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Abstract—This letter solves the optimal control problem
for variable-shape wave energy converters analytically, where
Pontryagin’s minimum principle is applied to get the control
laws. The optimal control solution for the conventional fixed-
shape wave energy converters requires power take-off units
with bidirectional power flow capability; this means that it can
harvest energy from the waves at certain times and act as
an actuator at other instants to keep the system in resonance
with the ocean waves. This bidirectional capability requires
designing complex and expensive power take-off units. The
variable shape wave energy converters were recently introduced
to reduce the need for this bidirectional power capability. The
main contribution of this letter is to derive the optimal control
laws for variable-shape wave energy converters for the flexible
passive shell and flexible controlled shell. The optimal control
that maximizes the harvested energy is found to include both
bang-bang and singular arc phases.

I. INTRODUCTION

‘W JAVE energy is sustainable and is an abundant renew-

able energy source characterized by its high power
density [1]. However, wave power has the disadvantage
of being highly idiosyncratic, and with a high Levelized
cost of energy (LCoE). A Wave Energy Converter (WEC)
system is divided into four subsystems [2]: (1) hydrodynamic
subsystem, (2) power take-off (PTO) subsystem, (3) reaction
subsystem, and (4) control and instrumentation subsystem.
The hydrodynamic subsystem captures/harvests the wave en-
ergy, e.g., point absorbers [3], [4], overtopping devices, and
oscillating water columns. The PTO converts the harvested
wave energy into electrical energy (e.g., hydraulic PTO, and
linear generators). The reaction subsystem anchors the WEC
into a specific location or reference point (e.g., mooring
systems). The control subsystem controls the movement of
the WEC to maximize the power generation mostly to create
a mechanical impedance matching in the WEC system.

The equation of motion for a single degree of freedom
(DoF) fixed shape buoy (FSB) WEC was derived by W.E.
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Cummins in the context of modeling of ship motion [5]:
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where m, and m, are the mass of the buoy and the hydro-
dynamic added mass, respectively, x is a map, x(t), &(t),
and #(t) € R are the heave displacement, velocity, and
acceleration, respectively; R is the set of real numbers. n € R
is the wave elevation, f;, € R is the hydrostatic force, fex
and f,q € R are the excitation and radiation forces due to
the impulse functions hey and hr,qg, respectively. The control
force u(t) is the force that is exerted on the buoy by the PTO.
On the other hand, the equation of motion for a single DoF
(heave) variable-shape buoy wave energy converter (VSB
WEC) can be expressed as [6]:
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where the generalized coordinates are used in the equation
above, x is a map, x(t) € RM*! is the generalized
state vector such that N, = N 4 DoF, and N € Z,
is the number truncated terms of the mode shapes of the
flexible buoy and DoF for heave only motion is 1. M
and M . (t) € RY»*No are the generalized mass and the
generalized added mass coefficient matrices, respectively.
The generalized added mass is a function of time since the
shape of the buoy changes actively with the incident waves.
The D and K € RM*N» are the generalized damping
and stiffness matrices related to the buoy’s shell material.
The generalized forces Q. (t) and Q. 4(t) € RN»*! are
computed based on the impulse functions hey and hiqq,
respectively; finally Q (t) = AT\, Q, (1), Qpio(t) € RVpx1
are the generalized constraint, hydrostatic and control forces,
where A € R®**! is the column matrix of Lagrange multi-
pliers and A € R3*"» is the Jacobian constraint matrix [7].
The optimal control solution for fixed-shape WECs has been
addressed in many references; however, the optimal control
of variable-shape WECs was not addressed before, which is
the main contribution of this letter.



A. Notation

The set of real and complex numbers are denoted by R
and C, respectively. |-| is the Euclidean norm, and, the set
of positive integers is represented as Z.. Identity matrix
Inyny = (11 1, 1n], ® and $ are the real and
imaginary parts, i = /—1, and A denoted the averaged A.

B. Related Work

The problem of optimal control of a VSB WEC has
received minimal attention; therefore, this section highlights
the optimal control strategies in the literature for FSB WECs,
before the optimal control of VSB WECs is developed in
the following sections. Most of the PTO optimal control
formulations are in the category of phase and amplitude
control, or impedance matching (IM) control (reactive con-
trol). The IM principle states a general condition for optimal
energy capture under standard linear assumptions. Some
reactive controllers approximate the IM condition at one
single frequency [8], while alternative controllers, like the
LiTe-Con [9], provide a broadband approximation of the IM
condition.

The optimal resistive loading (ORL) control (u(t) =
—c*%(t)) [10] and the latching and unlatching [11] control
methods are passive control strategies that are easy to imple-
ment. For the latching control, the WEC is unlatched when
it is in phase with the waves, and it is latched when it is out
of phase. The “*” denotes the optimum value, and c € R
is the damping coefficient.

Ref. [12] used genetic algorithms to parameterize the
damping profile based on a sigmoid function; genetic algo-
rithms were also used in conjunction with neural network to
achieve the same control objective [12]. Fuzzy logic was also
implemented to control WECs such that the controller adjust
the damping and stiffness of the PTO to create mechani-
cal IM [13]. References [14], and [15] used reinforcement
learning, with a time-varying proportional derivative (PD)
control law, to realize mechanical IM in the system such that
u*(t) = —Kp(t)z(t) — Kq(t)2(t), where the control gains
were defined by the deep Q-Network (DQN). Ref. [10] used
Pontryagin’s minimum principle (PMP) to obtain the optimal
control law for FSB WECs where it was found that the
control law follows a band-singular-bang behavior and the
singular arc law is expressed as: u*(t) = fex(t) — kx(t) —
ci(t) — %ag;“; the coefficient £ € R, is the hydrostatic
stiffness coefficient.

Reference [16] used the PMP to derive the optimal control
for point absorbers (PA) with a PTO that incorporated both
linear damping and active control elements; the optimal
control was shown in [16] to be bang-bang when constraints
are imposed only on the PTO force. Although the PMP
analysis was done on a single DoF PA, this method can
be generalized to account for multiple degrees of freedom.
This letter follows a similar approach as Ref. [16]; however,
the analysis is carried out for VSB WECs, and the resulting
control law is a combination of bang-bang and singular arc
controls.

In complex-conjugate control [17], the optimal reactance
Xpto = S{Zpo(w) = —=U(w)/V(w)} is chosen such that it
cancels out the intrinsic mechanical reactance of the system,
where Zp, is the PTO impedance, U(w), and V(w) are the
frequency domain PTO force and velocity, respectively. The
reactance of the PTO is non-zero (i.e., Xy # 0), which
results in a bidirectional effect in which the PTO harvests
energy at some time intervals ¢ C 1" C R and returns power
to the water at time intervals ¢t ¢ 7" C R,. By definition,
when the incident wave matches the natural frequency of the
system, then X, = 0. To obtain the bidirectional power
behavior, the PTO requires more expensive components
causing an increase in the running and initial costs.

C. Contribution

VSB WECs were introduced to reduce or rather eliminate
the need for reactive power [18], i.e., design WECs that
are economically more convenient. The VSB WECs have
a jellyfish like behavior, such that part of the spring-like
behavior of the reactive control is removed from the PTO
and placed in the buoy itself. Previous work in the literature
aimed at understanding the physics and behavior of the VSB
WEC using passive damping and bang-bang controls [6], [7],
[19], but the optimal control problem was not attempted. This
letter represents the first work to derive the optimal control
law for VSB WECs to maximize power extraction. PMP is
used to obtain the control laws; it was found that the VSB
requires less reactive power to harvest a larger amount of
energy; the derived optimal control law is a combination of
singular arc and bang-bang control laws.

II. DYNAMIC MODEL AND PROBLEM
STATEMENT

This section discusses the dynamics and the equation of
motion for VSB WECs, then the optimal control problem is
formulated as a first step to derive the control laws.

A. System Model

References [6] and [7] used the first principals of analytical
mechanics to derive the equation of motion for VSB WECs,
the distributed parameter associated with the shell deforma-
tion vector (Fgme = [u w v] € R3) shown in Fig. 1 was
converted to a discrete parameter using the Rayleigh-Ritz
approximation, where the shell deformation vector, assuming
no deformation perpendicular to the page, is expressed as [6]:

Fame(9,1) =[BT (¢) 07 WIT (@) n(t) = Bem(t) ()

where the functions ¥ (), ¥ (¢) : R are trial (admis-
sible) functions that follow the Legendre polynomial of the
first kind [6], [7], these functions describe the mode shapes
of the axisymmetric vibrations of spherical shells. The angle
¢ describes the location of an infinitesimal mass “dm” on
the non-deformed shell; it is the angle between the third axis
of the body reference frame s3 and the normal to the non-
deformed shell ez as shown in Fig. 1, and n € RY is the
time-dependent Rayleigh-Ritz coefficients vector. References



Fig. 1. Kinematic representation of the VSB, (solid black line: deformed
buoy, and dashed black line: non-deformed Buoy [6], [7]

[6] and [7] have a full kinematic description for the VSB.
Eq. (2) can be expressed as [6]:

where x = [Fa3 07T € RMX1 M(t) = M +
M . (t) € RN»*No guch that M o (t) = limy,_s 00 M, (2),
and K (t) = K+ Ky(t) € RN»*No where K}, is the gener-
alized hydrodynamic stiffness coefficient and its expression
can be found in Ref. [6], and 7, is a vector that describes
the center of gravity “C.G” position of the buoy with respect
to the inertial reference frame a (Fig.1).

Also, M = diaglm M..] such that m € R,, and
M., € RV*N are the mass, and the generalized mode
shape mass matrices. Additionally, D = diag[c D], and
K = diaglk K..|, where the damping c and stiffness k are
scalar quantities related to the translational motion of C.G,
D.. and K.. € RY*N are diagonal generalized damping
and stiffness matrices related to the generalized mode shapes
for the flexible buoy.

The external forces are (1) the generalized constraint force
Q. = AT\ which accounts for the constraints applied to
the buoy’s shape and C.G motions; in this work, Q, = 0,
(2) the generalized PTO force Q,,(t), (3) the generalized
excitation force Q. (t) = Z;V:wl R(Eq;(t,wj)n et @itt:))
such that N,, € Z is the number of waves, and E(t,w) €
CNoxNw s the generalized excitation force coefficient, 7;,
w; € Ry are the jM wave elevation and frequency, and (4)
the generalized hydrodynamic radiation force “Q,,4(t)”. For
irregular waves [6]:

Qua(tx2) = — / (K (t — 7)xs(r)) dr s)

where K € RM»*Np ig the retardation function that de-

scribes the fluid memory effects, and it is expressed as
K(t) = 2 [*™ Dyt w) cos (wt) dw. Also, Dyy(t,w) €
RN»*Nw g the generalized radiation damping coefficient,
which is available in Ref. [6].

For regular waves, the generalized hydrodynamic radiation

force can expressed as Q,,4(t) = D (t)x2(t).

Solving Eq. (4) requires solving a two-way fluid-structure
interaction (FSI) model; the generalized hydrodynamic co-
efficients are calculated from the pressures obtained from
the potential flow theory, and the BEM solvers, which are
computationally expensive to solve at every time step. To
solve that computational time problem, Ref [6] proposed
treating the problem as a one-way FSI problem by averaging
the time-dependent coefficients using the Reynolds decompo-
sition method such that M o (t), Dya(t), Kn(t), Ex(t) —
M, D, K hy E,. Accordingly Eq. (4) becomes [6]:

M + Dx + Kx = AT X+ Q (1) + Q, (1) + Qua(t)  (6)

where the overbar denotes the averaged value. Treating the
problem as a one-way FSI problem was mainly needed to
reduce the computational time required to solve the VSB
WEC problems; however, it introduced an error of +2%
in the total harvested energy [6]; furthermore, even with
accurately calculated averaged values, the resolution of the
physics of the problem is reduced.

B. PROBLEM STATEMENT

PMP is applied in this work. This principle screens the
potential solutions at each time step and can identify the
candidate that minimizes the Hamiltonian if it exists and is
unique. On the other hand, there are cases when there is
an infinite number of candidates, or the stationary condition
is not an explicit function of the control force, i.e., the
stationary condition does not furnish any information about
the control law. This condition is demonstrated in this letter.

The objective of the optimal control problem J is to
maximize the harvested energy for time ¢ € [0,¢;] such
that 7 = — fotf Qg;on, where ng = [u; ul] accounts
for the PTO force on the C.G. (u; € RY), and uy, € RV*!
is the control force acting on the shell assuming the use of
piezoelectric harvesters/actuators on the buoy’s surface. The
optimal control problem for regular waves can be treated as
a particular case of the optimal control problem of irregular
by replacing the expression for “Q,,,(t)”; therefore, in this
letter, the optimal control problem for irregular waves will
be solved, then a particular solution is presented for regular
waves. The optimal control problem for irregular waves can
be formulated based on Eq. (6) and expressed as

ty
min J = 7/ Qg;ondt
X2, tho Jto
s.t. X] = Xo,t € [toﬂff],

. 1 2% (
Xo =M (—DX2 — Kx; + thdro - tho) ’
T3 =1,X19 = X1 (to)7X20 = X2(t0)

where Qo = Qex(23) + Qrag (X2, 23) € RY»*1. Note that
this problem can be formulated in terms of the generalized
radiation states X, rather than the generalized radiation force
that is calculated using the convolution. Noting that the
system is non-autonomous, hence, time is considered as a
state x3 € R.

The control limits for the optimal control problem is:

Quo €U 2 {Qp 1 Qi < Qo < QRIVEE [to,tg]  (7)



III. MATH: OPTIMAL CONTROL

In this section, the optimal control laws for VSB WECs in
irregular waves and regular waves are derived. The derivation
procedure is as follows: we first construct the Hamiltonian
H, then we derive the necessary conditions for optimality,
which include the adjoint equations A = —9H/0x, where
A is the vector of Lagrange multipliers, and the stationary
condition H,, = —8H/8tho [16].

In this letter, no mechanical damping force is applied on
the C.G (i.e., ¢ = 0), and the generalized damping matrix D
in Eq. (6) becomes singular. The Hamiltonian of this problem
can be constructed as

H(x, X Quo) = —QpoXo + A]xo + AT M x
(_DX2 - KXI + Qext + Qrad - tho) + /\3 (8)

The Hamiltonian is linear with respect to the PTO force Q pto>
which means that the stationary condition is not an exphc1t
function of the control force, and a singular arc solution will
be obtained. The adjoint equations are expressed as:

1

A= (M7K) X ©
. _ A T
A2 = Qi — A1 + (M_I(D — %)) Az (10)

- 8 s _ T
Az = — (M (87.1'3 (Qexl + de)) A2 (11)
The stationary condition is then expressed as:

Hy= % —M "Mg=0c=Ag=-M'x, (12

The stationary condition does not yield an expression for
the control force “Q,,”, the high order maximum principle
(HMP) may be used to obtain additional necessary conditions
to derive the control law [16]. The additional necessary
conditions are obtained by differentiating the Hamiltonian
with respect to time k € Z+ number of times until the
following form is obtained tﬂ H, (x, pr,)\) = Gy +
G1Q,,(t) = 0, where k is the order of singularity and the
control law becomes Q,,, = —Go/G1, where G1 # 0 Vt €
[t1,t2]. The first additional necessary condition is obtained
by differentiating Eq. (12) to get:

Hy=—% —M "Ag=0<=do=—M"%> (13)

Substituting Eq. (9) into Eq. (12) then integrating yields:
A=-K'x-C (14)

where C € RM»*! is an integration constant. Substitute
Eq. (14), the 2" constraint, and Eq. (10) in Eq. (13) we
get:

H’u = C3th0 + C2X2 + Clxl - M_l (Qext =+ Qrad)
- (J\Z‘T—a%)x2 —~C=0 (15
8X2
where C5 = (]\7/[71 - MﬁT), C, = (MﬁlD +

(DM_le), and Cy = (M ' K+(KM ™ 1)T), the expres-

sion in C'3 is skew-symmetric, i.e., it is a coupling matrix

for the generalized control force elements; 8Hul /Ou; =0
and afiu,_,/@ug =0.

Differentiating Eq. (15) to get an additional necessary
condition yields:

Hu—CgaaQilo (Cz* V, _TaQr;d) %g + C1x9—
W (@t Q) — (377 P 0 1)

Rearranging Eq. (16) yields:
— \ 7 8 o ra -1 \ T a a a
X2 = (CQ - (M T&)) |:M 1871‘3 (Qext =+ Qrad)

8x2
tho r—1 82Qrad ~
C 5‘x3 + ((M 8X28$3) B Cl>XQ:|

Substituting the second constraint into Eq. (17) yields the
required singular arc control law:

A7)

Q%) = Qu + Qug — Dxz — Kx; + M<MT6§2};:(1
_ 62>71|:M_18ix:3(Qext+Qrad> 3 0383%:0
(" 29 ) s

From the necessary condition in Eq. (13) one can write:
~ 10 =~ 17 (7 -1
X9o = |:(M @) — CQ:| <C1x1 — M (thdro)

8x2

+C3Qy, ~ C) 19
The expression above can also be obtained by substituting
the second constraint into Eq. (18) and then integrating. By
integrating Eq. (19) one can get:

oo [ (178 e (e e
Y (Qw + de) _ c)) do + x1(to) (20)

Since ¢ is arbitrary, it can be proved that the constant C' = 0
by substituting ¢t = tg.

The derivatives of the generalized radiation force are
required for the switching surface obtained by substituting
C = 0 in Eq. (15) and the singular arc generalized forces
in Eq. (18). From Eq. (5), and the differentiation under the
integral sign rules, one can write:

Bt — KOl - [ (K-mmam)ar @y
%ijd — (&) ar 22)
A = T

For regular waves, the generalized radiation force can be
expressed as Q,q(73) = DyaxXa [6], using this expression,
one can substitute into the first necessary condition expressed
by Eq. (15) to obtain the switching condition:

Hu = Cngt0+02X2 +61X1 — MﬁlQext+C =0 (24)



where for regular waves C, = (M™'D+ (DM "7T), and
D = D + D.y. Similarly, from Eq. (18) and the expression
of generalized PTO force for regular waves becomes:

sa 2 B I L
Qi)to = Qext_DX2 - Kx; — MC2

= —1 aQ = ~ 8Q to
M = _C —-C;— 25
X[ Jxs 1%2 3 O3 } (25)
Definition 1. For VSB WECs, a control law that maintains
H, (X7 )\) =0, VYt € [tl,tg] - [to,tf] (26)

for the optimal control problem defined in section II-B, if
a singular control exists, the problem becomes a singu-
lar optimal control problem. The optimal control law thus
consists of subarcs of singular control, and non-singular
(bang) control, and it is determined by the sign of the
switching curves defined by the components of “C”, and
the junctions between the control laws are discontinuous. We
say a singular arc occurs if any of the switching functions
CiVi = 1,..., N, vanishes; C; is defined as the switching
surface that corresponds to Q’;m and it is obtained from
the necessary condition Hw The optimal control law that
satisfies the two additional necessary conditions H,, H,

and Legendre-Clebsch Condition := (—1)’“% (dfg’c) H, >
o fC =0

0Vt € [t to] is expressed as Q" = { Qe if C < 0. The
i if C > 0

optimal Q,,, components switch from one boundary to the

other at the zero crossings of the corresponding function.

IV. MAIN RESULTS

In this section, the optimal control solutions of spherical
VSB and FSB WECs in regular and irregular waves, are
presented. For the VSB, two models are tested: (1) No
control on the buoy shape, and (2) Optimally controlled
shape using distributed piezoelectric actuators/harvesters.
The deformation is controlled actively depending on the
wave conditions; the shape motion is described by the mode
shapes. The derived control laws determine the amplitudes
of the mode shapes that give the optimal buoy shape. The
outer diameter and the shell thickness of the buoys are 2.5
m and 0.3 m. The modulus of Elasticity of the FSB is 10
GPa compared to 1 MPa for the VSB, the material Poisson’s
ratio is ¥ = 0.3, and N = 3. In this section, the VSB WEC
SC denotes the shape-controlled VSB WEC.

Assumption 1. Love’s approximation is applied to derive the shell
dynamics, i.e., thin shell, and small shell deformations are assumed.

Assumption 2. The steady-state vibration response of the shell is
axisymmetric. i.e., no out-of-plane vibrations.

Assumption 3. The PTO unit, and the shape actuators/harvesters’
dynamics are ignored.

For the regular wave, the wave height and period are
0.8222 m and 6 sec, respectively. The simulation was done
over a period of 1000 seconds with I;TO saturation limits
of Qg:?," = —Qgﬁj‘ = [6 11 1} x 10* N. The pk-
pk displacement of both VSB WECs decreased by 3.5%

compared to the FSB WEC; on the other hand, the pk-pk
velocity increased by 2.7% compared to the FSB WEC.

There is an increase in the harvested energy for the VSB
WEC and VSB WEC SC compared to the FSB WEC, as
shown in Fig. 2. This suggests that for a VSB WEC and
a FSB WEC to harvest similar energy, the VSB WEC will
require much less reactive power, which makes it economi-
cally more appealing. The bidirectional power behavior can
also be noticed as the energy curves are non-monotonic. The
VSB WEC SC harvested 7% more energy compared to the
VSB WEC. Also, the VSB WEC SC and the VSB WEC
harvested 40.4% and 31% more energy compared to the
theoretical limit (TL) of the FSB WEC as shown in Fig. 2.
Furthermore, there is a decrease in the required reactive
powers for both VSB WEC and VSB WEC SC of 8.77%
and 10.73%, respectively, compared to the FSB WEC.

x 106
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:* 6| VSB WEC ——FSB WEC TL
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Fig. 2. Regular Wave: Harvested Energy

To model an irregular wave, a Bretschneider Spectrum is
implemented with a significant wave height and peak wave
period of 0.8222 m and 6 sec, respectively. The number of
frequencies is N,, = 256. A simulation for 360 seconds
is conducted using the same PTO force saturation limits
as the regular wave case. Simulations show that the heave
displacement of the VSB WEC SC is less than the FSB WEC
and the VSB WEC; The root mean square value (RMS) of
heave displacement for the FSB, VSB WEC, and VSB WEC
SC are 0.39, 0.37, and 0.34 m, respectively. The RMS of their
velocities are 0.58, 0.52, and 0.49 m/sec, respectively.

The harvested energy from the VSB WEC and the VSB
WEC SC increased over that of the FSB WEC by 11.04%
and 26.93%, respectively. Also, the VSB WEC harvests
almost the same amount of energy as the theoretical limit of
the FSB WEC.It is important to highlight that the harvested
energies of the VSB WECs are higher than that of the FSB
WEC even though the RMS velocities are less; this is due
to the continuously changing shape of the buoy. Being able
to capture more power with about the same heave motion
is indeed a new phenomenon in wave energy conversion.
This can be further justified using Fig. 4 in which the VSB
WECs SC require less negative power compared to FSB
WEC, where there is a reduction in the reactive powers for
the VSB WEC and the VSB WEC SC of 11.9% and 17.4%,
respectively, compared to the FSB WEC.
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Fig. 3. Trregular wave: Harvested Energy

To provide an insight into the efficiency of VSB WECs
compared to the FSB WEC, the capture width ratio (CWR)
for the three devices was calculated based on Ref. [20], the
CWR for irregular waves is defined as the ratio between the
mean absorbed power “p,,(W)” by the WEC to the wave
energy transport “p, = 3pg [ 5 gy (W/m)” multi-
plied by the characteristic dimension of the buoy “D(m)”,
ie, CWR = g'—g;, where S(w) is the wave spectrum at
frequency w. The CWR of the FSB WEC, VSB WEC, and
VSB WEC SC are 0.15, 0.19, and 0.21, respectively.

1 x10°
—__FSBWEC ___VSB WEC SC
—_VSB WEC
-~ 0.5+ | A
5 § \ AL 1l /
= e k \wa 1\ [ '
5 POV W
g \ |
& 05} ]
1 ‘ ‘ ‘
320 325 330 335 340

Time “sec”

Fig. 4. TIrregular wave: PTO Power

V. CONCLUSIONS AND FUTURE WORK

The optimal control laws for the variable-shape wave
energy converters were derived using Pontryagin’s minimum
principle, and the control laws for the C.G. and the buoy
shape are found to have a bang-singular-bang behavior. The
VSB WEC, with and without shape control, requires less
reactive power while harvesting more amount of energy
compared to the FSB WEC, which makes it economically
more appealing. For future work, the dynamics of the PTO
force and the smart material harvesters/actuators should be
included in the dynamic equation, and the positive power
bang-singular-bang control law (PPBSB) should be tested to
assess the amount of reactive power needed for the tested
WECs.
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