FLASH: FPGA-Accelerated Smart Switches
with GCN Case Study

Pouya Haghi William Krska Cheng Tan
Boston University Boston University Microsoft
haghi@bu.edu wkrska@bu.edu chengtan@microsoft.com
Tong Geng Po Hao Chen Connor Greenwood
University of Rochester Boston University Boston University
tgeng@ur.rochester.edu bupochen@bu.edu cgre@bu.edu
Angi Guo Thomas Hines Chunshu Wu
Boston University University of Tennessee at Boston University
anqiguo@bu.edu Chattanooga happycwu@bu.edu
thomas-hines01@utc.edu
Ang Li Anthony Skjellum Martin Herbordt
Pacific Northwest National University of Tennessee at Boston University
Laboratory Chattanooga herbordt@bu.edu
ang.li@pnnl.gov tony-skjellum@utc.edu

ABSTRACT

Some communication switches, e.g., the Mellanox SHArP and those
in the IBM BlueGene clusters, are augmented to process packets at
the application level with fixed-function collectives. This approach,
however, lacks flexibility, which limits their applicability in diverse
and dynamic workloads. Recently, a new type of programmable
packet processor, which uses high-level languages, e.g., P4, has
emerged as a possible candidate. P4-based switches, however, fall
short in certain applications, including machine learning, where ca-
pabilities not currently supported by P4 are needed. These include
more complex calculation, such as sparse computation and fused
multiply-accumulate, data-intensive floating point operations, data
reuse, and significant memory. The problem addressed here is that
such a switch augmentation needs to support: a large amount of
state, significant flexible compute capability, and ease of program-
ming, all while maintaining full functionality, including ensuring
high throughput, and demonstrating utility.

In this work, we propose a programmable look-aside-type accel-
erator that can be embedded into, or attached to, existing commu-
nication switch pipelines and that is capable of processing packets
at line rate. The proposed in-switch accelerator is based on mixing
an ISA (subset of RISC-V instructions) with dataflow graphs (found
in CGRAs). To augment performance, vector instructions are also
supported. To facilitate usability, we have developed a complete

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’23, June 21-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0056-9/23/06....$15.00
https://doi.org/10.1145/3577193.3593739

toolchain to compile user-provided C/C++ codes to appropriate
back-end instructions for configuring the accelerator. While this
approach is flexible enough to support various workloads, in this
paper, we consider Graph Convolutional Networks (GCNs) as a case
study. Experimental results show that this approach considerably
improves the performance of distributed GCN applications.

CCS CONCEPTS

« Computer systems organization — Reconfigurable comput-
ing; Neural networks.

KEYWORDS
In-Switch Computing, FPGAs, High Performance Computing

ACM Reference Format:

Pouya Haghi, William Krska, Cheng Tan, Tong Geng, Po Hao Chen, Connor
Greenwood, Anqi Guo, Thomas Hines, Chunshu Wu, Ang Li, Anthony
Skjellum, and Martin Herbordt. 2023. FLASH: FPGA-Accelerated Smart
Switches with GCN Case Study. In 2023 International Conference on Super-
computing (ICS °23), June 21-23, 2023, Orlando, FL, USA. ACM, Florida, FL,
USA, 13 pages. https://doi.org/10.1145/3577193.3593739

1 INTRODUCTION

A growing trend in HPC is the importance of the network in appli-
cation support. For example, offload of collective processing into
SmartNICs [1, 4, 12, 15, 16, 42] is well-established and has several
benefits: first, it enables the bypassing of layers in the communi-
cation software stack; second, the hardware implementations are
substantially faster than the software; third, it frees up the host pro-
cessor and enables better communication-computation overlap; and
fourth, some network-host communication is removed as the NIC
handles additional send/receive operations. But while SmartNICs
are invaluable, this scheme still forces processing into endpoints.
Another approach is to offload collective processing into switches

https://doi.org/10.1145/3577193.3593739
https://doi.org/10.1145/3577193.3593739

ICS °23, June 21-23, 2023, Orlando, FL, USA

[7, 13]. This has a number of additional benefits: latency and band-
width are improved as computation can be both distributed and
centralized, rather than performed in a single source or endpoint;
switches support far more communication traffic than NICs so the
potential benefit is proportionally increased; and communication
volume may be drastically reduced as messages are quickly merged
(reduction) or slowly replicated (broadcast).

Current in-switch processing, however, is limited in a number of
ways. Commercial implementations only support collectives, and
this support covers only a small set of scalar and fixed function
operations (e.g., [8, 13]). While academic work [19, 45] demonstrates
support for user-defined extensions, the resulting switches are still
confined to inline (aka streaming [27]) processing. We posit that
beyond collectives there are additional acceleration opportunities
that are not feasible in the current streaming-only paradigm. To
tackle these challenges, we propose a programmable look-aside
(LA) accelerator that can be integrated into, or attached to, existing
communication switch pipelines. Recently, look-aside accelerators
have been proposed for SmartNICs [27]; their efficacy has been
demonstrated in applications including machine learning at the
edge, data compression, and storage disaggregation. Extending LA
capabilities from NIC to switch yields benefits analogous to those
just enumerated for extending collective support.

Increasing switch flexibility has long been a goal of the network-
ing community, culminating, in part, in programmability using P4
[5]. P4 is a high-level language used to control packet forwarding.
While there has been some exploration of application-level process-
ing [40] in P4 switches, including support of collectives [41], these
capabilities are currently limited and likely to fall short in certain
applications, including machine learning [47]. More specifically, P4-
based switches suffer from having a limited set of operations (e.g.,
no multiply), data types (e.g., no sparse data types), and memory
footprint. Perhaps most significantly, packets can only access each
memory location once within a traversal [7]; while it is possible
to recirculate packets, this technique reduces throughput. To ad-
dress the above limitations, the proposed programmable in-switch
accelerator is designed to handle more complex calculations, such
as fused multiply-accumulate (MAC) and sparse accumulation, off-
chip memory access, and data reuse.

Adding LA switch support confers several additional advantages
to in-switch computing. Most importantly, it improves application
scalability. For instance, during scale-out, inference communication
time for graph convolutional networks (GCNs) with real-world
graphs can quickly outweigh the total execution time. LA switch
support can improve scalability by reducing communication data
volume as the switch can aggregate data and act as a storage device.

In-switch LA support has certain requirements. First, to support
line rate communication, LA processing should be done in hardware.
Second, since the processing is both non-trivial and application
dependent, this hardware should be (at least partially) reconfig-
urable. Finally, communication and computation must be tightly
coupled. These requirements are currently met by augmenting ex-
isting switches with reconfigurable logic [47]; by FPGA-augmented
switches, e.g., from Arista [2]; or by using the FPGA itself as a switch
(e.g., New Wave [33]). Because of their accessibility, we concentrate
on the latter, but also consider FPGA-augmented switches.

P. Haghi, et al.

To support different workloads and enable software-like pro-
grammability, while achieving near-ASIC performance, we use a
coarse-grained reconfigurable array (CGRA) overlay architecture
[48]. The proposed dataflow architecture is itself RISC-V compat-
ible with a subset of scalar and vector instructions [39, 51]. The
CGRA is composed of multiple vector processing elements (VPEs)
pipelined together based on the applications’ needs. Both on-chip
(vector register files) and off-chip memory (HBM banks) are acces-
sible through the datapath. To efficiently process machine learning
workloads the ISA is extended with sparse vector instructions.

Two critical challenges are addressed. First, to facilitate usability,
a software framework has been created to compile user-provided
C/C++ codes (packet handlers) into back-end instructions for con-
figuring the switch. Compile time is negligible, especially with
respect to that of high-level synthesis (HLS) tools. And second,
despite adding complexity, the accelerator does not compromise
line rate. A number of optimizations are implemented to improve
throughput, including vector instructions with large vector length
and a technique called idle tile skipping to avoid stalls.

We propose an in-switch computing framework, FLASH, to sup-
port application-level acceleration. Our approach is orthogonal to
programmable switches; we do not invent a new programmable
switch or a language. The accelerator can be integrated or attached
to existing switches to accelerate parts that are communication-
intensive with coupled computation. While FLASH can accelerate
a variety of workloads, in this paper we consider GCN inference as
a case study. We summarize the contributions of this work:

Extending look-aside capabilities from NICs to switches for
enhancing support of application-level processing;
Addressing the major challenges of extending LA capabilities
to switches - i.e., maintaining full switch functionality and
usability — through a novel combining of CGRA architecture
with RISC-V instruction support (§3);

o A software toolchain to compile user-provided packet han-
dlers to the instructions for configuring the accelerator at
software speed (rather than HLS §4);

The first in-switch GCN inference accelerator; and
Experimental results showing that FLASH improves the per-
formance and scalability of GCN applications. The perfor-
mance advantage is on average 3.4xX (across five real-world
datasets) on 24 nodes (§5).

The organization of this paper is as follows. §2 gives preliminar-
ies and motivation. §3 describes the switch look-aside hardware ac-
celerator. §4 presents the software framework. §5 evaluates FLASH.
Related work is discussed in §6.

2 BACKGROUND, MOTIVATION, BASICS

We describe the GCN algorithm used to showcase LA in-switch com-
puting, then discuss motivation, enumerate limitations of current
programmable switches, and present the FLASH models.

2.1 Graph Convolutional Network (GCN)
We provide GCN background and elaborate on distributed GCNs.

FLASH: FPGA-Accelerated Smart Switches
with GCN Case Study

2.1.1 GCN Background. Equation 1 shows the layer-wise forward
propagation in a multi-layer GCN.

XD = axOw D) (1)

We denote A as an adjacency matrix such that A, , = 1if and only if
vertex u and v are connected by an edge, otherwise, Ay, , = 0. X (UFN
a matrix denoting the features at layer-/. w b is the weight matrix
at layer-I. Finally, o(+) denotes a non-linear activation function.

Multiplying (A X X)W first results in a sparse-sparse matrix
multiplication that produces a large dense matrix. Previous work
[10, 11] found that the order of computation, A X (X X W), greatly
reduces the scale of computation since both are sparse-dense matrix-
multiplications (SpMM). We therefore first compute the product of
feature and weight matrices, which is the called combination phase.
Subsequently, matrix A is multiplied with the result of combination
phase (updated feature matrix); this is called aggregation. Similar to
the prior art, we follow a 2-layer vanilla GCN model [10]. From now
on, for a SpMM computation, we refer to the first (sparse) matrix as
LHM (left-hand matrix) with the size m X k and the second (dense)
matrix as RHM (right-hand matrix) with size k X n.

GCNs are good candidates to benefit from in-switch LA. First,

ICS ’23, June 21-23, 2023, Orlando, FL, USA

messages destined to different processes) in a fine-grained manner
with pipelining of communication and computation in the switch.
Challenge 3: Graph sparsity can also cause large idle time in the
switch pipeline; switches are not aware of the sparsity distribution
in advance.

Proposed solution: we propose a runtime technique called idle tile
skipping to advance the control flow for idle tiles (§3.1).

As discussed previously, there are two SpMMs in each layer. The
combination phase is usually done locally since the weight matrix
is so small it can be replicated among processes [49]. The aggre-
gation phase, however, is performed distributively. Thus, we only
accelerate the aggregation phase. In distributed matrix multiply
algorithms, it is customary to divide LHM into two parts: diagonal
and off-diagonal [34]. Figure 1 (b) depicts the partitioning of both
LHM and RHM matrices into four processes (row-wise).

It is evident that the diagonal part contributes to local computa-
tion since the associated RHM part is already stored in the same
process. On the other hand, the off-diagonal part requires com-
munication with other processes since the associated RHM parts
are not stored in the process locally. Typically to accelerate dis-
tributed SpMMs, each process obtains RHMs from other processes
with an Allgather after which each process performs the calcula-
tion locally [49]. The Allgather is an all-to-all type communication
with a large message size which can be a bottleneck, especially

their sparse connectivity leads to a higher communication-to-computation fq large-scale datasets (§5.3 and §5.4). Instead of a large bursty

ratio compared with, say, dense matrix operations [49], which leads
to worse scalability. Second, computation is coupled with commu-
nication in distributed SpMMs: the same data are used for both
computation and communication.

2.1.2 Distributed GCNs. GCNs typically operate on large and ir-
regular input graphs with small models, i.e., with few layers. This is
in contrast to Deep Neural Networks (DNNs) where the model and
collection of input samples are large, but the size of each sample
(e.g., image) is small. In some cases, these graphs are so large that
they cannot be stored in the memory of a single node [24]. Thus,
for training, it is common to employ sampling techniques so that
the data can fit in the memory of a single device, but at the cost of
reduced accuracy [24]. In contrast, for inference, the whole graph is
typically processed (in one batch). More than 90% of infrastructure
cost is due to inference and less than 10% is due to training on AWS
[3, 9]. And inference is also necessary during training.

The interest here as a case study is that scalability is essential for
high performance and accurate GCN inference and can be achieved
more easily by enhancing a cluster with FLASH. This is shown in
Figure 1 (a), which depicts results from a CPU cluster (with Skylake
processor) and that cluster enhanced with FLASH. Each node runs
24 processes; §5.1 has details.

Accelerating distributed GCNs with FLASH poses challenges:
Challenge 1: In addition to local computation, an efficient parti-
tioning method and communication scheme is needed.

Proposed solution: We provide such a partitioning method among
nodes and switches and a novel communication scheme with over-
lapping between offloaded and non-offloaded parts (§2.1.3).
Challenge 2: Graphs are extremely sparse [56] leading to irregular
communication and local computation.

Proposed solution: FLASH streams data (instead of sending several

communication followed by the computation, we use a pipelined
fine-grained communication that overlaps local computation.

2 4 8 16 24 48
CPU cluster CPU cluster with FLASH # of Nodes

DC OC Offload

A A
n T

Neighbor x~/ CwelEr_elzr_vl [l

Processes v\z """ § . iAllgather
P1 (aay

[T ool | al @
[EE_®
L FIRE)
A

(b)

Remote

Processes V\

DC: Diagonal
Computation

OC: Off-Diagonal

Computation
Figure 1: (a) GCN inference execution time on a CPU cluster
(Skylake processors) without and with FLASH accelerators.
(b) FLASH matrix partitioning for an SpMM kernel with tasks
shown for process 0 (P0). Gray tiles in LHM belong to the
diagonal part and the rest are off-diagonal.

2.1.3 Partitioning and Overlapping in FLASH. In this subsection, we
describe how FLASH distributes GCN inference and how the work-
loads are partitioned and overlapped. There are two approaches for
offloading a workload to smart switches: sending part of LHM from
nodes to switches while storing RHMs in the switches (RHMs are
reused) and vice versa. We follow the former approach as the latter
potentially comes with a higher hardware cost and worse workload
imbalance among processing elements (i.e., LHM is sparse and it is

ICS °23, June 21-23, 2023, Orlando, FL, USA

harder to distribute evenly in the off-chip memory of the switch
accelerator).

A naive method is to offload all of the off-diagonal parts to
switches and perform the diagonal part locally. There are two down-
sides, however. First, the off-diagonal part can constitute a large
fraction of the total execution time, especially when there are a
large number of processes. Second, this approach is not efficient
for intra-node processes (i.e., sending LHM data to be processed in
switches); this is avoided with an intra-node Allgather.

Therefore, in our approach, (1) diagonal parts are computed lo-
cally; this is called the diagonal computation task. (2) An Allgather
on parts of the RHM is performed on a set of processes (called
neighbor processes); afterward computations are performed locally
(off-diagonal computation task). And (3) the rest of the off-diagonal
part is offloaded to the switches for processing where the RHM is
stored (offload task). We further optimize performance by overlap-
ping the non-offloaded (1 & 2) and the offloaded part (3). Referring
to Figure 1 (b), processes P0 and P1 are neighbors as there is an
Allgather on corresponding parts of their RHM, but PO with P2 and
P3 are remote processes. We note that neighbor processes are not
necessarily constrained to one node for large systems. However, in
this work, we assume these processes reside on the same node.

2.2 Motivation

Figure 1 (a) shows that while parallelizing GCNs improves perfor-
mance, the scalability is limited. The FLASH-aware implementation
improves the scalability by restructuring the application and using
in-network computing. Figure 2 summarizes some of these benefits
for a large-scale dataset (ogbn-products [23]) over a baseline with-
out in-switch acceleration. Again 24 processes per node is used.
The benefits include reducing the number of elements transferred
among nodes, the total number of hops, and enabling overlap be-
tween the switch offloaded task and the rest of the application.
FLASH achieves a tremendous reduction in the number of trans-
ferred elements since (i) some processing happens directly inside
switches instead of moving data and subsequently processing them
and (ii) only transferring needed data elements and doing so in
a fine-grained pipeline fashion. Similarly the application benefits
from the overlap of offloaded parts and the parts executed in the
CPUs. These become more pronounced during scale-out.

Total # of Hops Total # of Transferred Elements
@ 50
S0 100000000 ' ﬁ
=30
S 20 10000
* 10
° 1
2 4 8 16 24 2 4 8 16 24
Baseline FLASH # of Nodes Baseline - FLASH # of Nodes
® Overlap (Offload vs. Non-Offload) ®

Time (msec)
o S
s 8 8

2 4 8 16 24
(¢) =Overlap 1 Offload - Non-Offload # of Nodes

Figure 2: FLASH results for ogbn-products dataset: (a) number
of transferred elements, (b) number of hops, and (c) overlap.

There are two types of communication switches: fixed function
[13] and programmable switches [5]. The former, configurable to
some extent, cannot support new transport protocols or new packet

P. Haghi, et al.

processing capabilities. The latter, however, expose programmabil-
ity to users, e.g., by customizing packet header fields (to support
different transport protocols), the type of packet processing (ac-
tions), and the matching rule (match).

P4 is a high-level language used to control packet forward-
ing in protocol-independent programmable network devices. It
raises the abstraction level of programming networks and is target-
independent (FPGA, ASIC, software switches, etc). Since its intro-
duction, different P4 architectures have emerged [22], including the
SimpleSum Architecture, the portable switch architecture (PSA),
and the Tofino native architecture (TNA). Parsers, match-action
tables, and deparsers are the most important pipeline elements [50].

P4 is an established and effective approach for programming
network devices. However, it falls short for many workloads, espe-
cially for application-level processing. We summarize them (and
give the section that describes how it is addressed with FLASH):

e The SRAM capacity of the P4-based switches is small, which
precludes storage of large machine learning models [26].
FLASH supports off-chip memory so stores the entire ML
model (as limited by the switch’s off-chip memory size).
This avoids the latency overhead of streaming many small
messages to a pool-based switch memory [41] (§3.2).

e P4 has limited set of datatypes and operations [7, 36]. For ex-
ample, current P4-based switches do not support sparse data.
However, some machine learning applications (i.e. GCNs)
operate on sparse data calculation. Further, there is a limited
multiplication capability in P4, e.g., to powers of two. Hence,
the scope of P4 is limited to simple calculations; we discuss
how FLASH supports more complex calculations in §3.3.

e Data reuse is crucial to many applications, but in P4-based
switches, each packet can only access each memory location
once within a traversal of the pipe [7]. By tiling and reusing
data it is also possible to decrease off-chip memory latency
overhead (§3.3).

e P4 does not support loops [36], which is required to express
LA behavior, including ML applications (§4.3).

In this work, we address P4 limitations not through extending
the language, but rather through a programmable accelerator that
can be integrated into existing switch pipelines.

2.3 FLASH Models

We consider two approaches for integrating LA acceleration: FLASH-
integrated-switch (FiS) and FLASH-attached-switch (FaS). In FiS,
LA is integrated into existing switch pipelines that implement a
full switch functionality, including packet forwarding. In FaS, an
FPGA device is attached to an existing switch: packets are directed
to the FPGA for further processing and are redirected back to the
switch for switching. In both cases, there is additional functionality,
which we refer to as the host, to configure (through instructions)
and initialize the accelerator.

3 HARDWARE DESIGN

After an overview, we address the challenges of designing a pro-
grammable switch accelerator:

FLASH: FPGA-Accelerated Smart Switches
with GCN Case Study

e We summarize a number of challenges for designing a switch
accelerator since LA has different characteristics than stream
packet processing (§3.2).

e We extend the ISA with sparse vector instructions, specializ-
ing it for GCN inference acceleration (§3.3).

e An important requirement of switch accelerator architec-
tures is that it should not compromise the line rate. Thus,
we apply several optimizations (§3.4).

e We address a number of questions for integrating the pro-
posed accelerator into existing switches (§3.5).

3.1 Overview

Dataflow: FLASH is ideal for the execution of (nested) loop-intensive
applications due to optimizations (§3.4) and massive parallelism

of the LA architecture. LA consists of several VPEs pipelined to-
gether to process incoming packets. Figure 3 shows the architecture

with three VPEs. Each VPE consists of a number of floating-point

processing elements (PEs) arranged in a SIMD fashion. The appli-
cation’s loop body forms a dataflow graph (DFG) running on VPEs

while the loop’s control flow is mapped to scalar processing ele-
ments that control the termination of the loop body. We elaborate

on VPE and scalar PE below. To better understand how FLASH

supports dataflow, consider that each VPE performs independent

operations, e.g., multiplication. These VPEs are then pipelined to-
gether to enable supporting simple DFGs with SIMD parallelism.
When all of the inputs to a PE become valid, data is consumed and

processed accordingly. It is possible to have more complex DFGs

with inter-PE reduction; this is future work.

Architecture: The accelerator has two AXI [52] streams for
input and output interfaces, referred to as stream_in and stream_out.
In addition, there is one AXI-Lite to control the accelerator (starting
and finishing the kernel, etc.), one read-only AXI memory-mapped
(MM) for application instructions, and several AXI MMs (both
read/write) for application data (RHM) and immediate floating-
point data. More information is provided in §3.5.

FLASH has two main parts, data plane and control plane, with
the former responsible for the actual packet processing while the
latter controls how packets are processed (see Figure 3). The con-
trol plane has AXI-control and instruction loader modules. AXI-
control allows the switch accelerator host to start the accelerator
kernel and interrupts the host when the kernel is done. The Instruc-
tion loader module reads stored instructions used to configure
the switch (§2.3) from off-chip memory (HBM in this work), into
on-chip configuration tables (CTs) from which instructions are sent
to the data plane. The data plane consists of all the other modules.
We divide it further into front-end and back-end. Program counter
(PC) logic, decoder, and auto-increment vector modules belong to
the front-end, while the back-end includes other modules.

We now describe the modules in the data plane. PC logic gov-
erns -enable, -increment, and -load signals for CTs in the control
plane. Decoder decodes incoming instructions and asserts corre-
sponding control, register file (RF) addresses, vector length (VLEN),
and immediate signals. Auto-increment vector increments VLEN
times on a base read and/or write RF address from the decoder
for vector instructions, and asserts a done signal upon completion.
Stalls from memory read/write and invalid data during arithmetic
vector operations are considered in this module. HBM read/write

ICS ’23, June 21-23, 2023, Orlando, FL, USA

masters handle the AXI-MM handshake and data transfer with
an HBM bank. RF stores scalar values, while vector register file
(VREF) stores vectors of floating-point (FP) values. Scalar PE per-
forms scalar instructions. Vector PE performs arithmetic vector
instructions on data from incoming packet and VRF which will
be then written back to VRF again. Idle tile control monitors
writes to a special register for keeping track of Tk (Tm) and in-
crements this register with an offset equal to the difference of a
tile required by incoming packet and the current tile for output
stationary (weight stationary) dataflow. Tk (Tm) is tiling in the
k (m) direction. Disassembler detects the packet header of the
incoming stream and asserts a corresponding metadata signal for it.
It also shifts parts of the packet from one beat to another (see §3.2).
Assembler re-assembles the packet and calculates the checksum.

3.2 Coupling Accelerators and Streaming
Packet Processing

Accelerators often load blocks of data from off-chip memory, do
the processing in batch, and store them again in the memory. This
differs from stream processing where data is processed cycle-by-
cycle and directly forwarded to the output. We summarize some
considerations here.

Vector load/store instructions dealing with memory and data
path should be detached from streaming ports with stall and back-
pressure logic implemented in case memory is not ready. Vector
arithmetic instructions are used where packets from the stream_in
interface meet data loaded from memory to VRFs. To enable such
a processing we hardwire one of the PE inputs to stream_in (the
first input source operand in the instruction). Furthermore, to move
data from VRFs to the stream_out interface after packet processing
we introduce a streamout instruction (streamout.v) which steers
data from VRFs to the stream_out port serially across VPEs. Also,
the packet header length (IP packets on top of Ethernet frames
which yields 34 Bytes header) is not a multiple of PE bitwidth (32
bits) and because part of the payload comes with the header in the
same beat (512 bits); this creates a misalignment which prevents
packets from being processed at a granularity of PE bitwidth. To
deal with it, we shift the packets for 34 Bytes across beats within a
disassembler module. Lastly, since the accelerator can potentially
modify the packet length header we calculate the checksum for the
new header.

3.3 Sparse Vector Instructions

Instructions: Sparse matrix multiplication is critical to GCN. We
implement two types of sparse vector accumulation instructions to
accelerate SpMMs:

spvacc.vx v2, vl, x4

(v2[v1[ilD)+=(v1[i]>=VLMAX)?0:v0[4]
spvacc.xv x4, v2, vl

vo[4]1+=(v1[i]>=VLMAX)?0:v2[v1[i]]

where VLMAX is the maximum vector length for VRF groups; we
divide VRFs into groups based on vsetivli instruction (supported
instructions are summarized in §4.2). In the context of GCN acceler-
ation, the first (second) instruction resembles a weight (output) sta-
tionary approach [6]. We note that utilizing the second instruction

ICS °23, June 21-23, 2023, Orlando, FL, USA

AXI-MM

P. Haghi, et al.

N
Stream-In,

baal - [HBM Read | HBM Read § HBMReadJ
| | Master | Master | Master
|| HBM Write .| HBM Write | HBM Write
| Master Master [Master meta data
v : = PR
Vector PE ~- | 'Vector PE | Stream |
- I
| | FIFO :
|
| i |
Tl | I| AXI-
Assem\
™ s—».PE bler D]D_Ir i&r:am
|
T | FIFo |
| |
| |
7 |
Tdle _, | mro
Tile |
Cont. | |
' ! — ! — = — — = —)
Auto || PC Logic Auto || PC Logic Auto || PC Logic
Vector 4{ Decoder ‘ Vector <Jl Decoder ‘ Vector 4{ Decoder ‘ AXI-MM
A 7y 7y |
4 ;i

AXI-Lite| 4x7
Control CcT CcT

v
HBM Read | Instruction
i Master Loader

Figure 3: The proposed switch accelerator with three pipelined vector PEs. It is packaged with an AXI interface to facilitate

integration with switch pipelines.

yields fewer vector load instructions for the GCN packet handler
and is more efficient.

Accelerating SpMM with sparse vector instructions: We
elaborate on how SpMM computation in GCN is accelerated with
FLASH. First, RHM is stored in FPGA switch memory and ma-
trix LHM is streamed. Since LHM in GCN represents an adjacency
matrix and is either 0 or 1, we only stream the column indices
that are non-zeros. We use the tiling technique to improve GCN
performance. A tile of RHM is loaded into VRFs, which are then
accumulated according to indices that the matrix LHM is providing.
The results are then streamed out from the VRFs to the output inter-
face. One optimization is to unroll the sparse vector accumulation
by reusing data in the VRFs (discussed in §3.4). Since n is small, the
RHM is tiled vertically (except for datasets in which the number of
classes is larger than the maximum available VPEs, see §5.2), but
the LHM is tiled both vertically and horizontally.

3.4 Optimizations

A number of optimizations improve line rate and latency:

(1) We employ the idle tile skipping technique to automatically
advance the control flow of the program in the event of tiles without
nonzero data elements; otherwise the pipeline is stalled. In §5.4, we
show that this technique saves a large number of idle tiles.

(2) Currently, the RISC-V has only 32 vector registers. However,
this is not sufficient for accelerators targeting compute-intensive
applications. It can support grouping vector register files with a
factor of up to 8 (LMUL) [39]. To enable efficient tiling, each VRF
in FLASH can contain a large number of vector registers (4K). We
extend the grouping factor by up to 2K. This means, e.g., that a
vector load with a LMUL as 2K (which is set by vsetivli) can load
up to 2K values to the VRF automatically with a single instruction.

(3) One approach to move the processed packets to stream_out
is to store them in off-chip memory and then move them to the
output interface. However, this hampers line rate as the packet

processing pipeline could be stalled when storing and then loading
data. Alternatively, FLASH directly moves the processed packets
from VRFs to the stream_out port bypassing memory.

(4) Unrolling vector arithmetic operations improves the reuse of
data stored in VRFs. This reduces the number of vector loads.

(5) FLASH provides massive parallelism: SIMD parallelism al-
lows concurrent processing with the same instruction (there are
16 SIMD lanes). And processing elements across different VPEs
add another level of parallelism. There can be up to 31 VPEs in the
FPGA (§5) as there are 32 HBM banks and one bank is used for
storing instructions.

3.5 Integration with Existing Switches

Methods: For FaS, Ethernet media access control (MAC) and net-
working capabilities are incorporated into the FPGA. On the FPGA,
LA performs packet processing and swaps the source and destina-
tion of headers (in the assembler module) after network packets
are passed through the Ethernet MAC and networking kernels.
Traffic is then sent back to the networking kernel. For FiS, LA is
added to the switch pipeline. For example, for a NetFPGA design,
the accelerator is placed between the input arbiter and output port
lookup modules [32]. There are two methods of acceleration: off-the-
pipeline [30] and in-pipeline [13]. Off-the-pipeline has the benefit
of reduced latency when the accelerator is not needed. FLASH has a
pass-through mode that enables the traffic to be forwarded directly
from input to output, making this approach off-the-pipeline.
Look-aside Interface: A standard interface is vital for both FaS
and FiS. We use a Xilinx-compliant AXI interface to package the
accelerator. Figure 4 shows the memory map for AXI interfaces
used here with an example with three AXI MMs. The first is used
for application instructions, the others for application data. ap_start
and ap_done signals are accessed through the control register (ad-
dress 0x000). As shown in Figure 4, the base address of the AXI

FLASH: FPGA-Accelerated Smart Switches
with GCN Case Study

MM:s is accessed through AXI-Lite. One challenge with RTL ker-
nels is that ap_done logic should be implemented in the accelerator
itself. To support any number of packets of any length we assert
this signal when the application is finished. This is done by placing
a wfi instruction at the very end, which indicates kernel finish.

Base Base Base
Address| Address| Address|

T

0x000
0x010
oxo1c| re-ee]
0x028

Figure 4: Memory map for AXI interfaces with three AXI
MMs; the first is used for application instruction and two
others for application data.

Hierarchical network switches: Finally, scaling out the accel-
eration and supporting a rack-scale cluster or data center is trivial
as only leaf (access) switches in a spine-leaf (three-tier) architec-
ture are accelerated with FLASH [37]. Each leaf switch stores the
whole RHM. While in this work we can store the whole RHM in the
switches, one solution to handle very large graph datasets (more
than the HBM limit) is to distribute RHM among switches.

4 SOFTWARE DESIGN

4.1 Compiler

To support a packet handler that is described with a high-level
language we use a compiler, based on LLVM [28], to generate back-
end RISC-V instructions. RISC-V is adopted in this work since it
is an open-source ISA that lends itself to hardware specializations
and ISA extensions. The Clang front-end generates LLVM interme-
diate representation (IR). We chose this step to introduce target-
dependent parameters to support high-level languages other than C
(e.g. Python), and to apply several optimizations. These parameters
come from a configuration file, which includes CGRA dimension,
number of SIMD lanes, unroll factor, register file (RF) size, etc. We
built our back-end, which involves parsing the IR, generating the
DFG, code generation, scheduling, and register allocation. Figure 5
shows the proposed framework to map an ML model with a user-
provided packet handler to the reconfigurable switch accelerator.
The compiled host code, along with the binary file generated from
the CGRA overlay kernel, is used by the Xilinx runtime (XRT)
library [53] to program and interact with the FPGA.

4.2 Supported Instructions

Three types of instructions are supported: vector, scalar, and con-
figuration. Vector instructions include load (v1e32.v), store, FP
addition & multiplication, sparse FP accumulation, FP fused MAC,
and streamout (streamout.v). The first two are based on the cur-
rent RISC-V ’V’ vector extension specifications [39]. Others are
proposed here based on RISC-V specifications [38]. Sparse accumu-
lation is discussed in §3.3. Fused MAC is similar to that used in [39]
with the exception that here one operand is fixed (scalar RF) and is
not being auto-incremented. This is useful for ML applications to
exploit data reuse.

ICS ’23, June 21-23, 2023, Orlando, FL, USA

Packet
Handler

l l RISC-V
Instructions

—_—
Figure 5: Framework to map a machine learning model with a
user-provide packet handler to the reconfigurable switch ac-

celerator. Gray components are proposed in this work. White
components are powered by existing tools.

For scalar instructions, we support lui, addi, add, and bne all
with the same specifications as [38]. Also, csrrw, vsetivli, and
wfi instructions are used to read (write) specialized control/status
registers (CSRs), configure VLEN, and finish the execution of the
kernel [39]. The two currently supported CSRs in this work are cycle
and packet length, which are used to monitor the performance and
set the packet length, respectively. In summary, vector instructions
perform arithmetic operations, load/store, and steer packets to
the output port; scalar instructions govern the control flow of the
program; and configuration instructions monitor the status (read
cycle count CSR) of the accelerator, configure (writing to packet
length CSR), and trigger (wfi) the accelerator.

4.3 Program Flow

Overview: The program flow of distributed ML inference accel-
eration is as follows: at the worker nodes, data is streamed over
the switch by means of a communication library; at the switch
accelerator, packets are processed according to a packet handler
written by the user. We use socket APIs and MPI middleware as
the communication library. MPI remains the de facto standard, but
other methods, e.g., socket programming, are also possible.

On the switch accelerator, application data (RHM) and instruc-
tions are loaded from the host switch accelerator. Upon starting the
kernel (through the ap_start signal), packet handler instructions are
fetched from off-chip memory into distributed on-chip configura-
tion tables. When loading is finished, the switch accelerator asserts
a ready signal to its input interface and begins accepting streamed
data. Packets start being processed and valid data is streamed from
the output port (using streamout.v instruction). Once the wfi in-
struction is read from the configuration tables, an ap_done signal is
asserted by the accelerator, which interrupts the host.

Requirements: Some requirements for the packet handler are
as follows. (i) It should be encapsulated within a function with
stream_in, stream_out, off-chip memory pointer, and packet length
(new length after packet processing). The latter is essential because
in some applications (e.g. GCN) data received from the output port
might have a different packet length than from the input port. (ii)
The packet handler should be agnostic to switch port and worker
node ID (rank in MPI terminology). Packet processing in the switch
is finished as soon as the program flow reaches the end of function;
it is the responsibility of the user to send/receive packets from
worker nodes to the switch. (iii) The order of streamed data from

ICS °23, June 21-23, 2023, Orlando, FL, USA

worker nodes should correspond to that of processing within the
switch as dictated by the packet handler.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

For the CPU reference, benchmarks were run on the TACC Stam-
pede2 [44] Skylake (SKX) compute cluster with 48-cores per node
(2 sockets) 2.1 GHz Intel Xeon Platinum 8160 CPUs, and a 100
Gb/s Intel Omni-Path (OPA) network. We used Intel MPI 18.0.2
as an Intel-compatible MPI as recommended for this cluster; we
also found it usually gives better performance than other MPI im-
plementations. We experiment with up to 24 (48) nodes for small
(medium/large) datasets. For small and medium/large datasets, we
ran the experiments with 1 and 24 process(es) per node, respectively.
We ran each experiment in SKX 10 times and used the median result.
We wrote MPI code for the distributed GCN application following
the Allgather-based approach (§2.1.2).

Performance benefits shown are by comparing the HPC cluster
(TACC) with a FLASH-enhanced HPC cluster. Since we do not have
direct access to either the TACC switch internals (FiS model) or
the capability of attaching FLASH to TACC switches (FaS model)
we created a proxy testbed. In this proxy testbed, parts that are
executed in the nodes (non-offloaded tasks) are run in the actual
testbed (TACC), and parts that pertain to the offloaded tasks are
run on an FPGA. The recorded times for each process, in addition
to the accelerator’s runtime, are passed to an emulator (described
below). The accelerator’s runtime was measured either from RTL
simulation (ap_start to ap_done interval), in FiS mode, or kernel
execution time at the accelerator’s host CPU, in FaS mode.

We now describe the emulation. We use the same method as [30].
That is, the emulation must have (i) the same number of network
hops, (ii) the same amount of traffic in the network links, and
(iii) accurate accelerator overhead. We also capture the workload
imbalance among processes (process skew) on TACC; this can affect
the performance of any in-switch offload [13, 17].

As mentioned, for the FiS model, we use simulation results from
a cycle-accurate RTL simulation using a testbench to drive signals,
generate traffic, and measure the LA performance (accelerator over-
head) and throughput. The testbench has emulation modules for
HBM and streaming ports that realize the handshaking with LA.
For the FaS model, the testbed is a two-node system on CloudLab
[20, 21] with a Xilinx Alveo U280 FPGA attached to a Dell Z9100-
ON switch (total of three nodes including host). We use the Xilinx
Vitis 2021.2 unified software platform to program the FPGA. The
LA accelerator is packaged as an RTL kernel. It is coupled with
a modified version of [54] to send/receive packets from two leaf
nodes. The operating frequency is 250 MHz. At the leaf nodes, pack-
ets are sent and received using socket APIs to communicate with
the FPGA through the switch.

For both FiS and FaS models, we use two dataflow modes: one
accelerated with spvacc. xv (OS for output stationary) and the other
with spvacc. vx (WS for weight stationary). The four combinations
are FiS-OS, FiS-WS, FaS-0S, and FaS-WS. We also note that while
this approach works with high-radix switches, we consider switches
with up to eight ports as a proxy for larger scale systems (using the
same method as [30]). Below we show that this limit is not because

P. Haghi, et al.

Table 1: Dataset Sizes

Dataset #nodes #edges | #features | #classes
PPI 2372 34113 50 121
Citeseer 3327 9464 3703 6
Pubmed 19717 88676 500 3
Ogbn-mag 736389 5416271 128 349
Ogbn-products | 2449029 | 61859140 100 47

Table 2: The number of vector instructions for different
datasets and dataflow modes (OS: output stationary, WS:
weight stationary)

Dataset Mode | vle32.v vmace.vx/ streamout.v
vmace.xv
PPI 0os 2 4 1
WS 54 1696 1
Citeseer oS 4 21 1
WS 105 3328 1
Pubmed oS 22 640 2
WS 618 19744 1
Ogbn-products (O] 8379 267904 7
WS 76534 2449056 1
Ogbn-mag 0s 722 23040 2
WS 23014 736416 1

of the FLASH’s resource requirements (§5.7); rather, we found that
this gives the best FLASH scalability in GCN applications with
datasets of interest.

5.2 Datasets and Configuration Parameters

Datasets: We consider two types of datasets. Small-scale datasets
are protein-protein interactions (PPI), Citeseer, and Pubmed; Ogbn-
mag and Ogbn-products are the medium/large datasets (Table 1
provides the details). The hidden dimension is 16. Adjacency matri-
ces are evenly distributed among nodes (row-wise).
Configuration parameters: Table 3 summarizes the tiling
and configurations (unroll factor, CGRA dimension, and VLEN for
spvacc. vx/spvacc.xv) for the datasets in both dataflow modes.
We note that the Tm reported in this table is per rank; to get the
actual Tm for the packet handler one should multiply the num-
bers in this table by the number of ranks. As pointed out in §3.3,
having a larger unroll factor and VLEN is preferred to improve

performance (the maximum value for unroll factor and VLEN is 32

#vector—registers
and +) Hence we reduce Tm with scaling if possible.

Otherwise, VLEN is decreased with scaling.

Application-level packetizing: At the application level, we set
the maximum packet size to 64 KBytes (in case the UDP transport
protocol is used). This happens for ogbn-mag and ogbn-products.
Similarly, the minimum packet length should be set by the user as
otherwise there is incorrect GCN program flow. This is because the
packet handler performs partial sums on tiling with k dimensions.
The packets may therefore only be decomposed in the m direction.

Vector Instruction Incidence: Table 2 shows the number of
vector instructions for different datasets and dataflow modes for 24
nodes. It is evident that vmacc.vx is the most widely used instruc-
tion across all datasets, which means that this operation should be
considered the key operation to be optimized. Also, the number of
vector instructions in WS dataflow is higher than that of OS but
WS has a smaller vector length.

FLASH: FPGA-Accelerated Smart Switches
with GCN Case Study

ICS ’23, June 21-23, 2023, Orlando, FL, USA

Table 3: Configuration parameters for different datasets and dataflow modes (OS: output stationary, WS: weight stationary)

Dataset Mode Tk SIMD Vf':cto'r PE Tm VLEN Unroll Factor
Lanes | Pipelines
Number of Nodes Number of Nodes Number of Nodes

2 4 8 16 | 24 | 48 2 4 8 16 24 48 2 4 8 16 | 24 | 48
PPI oS 1 16 31 8 4 2 1 1 - 1767 | 1767 | 1767 | 1767 | 1767 - 7 7 7 7 4 -
WS 53 16 31 1 1 1 1 1 - 56 28 14 7 4 - 32 1 32|32 | 32| 32 -
Citeseer oS 3 16 16 8 4 2 1 1 - 1109 | 1109 | 1109 | 1109 | 1109 - 13|13 |13 | 13 7 -
WS 104 16 16 1 1 1 1 1 - 104 52 26 13 7 - 32 |32 | 32| 32| 32 -
Pubmed oS 10 16 16 20 10 5 3 2 - 2048 | 2048 | 2048 | 2048 | 2048 - 32 1321|3232 32 -
WS 617 16 16 1 1 1 1 1 - 617 309 155 78 39 - 32 1321|3232 32 -
Ogbn-products oS 1196 16 31 100 | 50 | 25 | 13 7 4 2048 | 2048 | 2048 | 2048 | 2048 | 2048 | 32 | 32 | 32 | 32 | 32 | 32
WS 76533 16 31 13 7 4 2 1 1 256 256 256 256 256 128 32 32|32 |32 32| 32
Ogbn-mag oS 360 16 31 30 15 8 4 2 1 2048 | 2048 | 2048 | 2048 | 2048 | 2048 | 32 | 32 | 32 | 32 | 32 | 32
WS 23013 16 31 4 2 1 1 256 256 239 120 60 30 32 |32 |32 |32 32| 32

5.3 Communication performance

Figure 6 shows the GCN communication performance of the five
datasets as they are scaled from 2 nodes to 24 (48) nodes for both
the baseline SKX cluster and FLASH with different configurations.
Comparing OS with WS: the latter typically provides better commu-
nication performance on a small number of nodes for small-scale
datasets (PPI, Citeseer, and Pubmed), but its scalability is worse than
OS due to the inefficiencies discussed in §3.3. For larger datasets
(ogbn-products and ogbn-mag), the OS always provides better per-
formance. One reason is that idle tile skipping technique in WS is
not as effective as OS due to a small Tm (§3.1). We therefore consider
only OS for the rest of this subsection. As discussed in §2.2, RHM is
communicated among the nodes in GCN. If RHM is large enough
compared to LHM, the application is communication-heavy (giving
room for FLASH to improve performance). This implies a large n
and a small m. Of the datasets, PPI has the largest n/m ratio and
FLASH provides good communication performance improvement.
For ogbn-products and ogbn-mag, FLASH provides considerable
communication performance improvement. One reason is that the
total number of transferred elements in FLASH is greatly reduced.

5.4 Application scalability

Figure 7 shows the application performance and scalability of
GCN with and without FLASH acceleration across all datasets.
For Pubmed, FLASH does not provide good performance for small
numbers of nodes. This is because the number of classes (n) is small
in Pubmed (Table 1). This leaves little data reuse for the data trans-
ferred to the switch (each class is mapped to each VPE and VPEs
are pipelined). The larger the number of classes (the upper limit is
the maximum available VPEs) the better the data reuse, and FLASH
achieves more efficient computation with less data movement. Nev-
ertheless, FLASH outperforms the baseline at 24 nodes for Pubmed.
This demonstrates its superior scalability.

For larger datasets (ogbn-products and ogbn-mag), FLASH pro-
vides excellent scalability as idle tile skipping is more efficient and
the overhead of sending/receiving packets to/from the accelerator
becomes negligible. Ogbn-products performs better than ogbn-mag
in FLASH since LHM is streamed multiple times, as the number of
classes (n) in this dataset is much larger than the maximum number
of vector PE pipelines (31). On average, FLASH (OS mode) improves
application performance compared to a baseline SKX cluster by a
factor of 2.2%, 2X, 1.1X, 1.4X, and 10.1x for PPI, Citeseer, Pubmed,

ogbn-mag, and ogbn-products on 24 nodes with an average of 3.4X
across all datasets.

We note that while the idle tile skipping technique is less efficient
for small-scale datasets, it saves about 27% and 77% of total tiles in
OS mode for ogbn-products and ogbn-mag, respectively.

5.5 Overall application throughput

The overall finding is that FLASH communication output matches
communication input (streaming rate) all the way up to the port
bandwidth. The exceptions are when there is a reduction in data so
that less data is output than input, or when there is an algorithmic
dependency that prevents data from being transmitted. Our results
show that LA itself can saturate network bandwidth at around
95.7 Gbps for message sizes beyond 1.5 KB. Limitations do occur,
however, if the application has some characteristics that prevent
input packets being processed by LA (e.g., control flow instructions).

We show the overall application throughput measured at the
input interface in Figure 8 with the scaling of nodes across all
datasets. For OS mode, throughput values typically increase as the
application is scaled out. This is because application time decreases
but the number of times that the spvacc. xv instruction is called
remains fixed. On the other hand, throughput more or less remains
fixed for WS during scaling since the execution time at the switch
changes much more slowly (this time VLEN is changed during scale-
out instead of decreasing Tm for OS) for small datasets. Finally,
throughput values for WS mode are higher than for OS mode. This
is because the number of times that spvacc.vx is called is larger
(due to a larger Tk).

5.6 FLASH compilation time

We measured the compilation time of FLASH’s back-end compiler
for the GCN packet handler. The average time (across 20 runs)
along with the standard deviation (STD) are reported in Table 4. We
used LLVM 11.0.0 running on an Intel Xeon Gold 6242 @2.80GHz.
The compilation time does not differ across datasets since we are
using the same packet handler code with different configurations.
Source lines of code (SLOC) is also shown in Table 4, as well as
the number of nodes and edges of both initial and optimized DFG
(after optimization passes) of the packet handler code. Nodes in
the initial DFG represent LLVM instructions while they represent
rolled RISC-V instructions. Of note is that compilation times are at

ICS °23, June 21-23, 2023, Orlando, FL, USA

Communication Time (ms)
= - ,g
n - in ~ n

Figure 6: Communication performance and scalability comparison of GCN for a baseline CPU cluster (SKX) vs. FLASH with

PPI

2 4 8 16 24
Number of Nodes

different configurations.

§ h ™ “ F
S in = e nw inos i

Application Execution Time (ms)
= N

PPI

2 4 8 16 24
Number of Nodes

0.8

0.6

0.4

0.2

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Citeseer

4 8 16 2
Number of Nodes

SKX

Citeseer

4 8 16 24
Number of Nodes

SKX

FLASH (FiS-0S)

- N W AR a9 ®

4

w

Pubmed
10000
1000
100
10
1
4 8 16 24
Number of Nodes

FLASH (FiS-WS) ®FLASH (FaS-0S)

Pubmed
500
400
300
200
100
0
4 8 16 24
Number of Nodes
FLASH (FiS-0S)

Ogbn-products

10000

1000

100

10

4 8 16 24 48
Number of Nodes

FLASH (FaS-WS)

2

Ogbn-products

10000

1000

100

10

4 8 16 24 48
Number of Nodes

P. Haghi, et al.

Ogbn-mag

2 4 8 16 24
Number of Nodes

Ogbn-mag

2 4 8 16 24
Number of Nodes

48

48

Figure 7: Application performance and scalability comparison of GCN on a baseline CPU cluster (SKX) vs. FLASH.

Citeseer

Pubmed

PPI

100

2

=

=

S0

=

=

=3

=

24

21

£

£ 2 4 8 16
=

100

0.1

100

0.1

Ogbn-products
100

Ogbn-mag

100

10

Number of Nodes

0.01

0.1

Number of Nodes

Number of Nodes

Number of Nodes

Number of Nodes

Table 4: Compilation time and other parameters of the back-

Output Stationary

Weight Stationary

Figure 8: Overall application throughput measured at the LA’s input interface for different datsets.

end compiler for GCN packet handler

Avg. Initial/Optimized | Initial/Optimized
Time (ms) STD | SLOC DFG (#node) DFG (#edge)
91.36 5.7 64 65/11 138/18

the “software” scale of milliseconds rather than the hours typical
for HLS tools.

5.7 Resource requirements

Figure 9 shows hardware resource utilization on the Xilinx Alveo
U280 FPGA board for a FiS configuration with 16 pipeline vector
PEs. The switch is implemented using a NetFPGA design [32]. FaS
utilization results can also be inferred as there is only the accelerator
itself in this configuration. As it is evident from the figure, LA
consumes DSP blocks and Ultra RAMs (URAMs), while the switch
logic takes up other resources. It is also clear that, as the number
of ports increased, the overall utilization increases. We note that
VRFs and CTs are mapped mostly to URAMs.

100

80

60

40

20

Resource Utilization (%)

0

EEzzzlsEzzglsEzzglsEzzssEzzg
= zz 2= Zz 2= 2 g SR FERIL 'R

2 o 2 o S Qe o 2 o
2 Ports 4 Ports 8 Ports 16 Ports 24 Ports

Switch = Accelerator

Figure 9: Resource utilization for FiS configuration with 16
pipeline vector PEs on Alveo U280.

5.8 FLASH Overheads

We measured the time to send RHM data from the switch host CPU
to the accelerator (i.e., moving data from a CPU’s off-chip memory
to HBM banks in the FPGA board). We repeat this experiment
ten times. On average, it takes about 0.2, 0.1, 0.1, 32.2, and 48.3

FLASH: FPGA-Accelerated Smart Switches
with GCN Case Study

milliseconds for PPI, Citeseer, Pubmed, Ogbn-products, and Ogbn-
mag, respectively. These overheads are negligible compared to total
execution time (Figure 7) for most datasets Ogbn-products. The
overhead is similar to that of setting up non-FLASH versions in
distributed computing systems (since data is not always available
in the corresponding nodes).

5.9 Comparison with Prior Work

To demonstrate the applicability of the approach to other applica-
tions, and compare it with other in-switch computing approaches,
we consider DNN training on FLASH and Mellanox SHArP [14].
We compare the time it takes to update the (last-layer) weights of
the AlexNet model during DNN training using FLASH to that of
doing so on the same Stampede2 cluster using Mellanox switches.
Our simulation results show that FLASH achieves 1.7X speedup on
64 nodes for the last layer update. Since we do not have access to
switch internals in HPC clusters, we superimpose the result from a
Mellanox paper [14] on the Stampede2 cluster for the Allreduce col-
lective based on the message size. We only accelerate the last layer
as we find that this could lead to better coupling of the computation
part (other layers) with the communication part (last layer).

Our approach improves communication time by restructuring
the application as follows: each node processes forward propagation
for all layers except the last; the switches perform matrix/vector
multiplications for the last layer (the last-layer weights are stored in
switches); then the new weights stored in switches are updated by
aggregating the local weights from each node. This happens for each
iteration. Weight updates for all layers except the last are performed
in the same way as in the baseline (synchronous Allreduce-based
training [29]). Instead of communicating and transferring weights
back and forth to the nodes (Allreduce for the current iteration),
performing computation on them (forward propagation for the
next iteration), and then another communication (Allreduce for the
next iteration), weights are processed in the switches, resulting in
reduced communication time. We note that it is not possible to take
advantage of Mellanox offload support for GCN inference as these
switches do not support Allgather collectives.

6 RELATED WORK

In-switch collective processing: Previous work has shown signif-
icant benefits of optimizing collectives and offloading them to the
switch. Mellanox [13] has offloaded MPI collectives to ASIC-based
switches using reduction trees. Their approach supports fixed func-
tions and data types with no extensibility; also, few design details
are provided. The authors in [30] propose an FPGA-based in-switch
acceleration scheme for distributed reinforcement learning to move
gradient aggregation from server nodes to the network switches. In
[18, 19, 46] a new method for supporting MPI communicators and
accelerating collectives in the reconfigurable switches is presented.
Finally, the authors in [7] design a flexible programmable switch
architecture for in-network data reduction. Although it is possible
to process custom operations through packet handlers, their evalu-
ation is only limited to dense/sparse MPI_Allreduce. These are all
inline acceleration methods. We note that while the latter work is
based on RISC-V cores the largest memory footprint is 4 MBytes.

ICS ’23, June 21-23, 2023, Orlando, FL, USA

In-switch application processing: Taurus [47] adds a custom
MapReduce block to programmable switch devices to enable per-
packet ML inference. N2Net [43] demonstrates implementations of
binary neural networks within network devices. IIsy [55] introduces
a software and hardware-based prototype for mapping trained
non-neural network ML models to switch match action pipelines.
However, they are only applicable to traditional neural network
algorithms with small memory models due to their limited on-chip
memory.

CGRA: Many CGRA architectures have been proposed. Some
prior art utilized a CGRA closely coupled with a CPU. For instance,
ADRES [31] proposed a novel compiler-friendly architecture that is
tightly coupled with a very long instruction word (VLIW) processor
with reduced communication overhead. [25] introduces a CGRA
architecture with reconfigurable interconnect with single cycle
communication with distant PEs. Prabhakar et al. [35] proposed
a new architecture as a collection of compute and memory units
to efficiently execute applications composed of parallel patterns.
The distinction of all the above work from ours is that our CGRA
accelerator itself is composed of multiple RISC-V compatible cores
pipelined together.

7 DISCUSSION AND WORK IN PROGRESS

We anticipate that scaling GCN applications to a larger number
of nodes will bring increasing performance advantages (for large
datasets) due to the FLASH benefits (reducing the number of trans-
ferred elements and hops, overlap, etc). We also expect FLASH to
improve the performance and scalability of other communication-
intensive applications as it is generic enough to support different
workloads and it directly improves the communication time through
in-switch computing. Some extensions are in progress. Vector PEs
are pipelined together and are independent from each other except
that incoming streaming packets are the same. Other types of de-
pendencies and more complex types are not yet supported. Finally,
certain parallel patterns (e.g., breadth first search) may not map
efficiently to the current FLASH architecture; in future work we
seek to make FLASH more general purpose.

8 CONCLUSION

In this work, we designed, implemented, and evaluated a pro-
grammable look-aside accelerator that can be embedded into, or
attached to, existing communication switches. To facilitate usabil-
ity, we developed a software toolchain to compile user-provided
code for configuring the switch. While our approach is generic and
supports a variety of workloads, we consider graph convolutional
network (GCN) inference as a case study. Experimental results show
that this approach improves both performance and scalability. The
performance advantage is on average 3.4X (across five real-world
datasets) on 24 nodes. As part of future work, we will demonstrate
our approach for GCN training and other workloads with a larger
number of nodes.

ACKNOWLEDGMENTS

This work was supported, in part, by the NSF through awards CCF-
1919130, CNS-1925504, and CCF-2151021; by a grant from Red Hat;
and by AMD and Intel both through donated FPGAs, tools, and IP.

ICS °23, June 21-23, 2023, Orlando, FL, USA

REFERENCES

(1]

[2

[

[3

(4]

w
=

(9]

[10]

(1]

[12]

[15]

[16]

(18]

[19]

[20

(21

O. Arap and M. Swany. 2016. Offloading Collective Operations to Programmable
Logic on a Zynq Cluster. In 2016 IEEE 24th Annual Symposium on High-
Performance Interconnects (HOTI). 76-83.

Arista. 2023. 7130 FPGA-enabled Network Switches - Quick Look. www.arista.
com/en/products/7130-fpga-enabled- network-switches-quick-look.

AWS. 2019. Deliver high performance ML inference with AWS Inferen-
tia. https://d1.awsstatic.com/events/reinvent/2019/REPEAT _1_Deliver_high_
performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf.

M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Magbool Hashmi, and D. K. Panda.
2021. BluesMPI: Efficient MPI Non-blocking Alltoall Offloading Designs on
Modern BlueField Smart NICs. In High Performance Computing: 36th International
Conference, ISC High Performance 2021. Springer, 18-37.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (jul 2014), 87-95. https://doi.org/10.
1145/2656877.2656890

Y. Chen, J. Emer, and V. Sze. 2017. Using Dataflow to Optimize Energy Efficiency
of Deep Neural Network Accelerators. IEEE Micro 37, 3 (2017), 12-21. https:
//doi.org/10.1109/MM.2017.54

D. De Sensi, S. Di Girolamo, S. Ashkboos, S. Li, and T. Hoefler. 2021. Flare: Flexible
In-Network Allreduce. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1-16.

A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels. 2009. MPI Collective
Communications on the Blue Gene/P Supercomputer: Algorithms and Optimiza-
tions. 2009 17th IEEE Symposium on High Performance Interconnects (2009), 63-72.
J. Gasteiger, C. Qian, and S. Giinnemann. 2022. Influence-Based Mini-Batching
for Graph Neural Networks. arXiv preprint arXiv:2212.09083 (2022).

T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo, S. Che, S.
Reinhardt, and M.C. Herbordt. 2020. AWB-GCN: A Graph Convolutional Network
Accelerator with Runtime Workload Rebalancing. In 53rd IEEE/ACM International
Symposium on Microarchitecture (MICRO).

T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M.C. Herbordt, Y. Lin, and A.
Li. 2021. I-GCN: A Graph Convolutional Network Accelerator with Runtime
Locality Enhancement Through Islandization. In 54th IEEE/ACM International
Symposium on Microarchitecture (MICRO). doi:10.1145/3466752.3480113.

R. L. Graham et al. 2010. Overlapping Computation and Communication: Barrier
Algorithms and ConnectX-2 CORE-Direct Capabilities. In 2010 IEEE International
Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW).
1-8.

R. L. Graham et al. 2016. Scalable Hierarchical Aggregation Protocol (SHArP): A
Hardware Architecture for Efficient Data Reduction. In 2016 First International
Workshop on Communication Optimizations in HPC (COMHPC). 1-10.

Richard L. Graham, Lion Levi, Devendar Burredy, Gil Bloch, Gilad Shainer, David
Cho, George Elias, Daniel Klein, Joshua Ladd, Ophir Maor, Ami Marelli, Valentin
Petrov, Evyatar Romlet, Yong Qin, and Ido Zemah. 2020. Scalable Hierarchi-
cal Aggregation and Reduction Protocol (SHARP)TM Streaming-Aggregation
Hardware Design and Evaluation. In High Performance Computing, Ponnuswamy
Sadayappan, Bradford L. Chamberlain, Guido Juckeland, and Hatem Ltaief (Eds.).
Springer International Publishing, Cham, 41-59.

A.Guo, T. Geng, Y. Zhang, P. Haghi, C. Wu, C. Tan, Y. Lin, A. Li, and M.C. Herbordt.
2022. A Framework for Neural Network Inference on FPGA-Centric SmartNICs.
In International Conference on Field-Programmable Logic and Applications (FPL).
A. Guo, Y. Hao, C. Wu, P. Haghi, Z. Pan, M. Si, D. Tao, A. Li, M.C. Herbordt, and T.
Geng. 2023. Software-Hardware Co-design of Heterogeneous SmartNIC System
for Recommendation Models Inference and Training. In ICS 2023: International
Conference on Supercomputing.

P. Haghi, A. Guo, T. Geng, A. Skjellum, and M.C. Herbordt. 2021. Work-
load Imbalance in HPC Applications: Effect on Performance of In-Network
Processing. In IEEE High Performance Extreme Computing Conference. — doi:
10.1109/HPEC49654.2021.9622847.

P. Haghi, A. Guo, Q. Xiong, R. Patel, C. Yang, T. Geng,].T. Broaddus, R. Marshall,
A. Skjellum, and M.C. Herbordt. 2020. FPGAs in the Network and Novel Commu-
nicator Support Accelerate MPI Collectives. In IEEE High Performance Extreme
Computing Conference.

P. Haghi, A. Guo, Q. Xiong, C. Yang, T. Geng, J.T. Broaddus, R. Marshall, D.
Schafer, A. Skjellum, and M.C. Herbordt. 2022. Reconfigurable switches for high
performance and flexible MPI collectives. Concurrency and Computation: Practice
and Experience 34, 2 (2022). doi: 10.1002/cpe.6769.

S. Handagala, M.C. Herbordt, and M. Leeser. 2021. OCT: The Open Cloud FPGA
Testbed. In 31st International Conference on Field Programmable Logic and Appli-
cations (FPL).

S. Handagala, M. Leeser, K. Patle, and M. Zink. 2022. Network Attached FPGAs
in the Open Cloud Testbed (OCT). In IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 1-6.

[22

[24]

[26

[27]

(28]

[30

(31]

[32

[34

[35

[36

[41]

[42

[44]

[45

P. Haghi, et al.

F. Hauser et al. 2021. A Survey on Data Plane Programming with P4: Fundamen-
tals, Advances, and Applied Research. arXiv preprint arXiv:2101.10632 (2021).
Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118-22133.

Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken. 2020. Improving the Accuracy,
Scalability, and Performance of Graph Neural Networks with Roc. In Proceedings
of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-
4, 2020, 1.S. Dhillon, D.S. Papailiopoulos, and V. Sze (Eds.). mlsys.org. https:
//proceedings.mlsys.org/book/300.pdf

M. Karunaratne, A. K. Mohite, T. Mitra, and L. Peh. 2017. HyCUBE: A
CGRA with Reconfigurable Single-Cycle Multi-hop Interconnect. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC). 1-6. https://doi.org/10.
1145/3061639.3062262

E. F. Kfoury, J. Crichigno, and E. Bou-Harb. 2021. An Exhaustive Survey on P4
Programmable Data Plane Switches: Taxonomy, Applications, Challenges, and
Future Trends. IEEE Access 9 (2021), 87094-87155.

V. Krishnan, O. Serres, and M. Blocksome. 2020. COnfigurable Network Protocol
Accelerator (COPA): An Integrated Networking/Accelerator Hardware/Software
Framework. In 2020 IEEE Symposium on High-Performance Interconnects (HOTI).
17-24. https://doi.org/10.1109/HOTI51249.2020.00018

C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation. In International Symposium on Code
Generation and Optimization, CGO. 75-86. https://doi.org/10.1109/CGO.2004.
1281665

A.Li, T. Geng, T. Wang, M.C. Herbordt, S. Song, and K. Barker. 2019. BSTC: A
Novel Binarized-Soft-Tensor-Core Design for Accelerating Bit-Based Approxi-
mated Neural Nets. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). doi: 10.1145/ 3295500.3356169.

Youjie Li and et al. 2019. Accelerating Distributed Reinforcement learning with
In-Switch Computing. In 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). 279-291.

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. 2003. ADRES:
An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix. In Field Programmable Logic and Application (FPL). 61-70.
J. Naous, G. Gibb, S. Bolouki, and N. McKeown. 2008. NetFPGA: Reusable Router
Architecture for Experimental Research. In Association for Computing Machinery
PRESTO (Seattle, WA, USA). New York, NY, USA, 1-7. https://doi.org/10.1145/
1397718.1397720

New Wave DV. 2023. 32-Port Programmable Switch. https://newwavedv.com/
products/appliances/32-port-programmable-switch/.

J. Park, M. Smelyanskiy, U. M. Yang, D. Mudigere, and P. Dubey. 2015. High-
performance algebraic multigrid solver optimized for multi-core based distributed
parallel systems. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1-12.

R. Prabhakar et al. 2017. Plasticine: A Reconfigurable Architecture for Parallel
Patterns. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). 389-402. https://doi.org/10.1145/3079856.3080256

S. Qiao, C. Hu, G. Brebner, J. Zou, and X. Guan. 2020. Adaptable Switch: A Hetero-
geneous Switch Architecture for Network-Centric Computing. IEEE Communica-
tions Magazine 58, 12 (2020), 64-69. https://doi.org/10.1109/MCOM.001.2000399
A. L. G. Rios, K. Bekshentayeva, M. Singh, S. Haeri, and L. Trajkovic. 2021.
Virtual Network Embedding for Switch-Centric Data Center Networks. In 2021
IEEE International Symposium on Circuits and Systems (ISCAS). 1-5. https:
//doi.org/10.1109/ISCAS51556.2021.9401784

RISC-V. 2023. RISC-V Specifications. https://riscv.org/technical/specifications/.
RISC-V. 2023. RISC-V ’V’ Vector Specifications. https://github.com/riscv/riscv-v-
spec/blob/master/v-spec.adoc.

G. Sankaran, J. Chung, and R. Kettimuthu. 2021. Leveraging In-Network Com-
puting and Programmable Switches for Streaming Analysis of Scientific Data.
In 2021 IEEE 7th International Conference on Network Softwarization (NetSoft).
293-297. https://doi.org/10.1109/NetSoft51509.2021.9492726

A. Sapio et al. 2021. Scaling Distributed Machine Learning with In-Network
Aggregation. In 18th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 21). 785-808. https://www.usenix.org/conference/nsdi21/
presentation/sapio

J. Sheng, Q. Xiong, C. Yang, and M.C. Herbordt. 2017. Collective Communication
on FPGA Clusters with Static Scheduling. ACM SIGARCH Computer Architecture
News 44, 4 (2017). doi: 10.1145/ 3039902.3039904.

G. Siracusano and R. Bifulco. 2018. In-Network Neural Networks. arXiv preprint
arXiv:1801.05731 (2018).

D. Stanzione et al. 2017. Stampede 2: The Evolution of an XSEDE Supercomputer.
In Proceedings of the Practice and Experience in Advanced Research Computing
on Sustainability, Success and Impact (PEARC17). Article 15, 8 pages. https:
//doi.org/10.1145/3093338.3093385

J. Stern, Q. Xiong, J. Sheng, A. Skjellum, and M.C. Herbordt. 2017. Accelerating
MPI_Reduce with FPGAs in the Network. In Workshop on Exascale MPL

www.arista.com/ en/products/ 7130-fpga-enabled-network-switches-quick-look
www.arista.com/ en/products/ 7130-fpga-enabled-network-switches-quick-look
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/MM.2017.54
https://doi.org/10.1109/MM.2017.54
https://proceedings.mlsys.org/book/300.pdf
https://proceedings.mlsys.org/book/300.pdf
https://doi.org/10.1145/3061639.3062262
https://doi.org/10.1145/3061639.3062262
https://doi.org/10.1109/HOTI51249.2020.00018
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1397718.1397720
https://doi.org/10.1145/1397718.1397720
https://newwavedv.com/ products/appliances/ 32-port-programmable-switch/
https://newwavedv.com/ products/appliances/ 32-port-programmable-switch/
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1109/MCOM.001.2000399
https://doi.org/10.1109/ISCAS51556.2021.9401784
https://doi.org/10.1109/ISCAS51556.2021.9401784
https://riscv.org/technical/specifications/
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://doi.org/10.1109/NetSoft51509.2021.9492726
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1145/3093338.3093385

FLASH: FPGA-Accelerated Smart Switches
with GCN Case Study

[46] J. Stern, Q. Xiong, A. Skjellum, and M.C. Herbordt. 2018. A Novel Approach
to Supporting Communicators for In-Switch Processing of MPI Collectives. In
Workshop on Exascale MPL

[47] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun. 2022. Taurus: a

Data Plane Architecture for Per-Packet ML. In Proceedings of the 27th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS °22). 1099-1114.

I. Taras and J. H. Anderson. 2019. Impact of FPGA Architecture on Area and

Performance of CGRA Overlays. In 2019 IEEE 27th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM). 87-95.

https://doi.org/10.1109/FCCM.2019.00022

[49] A. Tripathy, K. Yelick, and A. Bulug. 2020. Reducing Communication in Graph
Neural Network Training. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC "20). 1-14. https:
//doi.org/10.1109/SC41405.2020.00074

[50] H. Wang et al. 2017. P4FPGA: A Rapid Prototyping Framework for P4. In Pro-
ceedings of the Symposium on SDN Research (SOSR ’17). 122-135.

[48

ICS ’23, June 21-23, 2023, Orlando, FL, USA

[51] Andrew Waterman and Krste Asanovic. 2017. The RISC-V Instruction Set Manual

Volume I: User-Level ISA, Document Version 2.2. https://riscv.org/wp-content/
uploads/2017/05/riscv-spec-v2.2.pdf.

Xilinx. 2023. AXI Reference Guide, Vivado Design Suite. https://docs.xilinx.com/
v/u/en-US/ug1037-vivado-axi-reference-guide.

Xilinx. 2023. Xilinx Runtime Library (XRT). https://www.xilinx.com/products/
design-tools/vitis/xrt.html.

Xilinx. 2023. XUP Vitis Network Example (VNx). https://github.com/Xilinx/xup_
vitis_network_example.

Z. Xiong and N. Zilberman. 2019. Do Switches Dream of Machine Learning?
Toward In-Network Classification. In Proceedings of the 18th ACM Workshop on
Hot Topics in Networks. 25-33.

B. Zhang, R. Kannan, and V. Prasanna. 2021. BoostGCN: A Framework for
Optimizing GCN Inference on FPGA. In 2021 IEEE 29th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 29-39.

https://doi.org/10.1109/FCCM.2019.00022
https://doi.org/10.1109/SC41405.2020.00074
https://doi.org/10.1109/SC41405.2020.00074
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide
https://docs.xilinx.com/v/u/en-US/ug1037-vivado-axi-reference-guide
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://github.com/Xilinx/xup_vitis_network_example
https://github.com/Xilinx/xup_vitis_network_example

	Abstract
	1 Introduction
	2 Background, Motivation, Basics
	2.1 Graph Convolutional Network (GCN)
	2.2 Motivation
	2.3 FLASH Models

	3 Hardware Design
	3.1 Overview
	3.2 Coupling Accelerators and Streaming Packet Processing
	3.3 Sparse Vector Instructions
	3.4 Optimizations
	3.5 Integration with Existing Switches

	4 Software Design
	4.1 Compiler
	4.2 Supported Instructions
	4.3 Program Flow

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Datasets and Configuration Parameters
	5.3 Communication performance
	5.4 Application scalability
	5.5 Overall application throughput
	5.6 FLASH compilation time
	5.7 Resource requirements
	5.8 FLASH Overheads
	5.9 Comparison with Prior Work

	6 Related Work
	7 Discussion and Work in Progress
	8 Conclusion
	Acknowledgments
	References

