-semidehnite. Waves are allowed to be off-shell, 
and a collision integral of the Balescu-Lenard type emerges for general Hamiltonian 
interactions. This operator conserves particles, momentum, and energy, and it also 
satisfies the Lf-theorem, as usual. As a spin-off, a general expression for the spectrum of 
microscopic fluctuations of the interaction field is derived. For on-shell waves governed by 
the WKE, the theory conserves the momentum and energy of the wave-plasma system. 
The action of nonresonant waves is also conserved, unlike in the standard version of 
QLT.f Dewar’s OC QLT of electrostatic turbulence (Dewar 1973) is proven formally 
as a particular case and given a concise formulation. Also discussed as examples are 
relativistic electromagnetic and gravitational interactions, and QLT for gravitational 
waves is proposed. Overall, our formulation interconnects many known results that in 
the past were derived independently and reproduces them within a unifying framework.

This progress is made by giving up the traditional Fourier-Laplace approach. The 
author takes the stance that the global-mode language is unnatural for inhomogeneous- 
plasma problems (i.e. all real-plasma problems). A fundamental theory must be local. 
Likewise, the variational approach that is used sometimes in QL calculations is not 
universally advantageous, especially for describing dissipation. Instead of those methods, 
we use operator analysis and the Weyl symbol calculus, as has also been proven fruitful in

f The standard QLT (as in, for example, (Drummond & Pines 1962)) does not properly 
conserve energy-momentum either, even though it is formally conservative (see section 7.3.2).
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other recent studies of ponderomotive effects and turbulence (Ruiz 2017; Ruiz & Dodin 
20176; Zhu & Dodin 2021) and linear-wave theory (Dodin et al. 2019). No logical leaps 
are made in this paper other than assuming the QL approximation per se and a certain 
ordering.| In a nutshell, we treat the commonly known QL-diffusion coefficient as a 
nonlocal operator, and we systematically approximate it using the Weyl symbol calculus. 
It is the nonlocality of this operator that gives rise to ponderomotive effects and ensures 
the proper conservation laws. The existing concept of ‘adiabatic diffusion’ (Galeev & 
Sagdeev 1985; Stix 1992) captures some of that, but systematic application of operator 
analysis yields a more general, more accurate, and more rigorous theory.

The author hopes not that this paper is an entertaining read. However, the paper 
was intended as self-contained, maximally structured, and easily searchable, so readers 
interested in specific questions could find and understand answers without having to 
read the whole paper. The text is organized as follows. In section 2, we present a primer 
on the Weyl symbol calculus and the associated notation. In section 3, we formulate 
our general model. In section 4, we introduce the necessary auxiliary theorems. In 
section 5, we derive a QL model for plasma interacting with prescribed waves. The 
waves may or may not be on-shell or self-consistent. (Their origin and dynamics are 
not addressed in section 5.) In section 6, we consider interactions with self-consistent 
waves. In particular, we separate out microscopic fluctuations, calculate their average 
distribution, and derive the corresponding collision operator. In section 7, we assume 
that the remaining macroscopic waves are on-shell, rederive the WKE, and show that our 
QL model combined with the WKE is conservative. In section 8, we discuss the general 
properties that our model predicts for plasmas in thermal equilibrium. In section 9, we 
show how to apply our theory to nonrelativistic electrostatic interactions, relativistic 
electromagnetic interactions, Newtonian gravity, and relativistic gravity. In section 10, 
we summarize our results. Auxiliary calculations are presented in appendices A-D, 
and appendix G summarizes our notation. This notation is extensive and may not be 
particularly intuitive. Thus, readers are encouraged to occasionally scout section 9 for 
examples even before fully absorbing the preceding sections.

An impatient reader can also skip calculations entirely and consult only the summaries 
of the individual sections (2.3, 3.4, 4.4, 5.6, 6.9, 7.6, 8.5; they are mostly self-contained) 
and then proceed to the examples in section 9. However, the main point of this work 
is not just the final results per se (surely, some readers will find them obvious) but 
also that they are derived with minimal assumptions and rigorously, which makes them 
reliable. A reader may also notice that we rederive some known results along the way, for 
example, basic linear-wave theory and the WKE. This is done for completeness and, more 
importantly, with the goal to present all pieces of the story within a unified notation.

Qwaa/./mear /.Aeon/

2. A math primer
Here, we summarize the machinery to be used in the next sections. This machinery 

is not new, but a brief overview is in order at least to introduce the necessary notation. 
A more comprehensive summary, with proofs, can be found in (Dodin et al. 2019, 
supplementary material). For extended discussions, see (Tracy et al. 2014; Ruiz 2017; 
McDonald 1988; Littlejohn 1986).

| We treat the traditional QL approximation as a given mathematical model. We seek to 
push this model to its limits rather than to examine its validity, which is a separate issue. For 
discussions on the validity of the QL approximation, see (Besse et al. 2011; Escande et al. 2018; 
Crews & Shumlak 2022).
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2.1. Weyl symbol calculus on spacetime
2.1.1. Basic notation

We denote the time variable as t, space coordinates as x = (x1, x2,..., xn), spacetime 
coordinates as x = (x°, x1,..., xn), where x° = t and x* = xl. The symbol = denotes 
definitions, and Latin indices from the middle of the alphabet (i,j,...) range from 1 
to n unless specified otherwise. We assume the spacetime-coordinate domain to be Rn.f 
Functions on x form a Hilbert space with an inner product that we define as

<^|V')=/'dx^(x)V'(x). (2T)

The symbol * denotes complex conjugate,

dx = dx° dx1 ... dxn = df dx1 ... dx" (2.2)

(a similar convention is assumed also for other multi-dimensional variables used below), 
and integrals in this paper are taken over (—oo, oo) unless specified otherwise. Operators 
on ATX will be denoted with carets, and we will use indexes H and a to denote their 
Hermitian and anti-Hermitian parts. For a given operator A, one has A = AH + iAA,

Ah = Ajj = - (A + A1’), Aa = A^ = — (A — A1’), (2.3)

where 1 denotes the Hermitian adjoint with respect to the inner product (2.1). The case of 
a more general inner product is detailed in (Dodin et al, 2019, supplementary material).

2.1.2. Vector fields
For multi-component fields ip = (ip1, ip2,..., ipM)J (our T denotes the matrix 

transpose), or Tow vectors’ (actually, tuples), we define the dual ‘column vectors’ 
ip^ = (ip*, ip*,..., tplf) via ip^ = gip*. The matrix g is assumed to be real, diagonal, 
invertible, and constant; other than that, it can be chosen as suits a specific problem. 
(For example, a unit matrix may suffice.) This induces the standard rule of index 
manipulation

Vb = = g^Vb,
where &,• are elements of g and gy are elements of $

iJ = l,2,...,M, (2.4)
StJ ci'j.v. uviiivuuo m, & dm 6 ci'j.v. uviiivuuo ui b_1. Summation over repeating indices 

is assumed. The rules of matrix multiplication apply to row and column vectors as usual. 
Then, for ip = (ip1,^2,..., ipM)J and £ = (C1, C2, • • •, CM)T, the quantity ip£ is a matrix 
with elements ip''fij, ip$^ is a matrix with elements tp'fi* and $}xp is its scalar trace:)'

(V = tr(V^) = = guC*^, b; = 1,2,ft) _ , M. (2.5)

(Similarly, for % = (xi, X2, • • •, Xm) and rj = (%, %,..., i]m), VX is a matrix with ele­
ments piXj.) We use the (2.5) to define a Hilbert space <jYxm of M-dimensional vector 
fields on x, specifically, by adopting the inner product

<(1^)= / dx^(xMx)-
(2.6)

f This excludes periodic boundary conditions, albeit not entirely (section 3.1). Other than 
that, the spacetime metric can still be non-Euclidean, as illustrated by an application to 
relativistic gravity in section 9.4. See also the footnotes on pages 7 and 30.

f A common notation is £pip = £, ■ ip, but we reserve the dot-product notation for a scalar 
product of different quantities (section 2.1.3).



Below, the distinction between and will be assumed but not emphasized. Also 
note that (2.5) yields

= ((\^)(V^() = 5= 0 (2.7)

for any $ and tp. Thus, dyadic matrices of the form are positive-semidehnite, even
though may be negative (when g is not positive-definite).

For general matrices, the indices can be raised and lowered using g and g-1 as usual. 
The Hermitian adjoint for a given matrix A is defined such that (A^jl-i/i = ^(A-i/y) 
for any ip and £, which means

(A^)/ = (A)'% = A'*„ = 1,2,..., M. (2.8)

The Hermitian and anti-Hermitian parts are defined as

An = 1 (A + A^), AA = Al = 1 (A - A^), (2.9)

so A = AH + IAa- For one-dimensional matrices (scalars), one has A = A,

Ah = AJ) = re A, Aa = A a = imA, (2.10)

Quasilinear theory 7

where re and irn denote the real part and the imaginary part, respectively. We also define 
matrix operators A as matrices of the corresponding operators Ah, . Because g is constant, 
index manipulation applies as usual. Also as usual, one has

1
2

(A + A\ /V /v i" 1 /v /V F
Aa = Aa = — (A - A ), (2.11)

and A = AH + iAA, where 1 is the Hermitian adjoint with respect to the inner product
(2.6).

2.1.3. Bra-ket notation

Let us define the following operators that are Hermitian under the inner product (2.1):

x° = f = f, x' = z' = z', kq = —w = —idt, = —id*, (212)

where do = = d/d%° and d* = d/d%*. Accordingly,

x=(x°,x\...,x") = (f,a;), k = (ko,ki,...,k») = (-w, &) (213)

are understood as the spacetime-position operator and the corresponding wavevector 
operator, which will also be expressed as follows:

x = x, k = -idx. (2.14)

Also note the commutation property, where Sf is the Kronecker symbol:f

[x\ kj] = iSp i,j = 0,l,...,n. (2.15)

The eigenvectors of the operators (2.14) will be denoted as ‘Rets’ |x) and |k):|

X |x> = X |x>, k |k> = k |k>, (2.16)

f Spaces with periodic boundary conditions require a different approach (Rigas et al. 2011), 
so they are not considered here (yet see section 3.1). That said, for a system that is large enough, 
the boundary conditions are unimportant; then the toolbox presented here is applicable as is.

| More precisely, |x> is the ket |e(x; x)> that is an eigenvector of each x* with the corresponding 
eigenvalues being x'. A similar comment applies to |k>.
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and we assume the usual normalization:

<xi|x2> = d'(xi — x2), \ki|k2) = d'(ki — k2), (2.17)

where 5 is the Dirac delta function. Both sets {|x),x e RnJ- and {|k), k e R11}, where 
n = n + 1, form a complete basis on and the eigenvalues of these operators form an 
extended real phase space (x, k), where

x = (t, z), k = (—w, &). (2.18)

The notation k • s = —WT + k ■ s will be assumed for any s = (r, s), and k ■ s = kiS1. In 
particular, for any and constant s, one has

exp(ik - s)%6(x) = exp(s - &)%6(x) = %6(x + s), (2.19)

as seen from comparing the Taylor expansions of the latter two expressions. (A general­
ization of this formula is discussed in section 4.1.) Also,

<x|k> = <k|x>* = (2tt) n/2 exp(ik • x), (2.20)

y dx |x)<x| = 1, y dk |k> <k = 1. (2-21)

Here, ‘bra’ <x| is the one-form dual to |x), <k| is the one-form dual to | k), and 1 is 
the unit operator. Any field on x can be viewed as the x representation (‘coordinate 
representation’) of |%6), i.e. the projection of an abstract ket vector |%6) E on |x):

V,(x)=(x|V). (2.22)
Similarly, (k|V’> is the k representation (‘spectral representation’) of |%6), or the Fourier 
image of

v((k) = <k|V) = y dxe-'^(x). (2.23)

2.1.4. Wigner-Weyl transform
For a given operator A and a given field if, krf can be expressed in the integral form

A%6(x) = / dx'(x|A|x')%6(x'), (2.24)

where (x|A|xr> is a function of (x,x'). This is called the x representation (‘coordinate 
representation’) of A. Equivalently, A can be given a phase-space, or Weyl, representation, 
i.e. expressed through a function of the phase-space coordinates, A(x, k):f

A = y dxdkds |x + s/2)A(x, k) elk's(x - s/2| = operxA. (2.25)

The function A(x, k), called the Weyl symbol (or just ‘symbol’) of A, is given by

A(x, k) = y ds(x + s/2|A|x ^ s/2)e_lk's = symbxA. (2.26)

The x and phase-space representations are connected by the Fourier transform:

<*|A|x'> = ^ y dke^(-x') A ^ . (2.27)

f Analytic continuation to complex arguments is possible, but by default, x and k are real.
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This also leads to the following notable properties of Weyl symbols:

(#1*) = / dkA(x,k), <k|A|k) = ^ dxA(x,k). (2.28)

An operator unambiguously determines its symbol, and vice versa. We denote this 
isomorphism as A <-» A. The mapping A i-» A is called the Wigner transform, and A i-» A 
is called the Weyl transform. For uniformity, we call them the direct and inverse Wigner- 
Weyl transform. The isomorphism <-» is natural in that it has the following properties:

T <-» 1, x <-» x, k <-» k, A(x) A(x), A(k) <-» A(k), A^ A*, (2.29)

where h is any function and A is any operator. The product of two operators maps to 
the so-called Moyal product, or star product, of their symbols (Moyal 1949):

AB <-» A(x, k) * B(x, k) = A(x, k)e1^x/2B(x, k), (2.30)

which is associative:

ABC <-» (A * B) * C = A * (B * C) = A * B * C. (2.31)

Here, £x = 8X ■ <\ - <?k • <?x, and the arrows indicate the directions in which the deriva­
tives act. For example, A£XB is just the canonical Poisson bracket on (x, k):

A£XB = {A, BJX 

These formulas readily yield

JA dB JA dB JA JB JA JB (2.32)

A(x)ka <-»• kaA(x) + — dah(x), kaA(x) <-»• ka/?.(x) — — dah(x), (2.33)

also A(k)elK x <-»• h(k) * elKx = A(k + K/2)elK x, etc. Another notable formula to be used 
below, which flows from (2.28) and (2.31), is

<x|ABC|x> = ^ y dk (A * B * C)(x, k). (2.34)

The Moyal product is particularly handy when <\<\ ~ e « 1. Such e is often called the 
geometrical-optics parameter. Since £x = O(e), one can express the Moyal product as an 
asymptotic series in powers of e:

* = T + i£%/2 - £^/8 + ... (2.35)

2.1.5. Weyl expansion of operators
Operators can be approximated by approximating their symbols (Dodin et. al. 2019; 

McDonald 1988). If A is approximately local in x (i.e. if Af(x) is determined by values 
f(x + s) only with small enough s), its symbol can be adequately represented by the first 
few terms of the Taylor expansion in k:

A(x, k) = A(x,0) + ®o(x)-k + ..., ®o(x) = (dkA(x, k))k=o- (2-36)

Application of operx to this formula leads to

A % A(x, 0) + ^ (0O k + k ®0) + ..., (2.37)

where 0O = ®o(x). One can also rewrite (2.37) using the commutation property

[k,0o] = -i(&-®o)(x). (2.38)
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In the x representation, this leads to

A = A(x, 0) - ^ (d% - ®o(x)) + - - - (2.39)

The effect of a nonlocal operator on eikonal (monochromatic or quasimonochromatic) 
fields can be approximated similarly. Suppose = el9V>, where the dependence of k = <\6 
and f on x is slower than that of 9 by factor e « 1. Then, kip = el9k'ip, where A' = 
e-i9(x)^ei9(x)^ anq tjle gymp0i 0f /\' can be approximated as follows:

A'(x, k) = A(x,k(x) + k) + O(e^). (240)

By expanding this in k and applying operx, one obtains

A' = A(x, k(x)) - i®(x) - & - ^ (& - ®(x)) + O(e^), (2.41)

where ®(x) = (c\A(x, k))k=kfxj. Neglecting the 0(e2) corrections in this formula leads to 
what is commonly known as the geometrical-optics approximation (Dodin et al. 2019).

2.1.6. Wigner functions
Any ket \ip) generates a dyadic \ip’)(ip\. In quantum mechanics, such dyadics are known 

as density operators (of pure states). For our purposes, though, it is more convenient to 
define the density operator in a slightly different form, namely, as

W^ = (27T)-"|VXV'|. (2.42)
The symbol of this operator, Wy = symbx Wy, is a real function called the Wigner 
function. It is given by

Wy(x, k) = y ds(x + s/2|^)(V,|x - s/2)e-^»

= y ds^(x + s/2)^*(x - s/2)e-^^, (2.43)

which is manifestly real and can be understood as the (inverse) Fourier image of

Cy (x, s) = %6(x + s/2)%6*(x - s/2) = / dk Wy (x, k) e^'*. (2.44)

Any function bilinear in ip and ip* can be expressed through Wy. Specifically, for any 
operators L and R, one has

(LV'(x))(RV'(x))'=<x|L|VXV'|^|x)

= (27T)Xx|LWyRt|x)
= / dk L(x, k) * Wy (x, k) * R*(x, k), (2.45)

where L and R are the corresponding symbols and (2.28) was used along with (2.31). As 
a corollary, and as also seen from (2.28), one has

|%6(x)|3=/dkWy(x,k), |^(k)|3=/dxWy(x,k). (2.46)

As a reminder, ip(x) = <x|ip) and ip(k) = <k|/>) is the Fourier image of ip (2.23), so 
|X(x) |2 and |X(k) |2 can be loosely understood as the densities of quanta (associated 
with the field ip) in the x-space and the k-space, respectively. Because of (2.46), Wy is 
commonly attributed as a quasiprobability distribution of wave quanta in phase space.



(The prefix ‘quasi’ is added because Wy can be negative.) In case of real fields, which 
satisfy <x|V’> = (V’|x), one also has

Wy(x, k) = Wy(x, -k). (2.47)

Of particular importance are Wigner functions averaged over a sufficiently large phase- 
space volume Ax Ak > 1. The average Wigner function Wy is a local property of the 
field (as opposed to, say, the field’s global Fourier spectrum) and satisfies (appendix A)

Wy 5: 0. (2.48)

2.1.7. Generalization to vector fields
In case of vector (tuple) fields = (ip1, ip2,..., ipM)J, kets are column vectors,

|V0= bras are row vectors,
The operators acting on such kets and bras are matrices of operators. The Weyl symbol 
of a matrix operator is defined as the matrix of the corresponding symbols. As a result, 
the symbol of a Hermitian adjoint of a given operator is the Hermitian adjoint of the 
symbol of that operator:

A? <-» A\ (2.49)
and as a corollary, the symbol of a Hermitian matrix operator is a Hermitian matrix.

In particular, the density operator of a given vector field ip is a matrix operator

Wy = (27T)-"|^X^|. (2.50)

The symbol of this operator, Wy = symbxWy, is a Hermitian matrix function^

Wy(x, k) = y ds^(x + s/2)^t(x - s/2)e-'t-», (2.51)

called the Wigner matrix. (It is also called the ‘Wigner tensor’ when ip is a true vector 
rather than a tuple.) It can be understood as the (inverse) Fourier image of

Cy(x, s) = ip(x + s/2)ip^(x - s/2) = JdkWy(x, k)elks. (2.52)

The analog of (2.45) is (appendix B.l)

(L-i/’(x))(R-i/’(x))t = /dk L(x, k) * Wy(x, k) * R^x, k). (2.53a)

The Wigner matrix averaged over a sufficiently large phase-space volume Ax Ak > 1 is 
a local property of the field, and it is positive-semidehnite (appendix A).

For real fields, one also has

Wy(x, k) = WT (x, -k) = W^(x, -k), (2.536)

and (2.53) yields the following corollary at e -» 0, when * becomes the usual product 
(appendix B.l):

(L^)tR^=/dktr(Wy(LtR)H). (2.53c)

The generalizations of the other formulas from the previous sections are obvious.

f By construction, Wy is a matrix with mixed indices, (Wy)%. In sections 5.1 and 5.2, we 
also operate with a Wigner matrix that has two upper indices. Because the field of interest is 
real there, the dagger t in (2.51) is assumed omitted in that case.

Quasilinear theory 11
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2.2. Weyl symbol calculus on phase space
2.2.1. Notation

Consider a Hamiltonian system with coordinates x = (x1, x2,..., xn) and canonical 
momenta p = (pi,p2,... ,pn)- Together, these variables comprise the phase-space coor- 
dinates z = (x,p), i.e.

z = (z\ ..., z2") = (x\ ..., x",pi,... ,p»). (2.54)

Components of z will be denoted with Greek indices ranging from 1 to 2/7 .f 
Hamilton’s equations for za can be written as i“ = {x“, H}, or equivalently, as

(2.55)

Here, H = H(t, z) is a Hamiltonian, dp = dfdz13,

(A,B} = J^(^A)(^B) (2.56)

is the Poisson bracket on z, Ja/3 is the canonical Poisson structure:

0n is an //-dimensional zero matrix, and ln is an //-dimensional unit matrix. The 
corresponding equation for the probability distribution /(f, z) is

&/={#,/}. (2.58)

Solutions of (2.58) and other functions of the extended-phase-space coordinates X = 
(f, z) can be considered as vectors in the Hilbert space JYX with the usual inner product!

(2.59)

Assuming the notation N = dim X = 2n + 1, one has

dX = dA"1 dA"2 ... dA"w = dt dx1 ... dxn dpi,..., dpn. (2.60)

Let us introduce the position operator on z,

z = (x\. x",pi,. p»), (2.61)
CC p

and the momentum operator on z,

$ = (-idi, -, -id», -i^,..., -id"), (2.62)
k r

where d* = d/dxl but d® = d/dp*; that is, z = (x,p), q = (k,f), and

^ = z", = -id«. (2.63)
Then, much like in section 2.1, one can also introduce the position and momentum 
operators on the extended phase space X:

X = (t,z) = (r,2,p), g=(-w,g) = (-w,k,r). (2.64)

f However, the index a is reserved as a tag for individual particles and waves.
I Note that the inner product (2.59) is different from (2.1). Still, we use the same notation 

assuming it will be clear from the context which inner product is used in each given case.
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Assuming the convention that Latin indices from the beginning of the alphabet 
(a, 5, c,...) range from 0 to 2n, and 8a = 8/8Xa, one can compactly express this as

= X", X. = -id.. (2.65)
The eigenvectors of these operators will be denoted \X) and \K):

x|x) = x|x), 2'|A') = A'|fr>, (2.66)

and we assume the usual normalization:

(jfi|A:2) = ^1-^2), <Ari|AT2) = J(Ari-Ar2). (2.67)
Both sets {|X>, X e Rw} and {|K),K e Rw} form a complete basis on Jfx, and the 
eigenvalues of these operators form a real extended phase space (X, K), where

X = (f, z), fC = (—w, g). (2.68)
Particularly note the following formula, which will be used below:

f ) ( -I„ £ ) ( r ) " * ■ r - f ' *■ <2-69>

2.2.2. Wigner-Weyl transform
One can construct the Weyl symbol calculus on the extended phase space X just like 

it is done on spacetime x in section 2.1, with an obvious modification of the notation. 
The Wigner-Weyl transform is defined as

A(X, #) = / dS(X + S/2|A|X - S/2)e-^ = symbyA, (2.70)

A = y dXdJfdS |X + ^/2)A(X, fC)(X - S/2|e^ = operyA. (2.71)

(Notice the change in the font and in the index compared to (2.26) and (2.25).) The 
corresponding Moyal product is denoted ★ (as opposed to * introduced earlier):

A*B = A(X,A-)e^^B(X,A-), (2.72)

where Cx = 8x • 8k — 8k • 8x can be expressed as follows:
. dAdB dAdB dAdB dAdB dAdB dAdB

dt dw dw df dz* dA* dA* dz* dp* dr* dr* dp*
If an operator A is local in p, its X representation and x representation satisfy

(f,z,p|A|f',a;',p') = (f,z|A|f',z')d(p -p'), (2.74)
and therefore the Weyl symbol of A is the same irrespective of whether the operator is 
consideredmn ,XAx or onJ^. In this case, we will use a unifying notation syrnb A instead 
of symbyA and symbxA.

2.2.3. Wigner functions and Wigner matrices
The density operator of a given scalar field f is given by

% = (27T)-"|VXV'|. (3-75)

The symbol of this operator, I-Ty = symbyll^,, is a real function called the Wigner 
function. It is given by

WXX,*T) = / d^V(^ + ^/2)^(^ - 3/2)e-^-s (2.76)
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which can be understood as the (inverse) Fourier image of

c^(jr,,s) = v(a: + s/2)V'*(a:-'S/2)= /d#wxx,.K')e^. (2.77)

In particular, one has

J dr symbYWy = symbxWy(p), (2.78)

where the right-hand side is given by (2.43), with p treated as a parameter. Also, 
for real fields,

W^(X,AT) = W^(X,-AT). (2.79)
The density operator of a given vector field ip = (ip1, ip2,..., ipM) is a matrix operator

#4, = (27T)-"|^X^|. (2-80)

The symbol of this operator, or the Wigner matrix, is a Hermitian matrix function

MW, AT) = y + 3/2)^^(X - 3/2) (2.81)

which can be understood as the (inverse) Fourier image of

C^,(X, S) = ^,(X + ^/2)^,^(X - S/2) = / dfC ^(X, AT) e^. (2.82)

In particular, one has

/ dr syrnbYW^ = symbxW^, (p), (2.83)

where the right-hand side is Wy, given by (2.51), with p treated as a parameter. Also, 
for real fields,

n^(x, A:) = _#) = ^(x, -AT). (2.84)
Like those on (x, k), the Wigner matrices (Wigner functions) on (X,K) become 

positive-semidehnite (non-negative), and characterize local properties of the correspond­
ing fields, when averaged over a sufficiently large phase-space volume AX AK > 1.

2.3. Au.m.mu.n/ o/ aecAon, &
In summary, we have introduced a generic n-dimensional physical space x, the dual n- 

dimensional wavevector space k, the corresponding n-dimensional (n = n + 1) spacetime 
x = (t, x), and the dual n-dimensional wavevector space k = (—w, k). We have also in­
troduced an n-dimensional momentum space p, the corresponding 2n-dimensional phase 
space z = (x,p), the X-dimensional (N = 2n + 1) extended space X = (f, z) = (f, x,p), 
and the dual X-dimensional wavevector space K = (—w, q) = (—w, fe, r), where r is the 
n-dimensional wavevector space dual to p. We have also introduced the 2X-dimensional 
phase space (X, K). Each of the said variables has a corresponding operator associated 
with it, which is denoted with a caret. For example, x is the operator of position in the 
x space, and k = -ij* is the corresponding wavevector operator.

Functions on x form a Hilbert space Xc, and the corresponding bra-ket notation is 
introduced as usual. Any operator A on Xc can be represented by its Weyl symbol 
A(x, k). The correspondence between operators and their symbols, A <-» A, is determined 
by the Wigner-Weyl transform and is natural in the sense that (2.29) is satisfied. In
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particular, AB <-»• A * B, where * is the Moya] product on (x^k). When the geometrical- 
optics parameter is negligible (e —»• 0), one has A = A(x, k) and the Moyal product 
becomes the usual product. Similarly, functions on X form a Hilbert space .AAX, the 
corresponding bra-ket notation is also introduced as usual, any operator A on Jifx can 
be represented by its Weyl symbol A(X, K), and AB <-»• A ★ B. An operator that is local 
in p has the same symbol irrespective of whether it is considered on or on Jifx.

Any given field V1 generates the corresponding density operator (27t)_n (V’XV’I and 
its symbol called the Wigner function (Wigner matrix, if the field is a vector). If the 
density operator is considered on J%, it is denoted Wy, and the corresponding Wigner 
function is denoted W^(x, k). If the density operator is considered on Jifx, it is denoted 
W.p and the corresponding Wigner function is denoted W^(X,K). The two Wigner 
functions are related via f dr W.p (t, x, p. w, k. r) = Wy, (t, x, w, k: p), where p enters Wy, 
as a parameter, if at all. If averaged over a sufficiently large phase-space volume, the 
Wigner functions (matrices) are non-negative (positive-semidehnite) and characterize 
local properties of the corresponding fields.

Qwaa/./mear /.Aeon/

3. Model
Here, we introduce the general assumptions and the key ingredients of our theory.

3.1. Basic assumptions
3.1.1. Ordering

Let us consider particles governed by a Hamiltonian H = H + H such that

# = C(e) «# = C(1). (3.1)

In other words, H serves as a small perturbation to the leading-order Hamiltonian H. 
The system will be described in canonical variables z = (a;,p) e R2n. Let us also assume 
that the system is close to being homogeneous in x. This includes two conditions. First, 
we require that the external fields are weak (yet see section 3.1.2), meaning

0XH ~ kxH = O(e), dpH ~ kpH = 0(1), (3.2)

where e « 1 is a small parameter, kx and kp are the characteristic inverse scales in the 
x and p spaces, respectively, and the bar denotes local averaging.f Hence, the particle 
momenta p are close to being local invariants. Second, the statistical properties of II are 
also assumed to vary in x slowly. These properties can be characterized using the density 
operator of the perturbation Hamiltonian,

W = (27T)-^|#X#|, (3.3)

and its symbol, the (real) Wigner function, as in (2.43):

AT) = y dS + S/2)#(JT - S/2) (3.4)

Specifically, we will use the average Wigner function, W, which represents the Fourier 
spectrum of the symmetrized autocorrelation function of H:

C(JC, S) = + S/2)#(JC - S/2) = dATW(%,Ar) e^. (3.5)

f An exceptioiy will be made for eikonal waves, specifically, for quantities evaluated on the 
local wavevector k = (—w, k).
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The averaging is performed over sufficiently large volume of x to eliminate rapid os­
cillations and also over phase-space volumes AX AK > 1, which guarantees W to be 
non-negative and local (section 2.2.3). The function W can be understood as a measure 
of the phase-space density of wave quanta when the latter is well defined (section 7).

We will assumef

&W=C(e), J=W=C(e), J„W=C(1). (3.6)

That said, we will also allow (albeit not require) for oscillations to be constrained by 
a dispersion relation. In this case, W oc J(w — cu(t,x)), so (3.6) per se is not satisfied; 
then we assume a similar ordering for / dev W instead. Also note that in application to 
the standard QLT of homogeneous turbulence (Stix 1992, chapter 16), e is understood 
as the geometrical-optics parameter characterizing the smallness of the linear-instability 
growth rates. (We discuss the ordering further in the end of section 3.3.)

3.1.2. QuasiUnear approximation
The particle-motion equations can be written as

(3.7)

where va and ua are understood as the unperturbed phase-space velocity and the 
perturbation to the phase-space velocity, respectively:

(3.8)

The notation vl (with * = 1,2,... n) will also be used for the spatial part of the phase- 
space velocity va, i.e. for the true velocity per se. Likewise, v will be used to denote either 
the phase-space velocity vector or the spatial velocity vector depending on the context. 
Also note that a slightly different definition of v will be used starting from section 5.6. 

The corresponding Klimontovich equation for the particle distribution /(#, z) is

&/={]? + #,/}. (3.9)

(If collisions are not of interest, (3.9) can as well be understood as the Vlasov equation. 
Also, a small collision term can be included ad hoc; see the comment in the end of 
section 3.3.) Let us search for / in the form

/ = ? + /, 7=0. (3.10)

The equations for / and / are obtained as the average and oscillating parts of (3.9), 
and we neglect the nonlinearity in the equation for /, following the standard QL 
approximation (Stix 1992, chapter 16). Then, one obtains

&7 = {#,?}+ {#,/}, (3.ii)
&7={]?,7} + {j77}. (3.i2)

A comment is due here regarding plasmas in strong fields and magnetized plasmas in 
particular. Our formulation can be applied to such plasmas in canonical angle-action 
variables (0, J). For fast angle variables, the ordering (3.2) is not satisfied and the 
Weyl symbol calculus is inapplicable as is (see the footnote on p. 7). Such systems 
can be accommodated by representing the distribution function as a Fourier series in 
4> and treating the individual-harmonic amplitudes separately as slow functions of the

f As a reminder, the notation A = 0(e) does not rule out the possibility that A/e is small. 
Also note that the terms and ‘of order’ in this paper mean the same as ‘O’.
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remaining coordinates. Then, our averaging procedure subsumes averaging over so the 
averaged quantities are ^-independent and (3.2) is reinstated. In particular, magnetized 
plasmas can be described using guiding-center variables. Although not canonical by 
default (Littlejohn 1983), they can always be cast in a canonical form, at least in principle 
(Littlejohn 1979). Examples of canonical guiding-center variables are reviewed in (Cary 
& Brizard 2009). To make the connection with the homogeneous-plasma theory, one can 
also order the canonical pairs of guiding-center variables such that they would describe 
the gyromotion, the parallel motion, and the drifts separately (Wong 2000). This readily 
leads to results similar to those in (Catto et al. 2017). Further discussions on this topic 
are left to future papers.

3.2. Equation for f
Let us consider solutions of (3.12) as a subclass of solutions of the more general equation

(3.13)

Here, we have introduced an auxiliary second ‘time’ r, the operator

L = —dt + {H, ■} = —dt + Ja^{0aH)dfj = —dt — V^d\ = --Wds (3.14)

(here and further, ■ denotes a placeholder), and V(X) = (1 ,v(t,z)) 
velocity in the X space. Note that

is the unperturbed

= o (3.15)

due to the incompressibility of the phase flow. Hence, [<?„, U“] = 0, so L is anti-Hermitian. 
Let us search for a solution of (3.13) in the formf

/(T,JQ=e^(T,JQ. (3.16)

Then, dTf = Lf + dTf, so dTf = e-^TtF(X) and therefore

f(T, JQ = e-^o(JQ + rdT'e-^(JQ,
J T0

(3.17)

where S,a(X) = /(r0,X). Hence, one obtains

/(T, JQ = + /"
J T0

(3.18)

or equivalently, using t" = r — t',

/(T,J0 = go(T, JQ + r dT"fr»^(J0.
Jo

(3.19)

Here, g0 is a solution of dTgo = Lg0, specifically,

9o(T A") = fr-ToW-Xj, 9o(To, A") = /(To, A"), (3.20)

and we have also introduced

(3.21)

Because L is anti-Hermitian, the operator Tr is unitary, and comparison with (2.19) 
shows that it can be recognized as a shift operator. For further details, see section 4.1.

f Using the auxiliary variable r allows us to express the propagator as a regular exponential, 
rather than ordered exponential, even for /-dependent H, because L is independent of r.
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Using TV, one can express (3.19) as 

/ = go + 'd/T,, (3.22)

where "V is the Green’s operator understood as the right inverse of the operator dT — L, 
or on the sgace of r-independent functions, 8t - {H, ■}. Let us rewrite this operator as 

=%=+%,, where
- fT-TQ ^ ^ fT-To ^
^<=/ d/e-^i;,, %.= / d/(l-e-^)TT', (3.23)

Jo Jo

and v is a positive constant. Note that is well defined at r0 —»• —oo, meaning that 
is well defined for any physical (bounded) field T.f Thus, so is go + Let us

take r0 —»• —oo and then take v —* 0+. (Here, 0+ denotes that v must remain positive, 
i.e. the upper limit is taken.) Then, (3.22) can be expressed as

/ = g + (TF, g = lim lim (go+%,^). (3 24)IP —^ 0+ To —> — 00
Here, we introduced an ‘effective’ Green’s operator G = lim^_>0+ limTo_>_r_ iV<, i.e.

[• r
G= lim / dTe-^. (3.25)

V—>0+ J Q

This operator will be discussed in section 4.2, and g will be discussed in section 4.3. Mean­
while, note that because r is just an auxiliary variable, we will be interested in solutions 
independent of r. In particular, this means that /(r0, X) = f{X), so S,o(X) = f{X), so 
(3.20) leads to

go(r,A:)=T:_Tj(A:). (3.26)

3.3. Equation for f 
Using (3.22), one can rewrite (3.12) for / as follows:

d J = {]?, /} + {#,g} + (3.27)

Notice that
{^, g} = -{g,ff} = -^a(.7^g^^) = -(Ww*gj (3.28)

and also

= ^(J^(^#)G(J^(^#)(^70)

= df (wfGKd„7)). (3.29)
The field ua enters here as a multiplication factor and can be considered as an operator:

w"V(JQ = w"(J0V;(a:). (3.30)
Then, (3.29) can be compactly represented as

{#,G{#,7}} = d«(G"G^^7). (3.31)

We will also use the notation

d( = 3t + idd-y = 3t — {H, ■}. (3.32)

f Unlike classic plasma-wave theory, this approach does not involve spectral decomposition, 
so there is no need to consider fields that are exponential in time on the whole interval (—oc, oc).
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This leads to the following equation for /:

dj = + r, (3.33)
where we introduced the following average quantities:

T = -J«(^), (3.34)
Our goal is to derive explicit approximate expressions for the quantities (3.34) and to 

rewrite (3.33) in a more tractable form using the assumptions introduced in section 3.1. 
We will usef

- {^,7} = O(e), d,7 = C(E2), (3.35)

and we will keep terms of order e, e2, and ee2 in the equation for /, while terms of order 
e4, e2e2, and higher will be neglected. This implies the ordering

E2 « e « E « 1. (3.36)

As a reminder, e is a linear measure of the characteristic amplitude of oscillations, and 
e is the geometrical-optics parameter, which is proportional to the inverse scale of the 
plasma inhomogeneity in spacetime. As usual then, linear dissipation is assumed to be 
of order e. This model implies the assumption that collisionless dissipation is much 
stronger than collisional dissipation, which is to emerge as an effect quadratic in / 
(section 6). Furthermore, the inverse plasma parameter! will be assumed to be of order 
e, so the collision operator for / (section 6.8) will be of order ee2. Within the assumed 
accuracy, this operator must be retained, while the dynamics of / is considered linear and 
therefore collisionless. Alternatively, one can switch from the Klimontovich description 
to the Vlasov-Boltzmann description and introduce an ad hoc order-e collision operator 
directly in (3.9). This will alter the Green’s operator, but the conceptual formulation 
would remain the same, so it will not be considered separately in detail.

3.4. Au.m.mu.r// 0/ aecAon, j?
Our QL model is defined as usual, except: (i) we allow for a general particle Hamil­

tonian H; (ii) we use the Klimontovich equation rather than the Vlasov equation to 
retain collisions; (hi) we use local averaging (denoted with overbar) and allow for weak 
inhomogeneity of all averaged quantities; (iv) we retain the initial conditions g for the 
oscillating part of the distribution function (defined as in (3.24) but yet to be calculated 
explicitly). Then, the average part of the distribution function satisfies

&7 - 7} = cUD"%7) + r, (3.37)

where Da/3 = uaGvJ3, F = -da(uag), ua is the wave-driven perturbation of the phase- 
space velocity (see (3.8)), ua is the same quantity considered as an operator on (see 
(3.30)), and G is the ‘effective’ Green’s operator given by

r c
G= lim / (3.38)

V—>0+ J Q

Also, 8a = 8/8za, and {■, ■} is the Poisson bracket on the particle phase space z. The 
equation for / used in the standard QLT is recovered from (3.37) by neglecting F and the 
spatial gradients (in particular, the whole Poisson bracket) and also by approximating 
the operator Dal3 with a local function of z.

f Starting with section 5.6, we will assume dtf ~ ee2/ instead.
I By the plasma parameter we mean the number of particles within the Debye sphere.
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4. Preliminaries
Before we start calculating the functions in (3.37) explicitly, let us get some prelim­

inaries out of the way. In this section, we discuss the shift operators Tt (section 4.1), 
approximate the operator G (section 4.2), and develop a model for the function g that 
encodes the initial conditions for / (section 4.3).

4.1. Shift operator
Here, we derive some properties of the shift operator Tt introduced in section 3.2.

4.1.1. Tt as a shift
Here, we formally prove (an admittedly obvious fact) that

= (4.i)

where the ‘characteristics’ Ya solvef 
dYa__ = y*(T = o) = x*, (4.2)

and thus i% can be Taylor-expanded in r as

^(A:) = Ty-^TV%r' + ..., y* = y*(jQ. (4.3)

As the first step to proving (4.1), let us Taylor-expand Va around a fixed point Xp.

+ (J^») JX'' + ..., (4.4)

where Vfi = Va{Xi). If one neglects the first and higher derivatives of Va, one obtains

^ = ^(^ - TPi). (4.5)

By taking the limit X\ —* X, which corresponds to Pi -> V, one obtains
!ZW(J0 = - TP) + O(^). (4.6)

Similarly, if one neglects the second and higher derivatives of Va, one obtainsJ

% g-Tyv. g-i [-T(,y)&vby -Tvyrq

% g-T(^vy)&vby g-Tvyr. giTAy(,yw)[,y,&vby]^^j 

% g-T(,-bVn&Y% g-TVT'\

_ g-T(r^T)&vby g-rvy r.+Y vy)A

% V(^ - TPi + ^ T^JbPi). (4.7)
In the limit X\ —»• X, when e_Ti' >>vi)sxh< = _» 1 and V\ —»• V, one obtains

frV'(^) = ^ - TP(JC) + ^ T^(P - J;c)pl + O(^). (4.8)

In conjunction with (4.3), equations (4.6) and (4.8) show agreement with the sought 

f In terms of t' = t — r, (4.2) has a more recognizable form dYa/dt' = l/a(Y), with
wft' = t) =^r.

| We use the Zassenhaus formula e"*+"® = e"* e** LA,sj/2e[A,[A,Ajj/s+lA,[A,Ajj/e ...
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result (4.3) within the assumed accuracy. One can also retain m derivatives of V and 
derive the corresponding approximations similarly. Then the error will be 0(rm+2).

For an order-one time interval r, one can split this interval on NT » 1 subintervals of 
small duration t/Nt and apply finite-m formulas (for example, (4.6) or (4.8)) to those. 
Then the total error scales as 0(N~m~1) and the exact formula (4.1) is obtained at 
/Vr -» 00.

4.1.2. Symbol of Tt

Using the bra-ket notation, (4.1) can be written as

Thus, =(JC -4(JQ|, so

(JCilfrlJW = 1 -1 - ^2 -(4.10)

Using (2.70), one obtains the Weyl symbol of Tt in the form

4(^,fT)= /d^e-^J(^-4(^ + ^/2)). (4.11)

From (4.3), one has

+ 3/2) = TU"(A: + S/2) - (T^/2) + C(<=3)
= TU" + (T/2)(%y")3'' - (T2/2) + C(e2)
= + C(<=2), (4.12)

where we introduced a matrix M = 1 — m, or explicitly,

= m% = (T/2)(&y"). (4.13)

Let us express the term 0(e2) in (4.12) as -Mab^b. Then,

S(S — £t(X + S/2)) = S(S — MV t — mS + M/j.)
= S (M (S — V t + /lx))
= S(S — Vt + /lx)/|det M\. (4.14)

Because m = O(e), the well-known formula yields det M = 1 + trm + O(o2). But 
trm = 0 by (3.15), so

S(S — £r(X + S/2)) = S(S — Vt + /lx) + G(e"). (4.15)

The last term 0(e2) is insignificant and can be neglected right away, so (4.11) leads to

4(JC, AT) % exp(iTf?(J:, #) + !#- /x), (4.16)

where we have introduced the following notation:

f2(X, K) = —K • V(X) = co — qava = co — k ■ v + O(e). (4.17)

By definition, /lx is a polynomial of r with coefficients that are of order e2 and therefore 
small. But because r can be large, and because /lx is under the exponent, this makes Tt 
potentially sensitive to this term, so we retain it (for now).



22 I. Y. Dodin

4.2. Effective Green’s operator
The effective Green’s operator (3.25) can be understood as the right inverse of the 

operator (cf. section 3.2)

Leff = lim (St — {H, ■} + v), (4.18)
i/—>0+

so we denote it also as G = Lfg (which is admittedly abuse of notation). Because LeS has 
real X representation by definition, the X representation of G is real too. In particular, 
\X + S/2\G\X - S/2') is real, hence

G(A:,-A') = G*(A:,A') (4.19)

by definition of the Weyl symbol (2.70). As a corollary, the derivative of G(X, K) with 
respect to the oth component of the whole second argument, denoted Gl°, satisfies

A-))* = -A"). (4.20)

Also note that G can be expressed as

G = lim i(w — ifki— pfr1 + iz/)_1 (4.21)

(the notation ‘lim„_>o+ A(iv + iz/)’ will also be shortened as ‘A(iv + i0)’), whence
PC
— =OW = d(e). (4.22)

Due to (4.16), the leading-order approximation of the symbol of the operator (3.25) is 
G(JC, AT) = Go(f?(A:, A")), where

Go(f?)= lim / dTe-^+^ = 7TJ(l?)+ipvl (4.23)
1/ —> 0+ Jq S £

and the (standard) notation pv(l/l7) is defined as follows:

i . ,. npv — = lim —--- —y .El v—>o+ + EC
This means, in particular, that for any A, one has

(4.24)

j[A,Go]= /"dATA(A:,Ar)Go(i?(A:,Ar))

= dAT A(A:, AT)J(f?(jr, AT)) + i ^ dAT , (4.25)

where f is a principal-value integral. Also usefully, G0 = G0 and

d. J[A, Go] = / dAT A(Jf, AT)G(,(1?(A:, AT)) AT)

= -(d.y"(A:)) / d*TK&A(:r,*r)GMa:,*r))

= -(d.y"(A:)) ^ /dfcK&A(A:, *r)Go(f?(jr, A:)), (4.26)

where the notation d/PA = is defined, for any A and Q, as follows:

A/<3(A,^(A/«(A + o)m. (4.27,
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Now let us reinstate the term /lx in (4.16). It is readily seen (appendix B.2) that although 
/lx may significantly affect Tt per se, its effect on J\A, G] is small, namely,

J[A,G] - J[A,Go] = 0(g3). (4.28)

Below, we apply this formulation to A = 0(s2), in which case (4.28) becomes 
J[A, G] - J[A, G0] = G(e2e2). Such corrections are negligible within our model, so 
from now on we adopt

G(jr,_K-) % G(jr,_K-) % Go^a:,#)). (4.29)

4.3. Initial conditions
Consider the function g from (3.24). Using (3.26), the latter can be written as follows:

fT—To
g = lim lim

ip —> 0+ tq —^ — 00 Tr-To/W dr' (1 )Tr,jF(JQ (4.30)

Because (1 — e_"T) is smooth and TTtF is rapidly oscillating, the second term in the 
external parenthesis is an oscillatory function of r0 with the average negligible at v —* 0. 
But the whole expression in these parenthesis is independent of r0 at large r0 (section 3.2). 
Thus, it can be replaced with its own average over r0, denoted ■(.. ,)To. Because there is 
no (/-dependence left in this case, one can also omit lim„_>o+- That gives

Using

9 = ^™_,d%--To/(-%)>To. (4.31)

M = ^V(Z - z.M), f(^) = J(z - z.M), (4.32)

where the sum is taken over individual particles, one can writef

/(JQ = f(A:) - ^ - Z.(^)), (4.33)

where za = za - za are the JTdriven small deviations from the particle unperturbed 
trajectories ~za. Then, / = f(X), and the linearized perturbation / = / — / is given by

TM = f(A:) - f(JQ - zX^)J,J(z - ^(JQ). (4.34)

By definition, the unperturbed trajectories satisfy LS(z - za(X)) = 0, where L as 
in (3.14); thus,

Tr (4.35)

Also, <Tt—r0/>T0 = 0, because za are oscillatory functions of X that is slowly evolved by 
Tt—r0 • Hence, g is the microscopic part of the unperturbed distribution function:

g = / = f(A:)-f(A:). (4.36)

This indicates that the term F defined in (3.34) is due to collisional effects. We postpone 
discussing these effects until section 6, so F will be ignored for now.

f Taylor-expanding delta functions is admittedly a questionable procedure, but here it is 
understood as a shorthand for Taylor-expanding integrals of /.
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4.4. Summary of section f
The main result of this section is that the Weyl symbol of the effective Green’s operator 

G can be approximated within the assumed accuracy as follows:

= (4.37)

Here, V is the unperturbed velocity in the X space, so {2(X,K) = lo - k ■ v + O(e), 
where v is the unperturbed velocity in the x space, and

Oo(f?) = 7TJ(f?)+ipvl = (4.38)

We also show that the term F defined in (3.34) is due to collisional effects. We postpone 
discussing these effects until section 6, so F will be ignored for now.

5. Interaction with prescribed fields
In this section, we explore the effect of the diffusion operator Da/3. The oscillations 

will be described by W as a prescribed function, so they are allowed (yet not required) 
to be 'off-shell’, i.e. do not have to be constrained by a dispersion relation. Examples 
of off-shell fluctuations include driven near-held oscillations, evanescent waves, and 
microscopic fluctuations (see also section 6). We will first derive the symbol of Da/3 
and, using this symbol, approximate the diffusion operator with a differential operator 
(section 5.1). Then, we will calculate the coefficients in the approximate expression for 
Da>3 (sections 5.2 and 5.3). Finally, we will introduce the concept of the OC distribution 
(section 5.4) and summarize and simplify the resulting equations (section 5.6).

5.1. Expansion of the dispersion operator
The (effective) Green’s operator can be represented through its symbol G using (2.71):

G=—/dA:dA'd^|A: + ^/2)G(A:,A')(A:-^/2|e^. (5.1)
(27Tj^ y

The corresponding representation of ua is even simpler, because the symbol of ua is 
independent of K:f

w"=/da:|jr>w"(a:)(a:|. (5.2)

Let us also introduce the Wigner matrix of ua, denoted TT“/3, and its inverse Fourier 
transform Gff as in section 2.2.3. Using these together with (2.67), one obtains

(2n)^G^= / dA:'dA:"dA:dA'd^^(A:')^(A:")G(A:,A')e^

% ijr'XJf'ia: + 3/2><a: - s/2|jrxa:"|
= / djcda-dsc^jc, s)G(jc, #)e^|jr + s/2xa:-,s/2|

= / dJfda"da"'d,S' ^(A:\A")G(A:%fr)e^'+^")^

X |JC' + S'/2XJC' - S'/2|. 

f One can also derive (5.2) formally from (2.71).

(5.3)
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Then, by taking symbY of (5.3), one finds that the symbol of Da/3 is a convolution of 
I-U“/3 and G (appendix B.3):

D^(A:,A') = /dA"^(A:,A")G(A:,A'-A"). (5.4)

Let us Taylor-expand the symbol (5.4) in K:

% / dA"W%'3(A:,A")G(A:,-A")

+ Kc /dA"^(A:, A")Gl"(A:, -A") + O(K.KbGl^). (5.5)

As a reminder, G'a(X, —K) = -daG(X, —K) denotes the derivative of G with respect 
to (the oth component of) the whole second argument, —Ka, and

dG _ dG 
dATa ^ dw h-i

dG , dG
d/% dr*'

(5.6)

Upon application of operY, oj gets replaced (roughly) with idt = O(e) and /% gets 
replaced (also roughly) with —id* = O(e). By (4.22), the last term in (5.6) is of order 
e too. This means that the contribution of the whole KadaG term to the equation 
for / is of order e. The standard QLT neglects this contribution entirely, i.e. adopts 
Dal3(X,K) % Dal3(X, 0), in which case the diffusion operator becomes just a local 
function of phase-space variables, Da/3 % Da/3(X, 0). In this work, we retain corrections 
to the first order in X, i.e. keep the second term in (5.5) as well, while neglecting the 
higher-order terms as usual.

Within this model, one can rewrite (5.5) as follows:
zrf(a:, an % D^(jq + #c6r^(a:). (5.7)

Here, we used (4.19) and introduced

D^(JQ = /" d#W^%,jr)G* (%,#), (5.8)

e"^(jQ ^ / d#W^(JC, _K-)(G|C(JC, #))*, (5.9)

which satisfy (appendix B.4)

D^(JQ = (D^(JQ)*, G^(A:) = -(G^(A:))\ (5.10)

The first-order Weyl expansion of Da/3 is obtained by applying operY to (5.7). Namely, 
for any one has (cf. section 2.1.5)

What remains now is to calculate the functions Dfl3 and Oa/3c explicitly.

(5.11)

5.2. Wigner 'matrix of the velocity oscillations 
To express Dal3 through the Wigner function W of the perturbation Hamiltonian 

(section 3.1.1), we need to express I-U“/3 through W. Recall that I-U“/3 is the symbol of 
the density operator TU“/3 = (2n'GN |u“)(u/3| (section 2.2.3). By definition (3.8), one has 
ua = iJ“M(/M17, where qa = —ida (section 2.2.1). Then,

(5.12)
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where W is the density operator whose symbol is W. By applying symbY, one obtains

^ J^(^ A IT*g,), (5.13)
where ★ is the Moyal product (2.72). Using formulas analogous to (2.33) in the (X, K) 
space, one obtains

dn ★ W ★ qv = ( q^W ★ dv

,W

i_cW\
2dz^y
i dlU i d /

- — (jjy ------ -t---------- I n.. W ?„ —----------- 1

— QiiQvWh
i / dlU 1

Hence, 1U“/3 and W are connected via the following exact formula:

{*** -1 (*S - »• iS)+\Sk>

(5.14)

(5.15)

5.3. Nonlinear potentials
Due to (5.10), one has D“/3 = re£>“/3• Using this together with (5.8), (5.15), (4.29), 

and (4.23), one obtains

= J"" Jf" re y dfC ^7t 6 (12) - i pv y ) .

_ i / diu i
Qv % y 4 y ' (5.16)

with notation as in (2.10). This can be written as T>“/3 = D“/3 + g“/3 + ^a/3, where

/ dfCn J(l?) (5.17)

and we also introduced
^ HSH-

y./3 j_ jafijpv f dfC7Tj(l?)

As shown in appendix B.5, the contributions of these two functions to (3.33) are

dzfy
= C(^),

dzfy
= O(^E^).

Thus, g“/3 must be retained and ?“/3 must be neglected, which leads to

% O'"3 + g^.

The function 6>“/3c = i irn 6>a/3c can be written as follows:

(5.18)

(5.19)

(5.20)

(5.21)

where we introduced

dA" g^VU(A:, A") ^r- pv 1

(5.22)
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and 5 is defined as in (4.27). Then finally, one can rewrite (5.11) as follows:

= (D^ + g^)^ - 0^(Jt + ^ ((^t + (5.23)

where we used (3.15). With some algebra (appendix B.6), and assuming the notation

(5'24)

one finds that (5.23) leads to

= cUD"f^7) - 1 dt^(0^^7) + {*,7}. (5.25)

Hence, (3.33) becomes (to the extent that F is negligible; see section 6.7)

d,7 + ^d,de(0"^7) - {^,7} = d^(D^^7). (5.26)

The functions 0“/3, F, and D“/3 that determine the coefficients in this equation are 
fundamental and, for the lack of a better term, will be called nonlinear potentials.

5.4. Oscillation-center distribution
Let us introduce

F = 7+^(0"^7). (5.27)

Then, using (5.25), one can rewrite (5.26) asf

&F - {%, F} = d*(D"%.F), (5.28)

where corrections 0(e4) have been neglected and we introduced H = H + F. As a 
reminder, the nonlinear potentials in (5.28) are as follows:

(5.29)

dfl I fl (5.30)

# = _ j/w _A_ (5.31)

Equations (5.27)-(5.31) form a closed model that describes the evolution of the average 
distribution / in turbulence with prescribed W. In particular, (5.28) can be interpreted 
as a Liouville-type equation for F as an effective, or ‘dressed’, distribution. The latter 
can be understood as the distribution of ‘dressed’ particles called OCs. Then, H serves as 
the OC Hamiltonian, D“/3 is the phase-space diffusion coefficient, F is the ponderomotive 
energy, FI = lo - qava, and va = J“/3<?/3i7. Within the assumed accuracy, one can redefine 
va to be the OC velocity rather than the particle velocity; specifically,$

= = + (5.32)

f The difference between F and / is related to the concept of so-called adiabatic diffusion 
(Ga.leev & Sagdeev 1985; Stix 1992), which captures some but not all adiabatic effects.
| The advantage of the amended definition (5.32) is that it will lead to exact conservation 

laws of our theory, as to be discussed in section 7.5.
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Then, the presence of 6{Q) in (5.29) signifies that OC-s diffuse in phase space in re­
sponse to waves they are resonant with. Below, we use the terms ‘OC-s’ and ‘particles’ 
interchangeably except where specified otherwise.

That said, the interpretation of OC-s as particle-like objects is limited. Single-OC- 
rnotion equations are not introduced in our approach. (They would have been singular for 
resonant interactions.) Accordingly, the transformation (5.27) of the distribution function 
/ i—* F is not derived from a coordinate transformation but rather is fundamental. As 
a result, particles and OC-s live in the same phase space, but the ‘dynamics of OC-s’ 
can be irreversible (section 5.5). This qualitatively distinguishes our approach from the 
traditional OC- theory (Dewar 1973) and from the conceptually similar gyrokinetic theory 
(Littlejohn 1981; C-ary & Brizard 2009), where coordinate transformations are central.

5.5. H-theorem.
Because W is non-negative (section 2.1.6), D“/3 is positive-semidehnite; that is,

= / djfTT aW 5: 0, a = (5.33)

for any real Q. This leads to the following theorem. Consider the OC- entropy defined as

^ / dz F(t, z)\nF(t, z). (5.34)

According to (5.28), y satisfies

^ / dz ({%, Fj + d«(D"/%F))

= - /dz (de%)(dfF) _ y dz (1 + Inf) ^(D^F)

= - y dz - y dz lnF<%,(D"^F)

= y dz(J"%/%)FlnF + y dzD"f(dalnF)(dflnF)F. (5.35)

The first integral vanishes due to Jalid‘2aj3 = 0. The second integral is non-negative due 
to (5.33). Thus,

d^
df ^0, (5.36)

which is recognized as the //-theorem (Lifshitz & Pitaevskii 1981, section 4) for QL OC 
dynamics.

5.6. Summary of section 5
From now on, we assume that the right-hand side of (5.28) scales not as 0(e2) but 

as 0(et2), either due to the scarcity of resonant particles or, for QL diffusion driven by 
microscopic fluctuations (section 6), due to the plasma parameter’s being large. Also, 
the spatial derivatives can be neglected within the assumed accuracy in the definition of 
F (5.27) and on the right-hand side of (5.28). Using this together with (2.69), and with 
(2.56) for the Poisson bracket, our results can be summarized as follows.
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dt dx dp dp dx dp 

The OC distribution F is defined as

dF
dp

^ 1 dF = f + — —— • | © ——
2 Jp

df
dp

(5.37)

(5.38)

so the density of OCs is the same as the locally averages density of the true particles:

J\f = J dpF = j dp/.

The function H is understood as the OC Hamiltonian. It is given by

H = FI + <7,

(5.39)

(5.40)

where FI is the average Hamiltonian, which may include interaction with background 
fields, and 0 is the ponderomotive potential. The nonlinear potentials that enter (5.37) 
can be calculated to the zeroth order in e and are given byf

D = J dujdknkk\N(t,k ■ v,k;p),

e-l/dvdfc fw ,
cv J cu — k • v + v t)=0

2Jp / dev dk feW
cv — fe • V ’

(5.41)

(5.42)

(5.43)

where fefe is a dyadic matrix with two lower indices, and the same conventions apply as 
in section 2.1.2. Also, v is hereby redefined as the OC spatial velocity, namely,

% = + (%3).

The function W is defined as

W(t, x, cv, fe;p) = / dr W(t, x,p, cv, fe, r),

(5.44)

(5.45)

where W is the average Wigner function (3.4) of the perturbation Hamiltonian, i.e. 
the spectrum of its symmetrized autocorrelation function (3.5). Due to (2.78), it can 
be understood as the average of W = symbxW (where W is defined in (3.3)), i.e. as 
the Wigner function of the perturbation Hamiltonian with p treated as a parameter. 
As such, W is non-negative, so D is positive-semidehnite. This leads to an 17-theorem 
(proven similarly to (5.36)) for the entropy density a = - J dp A In A:

D
^0,

\ y D
(5.46)

Also note that for homogeneous turbulence in particular, where W is independent of x,

f Remember that here we neglect F (3.34), which is a part of the collision operator to be 
reinstated in section 6.

f See section 9 for examples and section 6.6 for the explanation on how <P is related to A, which 
is yet to be introduced. Also note that in combination with (5.40), equation (5.43) generalizes 
the related results from (Kentwell 1987; Fraiman & Kostyukov 1995; Dodin & Fisch 2014).
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(2.46) yields that

J duj\N(t,x,uj,k;p) = J~ J dujdx\N(t,x,uj,k;p) = \H(t,k,p)\2, (5.47)

where, tn is the plasma volume (the index n denotes the number of spatial dimensions) 
and H is the spatial spectrum of H as defined in (2.23).

Equation (5.37) can be used to calculate the ponderomotive force 8t f dp / that a given 
wave field imparts on a plasma. This potentially resolves the controversies mentioned in 
(Kentwell & Jones 1987). We will revisit this subject for on-shell waves in section 7.5.

6. Interaction with self-consistent fields
Here, we explain how to calculate the function W in the presence of microscopic 

fluctuations (nonzero g). In particular, we reinstate the term F that was omitted in 
section 5. We also show that a collision operator of the Balescu-Lenard type emerges 
from our theory within a general interaction model. This calculation can be considered 
as a generalization of that in (Register & Oberman 1968) for homogeneous plasmas. 
Another related calculation was proposed in (Chavanis 2012) in application to potential 
interactions in inhomogeneous systems using action-angle variables, with global averag­
ing over the angles. (See also (Mynick 1988) for a related calculation in action-angle 
variables based on the Fokker-Planck approach.) In contrast, our model holds for any 
Hamiltonian interactions via any vector fields and allows for weak inhomogeneities in 
canonical coordinates.

6.1. Interaction model
Let us assume that particles interact via an M-component real field & = 

(S'1, S'2,..., <FM)J. It is treated below as a column vector; hence the index T. (A 
complex field can be accommodated by considering its real and imaginary parts as 
separate components.) We split this field into the average part # and the oscillating 
part 3L The former is considered given. For the latter, we assume the action integral of 
this field without plasma in the form

So = J dx £0, £q = - (6.1)

(see section 9 for examples), where S0 is a Hermitian operator^ and jU = is a row 
vector dual to fZU Plasma is allowed to consist of multiple species, henceforth denoted 
with index s. Because ^ is assumed small, the generic Hamiltonian for each species s 
can be Taylor-expanded in and represented in a generic form

= #0, + ^ (6.2)

(see section 9 for examples), which can be considered as a second-order Taylor expansion 
of the full Hamiltonian in fZU Here, H0s = H0s(t,x,p) is independent of & = &(t, x), 
as = (SSji, SSj2, • • •, Q'Sim)t is a column vector whose elements dsg are linear operators 
on and the dagger is added so that aj could be understood as a row vector whose 
elements aj ■ act on the individual components of the field; i.e. aJ’P' = aj ,.<?*. We let as

f The field action often has tiny form S0 = ^ f dxv/g (g<P*)S0&, where jj(x) is a 
spacetime metric, g = | det g |, and So is Hermitian witly respect to the inner product 
(4|V’)b = f dx v/g (g$*)i^. Using = g1-'4^ and S'0 = g1/,4gS0g-1/'4, one can cast this action 
in the form (6.1), with S'0 that is Hermitian with respect to the inner product (2.6).
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be nonlocal in t and x (for example, as can be a spacetime derivative or a spacetime 
integral), and we also let as depend on p parametrically, so

symbol = as(t,x,io,k;p). (6.3)

The matrix operators Ls and Rs and their symbols Ls and Rs are understood similarly.
The Lagrangian density of the oscillating-field-plasma system is

+ - if, (6.4)
^ S (7 s

where the sum is taken over individual particles. Note that

= /dp/s(t,z,p)^s(t,z,p), (6.5)

so the ^-dependent part of the system action can be written as S = f dx £ with
I i xx v--1 / 4.1: = (6.6)

% = So - ^ y dpf^/sAs. (6.7)

(The contribution of fs to the second term in (6.6) has been omitted because it averages 
to zero at integration over spacetime and thus does not contribute to S'.) This ‘abridged’ 
action is not sufficient to describe the particle motion, but it is sufficient to describe 
the dynamics of & at given /s, as discussed below. The operator Sp can be considered 
Hermitian without loss of generality, because its anti-Hermitian part does not contribute 
to S. Also, we assume that unless either of L and R is zero, the high-frequency field has 
no three-wave resonances, so terms cubic in ^ can be neglected in S';f then,

Sp ~ Sq j &P{L\FSRS)h. (6.8)

Using the same assumption, one can also adopt

^ (f^)t(A^), a, ^ (6.9)

because in the absence of three-wave resonances, the oscillating part of (1,^)^(Rs^) 
contributes only 0( e4) terms to the equation for Fs.

6.2. Field equations
The Euler-Lagrange equation for derived from (6.6) is

= (6.10)

f This is tacitly assumed already in (6.2), where cubic terms are neglected. Also note that 
three-wave interactions that involve resonances between low-frequency oscillations of Fs and two 
high-frequency waves, like Raman scattering (Balakin et al. 2016), are still allowed.
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Then, to the extent that the linear approximation for fs is sufficient (see below), one 
finds that the oscillating part of the field satisfies

(6.11)

where we used (3.24). Note that the right-hand side of (6.11) is determined by microscopic 
fluctuations gs(t,x,p) (section 4.3). Equation (6.11) can also be expressed as

^ = (6.12)

where S is understood as the plasma dispersion operator and is given by

^ = (6.13)

where ■ is a placeholder. The general solution of (6.12) can be written as

^ = A + = (6.i4)

Here, S^1 is the right inverse of S (meaning SS”1 = 1 yet S~1S ^ 1) such that 
vanishes at zero g.f The rest of the solution, ]£, is the macroscopic field that satisfies

S}t=0. (6.15)

In the special case when the dispersion operator is Hermitian (S = SH), (6.15) also flows 
from the ‘adiabatic’ macroscopic part of the action S', namely,

^ / dx^SnA. (6.16)

Because we have assumed a linear model for fs in (6.11), ^ is decoupled from and
hence the dynamics of turns out to be collisionless. This is justified, because collisional
dissipation is assumed to be much slower that collisionless dissipation (section 3.3). One 
can reinstate collisions in (6.15) by modifying Gs ad hoc, if necessary. Alternatively, one 
can avoid separating and and, instead, derive an equation for the average Wigner 
matrix of the whole (McDonald 1991). However, this approach is beyond QLT, so it 
is not considered in this paper.

6.3. Dispersion 'matrix
As readily seen from the definition (6.13), the operator S can be expressed as

(6.17)

The corrections caused by nonzero e and e in this formula will be insignificant for our 
purposes, so they will be neglected. In particular, this means that Gs = symbx-Gs can 
be adopted in the form independent of r (section 4.2):

Gft k ■ vs iO = nS(co — k ■ vs) + i pv ■ k ■ vs (6.18)

f Most generally, the problem of finding S 1 is the standard problem of calculating the field 
produced by a given radiation source.



Then, jGs can be considered as an operator on with p as a parameter, and 
syrnbGs = Gs(t,x,uj,k;p). Also,
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symb (01,0,0^) = a, * G, * % 0,6,0:^.

This readily yields the ‘dispersion matrix’ S = symbxS:

S(lv, k) % Sj,(w, k) + 2] j dp a,(w,k;p)o:|(w,&;p) df^(p)
dpoj — k ■ vs + iO

&) % 2oW,&) y dpp,(w, &;p)F,(p)

(6.19)

(6.20)

(6.21)

(see section 9 for examples). Here, asa| is a dyadic matrix, and the arguments t and x 
are henceforth omitted for brevity. Also, we introduced the operators ps = pi and their 
symbols ps = p\ as

= symbp, % (i)^,)H. (6.22)

The appearance of +10 in the denominator in (6.20) is related to the Landau rule. 
(Remember that as arguments of Weyl symbols, iv and k are real by definition.) The 
Hermitian and anti-Hermitian parts of the dispersion matrix are

as(u,k;p)al(uj,k;p) dFs(p)
uj — k ■ vs dp2H(w,k) % Sp(w, &)

Sa(w, k) ss —7t^ J dpas(oj, k;p)al(oj, k;p)S(oj - k ■ vs) k dp

(6.23)

(6.24)

Assuming the notation S ^ = (S^) l, the inverse dispersion matrix can be expressed as
-t _ (6.25)

Because B * = (3 " + , this leads to the following formulas, which we will need later:
(S_1)h = (2-% = (6.26)

6.4. Spectrum, 0/ microscopic /ioctootioos 
Other objects to be used below are the density operators of the oscillating fields:

% = (27T)-" |*)#|, % = (27T)-" |^)<^|, (6.27)

and the corresponding average Wigner matrices on (x, k). The former, U = W^., is readily 
found by definition (2.51), and the latter, 2H = W^, is calculated as follows. Let us 
consider gs(t, x. p) as a ket in with p as a parameter. Then, (6.14) readily yields

dpdp'2-^a,(p) |9«(p))<9«'(pO|al'(pO'S'-\ (6.28)

By applying symbx to this, one obtains

W(uj,k) = 2 f dp dp'S^1 * as(p) * <5ss>(p,pr) * aj,(p') * S_t, (6.29)
8,8^

where most arguments are omitted for brevity and (appendix B.7)

e.AP:P') - ^/dse"‘k g, (x + s/2, p) g„, (x - s/2, p')
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= CM" (6.30)

assuming corrections due to inter-particle correlations are negligible. Then, (6.29) gives 

&) = - & - ^,)F,, (p')

x S-i(w, &)(a,,^,)(w, &;p')2-^(w, &), (6.31)

where v's, = vs>(t, x,pr). It is readily seen from (6.31) that 2H is positive-semidehnite. 
One can also recognize (6.31) as a manifestation of the dressed-particle superposition 
principle (Rostoker 1964). Specifically, (6.31) shows that the contributions of individual 
particles to 2LT are additive and affected by the plasma collective response, i.e. by the 
difference between S and the vacuum dispersion matrix So­

ld sing (6.31), one can also find other averages quadratic in the field via (cf. (2.53a))

(L%(R^)t% /dwdk(L9BRt)(w,&), (6.32)

where L and R are any linear operators and L and R are their symbols; for example,

^(t,z)^t(t,z) dev dfc2H(cc, k). (6.33)

Because of this, we loosely attribute 2H as the spectrum of microscopic oscillations, 
but see also section 8.2, where an alternative notation is introduced and a fluctuation- 
dissipation theorem is derived from (6.31) for plasma in thermal equilibrium. See also 
section 9 for specific examples.

6.5. Nonlinear potentials
From (6.14), the oscillating part of the Hamiltonian (6.9) can be split into the macro- 

scopic part and the microscopic part as Hs = H_s + Hs, H_s = as}P_, and

#s(p) =Z! /dp'dL'(p,p'W(p').
s' ^

Here, is an operator on given by

^«'(p,p') = 6l(p)2' &Xp')

(6.34)

(6.35)
with the symbol

%ss,(w, &;p,p') %o4(w, &;p)S ^(w, &)o:s,(w, &;p') (6.36)
(see section 9 for examples). The corresponding average Wigner functions on (x, k) are 
Ws = W” + W^!, where the index ‘m’ stands for ‘macroscopic’ and the index ‘p’ stands 
for ‘microscopic’. Because the dependence on t and x is slow, one can approximate them 
as follows:

: a|(w, &;p)U(w, &)o:a(w, &;p), 

a|(w, &;p)SIT(w, &)o:a(k;, k;p).

(6.37a)

(6.376)
The matrix U is positive-semidehnite as an average Wigner tensor (section 2.1.7), and 
so is 2H (section 6.4). Hence, both Wsm and W, are non-negative. Using (6.31), one 
can also rewrite the Wigner function of Hs more compactly as

(w,&;p) = (27t) "%]ydp'J(w-k-^,)|%aa,(w,k;p,p')|^F;,(p'). (6.38)
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Now we can represent the nonlinear potentials (5.41)-(5.43) as

D, = + D^, 0, = 0i™) + 0^, ^ <P (6.39)
Here, the index denotes contributions from and the index denotes contribu­
tions from wf'. Specifically,

= J dk 7t fefeW^(fe • vs, k; p),

dev dfe k;p)
cv — k ■ v, i)=0

ld_
2d^

^(m) = j- dev dfc
&W^(w,k;p)

(6.40)

(6.41)

(6.42)ev — k ■ vs
Here, is a non-negative function (6.37a), so is positive-semidehnite and leads
to an H-theorem similar to (5.46). One also has

0(M)

V j I,,' -/.'/.' ..; A- r A C V A ■ r fc;p,p')|2 F,,(p'),

,7 r #
(2n)" & - (i)g, — Us) + 0

^ d& J

Xi /tS*' 2kkK*-v,) fc;p’p')|2'
t)=0

(6.43)

(6.44)

(6.45)

The functions 0^5 and <p[^ scale as , i.e. as ee2 (section 3.3). Their contribution 
to (5.37) is of order e®^ and e<p{^\ respectively, so it scales as e2e2 and therefore is 
negligible within our model. In contrast, D^5 must be retained alongside with D^m\ This 
is because although weak, macroscopic fluctuations can resonate with particles from the 
bulk distribution, while the stronger macroscopic fluctuations are assumed to resonate 
only with particles from the tail distribution, which are few.

6.6. Os dilation-center Hamiltonian
Within the assumed accuracy, the OC- Hamiltonian is Hs = Hs + (pi™'1, and Hs is 

given by (6.9). Combined with the general theorem (2.53c), the latter readily yields 
Hs = Hqs + 4>s, where

^ /dwdk tr(upj (6.46)

and the contribution of 2H has been neglected. Because both fpi™'1 and <f>s are quadratic 
in ^ and enter Hs only in the combination As = (pi™'1 + (ps, it is convenient to attribute 
the latter as the ‘total’ ponderomotive energy. Using (6.42) in combination with (6.37a), 
one can express it as follows:

A 1 5 . .■j' dev dfe k a>Uas 1 f dev dfc tr (Ups) (6.47)
" 2dp . cv — k ■ vs 2 J

(see section 9 for examples). Notably,

4\s = dcvdfc tr(anU) dSw
SFs ’ (6.48)

where 6/6Fs denotes a functional derivative and S'ad is the adiabatic action defined in 
(6.16). Equation (6.48) is a generalization of the well-known LK-\ theorem’ (Kaufman
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& Holm 1984; Kaufman 1987). Loosely speaking, it says that the coefficient connecting 
As with U is proportional to the linear polarizability of an individual particle of type s 
(Dodin et al. 2017; Dodin & Fisch 2010a). (‘A'1 in the name of this theorem is the same 
as our Aa, and is the linear susceptibility.) Also, the OC Hamiltonian and the OC 
velocity can be expressed as

Ti-s = Has + As, v = dpHas + dpAs. (6.49)

6.7. Polarization drag
Within the assumed accuracy, the OC distribution can be expressed as

^ 1 d
2 dp

A, = A + ^ 4: - f ) ,
dp

and (5.37) becomes
dA % dA % dA dvrs uns vrs vns uns v / _(m) vrs \
8t 8x dp dp dx dp

dFs
dp

d
dp

dFsC = +Adp

(6.50)

(6.51)

(6.52)

where we have reinstated the term Fs introduced in section 3.3. As a collisional term, Fs 
is needed only to the zeroth order in e, so

.Ts = {#s,9s}%Jp-(9s<%c#s)=Jp-Cs, C, =i(x|&Aa)(x|ga). (6.53)

Correlating with gs is only the microscopic part of Hs, so using (6.34) one obtains

C /dp'(x|k%„,(p,p')|g,,(p'))(g,(p)|x). (6.54)
a' ""

Next, let us use (2.28) and £ = re£ to express this result as follows:

C = i y dw dk dp' k * (w, k, p, p') * (w, k, p', p)

% i J dccdfcdp' kXSs'{aj, k,p, p') {2n)~n5{p - p') S(cv - k ■ vs) Fs(p)

/dk
kirn %„,(k ' k,p,p) A«(p), (6.55)

where we have approximated * with the usual product and substituted (6.30). Hence,

A, % -dp - (&,A), (6.56)
where $s can be interpreted as the polarization drag (i.e. the average force that is imposed 
on an OC by its dress) and is given by

$s =/dk
kirn%„,(k - k,p,p).

Using (6.36), one also rewrite this as follows:

f ,S7-t
/ (2n) k (aTs-^2^2-Ta,)(k - k;p),

(6.57)

(6.58a)

(6.586)
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where we have substituted (6.26) for (S_1)a. With (6.24) for Sa, this yields

- k-<,)&&- ^

x o^(& - r,, &;p)2"^(& -1)*, &)«,,(& - D,, &;p') 
x - D,, &)«,(& - D„, &;p).

The product of the last two lines equals \Xss>(k • vs, k;p,p')\2. Hence,

37

(6.59)

$s =
v-i f d k ^s'(p')y ^^-dp'7TJ(k-D, -&-D^)|%aa,(&-Da,k;p,p')|^&&---- (6-60)

6.8. Collision operator
By combining (6.56) for Fs with (6.43) for one can express Cs as

^ ^ \E/ (^7 ^ ^ - <') ^;p,p/\|2

X && . ( F,,(p') _ F,(p)

dp dp' (6.61)

where Xss> is given by (6.36). One can recognize this as a generalization of the Balescu- 
Lenard collision operator (Krall & Trivelpiece 1973, section 11.11) to interactions via a 
general multi-component field #5 Specific examples can be found in section 9.

It is readily seen that Cs conserves particles, i.e.

= 0, (6.62)

and vanishes in thermal equilibrium (section 8.1). Other properties of Cs are determined 
by the properties of the coupling coefficient Xss>, which are as follows. Note that

|.%,s'(w, &;p,p')|3 = Gss'(w, &;p,p') +%ss'(w,&;p,p')/2, 

where we introduced

(6.63)

Gss'W, &;p,p') = (|%««'(w, &;p,p')|^ + |%s's(w,&;p',p)|^)/2, (6.64)
%s'(w, &;p,p') = |%ss,(w,&;p,p')|3 - |7f«'«(w, &;p',p)|^. (6.65)

To calculate 1ZSS>, note that (6.36) yields

|A,«,(w, &;p,p')|^ % |a^(w,k;p)2-^(w, &)o:a,(w, &;p')|^,
|7f«'«(w, &;p',p)|^ % |a2(w,&;p)S"t(w, &)ov(w,&;p')|3, (6.66)

whence one obtains

(^, k; p, p') % 4 im (a^ (w, &; p)(2"^)y (w, &)«,, (w, &; p')
«L(w, &;p')(5'-^)A(w, &)o:a,(w, &;p'))- (6.67)

The operators (2_1)H, (2_1)A, and cxs (for all s) have been introduced for real fields, so 
their matrix elements in the coordinate representation are real. Then, the corresponding 
symbols satisfy A(— to, —k) = A*(iv, k), where A is any of the three symbols. This gives

74s'(&;p,p') =%ss'(&-D«,k;p,p') = -%a'(-k;p,p'). (6.68)

Because the rest of the integrand in (6.61) is even in k, (6.68) signifies that 7Zssi does
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not contribute to Cs. Thus, Xss> in (6.61) can as well be replaced with Qss>:

x kk ■ dFMF,^)-F,{p)i]FAP'>
dp dp'

In this representation, the coupling coefficient in Cs is manifestly symmetric,

Gss'(w,&;p,p') = &;p',p),
which readily leads to momentum and energy conservation (appendix C-):f

Y^JdppCs=0, ^ j dpHsCs = 0.

The collision operator Cs also satisfies the F-theorem (appendix C-.3):

where the entropy density a is defined as

(T= - dp F,(p) In F,(p)

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)

and (& Fg) coil = Cs. Note that these properties are not restricted to any particular Fs. 
Also note that if applied in proper variables (section 3.1.2), our formula (6.69) can 
describe collisions in strong background fields. This topic, including comparison with 
the relevant literature, is left to future work.

6.9. Fu.m.mu.n/ o/ aecAon 6
Let us summarize the above general results (for examples, see section 9). We consider 

species s governed by a Hamiltonian of the form

^ = Foa + &l(p)^ + ^ (f a?^(Fa?P), (6.74)

where is a real oscillating field (of any dimension M), which generally consists of a 
macroscopic part F; and a microscopic part >F The term F0s is independent of and the 
operators a|, Ls, and Rs may be nonlocal in t and x and may depend on the momentum 
p parametrically. The dynamics of this system averaged over the fast oscillations can be 
described in terms of the OC- distribution function

Fs = fs t]fs
dp

(6.75)

(the index is henceforth omitted for brevity), which is governed by the following 
equation of the Fokker-Planck type:

dFs % dFa
dp dp

dFs 2
dp

dFs
dp

■Cs (6.76)

f Remember that vs is defined as the OC velocity in the above formulas (section 533). If vs 
is treated as the particle velocity instead, then Hs in (6.71) should be replaced with H.s. Both 
options are admissible within the assumed accuracy, but the former option is preferable because 
it leads to other conservation laws that are exact within our model (section 7.5).



Qwaa/./mear /.Aeon/ 39

Here, Hs = H0s + As is the OC- Hamiltonian, 0S is the dressing function, and As is the 
total ponderomotive energy (i.e. the part of the OC Hamiltonian that is quadratic in 
so vs(t, x,p) = dpHs is the OC velocity. Specifically,

Ds = dknkk\Ns(t,x,k • vs,k;p), (6.77a) 

(6.776)

(6.77c)

Here, Ws = a|llas is a scalar function, the average Wigner matrix U is understood 
as the Fourier spectrum of the symmetrized autocorrelation matrix of the macroscopic 
oscillations:

' Au,Akkk'N‘[,’X^k’P)
uj — k • v s 4- v

i d jr^dkkwAt-x^k-p>
2 dp J uj ~ k • v s

+ l2Jj dccdfe tr (Ups)(t, *, cv, k;p)

U(f, w, &) = / ^ Af + r/2, * + a/2) 3H(f - r/2, * - a/2) e

with n = dim*. Also, the vector as(t, *, iv, k;p) is the Weyl symbol of a^as defined 
in (2.26), ps(t,x,oj,k;p) % (LlRs)h, Ls and Rs are the Weyl symbols of Ls and Rs, 
respectively, and H denotes the Hermitian part. The matrix Ds is positive-semidehnite 
and satisfies an Tf-theorem of the form (5.46). Also, As satisfies the LK-\ theorem’:

As = j- dudk tr(SHU). (6.79)

The matrix S characterizes the collective plasma response to the field and is given by

«XP)«1(P) , ^(P)
S*So+Y, I dp

w — & ' i>s(p) + iO
k-

dp
(6.80)

Here, the arguments (t, *, w, k) are omitted for brevity, asa| is a dyadic matrix, and 
S0 is the symbol of the Hermitian dispersion operator S0 that governs the field & in 
the absence of plasma. Specifically, S0 is defined such that the field Lagrangian density 
without plasma is £0 = ^S0«P/2.

The spectrum of microscopic fluctuations (specifically, the spectrum of the sym­
metrized autocorrelation function of the microscopic field >P) is a positive-semidehnite 
matrix function and given by

2B(w, &) =

x S"i(w, &)(o:s,a^,)(w, &;p')S"^(w, &), (6.81)

where v's, = vs>(pr). (The dependence on t and * is assumed too but not emphasized.) 
The microscopic fluctuations give rise to a collision operator of the Balescu-Lenard type:

x kk ■
dp dp’

(6.82)
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where the coupling coefficient Qss/(cv, k;p,pr) = Qsis(oa,k;p',p) is given by

Gss'W, + |%s's(w,&;p',p)|3)/2, (6.83)
&;p,p') %al(w, &;p)S"^(w, &)o:a,(w, &;f/). (6.84)

The operator Cs satisfies the ^-theorem and conserves particles, momentum, and energy:

= 0,

7. Interaction with on-shell waves
Here, we discuss QL interaction of plasma with ‘on-shell’ waves, i.e. waves constrained 

by dispersion relations. To motivate the assumptions that will be adopted, and also to 
systematically introduce our notation, we start with briefly overviewing theory of linear 
waves in dispersive media (Tracy et al. 2014; Whitham 1974), including monochromatic 
waves (section 7.1), conservative eikonal waves (section 7.2), general eikonal waves 
(section 7.3), and general broadband waves described by the WKE (section 7.4). After 
that, we derive conservation laws for the total momentum and energy, which are exact 
within our model (section 7.5). All waves in this section are considered macroscopic, so 
we adopt a simplified notation = & and the index will be omitted.

7.1. Monochromatic waves
Conservative (nondissipative) waves can be described using the least-action principle 

SS = 0. Assuming the notation as in section 6.2, the action integral can be expressed as 
S = / dx £ with the Lagrangian density given by

(7.1)

First, let us assume a homogeneous stationary medium, so SH(f, x, iv, k) = SH(cv, k). 
Because we assume real fields,f (C, aqlSjU, *2) is real for all (t 1, aq, to, *2), one also has

SH(-w,-&) = S&(w,&) = ST(^&), (7.2)
where the latter equality is due to s|j(w, k) = SH(w, k).

Because SH(cv, k) is Hermitian, it has M = dim S'H orthonormal eigenvectors r/b:

SH(w,&)%(w,&)=A&(w,&)%(w,&), ?^(w,&)%,(w, &) = <$&,&,. (7-3)

Here Ab are the corresponding eigenvalues, which are real and satisfy
A&(w, &) = Tfj/w, k)Sn(w, &)%(w, &). (7.4)

Due to (7.2), one has

A&(-w, -&) = eigv& (Sn(w, &))^ = eigv& Sy(w, &) = A&(w, &), (7.5)
where eigv6 stands for the 6th eigenvalue. Using this together with (7.2), one obtains 
from (7.3) that

Sg(w, &)%(-w, -&) = A&(w, &)%(-w, -&), (7.6)

whence

%(-w,-&) = 7?*(w, &). (7.7)
f A complex field can be accommodated by considering its real and imaginary parts as 

separate components.
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Let us consider a monochromatic wave of the form

41

= re(e-^+^= ^), (7.8)

with real frequency w, real wa.vevector k, and complex amplitude P. For such a wave, the 
action integral can be expressed as S = / dx £, where the average Lagrangian density £ 
is given byf

£ = -^Sh^ = - Sh(oj, k)P) = - P^Sh(oj, k)'P.

Let us decompose P in the basis formed by the eigenvectors rjb, that is, as

(7.9)

(7.10)

Then, (7.9) becomes

c = l«T- (7.11)

The real and imaginary parts of the amplitudes db can be treated as independent 
variables. This is equivalent to treating db* and db as independent variables, so one 
arrives at the following Euler-Lagrange equations:

0 - _ 1 a»*A1(i5, k). (7.12)

Hence the 6th mode with a nonzero amplitude db satisfies the dispersion relation

0 = Ab(uj, k) = Ab(— ui, —k). (7.13)

Equation (7.13) determines a dispersion surface in the k space where the waves can have 
nonzero amplitude. This surface is sometimes called a shell, so waves constrained by a 
dispersion relation are called on-shell. Also note that combining (7.13) with (7.3) yields 
that on-shell waves satisfy

SH(w,&)%(w,&) = 0, ^(w,&)SH(w,&) = 0, (7.14)

which are two mutually adjoint representations of the same equation.
Below, we consider the case when (7.13) is satisfied only for one mode at a time, so 

summation over 6 and the index 6 itself can be omitted. (A more general case is discussed, 
for example, in (Dodin et al. 2019).) Then, XP = r)(Uj,k)a,

£=^A(w,k)|a|3, (7.15)

and cu is connected with k via TD = iv(k), where w(k) = —iv(—k) is the function that 
solves A(iv(k), k) = 0. Also importantly, (7.14) ensures that

<W(w, &) = ((J.Y)SHT? + Y(J.2H)7? + YSH(c).7?))|^ k)=(w,k)

where ■ can be replaced with any variable.

f Here we use tlmt for any oscillating a = re(el6a) and b = re(el66), one has ab = re(a*6)/2 
and that k)\P is real because Sh(w, k) is Hermitian.
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7.2. Conservative eikonal waves
7.2.1. Basic properties

In case of a quasimonochromatic eikonal wave and, possibly, inhomogeneous non­
stationary plasma, one can apply the same arguments as in section 7.1 except the above 
equalities are now satisfied up to O(e). For a single-mode wave, one has

a) = re(g/c(f, %)) + O(e), %)a(f, %), (7.17)
where the local frequency and the wavevector,

co = —dtO, k = dx9 (7.18)
are slow functions of (t,x), and so is r)(t, x) = r)(t, x, iv(f, ay), k(t, ay)), which satisfies 
(7.3). Then,

£ = ^ A(t, ay cJ, k) |o(f, ay)|2 + O(e). (7.19)

Within the leading-order theory, the term O(e) is neglected.f Then, the least action 
principle

0 = - A&(w, &)%" 0 = -&"*Ab(w,&) (7.20)

leads to the same (but now local) dispersion relation as for monochromatic waves, 
A(f, ay 57, k) = 0. This shows that quasimonochromatic waves are also on-shell, and thus 
they satisfy (7.16) as well. Also notice that the dispersion relation can now be understood 
as a Hamilton-Jacobi equation for the eikonal phase 6:

A(f, ay <%c#) = 0.

Like in the previous section, let us introduce the function iv that solves

(7.21)

A(t, x, w(t, x, k), k) = 0 (7.22)

and therefore satisfies

w(f, ay &) = -w(f, ay -&). (7.23)

Differentiating (7.22) with respect to t, ay and k leads to

dfA + (du,A)dfW = 0, (7.24a)
+ (JwA)JzW = 0, (7.246)

#&A + (cLA)^k%u = 0, (7.24c)
where the derivatives of A are evaluated at (t, ay w(t, ay k), k). In particular, (7.24c) gives

(7.25)

for the group velocity vg, whose physical meaning is to be specified shortly.
Because 6 is now an additional dynamical variable, one also obtains an additional 

Euler-Lagrange equation:

(7.26)
f Corrections to the lowest-order dispersion relation produce the so-called spin Hall effect; 

see (Dodin et al. 2019; Ruiz & Dodin 2017a) for an overview and (Bliokh et al. 2015; Ruiz & 
Dodin 2015a; Oancea et al. 2020; Andersson et al. 2021) for examples. These corrections are 
beyond the accuracy of the model considered, so they will be ignored.
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where I is called the action density and J is the action flux density:
^dA

dw
= hr

4
^ dA

V
32

dw V,

d£ ^ _ l«r t^
dA, 4 % 4 ' % V,

(7.27)

(7.28)

where we used (7.16) and the derivatives are evaluated on (t, ay iv(t, ay k(t, a:)), k(t, ay)). 
Using (7.25), one can also rewrite (7.28) as

J = Val, Va (t, ay) = vg(t, x, k(t, ay)). (7.29)
(The arguments (t, ay) will be omitted from now on for brevity. We will also use (k) as a 
shorthand for (iv(k),k) where applicable.) Then, (7.26) becomes

dfX + 3X ■ (Vgl) — 0, (7.30)

which can be a understood as a continuity equation for quasiparticles (‘photons’ or, more 
generally, ‘wave quanta’) with density 1 and fluid velocity vs (see also section 7.2.2). 
Thus, if an eikonal wave satisfies the least-action principle, its total action fdxl 
(‘number of quanta’) is an invariant. This conservation law can be attributed to the 
fact that the wave Lagrangian density £ depends on derivatives of 6 but not on 6 per se.

Also notice the following. By expanding (7.19) in 8t6 around dt6 = ay 8X6), which
is satisfied on any solution, one obtains

£ % (cW + w(f, cW))(W |a|^ = -(d«d + w(f, ay d=#))I, (7 31)

where we used that £(t, ay -8t6, 8X6) = 0 due to (7.21). Then, one arrives at the canonical 
form of the action integral (Hayes 1973)

/ df da; (d«d + w(t, ay &))I. (7.32)

From here, SpS = 0 yields the dispersion relation in the Hamilton-Jacobi form 
8t6 + iv(t, x, k) = 0, and SgS = 0 yields the action conservation (7.30).

7.2.2. Ray equations
By (7.18), one has the so-called consistency relations:

dt/y + d*w = 0, d^Ay = djA*.
These lead to

d d^\y dw(t,a;,%,a;)) %(f,z)
*+**■■§;)*<<*’•)-----------ST.--------+d/ ° dz/ " ' ' da:

_ / 8iv(t,x,k)\

\ / k=k(t,T

_ /8w(t, x, k)\
/ k=k(t,x

_, <%b(f,ay) , %(/,z)vt ———:---- h vt-----------
^ da:*

\ da:*

and similarly,

/ dw(f, a;, &) dw(t, ay &) 
= I dT^+"« da:'

k=k{t,x)

v3jt+v*'i''

(7.33)

(7.34)

&*(/,ay)
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(7.35)
k=k{t,x)

where we used (7.34). Using the convective derivative associated with the group velocity,

d/df = d; = & + (i)g - <%c), 

one can rewrite these compactly as

(7.36)

dkj(t, x) 
d t

/ dw(f, z, &) 
\ dx'

dw(f, x) / dw(t, x, &)
k=k{t,x) d t (7.37)

k=k{t,x)

One can also represent (7.37) as ordinary differential equations for k(t) = k(t,x(tj) and 
cu(t) = lu(t,x(t)), where x(t) are the ‘ray trajectories’ governed by

dzXf)
dt ^g(^,a;W,k(t)). (7.38)

Specifically, together with (7.38), equations (7.37) become Hamilton’s equations also 
known as the ray equations:

dx® _ dw(t, x, k) dki _ dw(t, x, k) dev _ dw(t, x, k) fr?
~df = <1.-: ’ ~dd = dO* ’ di = Jt ’ ( '' j

where x is the coordinate, hk is the momentum, TuD is the energy, hw is the Hamiltonian, 
and the constant factor h can be anything. If h is chosen to be the Planck constant, 
then (7.39) can be interpreted as the motion equations of individual wave quanta, for 
example, photons. Hamilton’s equations for ‘true’ particles, such as electrons and ions, 
are also subsumed under (7.39) in that they can be understood as the ray equations of 
the particles considered as quantum-matter waves in the semiclassical limit.

Also notably, (7.39) can be obtained by considering the point-particle limit of (7.32) 
(Ruiz & Dodin 20156). Specifically, adopting l(t, x) cc S(x — x(t)) and taking the inte­
gral in (7.32) by parts leads to a canonical action Soc /dt (k ■ x — iv(t, x, k)), whence 
Hamilton’s equations follow as usual.

7.2.3. Wave momentum, and energy
Using (7.30) and (7.36), one arrives at the following equality for any given field X:

&(XZ) + - (XZxg) = (d(X)Z + X(&T) + - (Zxg)]X + %(xg - d^)X
= + (Wg - d^)]X + X[&T + ^ - (Ixg)]
= Zd,X. (7.40)

For X = Ay and X = cv, (7.40) yields, respectively,

dtPw,i + • (vgPw,i) = —IdjW, (7.41a)
+ <9= - (Wg6^) = (7.416)

where we used (7.37) and introduced the following notation:

Pw = kl, £w = ccl. (7.42)

When a medium is homogeneous along x\ (7.41a) yields / dxPWji = const. Likewise, 
when a medium is stationary, (7.416) yields J dx £w = const. Hence, by definition, Pw 
and £w are the densities of the wave canonical momentum and energy, at least up to a
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constant factor K.f A proof that k = 1 can be found, for example, in (Dodin & Fisch 
2012). In section 7.5, we will show this using different arguments.

7.3. Non-conservative eikonal waves
In a medium with nonzero Sa, where waves are non-conservative, the wave properties 

are defined as in the previous section but the wave action evolves differently. The 
variational principle is not easy to apply in this case (however, see (Dodin et al. 2017)), 
so a different approach will be used to derive the action equation. A more straightforward 
but less intuitive approach can be found in (Dodin et al. 2019; McDonald 1988).

7.3.1. Monochromatic waves
First, consider a homogeneous stationary medium and a ‘monochromatic’ (exponen­

tially growing at a constant rate) wave field in the form

\P(t, x) = re(e_lwt+1^'x &c), >FC = e^ x const, (7.43)

where the constants cu and k are, as usual, the real frequency and wavenumber, and 7 is 
the linear growth rate, which can have either sign. Then, (6.15) becomes

0 = S(w + iq,F)#c = SH(w,F)#c + i(7^w3H(w, + SA(w, &))#c + (%3),(7.44)

where we assume that 3 is a smooth function of iv and also that both 3a and 7 are 
O(e). Like in section 7.2.1, we adopt = r/a + O(e), where the polarization vector 77 is 
the relevant eigenvector of SH. Then, by projecting (7.44) on 77, one obtains

0 = A(w, &)& + i(7<W + 77^2A??)|^ k)=(w,k)^ +

where A = 77^^77 is the corresponding eigenvalue of SH and we used (7.16). Let us 
neglect 0(e2), divide (7.45) by a, and consider the real and imaginary parts of the 
resulting equation separately:

A(w, = 0, (7<W + 77^2AT?)|^ ^ = 0. (7.46)

The former is the same dispersion relation for oJ as for conservative waves, and the latter 
yields 7 = 7(k), where

Because |o| oce^, one can write the amplitude equation as

= 27|%|3. (7.48)

One can also define the action density 1 as in section 7.2.1 and rewrite (7.48) in terms 
of that. Because 1 = |a.|2 x const, one obtains

&Z = 27%. (7.49)

/.Aeon/

7.3.2. Non-m.onochrom.atic waves

When weak inhomogeneity and weak dissipation coexist, their effect on the action 
density is additive, so (7.30) and (7.49) merge into a general equation

+ J=(WgI) = 27%. (7.50)

f Therefore, in a zero-dimensional wave, where f dx can be omitted, conservation of the total 
action T implies conservation of t’w/w, which is a well-known adiabatic invariant of a discrete 
harmonic oscillator with a slowly varying frequency (Landau & Lifshitz 1976, section 49).
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(A formal derivation of (7.50), which uses the Weyl expansion (2.41) and projection of 
the field equation on the polarization vector, can be found in (Dodin et al. 2019).) Then, 
(7.40) is modified as follows:

&(X%) + - (XTug) = Zd,X + 2qX%, (7.51)

and the equations (7.41) for the wave momentum and energy (7.42) become

+ 2= - (7.52a)
+ Ja - (rg6%v) = 2q6^ + (7.526)

A comment is due here regarding the relation between (7.50) and the amplitude 
equation (7.48) that is commonly used in the standard QLT for homogeneous plasma 
(for example, see (2.21) in (Drummond & Pines 1962)). In a nutshell, the latter is 
incorrect, even when 8X = 0. Because / is time-dependent, waves do not grow or decay 
exponentially. Rather, they can be considered as geometrical-optics (WKB) waves, and 
unlike in section 7.3.1, the ratio |d|2/Z generally evolves at a rate comparable to 7. The 
standard QLT remains conservative only because it also incorrectly replaces (3.19) with 
its stationary-plasma limit (e = 0) and the two errors cancel each other. These issues 
are less of a problem for waves in not-too-hot plasmas (e.g. Langmuir waves), because 
in such plasmas, changing the distribution functions does not significantly affect the 
dispersion relations and thus |o|2/Z does in fact approximately remain constant. See also 
the discussion in section 9.1.4.

7.4. General waves
Let us now discuss a more general case that includes broadband waves. The evolution 

of such waves can be described statistically in terms of their average Wigner matrix U. 
This matrix also determines the function Ws that is given by (6.37a) and enters the 
nonlinear potentials (6.77). Below, we derive the general form of U in terms of the phase- 
space action density J and the governing equation for J (sections 7.4.1-7.4.3). Then, we 
also express the function Ws through J (section 7.4.4). Related calculations can also be 
found in (McDonald & Kaufman 1985; Ruiz 2017).

7.4.1. Average Wigner matrix of an eikonal wave field
Let us start with calculating the average Wigner matrix of an eikonal field ^ of the 

form (7.17) (see also appendix A.2). Using & = (tiQ + #*)/2, it can be readily expressed 
through the average Wigner functions of the complexified fieldf and of its complex 
conjugate:

U % (Wf, + W*.)/4 = (Uc+ + Uc_)/4. (7.53)

For <f', = 077(57, fc)el9, where the arguments (f, x) are omitted for brevity, one has

Uc = Uc+ % (W)(kb&)|a|2 /
J W

(7.54)

where we neglected the dependence of a and 77 on (t, x) because it is weak compared to 
that of e±l9. By Taylor-expanding 6, one obtains

Uc (W)(w, &)|« / (27T)n = (7777^)(w, &)|a|"J(w - w)<5(& - &).

f Field complex!fication is discussed, for example, in (Brizard et al. 1993).
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For = 0*77*(w, k)e~ld, which can also be written as <F* = a*r)(—ZJ, -k)e~ld due to 
(7.7), the result is the same up to replacing TD -» -w and fe —»• —k. Also notice that

J(w T w) J(& T &) = J(w T w(&))<$(& T &)

= J(w-7o(&))J(&T&), (7.55)

so one can rewrite Uc+ as follows:

Uc+ = rj(k)rj^ (k)\d\2 S(oj — w(kj)5(k + k), (7.56)

where (k) = (iv(k),k). Thus finally,

U(w, &) % 77(&)^(&) |a|2(J(& - &) + J(& + &))<5(w - 7o(&))/4. (7.57)

7.4.2. Average Wigner matrix of a general wave
Assuming the background medium is sufficiently smooth, a general wave field can be 

represented as a superposition of eikonal fields:

^ = re^, ^c = Z^<T,c, = (7.58)

As a quadratic functional, its average Wigner matrix U equals the sum of the average 
Wigner matrices UCT of the individual eikonal waves:

U = I]<j U<t = A)(T(UCTjC+ + UCTjC_)/4, (7.59)

where UCTjC+ = UCTjC and UCTjC_ are the average Wigner matrices of c and 
respectively:

U<7,c± = f?(k)^(&)|a^|2J(& T &o-)J(w - w(&)). (7.60)

Equation (7.59) can also be expressed as

u = (Uc+ + Uc_)/4, Uc± = U^c-t, (7.61)

where Uc+ are the average Wigner matrices of <F, and <F*. respectively:

Uc± = 7?(&)7?t(&)Ac±(&)<%w - w(&)), Ac±(&) = |a^|2J(kq:&^). (7.62)

Because Ac_(fc) = hc+(—k) = hc(—k), the matrix U can also be written as follows:

U(w, &) = (?7T?t)(&) (A(&) + A(-k))J(w - w(&)), (7.63)

where h(k) = Ac(fc)/4 is given by

= (7.64)

This shows that for broadband waves comprised of eikonal waves, U has the same form 
as for an eikonal wave except h(k) is not necessarily delta-shaped.

7.4.3. Phase-space action density and the wave-kinetic equation
The wave equation for the complexified field can be written in the invariant form 

as S I’P'c) = |0). Multiplying it by (fPc\ from the right leads to

SGC =6, 0C = (27t)-n|!Pc><#c|. (7.65)

This readily yields an equation for the Wigner matrix: S * Uc = 0. Let us integrate this 
equation over iv to make the left-hand side a smooth function of (t, x, k). Let us also take

/.Aeon/
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the trace of the resulting equation to put it in a scalar form:

tr/dcvS* Uc = 0. (7.66)

As usual, we assume S = SH + iSA with Sa = O(e) << SH = 0(1) for generic (x, k). 
The integrand in (7.66) can be written as S * Uc = Sellx/2UC, and its expansion in the 
differential operator £x (2.32) contains derivatives of all orders. High-order derivatives 
on Uc are not negligible per se, because for on-shell waves this function is delta-shaped. 
However, using integration by parts, one can reapply all derivatives with respect to cv to 
S and take the remaining derivatives^with respect to t, x, and k) outside the integral. 
Then it is seen that each power m of £x in the expansion of Sellx/2UC contributes 0(em) 
to the integral. Let us neglect terms with m ^ 2 and use (7.62). Hence, one obtains')

0%tr / d"(shUc + ISaUc + - {SH, Uc};

(rfERT) + irfEAr))hc + ^ tr / dev dan <?UC t?SH c-U,
dx' Jk* Jk* dx' 

Let us also re-express this as follows, using (7.4) and (7.47):

(7.67)

. dA0 % [A — iy — ) hc — - tr / dev —
Jev \ clt U

d: u

dev^Ur
Jev

ur.

Clearly,

dev —— Ur ) =0.

(7.68)

(7.69)

To simplify the remaining terms, we proceed as follows. As a Hermitian matrix, SH can 
be represented in terms of its eigenvalues Ab and eigenvectors rjb as SH = Abr)brj\. For 
Up, let us use (7.62) again, where r/ is one of the vectors r/b, say, r/ = r/0. (Accordingly, 
A = A0.) Then, for any ■ e {ev,z®, A:.,.}, one has

tr / dev ^ Uc = ^ I^I^C + A&

= {5b,ofhc + Ab Sb,ohc + Ab Sbp vj

Ahr

(7.70)

where we used 77J77 = Sbp and, in particular, rfr) = 1. Then, (7.68) can be written as

Ahc - = 0, (7.71)

f McDonald & Kaufman (1985) first Taylor-expand S * Uc and then integrate over tv. Strictly 
speaking, that is incorrect (because E * Uc is not smooth), but the final result is the same.
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^ = 2q d_
% y y' (7.72)

The real part of (7.71) gives A = 0, which is the dispersion relation. The imaginary 
part of (7.71) gives S = 0. To understand this equation, let us rewrite S as

S = 2yT dJ
(1#

d / dw \
% y

Here, we introduced

d / dw \

J(&) = A(&) <W(&), A(&) = A(w(&), &),

which, according to (7.24), satisfy

Ji%w(&) = -A(cW)(&), 
JJzW(&) = -A(cW)(&), 
JJkw(&) = -A(Jk2l)(&).

Note that using (7.64), one can also express J as

J = A (i K|^(WM& - &.) = E^i^(& - W,

(7.73)

(7.74)

(7.75a)
(7.756)
(7.75c)

(7.76)

where Xa are the action densities (7.27) of the individual eikonal waves that comprise the 
total wave field (section 7.4.2). In particular, f dk J = T^T^, which is the total action 
density. Therefore, the function J can be interpreted as the phase-space action density. 
In terms of J, the equation S' = 0 can be written as

(7.77)

This equation, called the WKE, serves the same role in QL wave-kinetic theory as 
the Vlasov equation serves in plasma kinetic theory, f Unlike the field equation used 
in the standard QLT (Drummond & Pines 1962), (7.77) exactly conserves the action of 
nonresonant waves, i.e. those with 7 = 0. Also note that (7.50) for eikonal waves can be 
deduced from (7.77) as a particular case by assuming the ansatz

J(t, x, k) = X(t, x)S(k - k(t, x)) (7.78)

and integrating over k. In other words, eikonal-wave theory can be understood as the 
‘cold-fluid’ limit of wave-kinetic theory.

7.4.4. Function Ws in terms of J
Here we explicitly calculate the function (6.37a) that determines the nonlinear poten­

tials (6.77). Using (7.63), one obtains

Ws(w, &;p) = |a^Ty|^(k;p) (A(&) + A(-&)) <5(w - w(&)) 5= 0, (7.79)

where (k;p) = (iv(k),k;p). By definition of as, the function <U, a;i|as|#2, *2) is real 
for all (t 1, a: 1) and (#2,3:2), so as(^cv, —k) = a*(w,k) by definition of the Weyl symbol

f The term ‘WKE’ is also used for the equation that describes nonlinear interactions of waves 
in statistically homogeneous media, or ‘wave-wave collisions’ (Zakharov et al. 1992). That is not 
what we consider here. Inhomogeneities are essential in our formulation, and the QL WKE is 
linear (in J) by definition of the QL approximation. That said, the Weyl symbol calculus that 
we use can facilitate derivations of wave-wave collision operators as well (Ruiz et al. 2019).
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(2.26). Together with (7.7), this gives \oc\rj\2 (w, k;p) = \atlr)\2(-oj, -k;p), so

= |a^7?|2(-&;p), (7.80a)

and similarly,

= lYp^|2(&;p) = |Yp«^l^(-k;p). (7.806)

This also means that Ws(iv, k;p) = W,(-w, -&;p). Then finally, using (7.74), one can 
express this function through the phase-space action density:

W„(w, &;p) = |a|7?p(gkJ(&) + s_kJ(-&)) <^(A(w, &)), (7.81)
^k = sgn^A(k) = sgn(J(&)/&.(&)) = sgn J(&). (7.82)

7.5. Conservation laws
Let us rewrite (7.77) together with (6.76) in the ‘divergence’ form:

dJ d(t,|J) 3 A O^j T

dFs_ -f 8
da* % \ %

dFs
%

■C„.

Using (7.62), the diffusion matrix Ds,ij can be represented as follows:

dkkikDs,%, = 2n / |a^|2 <%(& '

Also, by substituting (6.24) into (7.47), one finds

7 = ^/dp '^s^\S(w(k) - k ■ vs(p)) k ■
<?wA(&)

w(&)).

^,(P)
dp

(7.83)

(7.84)

(7.85)

(7.86)

Together with (7.75), these yield the following notable corollaries. First of all, if So, 
|a|p|2, and rfpsr) are independent of z,f one has for each l that (appendix D.l)

J, fe JdPPiK + j <lkk,j\ J<ippi‘iF. + J<ikk„ij)
+ mZf*-v, - -2/vw

This can be viewed as a momentum-conservation theorem, because at 3iH0s = 0, one has

2/ dxdppiFg dxdkkiJ = const. (7.88)

Also, the ponderomotive force on a plasma is readily found from (7.87) as the sum of 
the terms quadratic in the wave amplitude (after Fs has been expressed through /s). 
Similarly, if So, |a|p|2, and rfpsr) are independent of t, one has (appendix D.2)

dp H( / dp d k r>

f Having ^-dependence in So, \a\pf, or rfpsr] would signify interaction with external 
fields not treated self-consistently. Such fields could exchange momentum with the wave-plasma 
system, so the momentum of the latter would not be conserved. A similar argument applies to 
the temporal dependence of these coefficients vs. energy conservation considered below.
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Quantity Notation Interpretation

f dppFs Pa OC momentum density
f dpH0sFs £a OC energy density

f dp (pvs + AS1)FS n OC momentum flux density
f dp (H0s + Aa)vaFa Qa OC energy flux density

f dfc kJ Pw wave momentum density
f dfc wJ wave energy density

fdfc kvgJ nw wave momentum flux density
f dfc wvgj Qw wave energy flux density

Table 1. Interpretation of the individual terms in (7.87) and (7.89). The wave 
energy-momentum is understood as the canonical (‘Minkowski’) energy-momentum, which must 
not be confused with the kinetic (‘Abraham’) energy-momentum (Dodin & Fisch 2012; Dewar 
1977). Whether the terms with AaFa should be attributed to OCs or to the wave is a matter 
of convention, because AaFa scales linearly both with Fa and with J. In contrast, the wave 
energy density is defined unambiguously as £a = f dp Ho.aFa and does not contain Aa. This is 
because f dp AaFa is a part of the wave energy density £w (Dodin & Fisch 2010a). Similarly, 
f dp(0VsAa)Fa is a part of the wave momentum density (Dodin & Fisch 2012).

(7.89)

This can be viewed as an energy-conservation theorem, because at dtH0s = 0, one has

2 j dxdpH0sFs da; d kivJ = const. (7.90)

Related equations are also discussed in (Dodin & Fisch 2012; Dewar 1977).
The individual terms in (7.87) and (7.89) can be interpreted as described in table 1. 

The results of section 7.2.3 are reproduced as a particular case for the eikonal-wave 
ansatz (7.78).f In particular, note that electrostatic waves carry nonzero momentum 
density / dkkJ just like any other waves, even though the electrostatic field of these 
waves carries no momentum. The momentum is stored in the particle motion in this 
case (section 9.1.3), and it is pumped there via either temporal dependence (Liu & 
Dodin 2015, section II.2) or spatial dependence (Ochs & Fisch 20216, 2022) of the wave 
amplitude. This shows that homogeneous-plasma models that ignore ponderomotive 
effects cannot adequately describe the energy-momentum transfer between waves and 
plasma even when resonant absorption per se occurs in a homogeneous-plasma region. 
The OC formalism presented here provides means to describe such processes rigorously, 
generally, and without cumbersome calculations.

7.6. Summary of section 7
In summary, we have considered plasma interaction with general broadband single­

mode on-shell waves (for examples, see section 9). Assuming a general response matrix 
S, these waves have a dispersion function A(t,x,w,k) and polarization r)(t,x,w,k)

f There is no ambiguity in the definition of the wave momentum and energy in this case (i.e. 
k = 1), because (7.88) and (7.90) connect those with the momentum and energy of particles 
(OCs), which are defined unambiguously.
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determined by

SHr) = At), A = rfSur), (7.91)

where the normalization 77+77 = 1 is assumed. Specifically for S given by (6.80), one has

+Z/jp w-nfip) fc.l7F-w
W - & - Da(p) (7.92)

where the arguments (t, x, cv, k) are omitted for brevity. (Some notation is summarized 
in section 6.9.) The wave frequency iv = iv(t, x, k) satisfies

A(t, x, w(t, x, k), k) = 0 (7.93)

and w(t,x, -k) = -w(t,x,k), where iu is a real function at real arguments. The wave 
local linear growth rate 7, which is assumed to be small in this section, is

7(f,z, &) = - , (7-94)

or explicitly,

?(+,%,&)=y dp \atv\2

z, w, &) j(w - & - 1)s(f, z,p)) & dFs(t,x,p)
dp

where iu = iv(t,x,k) and |a|p12 = \a.\r)\2 (t, x, w, k; p). The nonlinear potentials (6.77) 
are expressed through the scalar function

Ws(f,z,w, &;p) = |a+7y|^(gkJ(f,z, &) +g_kJ(f,z,-&))J(vl(f,a;,w, &)), (7.95)

where ^ = sgn(duA(t,x,oj, kj) is evaluated at uj = w(t,x,k); see also (7.82). The 
function J is the phase-space action density governed by the WKE:

St dx dk dk dx (7.96)

where <?fcw = vg is the group velocity. Collisional dissipation is assumed small compared 
to collisionless dissipation, so it is neglected in (7.96) but can be reintroduced by an 
ad hoc modification of 7 (section 6.2). Unlike the field equation used in the standard 
QLT, (7.96) exactly conserves the action of nonresonant waves, i.e. those with 7 = 0. 
The WKE must be solved together with the QL equation for the OC- distribution Fs,

JF, % df, , % JF, J JF,\ _ (7.97)

because Fs determines the coefficients in (7.96) and J determines the coefficients in 
(7.97). When S0 and \a\p12 are independent of t and x, (7.96) and (7.97) conserve the 
total momentum and energy of the system; specifically,

+ /'w,y) + ^(1, //,/ + //w/) = "I!/(7 98) 

^(Z, 4 + ^w) + %(I, % + %) = E / dpF,^%,. (7 99)

Here, the notation is as in table 1, or see (7.87) and (7.89) instead.
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8. Thermal equilibrium
In this section, we discuss, for completeness, the properties of plasmas in thermal 

equilibrium.

8.1. Boltzmann-Gibbs distribution
As discussed in section 6.8, collisions conserve the density of each species, the total 

momentum density, and the total energy density, while the plasma total entropy density 
a either grows or remains constant. Let us search for equilibrium states in particular. 
At least one of the states in which a remains constant is the one that maximizes the 
entropy density at fixed / dpFs, Ys / dppFs, and Ys / dpHsFs. This ‘state of thermal 
equilibrium’ can be found as an extremizer of

</ = - ^A^ y dpf, - A(p) y dppF, - y dp%s-Fs (8.1)

considered as a functional of all Fs, where \{^\ AiPi, and X^H) are Lagrange multipliers. 
Using (6.73), one finds that extremizers of a' satisfy

0 = = — In Ts — 1 — A^ ^ — AfP5 ■ p — X^ H)T-Ls, (8.2)

whence

F, = const, x exp(-A^p) p - A^%,). (8.3)

The pre-exponential constant is determined by the given density of species s, while AiPi 
and X( H) can be expressed through the densities of the plasma momentum and energy 
stored in the whole distribution. Because

JV l __ JV
AFs&Fs " (8.4)

the matrix S2a'/SFsSFs> is positive-definite, so the entropy is maximal (as opposed to 
minimal) at the extremizer (8.3).

The distribution (8.3) is known as the Boltzmann-Gibbs distribution, with T = l/Ai Hi 
being the temperature (common for all species). Also, let us introduce a new, rescaled 
Lagrange multiplier u via AiPi = —u/T. Then,

U,(p) = Uf exp Hs (p) -u p 
T

where T1]05 is independent of p. Correspondingly,

where we used (5.44). From (8.6), one obtains

J(& - r, - & . 1^,) & . Aa'(p') - A« (p) dp’

= J(& - r, - & - r^,) (& - r, - & - D^,) F^(p)F,,(p')

= 0,

(8.5)

(8.6)

(8.7)

where 'H's, ='Hsi(pr). Then, (6.61) yields that the collision operator vanishes on the 
Boltzmann-Gibbs distribution, and thus, expectedly, (dcr/dt)coii = 0. One can also show
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that the Boltzmann-Gibbs distribution is the only distribution (strictly speaking, a class 
of distributions parameterized by T and u) for which the entropy density is conserved 
(appendix E).

The property (8.6) of the thermal-equilibrium state also leads to other notable results 
that we derive below. In doing so, we will assume the reference frame where u = 0, so 
the Boltzmann-Gibbs distribution has a better known form

F,(P) = exp = -F,(P) Y- (8-8)

(For Hs isotropic in p, this is the frame where the plasma total momentum density 
Vs f dppFs is zero.) The generalizations to arbitrary u are straightforward.

8.2. Fluctuation-dissipation theorem.
Let us describe microscopic fluctuations in equilibrium plasmas in terms of 

S(iv, k) = (27T)n2U(cc,fc), i.e.

S(co,k) = f drds^(t + r/2, x + s/2)&(t — r/2, x — s/2) e1UT lk's (8.9)

which can also be represented in terms of the Fourier image ^(iv, k) of the microscopic 
field ^(f, x):

S(cv, k) =
n '

(8.10)

For statistically homogeneous fields that persist on time —»• oo within volume tn —»• oo, 
the Fourier transform is formally divergent; hence the appearance of the factors 2F and 
1n in (8.10).f Also, as seen from (6.32), any quadratic function of the microscopic field 
can be expressed through S via

(WW)’*/ ^ jSr(LSR,>(",'6>, (8.11)

where L and R are any linear operators and L and R are their symbols.
From (6.31), one finds that, in general,

S(w,&) = 27T^] /dp'J(w-&-Uy).FXp')S-i(w,&)(as,a^)(w,&;p')5'-t(w,&). (8-12)
a' ""

For a thermal distribution in particular, which satisfies (8.8), one can rewrite (6.24) as 
follows:

SA(w,&) % dpas(w,&;p)al(w, &;p)J(w-&-Us)(&-rs).Fs(p)

= dpo:a(w,&;p)a:l(w,&;p)J(w-&-ra)F;(p). (8.13)

By comparing this with (8.12), one also finds that
2T

S(w, &) = — (S-iSAS-t)(w, &)- (8.14)

f To make (8.10) look more physical (local), one can absorb the global factors 3 and t'n in 
the definition of the Fourier transform; cf. section 9.1.5.



Due to (6.26), this leads to the fluctuation-dissipation theorem in the following form:
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OT
S(w,&) = &).

For examples of a for specific systems, see section 9.

8.3. /aw
Consider the power deposition via polarization drag:

(8.15)

(8.16)

Using (6.58a) for $s, (8.13) for Sa, and (8.15) for S, this can also be expressed as follows:

4"-/ (^)

dev d k
2/

= 2 T

2tt (27t): 
dev d k

dp (& - Da) (a^(2 )Aa«)(& - Da, &;p)F),(p)

dp27tev J(ev - & - Da)(a;l(2"^)Aa:a)(cv, &;p)F),(p) 

tr ^(S'^A^yjy dp J(w)(a,a:^)(w,&;p)F),(p)

(8.17)

2tt (27t)’ 
f dev d k

Thus, the spectral density of the power deposition via polarization drag is given by

qiw,k=-wtr(SSA), (8-18)
which is a restatement of Kirchhoff’s law (Krall & Trivelpiece 1973, section 11.4). For 
examples of S for specific systems, see section 9.

8.4. Equipartition theorem.
As flows from section 7.5, the energy of on-shell waves of a field & in a homogeneous 

^-dimensional plasma of a given volume 1n can be written as

hn£w = J dfc yniu(k)J(k)

r y d k h'
= (27T)"y dwwdwA(w,&)/t(&)J(w-'w(&))

dev cv duA(uj, k) k). (8.19)= (27T)' ■?r
To apply this to microscopic fluctuations, one can replace U with 2H and substitute 
2U = (27t)_fn+15S. Then, the total energy of a mode with given wavevector k and 
polarization rj can be expressed as

£k,v = / dww(dwA) f/S??, (8.20)

where the arguments (cv, k) are omitted for brevity. For thermal equilibrium, one can 
substitute (8.15) for S; then,

T
£k,v = im / dev {duA) rf E r/. (8.21)
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The integrand peaks at uj = w(k), where the mode eigenvalue A is small. Due to damping, 
the actual zero of A is slightly below the real axis in the complex-frequency space. Then, 
at infinitesimally small damping, rf E^1^ can be approximated near co = w(k) as

-i* yqkv (pv ' “<("' W(k>>)' (8 22)

This leads to the well-known equipartition theorem:

fk = T. (8.23)

Note that according to (8.23), the sum 1n£w = Tk v £k,v is divergent. This indicates 
that not all modes can be classical and on-shell (weakly damped) simultaneously.

8.5. Lrwmman/ o/ section, <8
In thermal equilibrium, when all species have Boltzmann-Gibbs distributions with 

common temperature T, the collision operator vanishes, the entropy is conserved, and the 
spectrum of microscopic fluctuations (8.9) satisfies the fluctuation-dissipation theorem:

9T
S(w,k) = -:^(S-i)A(w,&), (8.24)

where E is the dispersion matrix (6.80) and a denotes the anti-Hermitian part (or the 
imaginary part in case of scalar fields). From here, it is shown that the spectral density 
of the power deposition via polarization drag is given by = —wtr(SSA), which is 
a restatement of Kirchhoff’s law. For on-shell waves, (8.24) reduces to the equipartition 
theorem, which says that the energy per mode equals T. Applications to specific systems 
are discussed in section 9.

9. Examples
In this section, we show how to apply our general formulation to nonrelativistic elec­

trostatic interactions (section 9.1), relativistic electromagnetic interactions (section 9.2), 
Newtonian gravity (section 9.3), and relativistic gravity, including gravitational waves 
(section 9.4).

9.1. Nonrelativistic electrostatic interactions
9.1.1. Main equations

Let us show how our general formulation reproduces (and generalizes) the well-known 
results for electrostatic turbulence in nonmagnetized nonrelativistic plasma. In this case,

rr
= — + G,y + esy, (91)ZlThg

where es is the electric charge, y is the electrostatic potential, and Tp and dp are its 
average and oscillating parts, respectively. Then, H0s = Hs = p2/(2ms) + estp, Hs = esip, 
as = es, and Ls = Rs = 0, so ps = 0. The matrix (6.78) is a scalar (Wigner function) 
given by

U(f, a, w, &) = y ^ y(f + -r/2, z + a/2) y(f - r/2, z - a/2) (9.2)
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(Underlining denotes the macroscopic part, n = dim x, and the arguments (t, x) will be 
omitted from now on.) Correspondingly,

e2 jdknkkU(k • vs,k),

0s e2 8 ,fd-dA ^(w,&)
W — K - D, + 1/

As = <PS II |A
o

l ^ /d„dfc ,
2 dp

i)=0

and also

H, =
jr + A, P . ^A,

2 ms ms
The Lagrangian density of a free electrostatic field is

dp

1 d
87T

1
-ip

4tt y-

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)

The first term on the right-hand side does not contribute to the field action S0 and thus 
can be ignored. The second term is of the form (6.1) with M = 1, g = 1 (section 2.1.2), 
and So = Ar/(47T), so Eq(lo, k) = A:2/(47t), where k2 = k2 = 4 '/. A,. Then, (6.20) gives

S(oo,k) = ^ (co,k) =
,(w, &)
4tt

(9.8)

where the arguments t and x are omitted for brevity and cm is the parallel permittivity:

«,<».*>-1+2S1/dp k OF,
co — k • v s + iO dp (9.9)

9.1.2. Collisions and fluctuations
By (8.12), the spectrum of microscopic oscillations of ip is a scalar given by

S(w,k) = 27T^^^|^k)|) /<W(w-&.„,)F,(p), (9.10)

where we substituted n = 3 for three-dimensional plasma. For thermal equilibrium, (8.15) 
leads to the well-known formula (Lifshitz & Pitaevskii 1981, section 51)

2 TS(co, k) =----- irn —r(w,&)
87TT 8txT ime||(w, k) 

e| (cj,k)J cok2 |e|| (co, k)\2 . (9.11)

The ^spectrum 5p of charge-density fluctuations is found using Poisson’s equation 
p = k2p/An, whence 5p % (A:2/47t)2S. Fluctuations of other fields are found similarly. 
Also, (6.36) leads to

|%„,(w, &;p,p')|" =
,^k||(w, &)|

Then, (6.61) yields the standard Balescu-Lenard collision operator: 

d f dk , nkk / 47tese

(9.12)

J(& - Us — & - I),,)
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^,(P)

dp fXp') - f«(Pj ^'(pQ
dp' (9.13)

(As a reminder, the distribution functions are normalized such that f dpUs is the local 
average density of species s (5.39).)

9.1.3. On-shell waves
For on-shell waves, (7.63) gives U(iv, fe) = (h(k) + h.(—k))S(uj —iu(k)), where w(k) is 

determined by the dispersion relation

f|iHM&),&) = o,

and e||H = re em is given by

(9.14)

dp - _fc____ dF\
uj — k ■ vs dp

The phase-space density of the wave action, defined in (7.74), is

and the dressing function (9.4) is given by
4tt

e- - '■ h

= 2VI

V'dfe(fe(fe) + fe(—fe))

j- dfe h( fe)

kk

(9.15)

(9.16)

w(fe) — fe Dg i)=0

y ' w(&) — & - Dg

Using these, one obtains (appendix F.1.1)
i)=0

2/ dppUs dfe kJ = 2/ dp P/s

(9.17)

(9.18)

so the conserved quantity (7.88) is the average momentum of the plasma (while the 
electrostatic field carries no momentum, naturally). Also (appendix F.1.2),

2/ dpH0sFs dfe iv J = 1dpHosfs + —E^E, (9.19)

so, expectedly, the conserved quantity (7.90) is the average particle energy plus the energy 
of the electrostatic field. In combination with our equations for Fs and J (section 7.6), 
these results can be considered as a generalization and concise restatement of the OC 
QLT by Dewar (1973), which is rigorously reproduced from our general formulation as a 
particular case.

9.1.4. Eikonal -waves
As a particular case, let us consider an eikonal wave

y % re(e^y), w = fe =

which may or may not be on-shell. As seen from section 7.4.1,

U = ^^V(w±w)J(fe±fe).

(9.20)

(9.21)
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For nonresonant particles, the dressing function is well defined is found as follows:

0, dev d k - ;2fcfc|y>|2
4(w — & - Us)2 

elk k\<0\2

± w) J(k ± k)

2(w — & - Us)2
Similarly, the ponderomotive energy for nonresonant particles is

8m, Jr,
„2I “12
8m,

dev dfc
(ev — & - r,)2 ± w) J(k ± k)

elk~\0\2
4m.,(ev — & - r,)2'

(9.22)

(9.23)

in agreement with (Dewar 1972; Cary & Kaufman 1977). One can also express these 
functions in terms of the electric-field envelope E % —iky:

0, EEf \E\
2(ev — k - r,)- 4m, (w — k - r,)-

(9.24)

For on-shell in particular, one can use (9.16) together with h(k) = \\0\2d(k - k) (cf. 
(7.64)) to obtain the well-known expression for the wave action density 1 = J dkJ:

^ |&|^||H(w,k)
16tt dcv

For non-too-hot plasma, one has e||H(cv, k) % 1 — cv2/cv2, where ivp = Ys 47iA/'se2/m.s is 
the plasma frequency. The corresponding waves are Langmuir waves. Their dispersion 
relation is iv(k') % +ivp, so I % + |„E|2/(87Tivp) (and accordingly, the wave energy density 
is £w = wl 0 0 for either sign). Remember, though, that this expression is only approx­
imate. Using it instead of (9.25) can result in violation of the exact conservation laws of 
QLT. Conservation of the Langmuir-wave action in non-stationary plasmas beyond the 
cold-plasma approximation is also discussed in (Dodin et al, 2009; Dodin & Fisch 20106; 
Schrnit et al. 2010).

t) ( h ) (9.25)

9.1.5. Homogeneous plasma
In homogeneous n-dimensional plasma of a given volume 7n, the Wigner function (9.2) 

has the form U = U(t, k)S(cv — iu(t, k)). The function U is readily found using (5.47):

— — J da; du>U — — \0(t, fc)|2 — — \0(t, fc)|T (9.26)

Then,

Ds ^ f dfc fcfc \0(t, k)\2 5(w(t, k) - k ■ vs). (9.27)
J

This coincides with the well-known formula for the QL-diffusion coefficient in homoge­
neous electrostatic plasma, f The functions 0S and As are also important in homogeneous

f See, for example, equation (16.17) in (Stix 1992). The extra mass factor appears there 
because QL diffusion is considered in the velocity space instead of the momentum space.
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turbulence in that they ensure the proper energy-momentum conservation; for example, 
see (Stix 1992, section 16.3) and (Liu & Dodin 2015, section II.2). These functions can 
be expressed through tp too. However, they have a simpler representation in terms of 
the Wigner function U, as in (9.4) and (9.5), respectively. This is because U is a local 
property of the field, which makes it more fundamental than the amplitudes of global 
Fourier harmonics commonly used in the literature.

9.2. Relativistic electromagnetic interactions
9.2.1. Main equations

Let us extend the above results to relativistic electromagnetic interactions. In this case,

.Hs = \/m2c^ + (pc - e,A)2 + (9.28)

where c is the speed of light and A is the vector potential. Let us adopt the Weyl gauge 
for the oscillating part of the electromagnetic field (y = 0) and Taylor-expand Hs to the 
second order in A. This leads to

% #0s - <h,/^A + ^ A^p, ^A,

Has = ?gc4 + (pc — e,A)2 +

(9.29)

(9.30)

(although plasma is assumed nonmagnetized, a -weak average magnetic field B = V x A 
is allowed, so A can be order-one and thus generally must be retained), where

/3S = p- — A Vs =
t/3s/3 (9.31)

and 7S = (1 -/Jy)-1/2. In the equations presented below, (3S = vs/c (where vs is the 
OC velocity) is a sufficiently accurate approximation. Also, ps = (52pLfos)_1 can be 
interpreted as the relativistic-mass tensor.

Let us choose the field >2 of our general theory to be the oscillating electric field 
E = ievA/c; then (cf. (6.2)),

2, =ols = iesrsev y L,s = e~iv % Rs = ps 1w . (9.32)

(Other ways to identify Ls and Rs are also possible and lead to the same results.) Then,

The average Wigner matrix of E is

U(f, x, iv, k) = [ E(t + r/2, x + s/2) £h(f - r/2, x - s/2) e

(9.33)

2tt (2tt)3
(the arguments t and x are henceforth omitted), and the nonlinear potentials are

vJU(fe • vs, k)vs
D., = 7te:

0. = e2 A

dk kk

/'
(&-Us)2

kk (vJUvs)e° y7 f dw dfevv J to~ oj — k ■ v
e! J

i)=0

2 Jp' / dev d k k (vJUvs) e
k ■ Vs ~ / dev d k tr(Up;i)

When plasma is nonrelativistic and the field is electrostatic (so U = kk^U^, where is

(9.35)

(9.36)

(9.37)



61Qwaa/./mear /.Aeon/

scalar), (9.35) gives the same Ds as (9.3) and (9.37) gives the same As as (9.5). For 0S, 
the equivalence between (9.36) and (9.4) should not be expected because 0 is a part of 
a distribution function, which is not gauge-invariant. (Canonical momenta in the Weyl 
gauge are different from those in the electrostatic gauge.) But it is precisely the dressing 
function (9.36) that leads to the correct expressions for the momentum and energy stored 
in the OC- distribution (section 9.2.3).

The Lagrangian density of a free electromagnetic field is

£o =
E^E - B^B

87T
From Faraday’s law, one has B = uj 1c(k x E).f Then, 
follows (up to a divergence, which is insignificant):

(9.38)

-WB/c2 can be represented as

(E x w-i&) - x E) = E - x (& x E))
= E^(k(&.E)-EP)
= E^(k&t - lP)E. (9.39)

Then, the vacuum dispersion operator can be written as (cf. (6.1))

S0(cv, k) = ^1 + c2ai^2(kk^ - lA:2)^ • (9.40)

The total dispersion matrix is readily found to be

E(w,k) = fe(co,k) + Ay (kk^ - lA:2)^ , (9.41)
4tt y iv- ' j

where e (not to be confused with the small parameter e that we introduced earlier) is 
the dielectric tensor:

e(cv, k) = 1 XVp i 47te2 dp k

Here, rop is the squared relativistic plasma frequency, which is a matrix, because the 
‘masses’ ps are matrices:

dpFsfj,s 1 (9.43)

9.2.2. Collisions and fluctuations
By (8.12), the spectrum of microscopic oscillations of E is a matrix given by

S(w,= ydp<5(w-&-Us)E,(p)6-i(w,&)rs^6"t(w, &). (9.44)

In the electrostatic limit, one can replace e-1 with e^kk^/k2, where e| is the relativistic 
generalization of (9.9); then (9.44) leads to (9.10) as a particular case. For thermal 
equilibrium, one can also use (8.15) and the following form of e-1 for isotropic plasma:

e-l 1 fcfc1'
(9.45)

f Here, the oscillating field & = E has the same dimension as x, so the standard vector 
notation (including the dot product and the cross product) is naturally extended to &.
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where e± is the (scalar) transverse permittivity. Also, (6.36) leads to

A I 2 47te.,e., vie (9.46)

Then the collision operator (6.61) is obtained in the form

d
(271)3 (&-v,)4

x kk ■ /^(p)
\ Jp

fy(p') f«(p) ^'(pQA
jp/ (9.47)

which is in agreement with (Hizanidis et al. 1983; Silin 1961). Replacing e 1 with 
e^kk^/k2 leads to the standard Balescu-Lenard operator (9.13) as a particular case.

9.2.3. On-shell waves
Electromagnetic on-shell waves satisfy

CH(w(&), &) + (&&^ - 1A^)1 = 0,

where E is the complex envelope vector parallel to the polarization vector 77; also,

(9.48)

«=H(w, &) = 1 - ^ + I]
8 ^

This yields (see (9.39))

vsv OF,
, k- n . 

uj — k-vs up

(«■’(&), k)E = Ef(kkf - 1= B^B.tu(k)2

Then, the phase-space density of the wave action (7.74) can be cast in the form
,2,

j(&) = M&)Y _ h(k) t d(areH(cv, k)) 
u (k) 4ttcv2 ^ dw ^ «(k)

(9.49)

(9.50)

(9.51)

(cf. (Dodin et al. 2019)), and the dressing function (9.36) is given by

-e- i
. 2,= A

V'dk (/;(&) + /;(—&))

j' dfe h(k)

kk
w2(&) w(&) — & - Vg + D i)=0

y ' ^ 7U2(&) 7f(&) — & - Vg + D

Using these, one obtains (appendix F.2.1)
t)=0

yi y dppf,+y dk&j= Ex B
4ttc ’

(9.52)

(9.53)

where is the average density of the plasma kinetic (up to A) momentum,

.p(kin) = ^y dp(p - e«A/c)/a = l^y dpp/^"\ (9.54)

the functions /ikm^(p) = fs(p + esA/c) are the distributions of kinetic (up to A) mo­
menta, and the second term in (9.53) is the well-known average momentum of electro-
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magnetic field. Similarly (appendix F.2.2),

^ y dpEos.%, + y dkwJ = ^ + BtB), (9.55)

where /Cikmi is given by

K'“"'-2/.dp H0s ft(kin (9.56)

In other words, the total momentum and energy of the system in the OC-wave repre­
sentation are the same as those in the original particle-field variables.

9.2.4. Eikonal waves
As a particular case, let us consider an eikonal wave

E % re(e^A), w = (9.57)

which may or may not be on-shell. Then, (9.36) and (9.37) lead to (cf. section 9.1.4)

kk e2\vlE\2
0. =

A. =

kf 2(w- k-r,)^
_ e^k . jV

4cv2 4w dp\iv^k-vs
For on-shell waves in particular, one also obtains the action density in the form

(9.58)

(9.59)

x = 1 _gt <9(^2eH(^,fc))
16tuv2

1
16ttcv

dw
<?(^eH(^, k)) 

dw

E.
w=tu(k)

/•; + Bf b
w=tu(k)

(9.60)

where we used (9.50).

9.3. Newtonian gravity
For Newtonian interactions governed by a gravitostatic potential y>9, one has

. ... _ . ... ^ . (VyJ"H, =
2 m. ,-sAgi £n = 8ttG (9.61)

where G is the gravitational constant. This system is identical to that considered in 
section 9.1 for nonrelativistic electrostatic interactions up to coefficients. Specifically, es 
are replaced with ros, a factor -G-1 appears in S0, and the dispersion matrix becomes

S(u>, k) = ^ (co, k) = k2eg(oj,k)
4ttG (9.62)

Thus, e| is replaced with —es/G, where eg is the gravitostatic permittivity given by

EgW, k) = 1 - ^ 4ttG'z
k2 dp k dF„

oj — fc • vs + iO 8p (9.63)

This readily yields, for example, kinetic theory of the Jeans instability (Trigger et al 
2004), whose dispersion relation is given by es(w, fc) = 0 (modulo the usual analytic 
continuation of the permittivity to modes with irniv < 0).
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9.4. Relativistic gravity
9.4.1. Main equations

The dynamics of a relativistic neutral particle with mass in in a spacetime metric gaf3 
with signature (—h ++) is governed by a covariant Hamiltonian (see, for example, (Ga.rg 
& Dodin 2020))

H(x, p) = ^- + g^^(x)p^) = H(g, p). (9.64)

Here, x = (x°,x), and x° = t, as usual. Also, p = (p0,p) is the index-free notation for 
the four-momentum pa, g“/3 is the inverse metric, g is the index-free notation for ga/3, 
the units are such that c = 1, and the species index is omitted.f The corresponding 
Hamilton’s equations, with r the proper time, are

dx dp*' dx dx"' l

This dynamics is constrained to the shell p0 = Po{t,x,p), where P0 is the (negative) 
solution of

H(g,P0(t,x,p),p) = 0. (9.66)

This means that the particle distribution in the (x, p) space is delta-shaped and thus does 
not satisfy (3.35). Hence, we will consider particles in the six-dimensional space (x,p) 
instead. The corresponding dynamics is governed by the Hamiltonian

H = -P0(t, x,p). (9.67)
This is seen from the fact that

d# dfn dH/d. 
d- " d- " dH/dpo'

(9.68)

where ■ e {#, x,p}, so Hamilton’s equations obtained from (9.67) are equivalent to (9.65):

dx^ _ d^) _ dH/dp* dpa _ da _ dH/dx^
dp«d t dH/dpo df dx^ dH/dpo

(9.69)

Let us decompose the metric into the average part and oscillations, gag = ga/3 + gag, 
and approximate the inverse metric to the second order in g:

(9.70)g^ % ^ - g"^

where the indices of g are manipulated using the background metric ga/3. This gives

H = ^ + g^^PaP^ - g^PcP,3 + g^g^^g^^PaPa) -

The Hamiltonian (9.67) is expanded in g as follows:

(9.71)

H(g, p) % -fb dP 1 d^an
g (9.72)

2 dg"fdgb"S
where P0 and the derivatives on the right-hand side are evaluated on (g, p). To calculate 
these derivatives, let us differentiate (9.66) and use (9.71) for H. This gives

0 = dH
dd^"

dH dfn 1
dpo dg*/3 2m -PoPf op0 dP[) (9.73)

f This section uses notation different from that used in the rest of the paper. In particular, 
the Greek indices span from 0 to 3, and the standard rules of index manipulations apply.
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where the derivatives with respect to the oscillating metric are taken at fixed pa and at 
g —* 0, and P° = P°(g, p) = g0apa; thus,

&Po   PaPfj

Similarly, differentiating (9.66) twice gives

(9.74)

0 = JL dPo_\ dPo_
Jpo \ dg^/3 ^ dpo dg^/3 / dg7"^Jg«/)Jg7^ Jpo Jg“^ Jg7"^ Jg“^ Jpo dg7"^

<?2H d\\ d2P0 __ :________ ___________ _____
Jg^^Jg7"^ ^ Jpo Jg^/3 Jg7"^ + Jg^/3 Jpo Jg7"^ ^ Jg7^ Jpo Jg^/3 ^ ^Po4"0 #g°^ Jg7"^ 

1 /_ _ <^fo 1 , -410 PcdW-yPa \
-------------------2(f«r J'2 P-— ^g^p,+g^p^ , - OfO

whence

=^8jj=g - "^po + 9^7%.)
4(f°):

<9(PaP/3P"yPa) _nn PcdW-yPa 
- g 4(poy

Then, (9.72) yields
1+ CKa^ g

where we introduced H0 = —Po, «“/3 = papl3/(2P°), and

1<=«%„ - 
2̂P° 4(P0)=

d(p“p^p-yP/i) , _4m
+ gdpo 4(f°)3

(9.75)

(9.76)

9.4.2. Nonlinear potentials
Let us treat g as a 16-dimensional vector (Garg & Dodin 20216), so aa/3 serves 

as a'f and pali-ls serves as p. (Because these operators happen to be local in the 
x representation, here we do not distinguish them from their symbols.) Let us also 
introduce

£ = U a/375 (9.77)

and notice that vl % xl = p'/p° (see (9.69)), so c0 — k ■ v = —kppp/P° and S(co — k ■ v) = 
P°S(kppp). Then, one finds from (6.77) that (appendix B.8)

D

0 =

= ^0 / dkkk£J(A%)

/1 d
4P° dd

fcfc£

A = PaP/3
2 P°

i9P° — kPpp
1

i)=0
ddk U“ 7/3

^ 8P° y ^i dk

(9.78)

(9.79)

(9.80)

Equation (9.80) (where one takes p0 = Po after the differentiation) is in agreement with 
the result that was obtained for quasimonochromatic waves in (Garg & Dodin 2020). The 
derivation of the dispersion matrix 3 for relativistic gravitational interactions in matter 
is cumbersome, so it is not presented here, but see (Garg & Dodin 2022). The collision 
integral and fluctuations for relativistic gravitational interactions are straightforward to 
obtain from the general formulas presented in sections 6.9 and 8. This can be used to
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describe QL interactions of gravitational waves, including not only the usual vacuum 
inodes^ but also waves coupled with matter, for example, the relativistic Jeans mode.

Also notice that the OC Hamiltonian H = H0 + A can be put in a covariant form as 
follows. Like in the original system (section 9.4.1), H determines the ponderomotively 
modified shellpn = Vo(t, x,p) via H = -Vq. On one hand, the covariant OC Hamiltonian 
W vanishes on this shell,$ so it can be Taylor-expanded as follows:

fl'IJ
V ~ (pn — Vo) y— 

' «?Po P=Po

dH
(po — Po + A)A, A = ——

dPO p=Pn
(9.81)

On the other hand, it can also be represented as W = H (g, p) + A’ (here A' is the 
ponderomotive term yet to be found) and Taylor-expanded around the unperturbed shell 
po = P0(t, x,p) as

H' ~ A' + (po — Po)X = (po — Po + A'/A)A. (9.82)

By comparing (9.81) with (9.82), one finds that A' = A A. Because A = P°/m, this leads 
to the following covariant Hamiltonian for OC-s:

W - 2P 1 "2

sS-r11

(9.83)4 dpA 7 y

dkir/f. (9.84)

9.4.3. Gauge invariance
As shown in (Garg & Dodin 202la,b) adiabatic QL interactions via gravitational waves 

(i.e. those determined by 0 and A) can be formulated in a form invariant with respect 
to gauge transformations

_» (9.85)

where V is the covariant derivative associated with the background metric g, X is 
an arbitrary vector field, and = (Q“»/3 +Q/3?y“)/2. Let us show that this also
extends to resonant interactions. Recall that within the assumed accuracy the nonlinear 
potentials are supposed to be calculated only to the zeroth order in the geometrical- 
optics parameter. Then, the modification of the average Wigner matrix of the metric 
oscillations under the transformation (9.85) can be written as

= (9.86)

where W/37'5 = symbx |Q3Xp7<5| and W~7 is the average Wigner matrix of The corre­
sponding change of 6 is

C - g = (f Pp) ^ip/3P-yPa W^7^ - ipaP^P-ykV7^* + &^PAP/3P-yW^7^ = (fp^)A.

f Vacuum gravitational waves satisfy iv2 = |fc|2. Hence, satisfying the resonance condition 
kppp = 0 requires |fc • v\ = |fc|, which requires particle speeds not smaller than the speed of light 
(remember that c = 1 in our units). For massive particles, this cannot be satisfied, so D vanishes 
for vacuum gravitational waves. However, such waves can still produce adiabatic ponderomotive 
effects determined by A (Garg & Dodin 2020).

| The covariant Hamiltonian is the dispersion function of particles as quantum waves in the 
semiclassical limit (Garg & Dodin 2020).
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Then, the difference in the diffusion coefficients (9.78) is

D' - D = / dk && J(A%) (A%) A = 0, (9.87)

because S(kppp) (kppp) = 0. In particular, this rules out QL diffusion via ‘coordinate 
waves'.

9.4.4. Toren.z gauge and egec#we me/Ac
Let us consider gravitational waves in the Lorenz gauge, Vaga/3 = 0. In this case,

= 0, (9.88)

and thus kxd£/dpx = 0. Then,

Aidk)A d_
+ 0 t)=0

(9.89)

This simplifies the expression (9.80) for A and (9.83) for . Furthermore, if the waves are 
not significantly affected by matter, so the vacuum dispersion k\kx = 0 can be assumed, 
the term (9.89) vanishes completely. Then, (9.83) becomes

^ (m/ + g^Wts) (9.90)

and QL diffusion disappears, because particles cannot resonate with waves. This shows 
that the only average QL effect of vacuum gravitational waves on particles is the 
modification of the spacetime metric by / dklQ-Qy = 0(s2). For quasimonochromatic 
waves, this effect is discussed in further detail in (Garg & Dodin 2020).

10. Summary
In summary, we have presented quasilinear theory for classical plasma interacting with 

inhomogeneous turbulence in the presence of background fields. Because we use the Weyl 
symbol calculus, global-mode decomposition is not invoked, so our formulation is local 
and avoids the usual issues with complex-frequency modes. Also, the particle Hamiltonian 
is kept general, so the results are equally applicable to relativistic, electromagnetic, 
and even non-electromagnetic (for example, gravitational) interactions. Because our 
approach is not bounded by the limitations of variational analysis either, effects caused 
by collisional and collisionless dissipation are also included naturally.

Our main results are summarized in sections 5.6, 6.9, 7.6, 8.5 and are as follows. 
Starting from the Klimontovich equation, we derive a Fokker-Planck model for the 
dressed oscillation-center distribution. This model captures quasilinear diffusion, in­
teraction with the background fields, and ponderomotive effects simultaneously. The 
local diffusion coefficient is manifestly positive-semidefinite. Waves are allowed to be off- 
shell (not constrained by a dispersion relation), and a collision integral of the Balescu- 
Lenard type emerges in a form that is not restricted to any particular Hamiltonian. 
This operator conserves particles, momentum, and energy, and it also satisfies the 17- 
theorem, as usual. As a spin-off, a general expression for the spectrum (average Wigner 
matrix) of microscopic fluctuations of the interaction field is derived. For on-shell waves, 
which satisfy a quasilinear wave-kinetic equation, our theory conserves the momentum 
and energy of the wave-plasma system. Dewar’s oscillation-center quasilinear theory of 
electrostatic turbulence (Dewar 1973) is proven formally as a particular case and given
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a concise formulation. Also discussed as examples are relativistic electromagnetic and 
gravitational interactions, and quasilinear theory for gravitational waves is proposed.

Aside from having the aesthetic appeal of a rigorous local theory, our formulation 
can help, for example, better understand and model quasilinear plasma heating and 
current drive. First of all, it systematically accounts for the wave-driven evolution 
of the nonresonant-particle distribution and for the ponderomotive effects caused by 
plasma inhomogeneity in both time and space. As discussed above (section 7.5), this is 
generally important for adequately calculating the energy-momentum transfer between 
waves and plasma even when resonant absorption per se occurs in a homogeneous- 
plasma region. Second, our formulation provides general formulas that equally hold in 
any canonical variables and for any Hamiltonians that satisfy our basic assumptions 
(section 3.1). Therefore, our results can be applied to various plasma models immediately. 
This eliminates the need for ad hoc calculations, which can be especially cumbersome 
beyond the homogeneous-plasma approximation. Discussing specific models of applied 
interest, however exciting, is beyond the scope of this paper and is left to future work.
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Appendix A. Average Wigner matrices
A.l. Positive semidefinitness

As known from (Cartwright 1976), the average Wigner function of any scalar field on 
the real axis is non-negative if the averaging is done over a sufficiently large phase-space 
volume. Here, we extend this theorem to average Wigner matrices of vector fields in a 
multi-dimensional space, i/>(x), and show that such matrices are positive-semidehnite.

For any given function h(z) = /?.(x, k), we define its local phase-space average as the 
following convolution integral^

with a Gaussian window function

(A2)

and positive constants ax and oy yet to be specified. Unlike in section 2.1.1, the following
notation will be assumed for the ‘scalar product’ for variables with upper, lower, and 
mixed indices:

(The Latin indices in this appendix range from 0 to n, Ay and <W are unit matrices, and

f This ensures that dji = dzh, as readily seen from (At) using integration by parts.
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summation over repeating indices is assumed.) In particular, note that |x|2 = x x 5= 0 
and must not be confused with the squared spacetime interval, which can have either 
sign. Likewise, |k|2 = k k 0 must not be confused with kjk* = -w2 + k2.

The average Wigner matrix of any given vector field xp is given by

Qwaa/./mear /.Aeon/

1 1
w*(x’ kl - (27,)" J d5dx'dk' *(x' +(x' - =/-'

Ik-k'l2x exp

The integral over k' can be readily taken:
Ik-k'i2

X — X/|2

2a2 2<Tk
ik' • s

J dk' exp ^ ^ I---- ik' • s^j = {2n)n/2a^ exp ---- ik • s^j

Then, using the variables Xy2 = x' + s/2, one can rewrite (A 4) as follows:

\Nip(x, k) =

<t> =

(27T )3n/2(j"
|X - (Xi + X2)/212 a/|Xi - X212

dxidx2^(xi)^t(x2)e

■ ik • (xi — x2).

(A4)

(AS)

(A6)

(A 7)2a2 2
The function </) can also be expressed as </) = |x|2/(2a/) + </»(xi) + </)*(x2) - Axi - X2, where

<Ky) = "7T ( y-w + c^k ) - + ik • y
2 2 1

4a2
x- y

and A = a/ - (4a/) . Then, using £(y) = ip(y)e ^'y', one obtains from (A6) that
2a2 (AS)

Wy,(x, k) =
(27t)3n/2a"

By Taylor-expanding eAxi X2, one obtains

dxidx2$(xi)(Xx2)eAXd'Axi -x2

e-blV(W) A"
W^,(x,k)_ ^ m,| Jm,

where Jm = / dxi dx2 (xi • x2)m^(xi)^(x2). Note that

(xi x,)-= ^ H(^r,
fi(m) i= 1

(A9)

(A 10)

(All)

where the summation is performed over all combinations fi(m) = {mi, m2,..., m„} of 
integers m* 5; 0 such that T. m* = in. Thus,

Jm = ^ = / dy((y)n(/)"'\ (A 12)
ft(m) *=1

Because each Jm is positive-semidehnite, the Wigner matrix Wy, is positive-semidehnite 
when A 5= 0, or equivalently, when axak > 1/2. This condition is assumed to be satisfied 
for the phase-space averaging of Wy, used in the main text. Loosely, this means that the 
averaging is done over the phase-space volume Ax Ak ~ (axak)n > 1.

A.2. Invariant limit for eikonal fields 
For eikonal fields (7.17), one has

^(x + s/2)^(x - s/2) % (A(x)e^*)'* + c.c.) + (^(x)e2'^^ + c.c.). (A 13)
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Here, A = 7777+1«|2/4, B = r/r)Jd2/A, ‘c.c.’ stands for complex conjugate, we used the 
linear approximation Q(x ± s/2) % Q(x) ± k(x) • s/2, with k = (-ZJ, k). Then,

W^,(x, k) % A(x) J(k - k(x)) + A*(x) J(k + k(x)) + 2re (B(x)e^^Wj(k)). (A 14)

Let us adopt ctx « lc, where lc is the least characteristic scale of o, 77, and k. Then,

W^(x, k) ^ A(x) gk(k - k) + A*(x) gk(k + k) + 2re (B(x)gk(k)(e^W). (A 15)

Here, £?k(k) are normalized Gaussians that can be replaced with delta functions if ay is 
small compared to any scale of interest in the k space:

Qk (k) =
1

(V2mrk)"
exp

Also, the function

c 1
(V27%7x)n

dx' exp
2a3

2ik(x) • (x' - x) ) = e -2|k(x)P<

(A 16)

(A 17)

can be made exponentially small by adopting ax » |k| x.f In this limit, the average 
Wigner matrix of an eikonal field is independent of ax and ay.

W^,(x, k) % A(x) J(k - k(x)) + A*(x) J(k + k(x)). (A 18)

This is also Hermitian and positive-semidehnite (in agreement with the general 
theory from section AT), because so are A and A*. The same properties pertain to the 
Wigner matrix of an ensemble of randomly phased eikonal fields, because it equals the 
sum of the Wigner matrices of the individual components (see also section 7.4).

Appendix B. Auxiliary proofs
B.l. Proof of (2.53)

Like in the case of (2.45), one finds that

(LiMx))'(RiMx):r = <x|L\,|f )<f'|(RJy)t|x> 
= (27T)"/x|L',W^(Rt),T|x) 

= (27T)"<x|(LW^RtHx>
= / dk (L(x, k) * W^(x, k) * R?(x, k))^. (B1)

This proves (2.53a). At e —»• 0, when * becomes the usual product, (B 1) gives

(W,)(R^)t = /dkLW^Rt, (B2)

and in particular, taking the trace of (B 2) yields

(R^)t(L^) = tr((L^)(R^)t) = /dktr(LW^Rt) = /dktr(W^Q). (B3)

Here, Q = R L, and we used that tr(AB) = tr(BA) for any matrices A and B.
For real fields, one can also replace the integrand with

tr (W^Q*) = tr (C/W^) = tr (C/W^) = tr (W^Q?), (B4)

f Even though ax has been _assumed small compared to lc, the smallness of the 
geometrical-optics parameter e = (|k|/c)_1 « 1 allows choosing ax in the interval |k|-1 « ax « lc.



where we used tr AT = tr A, (AB)T = BTAT, = Wy,, and, again, tr(AB) = tr(BA), 
respectively. In summary then,

= /dk tr(W^Q) = /dk tr (B5)

so the anti-Hermitian part of Q does not contribute to the integrals. Thus,

(R^)t(L^) = /dktr(W^(RtL)H). (B6)
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Because L and R are arbitrary, they can as well be swapped; then one obtains (2.53c).

B.2. Proof of (4-28)
Suppose the dominant term in /lx in (4.16) has the form /lihrh, where h is a natural 

number and fj,h = 0(e2). (Here h is a power index, so no summation over h is assumed.) 
Let us Taylor-expand J\A,G\ in /lih :

- J[A,Go] -O(e^)

Ph ■J~(f
V

(

/

I/—>0+

-prT+iOT+iK-fxhTh/x,-ydarA(a:,ar)^—^ dre 

i/XA.yd##A(A:,.PQhm / dTT^e'^+^

t*h=°

f*h=0

/ dATArA(%,Ar)

f/—>0+
d^Go(f?(A:, AT))

i l-hPh ah dfC A-)Go(f?(A:, a")). (B7)

Provided that A is sufficiently smooth and well behaved, the overall coefficient here is 
0(1), so J"[A, G] - J"[A, Go] = 0(fx&) + O(e^). Because fx& = O(e^), this proves (4.28).

B.3. Proof of (5.4)
Here, we show that

symbx(w*Gw^)
1

(2n)^
1

(2npv

1
(2npv

1
(2n)^

1

-re")-s'

/ dSe-^^(a: + S/2|^GG^|a: - S/2)

/ da:' da"' dA" dS dS' VP^(a:', a")G(a:', A"')

% j(a: + s/2 - a:' - s'/2)j(a: - s/2 - a" + s'/2)
/ da:' da" da"' ds ds' vp^(a:', a")G(a:', a"')

% j(s - s') j(a: - s/2 - a:' + s'/2)
/ da:' da" da"' ds w^(a", a")G(a:', a"') e'^'+^"-^)^j(a: - a")

/ da" da"' ds w^(a:, a")G(a:, a"') e'(^'-h K —K)-S
(2n)^

= /da"w^(a:,a")G(a:,a'-a"). (B8)
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B.4. Proof of (5.10)
Using (4.19), (4.20), and (2.84) in application to TU“/3, one finds that

= / daTW^(%,aT)G*(%,an

= /dA:W%^(A:,-Ar)G(A:, A:)

= / dATW%^(^,^)G(A:,Ar)

= (D^(JQ)' (B9)

and also
0^(A:) = - / dfC^(A:,A')(Gl"(A:, A-))*

= / dAT%C(A:,Ar)Gi'(A:,-Ar)

= /d*rW^(jr,-#)Gic(a:, A:)

= / dA:(W%^(A:,Ar))*Gi"(A:,Ar)

= -(0^(A:))\ (BIO)

Let us estimate

where has the form

B.5. Proof of (5.20)

dz« \ dz/3 /

^ = y dATg/^^^' G(G(%,AT)).

First, notice that

Kj -£f 4K*WO - j AKq„W |t

p r __ pvx a r __

(B 11)

(B12)

(B13)

Because Qi1'1 and 77.BJ are G(e2), one has vjJJ ~ km£2, where km is the characteristic 
inverse scale along the pth phase-space axis. Thus,

rB)/ ~ = G(eg2), (B 14)
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where we used (see (2.69) and (3.2))

J A.',, h'11 K'XK'p — G(e).

The first part of (5.20) is obtained by considering imG15/ and using (B 14). 
Let us also estimate

dz jz/) y

where vjZ) has the form

^ = /™^omx,K)i

First, note that

P™ - f d kJ^-g
dz"dz"

dz" _/ dz"
d2

d K dlF dG 
dz" dz"

dz"dz"
82

dz"dz"
 d
dz'
d2

d K W G — dz"
d.K"tFG - /

dz" y

^ ^ ^ ' dz"

d K

dKW§

__ Z f}'/ j ^
dA-^G'f

\ dz" 
TTT d2GVFG' + ydfCVF

dz"dz"
d /do^_9_ d 

^ dz" \dz" dl? y

dz"dz"

dK q\WG

/ dJfVF- ^ ^
dz"dz"

Next, note that

dJfVF ^ ^
dz"dz" y

= fdA-VF-^- ^-gxG'^
dz" dz^

= / dfCgxVF ^ - /%\ /do^
dz'

^dG'
dz" dz"dz" y

dKW

= / dATgx^WG"dz" dz" 
d^dt/ 82 
dz" dz" dl?2 y

dz"dz"
/ d K qxqgW GTTT^ 82V

dA-gxVFG' 

dA-gxWG'

d K q\W G.
dz"dz" dG

Assuming the notation

= / d#tFG = 0(E2),

(BIS)

(B16)

(B 17)

d2G
dz"dz"

(B18)

(B19)

(B20)



74 I. Y. Dodin

one can then rewrite vjf) as follows:

pm _

d2^2)

Afri,g
dz^ \ dz"

(2) _A ^
dz^ \dz^ 21

f^d/ (2)
dz^dz^ ^ dz^ dz^

d2^/
Q (2) dg^ dg^

dz^dz^ dz^dz^ ^ dz^ dz^ dz^ dz^
d2^/

dz^dz^
Each term on the right-hand side of this equation scales as £2kmk^, so

d2V - ( y)eV e2£2/, (B21)

where we again used (B 15). The second part of (5.20) is obtained by considering re C(2] f 
and using (B 21).

B.6. Proof of (5.25)
Using (5.23) and assuming the notation dt = 8t + v7d7, one finds that 

cUD"%7) - da((D^ + g^)^7)
= - da ^0^dt^7 + ^ (dt0"^)^7^

= - ^ Q 0""dt^7 + ^ dt(0"^^7))

= - Q 0"^^dj - ^ 0"^(d^U)d77^ _ da Q dX0"^d^7))

= - da Q 0"fdfdj) + da Q 0"^d^U)dj)

- dt Q da(0"^d^7)) - (d«,'ld7 Q 0"^d^ . (B 22)

Because 0“/3 = 0(t2) and dtf = 0(e2), the first term on the right-hand side of (B 22) is 
negligible. Also note that due to (3.15), the factor dae7 in the last term on the right-hand 
side of (B 22) commutes with d7. Hence, one obtains

da(D"fdf7) - da(D"fd„7) + dt Q da(0"fdf7))

= da (^df7 + ^ (d^'l d77) - d7 Q 0^(daZ'7)d^7)

= da ^"^d^7 + ^ (0"ld7^) - 0^(d7r")) d„7)

= da(U^d^7). (B23)

Next, notice that

1
2
1
2

dlU dlU\ 1

y 1? dz^ 2 y 1? dz^

dz" 7 1?

dz^ 1?
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= --

5

d

f—/
/ d K

d K

Q 
qJW n

/dK"»H'74

qxqJVn
Assuming the notation

1g„ = -fd*r/■
2/ f? ' 

one can rewrite (B 24) compactly as follows:

r
"" " 2 / d K W

Q (B25)

(B26)

Notice also that 0“/3 = 2Ja^ Jt3v R^v. Hence, for Ua)3 introduced in (B 23), one has
erf - J""

- 0^(&y))/2= g^

= (J/3" J^)(J^^)A^
= o,

where we used (3.8) for va and the anti-symmetry of Ja/3. Therefore,

- J^Q^) = (- J"" J^)J„Q„ =

(B27)

(B28)

and accordingly,

JeCTf = (J""Jf - J""
= = -J"%( J^Q„) = (B 29)

Here, 0 = —J^d^Q,,, which is equivalent to (5.24). From (B29) and the fact that 
Ualidaj3 = 0 due to the anti-symmetry of Ua/3, one has

cW%7) = = {^,7}. (B 30)
Hence, (B 23) leads to (5.25).

B.7. Proof of (6.30)
The correlation function

Css'(f,z,T,a;p,p') = 9«(f + r/2,a; + a/2,p)g,,(t - r/2,z - 8/2,^) (B31)
can be readily expressed as

Css' = ^ss' 1] + 1] 1 + a/2 - ^<7. + r/2))<5(p - (f + r/2))
(Tg=(T''/ (Tg^Cr''/ ^

x J(z — a/2 — (f — r/2))J(p' — p^, (f — r/2))) —
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Here, ■(...) is another (in addition to overbar) notation for averaging used in this 
appendix, the dependence of fs on (t, x) is neglected, and Las ^ a'sf denotes that ex­
cluded are the terms that have s' = s and as = a's, simultaneously. Aside from this, the 
summations over as are taken over all Ns » 1 particles of type s, and the summations 
over as> are taken over all Ns> » 1 particles of type s'. Also,

Cf = + T/2, z + a/2,p)f,,(t - T/2, z - a/2,p')). (B 32)

To the leading order, pair correlations can be neglected. Then,

(---> = 1] (<%a + a/2-z,r,(f + T/2))J(p-p^(f + T/2)))

L(t+T/2,cc+8/2,p)/Ng
x — a/2 — (t — r/2)) J(p' — p^, (t — r/2))) 

•------------------—------------------------- ------------—
f.'h-T/SiZ-g/gj/VN,,

AT,AT,- (1 - = (1 - Ar-ij_,)^ ^ (B 33)

Let us also use pa (t + t/2) % p^ (t). Then,
Ns

C,s' % Jgg'j(p - p') (<5(z + a/2 - + r/2))

x - a/2 - - r/2))J(p - p^(t))). (B 34)

Next, notice that

(<5(z + a/2 - + T/2))J(z - a/2 - - r/2))J(p - p^(t)))
= (<5(a + - r/2) - + r/2))- a/2 - - r/2))J(p - p^(f)))
= (J(a + - r/2) - + T/2))J(z - + r/2) + - T/2))/2)J(p -p^(t)))
% (J(a - %s(f,Zf,pjT)J(z - z^(f))J(p -p^(f)))
% J(a - rXf, z,p)T) (^(z - z^(t))J(p - Py(f)))
= J(a -Da(f,Z,p)T)f,(t,Z,p)/Afa. (B35)

Hence,

Css' = <5ss'<5(p -p')<5(a - rs(f,z,p)T)Fs(f,z,p), 

where we used fs % TA Therefore,

(B36)

@ss'(^,z,w, &;p,p') = dr ds 
2tt (27t)’'

glWT 1 «C„,(f,Z,T,8;p,p')

(2n)' Jss'<^(p-p')fs(f, Z,p). (B37)

B.8. Proof of (9.80)
Using the symmetry U“/37<5 = U/3“7<5 = U/3“'5'7, one readily obtains from (6.47) that

A = 2f0 J 00
 | " dk J, (B38)

J =
8' i (B39)dp (f0)3 dpo (B°)3'



where m = kppp = P°(k • v — w) and the prime in <7 denotes that p0 is considered as a 
function of p at differentiation. One can also write this as follows:
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J=-m
& /dTn\ g 1 d' 1 dg

dp / (P°)^ P° dp \ a; / (P°)^ dpo (P°)^'
As shown in (Garg & Dodin 2020, appendix B), the following equality is satisfied:

(B40)

Also notice that
d7_
dp

k
VJ

VJ

d'Pp

dp

■d_
dp
jd_
dp

1 dm
07 dpp po-

m

m
— "t;— ‘ f --------- j — h • V

dPp d 

dp dpo 
d

dpo

m
_e
m

where we used Hamilton’s equation dpPa = -dpH = —v. Therefore,

1 dm € Id (k<£\ k-v d (£ \ 1 d<£
co / " Cpp \ 07 / (P°)^ dppJ = m dpo (P0)2 P° dp \m ) P° dpo \o7

The first and the last terms can be merged; then, one obtains

J=- —- P°dp
l__d_

P° dp
_ _ 1 d

In combination with (B 38), this leads to (9.80).

co

CO

CO

k-v d
P° dpo Vw
w d / g

P° dpo V CO

d
(P°)^ dpp \co

(B 41)

(B42)

(B43)

(B44)

Appendix C. Properties of the collision operator
Here, we prove the properties of the collision operator discussed in section 6.8. To 

shorten the calculations, we introduce two auxiliary functions,

ZsX&;p,p') = - &-r(,,)gsX&-ih,,&;p,p'),

f,XP,P') = ^(p') -
dp. dp:

(Cl)

which have the following properties:

ZsX&;p,p') = Zs,s(&;p',p), -fss'(P,p') = --fs's(p',P)- (C2)

C.l. Momentum, conservation
Momentum conservation is proven as follows. Using integration by parts, one obtains

E /dppiC,

= ^ydpp,_^_y ^_dp'^Z^(k;p,p')JF^(p,p')
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= -%] /7^rdpdp'^^^«'(k;p,pO^'(p,p')-

8,8^ \ /
Now we swap the dummy variables g <-» g' and p <-» p' and then apply (C 2):

(C3)

2/ dppzC

"Zl/ dp' dp(p%p)

^/ ^^dp'dp/ri/r,z„,(&;p,p')^,(p,p'). (C4)

The expression on the right-hand side of (C-4) is minus that in (C- 3). Hence, both are 
zero, which proves that Ts f dpp;Cs = 0.

C.2. Energy conservation
Energy conservation is proven similarly, using that v‘s = dHs/dpi and the fact that 

k ■ vs and k ■ v's, are interchangeable due to the presence of S(k ■ vs - k ■ v's,) in Zss>:

2/ dpHsCs

^ ^ ^7 / ^ ^

"Z! / 7^rdp'dp(&.^,)/rjZ,,Xk;p%p)^'a(p\p)

(C5)

Like in the previous case, the third and the fifth lines are minus each other, whence 
27s /dp7fsCs = 0.

C.3. H-theorem.
From (6.72) and (6.73), one has 

'da^^0 = - X! J dp (1 + hr Fs (p))Cs = ~Y, j dp In Fs (p)Cs, (C 6)

where we used particle conservation, JdpCs = 0. Then, 
/ das

d t
T/dp InFs(p) y ^^-dp'^z„,(k;p,p')^,(p,p')

vi f dk , , ,, , 51nEs(p)■ dp dp' /.• /••; %s'(k;p,p')^,(p,p'). (C7)
' %

Let us swap the dummy variables g <-» g' and p <-» p' and then apply (C-2) to obtain
/ da 
[dt

coll

T/ /dpdp'^A, Z^(&;p,p')JF„,(p,p'). (C8)
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Upon comparing (C- 8) with (C7), one can put the result in a symmetrized form:

Qwaa/./mear /.Aeon/

Z da 
[dt coll

^ 1] / (^7 ^ (&; p, p')d^,, (p, p')

' 3 In Fs (p) din Fs,(pr)

But notice that
%

3 In Fs (p) 3 In Fs> (pr)
% dp'

dpi

/-:,(p)/-:,,(p').

Thus,
da\
dT J coll = _

1 ^ f dk dp dp' (k; p, p')U, (p)Fy (p' j

^ dln%) _^/lnf,,(p')
dp 3p'

(C9)

(CIO)

5=0. (Cll)

Appendix D. Conservation laws for on-shell waves
Here, we prove the momentum-conservation theorem (7.87) and the energy- 

conservation theorem (7.89) for QL interactions of plasmas with on-shell waves.

D.l. Momentum, conservation
Let us multiply (7.83) by Ai; and integrate over fc. Then, one obtains

0- / dkk,^ dk ki d(^J)
dz'

= dkk,J+ y dkk,r|J + /dk^ J-2^ dkw^J. (Dl)

Similarly, multiplying (7.84) by Hs and integrating over p yields

a. i,ipp/tt

3

dp pi dKF,)
dz'

, d
ipp‘sF.

m.
dz*

F,

dp Pi y— I Ds/y ——dp, dp.
d
dt

d
dz*

dp pz Cs 

3= — / dpp,Fs + y-y / dppztdC, + y-y / dp ASF,
dz'

dp pi Cs. (D2)

Let us sum up (D 2) over species and also add it with (Dl). The contribution of the 
collision integral disappears due to (6.71), so one obtains

2/ dpPi-F,

d Z „

dk Ay J
dz* 

3 Ftas

( ) I / dpPi<f), dk Aye* J
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^ y dp D,,% ^ - 2 y d& j

2/ — + / d&J^. (D3)

Next, notice that

'/2 / dkki^J = 2tt£ y

-?/

latril2 df.dpdkk;k, LLiL - rj 4-^
d^A ' dpj

dFx (D4)

Also, assuming that S0, |a|?7|2, and psr) are independent of x and using (7.80), one 
gets

?/ dpA-S

.7 ^da;'\dp*y 2(w-& r,)dp —A / -— -rdcodk + k(—k)) d(w — %e(k))

^ y dwdk + /;(-&))

= — ^ y -f dcvdfcdp (h(k) + h(—k)) 6(uj — iv(k)) ^
w — k - r, da;'dp*

^y dwd&dp (k(k) + k(-k)) d(w - w(&))
2 
1 
2

y dcvdfc h(k) 6(uj - w(k)) -^-j j~ dp

■ y y dev dk h(k) <5(cv — w(k))

t,|akl'- HF, 
W — k - 1), dp*

= y fd&j^
da;'' (D 5)

where we also used (7.75b). Substituting (D4) and (D 5) into (D 3) leads to (7.87).

D.2. Energy conservation
Let us multiply (7.83) by w and integrate over k. Then, one obtains

0 = / dk rv

d

dk i d(<J)
dec*

= — dk iv J — dk —— Jdw
df J y dt da;*

dk vl ~~~t J — 2 f dk iv jJ
s da;* / '

d d _ , d

j,lkwwl(wJ)-2j,lk'nJ
d&uwlJ- /

da;* °

df da;*= — / dk tvJ + —7 / dkwvlJ — / dk — J — 2 / dfcwyJ.
dt

(D6)



Similarly, multiplying (7.84) by Hs and integrating over p yields
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0- /

8
dpi \ dz

dp,

**-wF-

dpj
dp Hs Ca

dp
8F\
%

8
- -ft I dpHsFs + -y— / dpHsv'sFs

dp v's Ds .y -^—

dz'
dFs
%

dp Hs Cs

8
dt

8
dz'

dpUs Cs

^F,

8

Ff

*w*F-

dp^F,

= — / dpH0sFs + ft- dpH0si’lFs + ^- / dpAsv\Ftdz'

dp e(DSiy ^ I dp 1-LS Cs. (D7)

Let us sum up (D 7) over species and also add it with (D 6). The contribution of the 
collision integral disappears due to (6.71), so one obtains

2/ dpH0sFs dk iv J 2/ dfe ivvlJ

2/
2/

8Fadp -yD..:; -y- — 2 j d kiv'yJ

dpZ'-f1 d kj^.
dt

(D8)

Next, notice that

2 / dkiv'yJ = 2tt]T J \o8n\2 OF*
dwTl ' dpj

2/ dp i’(DS .y .dFs
%

(D9)

Also, assuming that S0, |a|p|2, and rfpsr) are independent of t and using (7.80), one 
gets

2/ apa:§-

2/ a^7y|2(A(&) + A( —&)) d(w — w(&))2(w — & - Us)

^ /dwdk(^pg7y)(A(&) + A(-k))J(w-w(&))
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dwdk dp (/;(&) + /;.(—&)) J(w — w(&)) w — & - r, dfdp*

^%]^dwd& dp (/;.(&) + /%(-&)) J(w - 7u(&)) ^ (Yps??^)

““?/

““?/

dev dk h(k) S(uj — w(k)) j~ dp

d(rf3r))

W — & - Dg dp*

dwdkk(k) J(w — 7u(&)) df

dk h(k) dvl(%v(&), &)
df

2/ ikJTF’ (DIO)

where we also used (7.75a). Substituting (D 9) and (D 10) into (D 8) leads to (7.89).

Appendix E. Uniqueness of the entropy-preserving distribution
Here, we prove that the Boltzmann-Gibbs distribution is the only distribution for 

which the entropy density a is conserved. According to (C 11), a is conserved when

d(& - (i), - r(,,)) (& - GsXp,p'))3 =0 (El)
(for all p, p', and k, as well as all s and s'), where

,E2,

Let us decompose the vector Gss> (p,pr) into components parallel and perpendicular to 
the vector vs - v',:

G««'(p,p') = A„,(r„^,)(r, -r^,) + Gj;,(p,p'), (E3)
where Assi(vs,v's,) is a scalar function. (Because the velocities are functions of the 
momenta, one can as well consider Ass/ as a function of p and p'.) Due to the presence 
of the delta function in (E 1), the contribution of the first term to (El) is zero, so (El) 
can be written as

d(& - (r, - „:,)) (& - Ci,(p,p'))3 = 0. (E4)
By considering this formula for k parallel to Gj:s, (p, p') (and thus perpendicular to 
vs - v's,), one finds that G^s,(p,p') = 0. Combined with (E2) and (E3), this yields

d in Fs (p) d in Fs> (pr)
dp dp'

d in Fs (p) d in Fsi (pr)
dps %

(E5)

finds that

= A,'s(l4',%s)-

■t

(E6)

= A„,(r„^,) (r\2 - 2), (E7a)

f The idea of this argument was brought to author’s attention by G. W. Hammett and is 
taken from (Landreman 2017), where it is applied to single-species plasmas with a specific Hs.
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J In Fs (p) d In Fs> (pr)

— Xssi(vs, vs,) (t’s,3 vs' 3); (E76)
%

where we have assumed some coordinate axes in the momentum and velocity space 
labeled (1,2,3,...). Then,

^lnFa(p) ^^'(r,,^,)

(E8«)

(E86)
JpsJ^'s,! Jr«,l

where the derivative with respect to eSii is taken at fixed vs^\ and at fixed v's,. Due 
to (E5), Xss>(vs,v's,) is continuous for all Fs and Fs>. (Here we consider only physical 
distributions, which are always differentiable.) Then, (E8) leads to

1 d2 In Fs (p) 1 d2 In Fs (p)
%'a,2 - g Jp3J('a,l ^s,3 - ^, 3 Jp3J('a,l

By differentiating this with respect to v's,2, one obtains
^lnEa(p)

whence (E8a) yields

<?P2<%'a,l
= 0,

J^'
= 0.

8,1

(E9)

(E10)

(Ell)

By repeating this argument for other axes and for v' instead of r, one can also extend 
(Ell) to

= 0, = 0. (E 12)Jr ' Jr'
Hence, Xss>(vs,v's,) is actually independent of the velocities; i.e. Xss>(vs,v's,) = Xss>. Using 
this along with (E6), one also finds that

Let us rewrite (E 5) as follows:

J In Ea (p)

Ass' — As* a •

^88^8 — ^ , ^8^8^g/-

(E13)

(E 14)Jp Jf/
Here, the left-hand side is independent of p' and the right-hand side is independent of p, 
so both must be equal to some vector

Mss' — Ms's (E 15)
that is independent of both p and p'. Because vs = dpHs, this is equivalent to

EiEs(p) - Aaa,%(p) = - p + (E 16a)
(and similarly for p'), where the integration constant ?/Ss' is independent of both p and p'. 
This is supposed to hold for any s', so one can also write

lnEs(p) - Ass"%s(p) = Mas" P + (E166)
where s" is any other species index. Subtracting equations (E 16) from each other gives

(As,, - Aaa„)%(p) = (p*,, - p^,,) - p + (E 17)
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By differentiating this with respect to p, one finds

(Ass' — Ass"]Us = /4,s' — (E 18)
By differentiating this further with respect to vs, one obtains Ass/ = Ass». Then, (E 18) 
yields pss, = pss„, and (E 17) yields »yss/ = »yss». In other words, the functions Ass/, pss,, 
and »yss/ are independent of their second index and thus can as well be written as

ASs' = As, pss, = ps, %s' = (E19)
But then, (E 13) and (E 15) also yield As = As/ = A and ps = ps, = p. Therefore, (E 16) 
can be written as

F,(p) = const, x exp(A%,(p) + p - p), (E20)
which is the Boltzmann-Gibbs distribution (section 8.1). This proves that a plasma that 
conserves its entropy density necessarily has the Boltzmann-Gibbs distribution.

Appendix F. Total momentum and energy
Here, we show that the total momentum and energy in the OC-wave representation 

equals the total momentum and energy in the particle-held representation.

F.l. Nonrelativistic electrostatic interactions
F.1.1. Momentum.

Assuming the notation Vi = Ts f d ppif s and using (9.17) for 0S, one can represent 
the OC momentum density as follows:

ZfippiF.-n + l'Ef Apr,£ (e,„ ^

dp ki k- OF,
w(k) — & - 1), + Jp i)=0

= v.

= Vi

,, , ^ /^(E||H(w(&)+l),&)-l)d/c kih\h) —- 4tt i)=0
dk ki J, (FI)

where we substituted (9.16). This leads to (9.18).

F.l.2. Energy
Assuming the notation K, = Ts f dpF[0sfs and using (9.17) for 0S, one can represent 

the OC energy density as follows:

2/ dp H0sFs = 1C + - J _d_ A
2n?s

dp ——— ( ®s,ij

AZ — — 
2 2/ dFs

dprs0s,„

dp k ■ v k dFs
w(&) — & r, +1) Jp

• (F2)

i)=0
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Notice that
8 k ■ V

= -T"7 I —1
dd %o(k) — & - Da + d dd

;(&) +d
;(&) — & - r, + d

1
%o(k) — & - Dg + d %o(&) 8

dd %o(&) — & - Dg + d
(F3)

Then,

E /= ^ - /dkw(k)A(&) -/dp
s J J S ''

kA(&)^]eg -^dp

k_______________ 8F±
w(&) — & - r, + d dp 

& dfg
t)=0

(k) — & Dg dp

dfe h(k)

dd
^(e||H(w(k), &) - 1) 

4tt

4tt t)=0

(F4)

Using (9.14) and (9.16), one obtains that the sum of the OC- and wave energy is given by

J dp H0s Fs + J d kwJ = 1C + J dkh(k) —

2/ dp

16tt

jL
2m. A + (F5)87T

where we also substituted (7.64).

F.2. Relativistic electromagnetic interactions
F.2.1. Momentum.

Let us assume the notation V = Ts f dppf s and
*("• k) - L VW ftp „ !£?„, k - (K - 4". fc) - 1 + g1

Then, using (9.52) for 0S, one can represent the OC momentum density as follows: 

E /dpp;Fg ^ ^ ^ / dp0g,% ^

= ^,-/, . ^g

(F6)

. Dg + d dpj

v‘- jAk (“>2v-.w)»

i)=0

= Vi + J dfc

= Vi + [ dfe

u(k)

, (A(k') + A(-k')') - /d&A;J,
4ttw(k) ' J

V
w=tu(k)

(F7)
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where we substituted (9.51) and used (7.23). Next, let us rewrite (9.54) as

— -pfkiiV = V
1(1/c) % e, ; dp + _ 1( V . a)

where the last equality is due to Gauss’s law. This gives
1

Then, using (2.53) and also (7.63) for U, one obtains

(F8)

(F9)

Vi — V,(kii ~ — J devdfciv 1U;J'(w, k)(ikj)* 

dk ^ 7. vdHk) + h(—k)),
Amu(k) (F 10)

and thus (F 7) can be written as follows:

?/ dppFs d k kJ % V d k k
Amv(k) (/;(&) + /;(—&))

>(kii d k ■
Amu(k)

= + re / d&
2mv(k)

(& — 77(6 ' ??*)) + /?(—&))

77* x (k x 77), (F 11)

where we used (7.7) and (7.23) again. For an eikonal wave (9.57), which has 
h(k) = S(k - k)\E\2/A (section 7.4.1), this gives

re / dk h(k)
2mu(k)

1
77* x (k x 77) = re ( E* x ( — x E ) ) =ck Ex B

4ttc
(F 12)

In case of a broadband spectrum, the same equality applies as well, because contributions 
of the individual eikonal waves to both left-hand side and the right-hand side are additive. 
(Alternatively, one can invoke (2.53) again.) This leads to (9.53).

F.2.2. Energy
Assuming the notation K, = Vs f dpH0sfs and using (9.52) for 0S, one can represent 

the OC energy density as follows:

2/dpH0sFs * 1C - Yt J d/>

k- dp

dFs
dp,

(& - r,) (77^, k- dFs
7v(&) — A-Vg+d dp

Using (F 3) and (F 6) for %, one further obtains 

dpH0sFs

i)=0

= K. 47TW(&) ' dd dp
w(&) — & - 77, + d

*f)V
i)=0

d k k(&)
4tt V y 4ne\ L

tu2(k) J dp k- dFa\
w(k) — k ■ vs dp J~ V
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= K.

= /C •

&))
dw V

d* J!<iU
4roo(fe)

dk k))_
4roo(fe) div

dfe ^7— (e(w(k), k) — 1 + -
4tt \ ' ' -

«(k)

,, A(E) ,

dfe —— V XV

w=tu(k)
ttlr

dfe

4tt

A(&)

2n

= K. dfe w J dfe 3A(&)
4tt

X&)
A(&)

V

dfe ^ ^ e(w(fc), A)?/
4tt

,, A(fe) t

Using (9.50) and proceeding as in section F.2.1, one can also cast this as follows:

dpH0sFs dkivJ = 1C H----- (3EtE — B^B) AtropA. (F13)

Now, notice that

K = dpEn^pj/g^tp - e„A/c)

= dpjFoa(p + eaA/c)/j^(p)

% ^(km) + (^/c) e, / + Z! ^ (A/i^A)
a a ^

% K(kin) + + J_ AtmpA, (F14)
C OTTC^

where j is the oscillating-current density. From Ampere’s law,

X B + iwE)C 47T ^ ^
-E/1 E E (ck'—------  — — * | — x i~> j
4tt 47t V w J

B
4tt

%-^-(BtB-EtE). (F15)

Substituting (F 14) and (F 15) into (F 13) leads to (9.55).

EtE
4tt

Exft
UJ

Appendix G. Selected notation
This paper uses the following notation (also see section 2 for the index convention):

Symbol Definition Explanation

■ placeholder
■ * complex conjugate
■ -1 inverse
■ t Hermitian adjoint
■ ("W1 inverse Hermitian adjoint
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eT transpose
■ 1“ section 4.2 auxiliary notation
«(m) section 6.5 contribution from the microscopic part
■ (m) section 6.5 contribution from the macroscopic part

average part or, for eikonal waves, a quantity evaluated 
on the local wa.vevector
oscillatory part
macroscopic part
microscopic part
operator
time derivative

(2.23) Fourier image
envelope of an eikonal (or monochromatic) wave

■A section 2.1.2 anti-Hermitian part
■h section 2.1.2 Hermitian part
dm partial derivative (but d* = d/dz', = d/dz*, = d/JX"

d/% partial derivative with respect to a lower-index quantity
3. (4.27) auxiliary notation
d t (3.32), (7.36) convective time derivative
{","}x (2.32) Poisson bracket on (x, k)
{■>■} (2.56) Poisson bracket on (x, k)

commutator
<■!■> (2.1), (2.59) inner product on or on JYX

= definition
section 2.1.3 scalar product

* (2.30) Moyal product on (x, k)
★ (2.72) Moyal product on (X, K)
iO section 4.2 i times an infinitesimally small positive number
/ principal-value integral
eigv eigenvalue
im imaginary part
PV (4.24) auxiliary notation
re real part
opery operator corresponding to a Weyl symbol on (X, K)
oper% operator corresponding to a Weyl symbol on (x, k)
symb same as symb Y or symbx when the two are equal
symby Weyl symbol of an operator on JYX

symbx Weyl symbol of an operator on
sgn sign
tr trace

r,rs section 6.7 part of a collision operator
As section 6.6 particle’s total ponderomotive energy in on-shell waves

(5.9) auxiliary notation
(5.22) dressing function (since section 5.3)

®ij, © (5.42) dressing function (a part of @“/3)

A section 7.1 dispersion function (one of Ab)
Ab section 7.1 6th eigenvalue of a
ns table 1 OC momentum flux density of species s
n w table 1 wave momentum flux density
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section 6.3 dispersion matrix
(6.13), (6.17) dispersion operator
section 6.3 vacuum dispersion matrix
(6.1) vacuum dispersion operator
(6.21) Weyl symbol of Ep
section 6.1 auxiliary operator
(5.24), (5.43) ponderomotive energy

<F®, \P section 6.1 generic interaction field
(7.17) complexified interaction field

n (4.17) auxiliary notation

as section 6.1 Weyl symbols of cisp and as
OLs section 6.1 coupling operators

7 (7.47), (7.86) linear dissipation rate as a function of (t, ay k)
7 section 7.3 local linear dissipation rate of an eikonal wave
S Kronecker symbol or delta function
e section 3.1.1 geometrical-optics parameter
£ (9.42) dielectric tensor
G||, Ej_ (9.9) parallel and transverse permittivity
£ section 3.1.1 small parameter proportional to the oscillation amplitude
V section 7.1 polarization vector (one of r/b)
Vb section 7.1 6th eigenvector of E
9 eikonal phase
K section 7.2.3 auxiliary notation
b' .1 - K‘p (3.2) characteristic inverse scales in x and p, respectively
Ps charge density of species s
g«/3 (5.18) auxiliary notation
Pa (6.22) Weyl symbol of ps
Ps (6.22) coupling operator
a (6.73) entropy density
^k (7.82) sign of the action density
F electrostatic potential

any field
U) coordinate in the frequency space dual to t
UJ — ^(0 local frequency of an eikonal wave
w idt frequency operator

C (3.5) Fourier image of W
c.,c. (2.77), (2.82) Fourier images of W. and Wm
Cs section 6.8 collision operator of species s
c„ c. (2.44), (2.52) Fourier images of^W. and W„

section 5.1 Weyl symbol of 50/3
(5.17) phase-space-diffusion coefficient

Dij, Ds (5.41), (6.77a) momentum-diffusion coefficient (part of D“/3)
(5.8) auxiliary notation
(3.34) diffusion operator on

£s table 1 OC energy density of species s
table 1 wave energy density (also see (7.42) for eikonal waves)

F,Fa (5.27), (5.38) OC distribution functions
3s (6.60) polarization drag for species s
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section 4.2 Weyl symbols of G and Gs
0W (4.23) approximation of G to the zeroth order in e

(3.25) effective Green’s operators on JYX

(6.30) spectrum of the correlations between gs and gs>
section 3.2 Green’s operator on Ex­

X (7.27) action density of an eikonal wave
J section 7.4.3 phase-space action density

J (2.57) canonical Poisson structure
(7.28) action flux density of an eikonal wave

H,HS particle Hamiltonian
Hs (5.40) OC Hamiltonian of species s

Hilbert space formed by functions on x
Ex Hilbert space formed by functions on X
K (-w,g) coordinate in the wavevector space dual to X
K (-&,?) wavevector operator on Ex-
L (3.14) extended Liouvillian (up to a factor i)
Ls (6.2) coupling operator

(2.73) same as the Poisson bracket on (X, K)
cx (2.32) same as the Poisson bracket on (x, k)
£ (6.6) ^-dependent part of the plasma Lagrangian density
£o (6.1) Lagrangian density of # in vacuum
M number of components of & or of another vector field
N 2n + 1 dimension of the extended phase space X

(5.39) OC density
O big O (‘at most of the order of’)

table 1 OC momentum density of species s
pi p

1 w)r w table 1 wave momentum density (also see (7.42) for eikonal waves
%,Q, table 1 OC energy flux density of species s
Qw,Qw table 1 wave energy flux density
Qss' section 6.8 symmetrized coefficient in the collision operator
Rs (6.2) coupling operator
R real axis
S section 7.1 action integral
S'ad (6.16) adiabatic action integral
s (8.9) spectrum of the macroscopic oscillations
Tr (3.21) shift operator (see also section 4.1)
IE, U (6.78) average Wigner function of the macroscopic field ^(x)
Uc+, Uc section 7.4.2 average Wigner matrix of and (Uc = Uc+)
y. y section 3.2 unperturbed velocity in the X space
In volume of n-dimensional homogeneous plasmaw (3.4) Wigner functionjaf H(X)wm, w. (2.76), (2.81) Weyl symbol of W. (Wigner function or matrix)w (3.3) density operator on Ex of IIwm, w. (2.75), (2.80) density operator on Ex of a given field
w,w, section 5.6 Wigner functionsof H and Hs with p as a parameter
w.,w. (2.43), (2.51) Weyl symbol of W. (Wigner function or matrix)
w.,w. (2.42), (2.50) density operator on Ex of a given field
2IT section 6.4 average Wigner matrix of the microscopic field $(x)

(f, 0 coordinate in the extended phase space
(U) operator of the position in the extended phase space
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(6.36) Weyl symbol of Xss>
(6.35) coupling operators on that enter tl

d differential
es charge of species s
Us distribution function

section 4.3 initial conditions for / and fs
h (7.64), (7.74) rescaled phase-space action density
hc±, Ac section 7.4.2 auxiliary notation (hc+ = hc)
kh k coordinate in the wavevector space dual to x

local wavevector of an eikonal wave
h, k ——iJz wavevector operator
k (-W, &) coordinate in the wavevector space dual to x
k (- w, &) local spacetime-wavevector of an eikonal wave
k —i<9x spacetime-wavevector operator
|k> (2.16), (2.17) eigenvector of k corresponding to the eigenvalue k
£r section 4.1.1 displacement in X along unperturbed characteristics
ms mass of species s
n dim x number of spatial dimensions
n n + 1 number of spacetime dimensions

coordinate in the momentum space
P position operator corresponding to the coordinate p

9% 9 (&, r) coordinate in the wavevector space dual to z
9^,9 (&, r) wavevector operator corresponding to the coordinate z
n,r coordinate in the wavevector space dual to p
P, r ——i^p wavevector operator corresponding to the coordinate p
s species index
t time
t t time operator
ua (3.8) oscillating part of the phase-space velocity
ua (3.30) ua as an operator on

(3.8) average velocity in phase space or in physical space,
(5.32) or, since section 5.4, OC- velocity
(7.25) group velocity as a function of (t, x, k)

^'g^g (7.29) local group velocity of an eikonal wave
IV (7.22) eikonal-wave frequency as a function of (t, x, k)
P, z coordinate in space
x\x ray coordinate in space
P, z X space-position operator
x*,x (f, %) coordinate in spacetime
X*, X X spacetime-position operator
|x> (2.16), (2.17) eigenvector of x corresponding to the eigenvalue x
z^, z (%,p) coordinate in phase space
z^, z (%,P) phase-space position operator
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