
Ocean Engineering 278 (2023) 114201

A
0

E
I
a

b

c

a
2
2
A
i
c

E

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

𝜈-gapmetric basedmulti-model predictive control of an ocean current
turbine systemwith blade pitch failures✩

. Baris Ondes a,∗, Cornel Sultan a, Arezoo Hasankhani b, James H. VanZwieten b, Nikolaos
. Xiros c
Virginia Tech, 460 Old Turner St., Blacksburg, 24061, VA, USA
Florida Atlantic University, 777 Glades Road, Boca Raton, 33431, FL, USA
University of New Orleans, 2000 Lakeshore Drive, New Orleans, 70148, LA, USA

A R T I C L E I N F O

Keywords:
Multi-model predictive control
Marine renewable energy
Fault-tolerant control
𝜈-gap metric
Ocean current turbine

A B S T R A C T

In this article, a method of combining multiple linear models is developed and used by an advanced model
predictive control algorithm for ocean current turbine flight control. The developed model bank consists of
faulty and healthy linear models created for the ocean current turbine system. Each linear model is used to
compute individual control actions using the model predictive control framework, which are combined to
generate the aggregate control action that is applied to the system. A weighted average defined by the 𝜈-gap
distance between the current linear approximation of system dynamics and each individual linear system is
used to compute the aggregate control action. The multi-model predictive control strategy is applied to control
the ocean current turbine to mitigate performance degradation that may occur due to failures in the system.
The proposed control framework’s effectiveness is shown with the renewable power generation improvement
during a faulty case.
1. Introduction

Ocean currents are global resources of clean energy that can be har-
vested using adequately designed and managed ocean current turbines
(OCT), i.e. marine current turbines (MCT). According to Haas (2013),
the Gulf Stream is a significant marine hydrokinetic energy source off
the eastern coast of the United States, with an average power that
can be generated along the coastline from Florida to North Carolina
calculated at 18.6 GW. The optimal operation of OCTs requires that
they are placed relatively far from the ocean shore and close to the
water surface, ideally within the top 100 m of the water column. The
highest power density regions are found on the western boundaries
of the world’s oceans and vary significantly with geographic location.
For example, the highest power density is estimated to be 3.0 kW/m2

t a depth of 50 m off the southeast coast of the U.S. (Lund et al.,
006); the maximum average power densities are estimated to be
.15 kW/m2 and 2.17 kW/m2 at 20 m depth off Japan and South
frica (Mikhailov, 2002; Bryden et al., 2005). Placing OCTs at an
deal operating location, where the current is strongest, brings multiple
hallenges. These challenges include those associated with OCTs being
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moored to the ocean floor, as mooring systems (e.g., cables) introduce
significant difficulties such as minimizing OCTs motions, placing and
maintaining OCTs at the ideal locations, etc.

The ideal operating location for OCTs makes frequent failure-
induced maintenance actions undesirable because of access limitations
and the cost of offshore operations. Therefore, to be cost-effective,
OCTs should operate without human intervention for long periods.
Also, due to the operational environment, OCTs will be subjected to
various perturbations, including large disturbances caused by extreme
weather events (Hasankhani et al., 2021b). Modeling uncertainties are
inevitable because of the environmental hydrodynamics, the complex-
ity of the device (OCT), and the influence of the mooring system on
the OCT dynamics. These challenges require an advanced feedback
control system, which can rapidly react to diverse perturbations, reject
disturbances, including those with large magnitudes, and manage sys-
tem failures. Such control systems have not been investigated for OCTs
yet. The OCT control literature is generally limited to stabilizing flight
control systems that use a single linear model of the ideal (i.e., healthy,
non-faulty) OCT. Fault-tolerant control of the OCTs studies are limited
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029-8018/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.oceaneng.2023.114201
Received 10 November 2022; Received in revised form 5 March 2023; Accepted 11
 March 2023

https://www.elsevier.com/locate/oceaneng
http://www.elsevier.com/locate/oceaneng
mailto:ondes@vt.edu
mailto:csultan@vt.edu
mailto:ahasankhani2019@fau.edu
mailto:jvanzwi@fau.edu
mailto:nxiros@uno.edu
https://doi.org/10.1016/j.oceaneng.2023.114201
https://doi.org/10.1016/j.oceaneng.2023.114201
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2023.114201&domain=pdf


Ocean Engineering 278 (2023) 114201E.B. Ondes et al.

I
a

2

i
f
p
p
t
c
m
d
U
c
t

to electronic failures in the system (Pham et al., 2018) and do not
account for structural failures. There exist some published works on
detecting and classifying failures in the rotor blade pitch angles using
neural networks (Freeman et al., 2021, 2022), but they do not propose
any fault-tolerant control framework. They can be used in failure
mitigation algorithms (e.g. the one proposed in this work) to provide
the system with information on the severity of the rotor blade pitch
faults. The existing OCT control systems are implicitly limited in their
capability to manage system failures, especially structural ones, as
well as large and diverse perturbations. Some works in OCT control
literature are briefly reviewed next.

PID/Bang-Bang, LQR/PID/Bang-Bang, and LQG/PID/Bang-Bang ap-
proaches were developed for the control of OCTs that use wingtips
and canard fins as actuators, to primarily control some of the system’s
states, such as depth and orientation, and to maximize energy gen-
eration from ocean currents (VanZwieten et al., 2006). In Ngo et al.
(2021), cyclic blade pitch angle control was introduced in OCT feed-
back control, in addition to the electromagnetic rotor torque control.
A single OCT linear model was used in conjunction with a stochastic
linear control method (output variance constrained control) to mini-
mize control energy subject to variance constraints on deviations from
the nominal values of lateral and vertical OCT inertial coordinates
and rotor angular speed. It was ascertained that output variance-
constrained (OVC) control can rapidly restore a perturbed OCT to the
ideal operating condition. Also, practical OVC limits can be satisfied
with small control energy while avoiding a blade stall. When position
and linear velocity sensors fail or these measurements are missing,
the performance of OCT equipped with an OVC controller degrades
significantly. This was the only work that addressed failures of OCT by
assessing its performance when sensor failure occurs. Control design
was not performed to mitigate these failures.

Recently, Model Predictive Control (MPC) was used to control OCT
systems, using as control inputs the blade pitch angle and the generator
torque. MPC was used both in twin turbines (Sato et al., 2021) and in
OCTs with only one rotor (Ngo et al., 2017). Additionally, MPC was
compared with deep reinforcement learning (DRL) to obtain the opti-
mized depth of an OCT to maximize the harnessed power from a lifting
surface controlled OCT in Hasankhani et al. (2021a) and a buoyancy
controlled OCT in Hasankhani et al. (2022c). In the most recent work,
MPC was also utilized together with DRL, a co-design method, where
MPC was used for path tracking of the OCT to follow the reference path
under different shear profiles successfully, while DRL was utilized to
find the optimal path in an uncertain ocean environment in a real-time
manner (Hasankhani et al., 2022b). MPC was further applied to address
path planning for the OCT, where a spatiotemporal neural network
was employed to model the ocean current velocity (Hasankhani et al.,
2022a). In this article, we develop an advanced control algorithm based
on MPC for an OCT system with control inputs, including the rotor
torque and the variable buoyancy of the buoyancy system as presented
in Hasankhani et al. (2021b). Note that a similar variable buoyancy
design was used in the world’s first OCT system deployed successfully
in August 2017 in open ocean currents (Ueno et al., 2018a).

Here, we present a method for combining multiple linear models ap-
plied using an advanced MPC algorithm for an OCT system to mitigate
performance degradation that may occur due to the faults in the system.
For this purpose, a model bank consisting of faulty (due to blade pitch
fault) and healthy linear models are created for the OCT using the non-
linear model at the same operating condition. Each linear model is used
to compute individual optimal control actions (i.e., inputs), which are
then combined to generate the aggregate control action that is applied
to the system. To combine these individual optimal control inputs, a
weight function (Du and Johansen, 2014) is used where the weight
for each input is defined by the 𝜈-gap distance (Vinnicombe, 1999)
between the current linear approximation of the system dynamics
(i.e., which corresponds to the OCT state and condition at the current
2

time instant) and the nominal, ideal, operating condition. Depending i
on the OCT’s state and condition (i.e. healthy or faulty), a subset of
the model bank is used to compute the aggregate control action with
the Multi-Model Predictive Control (MMPC) strategy. The proposed
algorithm has the benefit of being able to control the system with
structural failures in the rotor. The MPC strategy is applied to update
the control actions for each linear system at each time step, taking
into account many constraints for the multi-input multi-output OCT
system. To obtain the optimal control actions, an optimization problem
is solved, which is formulated to follow the desired (i.e., reference)
states with minimum control energy to keep the power consumption
as low as possible.

The contributions of this work are summarized as follows:

1. A multi-model predictive control algorithm for nonlinear sys-
tems is proposed, and its effectiveness is presented with an
application on an ocean current turbine system with pitch blade
faults.

2. The 𝜈-gap metric is used to identify the similarities between the
models inside a model bank consisting of linear discrete-time
models generated for different conditions from a high-fidelity,
nonlinear model. Then, the pitch blade faults are isolated by
making use of this model bank.

3. The proposed method provides a satisfactory trajectory follow-
ing results for the OCT system, and with this proposed MMPC,
even under faulty conditions, the system displays a behavior
similar to that of a single MPC under non-faulty (healthy) con-
ditions as given in Hasankhani et al. (2022b). This increases
the power generated by the system significantly since the depth
of the turbine is critical to exploit optimally the fastest ocean
current flow.

In Section 2, the details about the OCT system are given, and changes
from the previous model’s actuators (i.e., the model used in Ngo et al.,
2021) are described. The linearization of the nonlinear OCT model and
the process of faulty model creation are then explained in Section 2. In
Section 3, the details of the MMPC strategy are explained. In Section 4,
an application of MMPC control on the OCT system is presented.
Conclusions are given in Section 5.

2. Ocean current turbine system

The investigated OCT is designed for operation in the Gulf Stream
off Florida’s East Coast (Hasankhani et al., 2021b). This system has a
total mass of 4.98×105 kg without considering ballast water. A variable
buoyancy tank is utilized that has two separate buoyancy chambers,
each of which can hold 3.20×104 kg of water. Assuming empty ballast
chambers, the moments of inertia of the OCT system are 𝐼𝑥 = 1.35×107

kg m3, 𝐼𝑦 = 4.74 × 107 kg m3, and 𝐼𝑧 = 3.45 × 107 kg m3 (see details of
numerical modeling of the OCT system in Intelligent and Group, 2021).
n this section, a nonlinear model of this OCT, its actuator model, and
rotor fault model are presented.

.1. Nonlinear OCT model

A summary of the nonlinear mathematical model of the OCT system
s given next (see Hasankhani et al., 2021b; VanZwieten et al., 2013
or details). The OCT, depicted in Fig. 1, is designed with a rated
ower of 700 kW and consists of a 20 m diameter 3-bladed variable
itch rotor, a single variable buoyancy tank separated internally into
wo variable buoyancy chambers, a main body, and a 607 m mooring
able that attaches the OCT to the ocean floor at a depth of 325
(Hasankhani et al., 2021b). The system roughly follows the basic

esign of prototypes from IHI Corp. (Ueno et al., 2018b) and the
niversity of Naples (Coiro et al., 2017), with the variable buoyancy
hambers sized such that the OCT operates at a depth of 50 m, if
hey are half-filled with ballast water, when the ocean current speed

s 1.6 m/s. A seven degree-of-freedom (DOF) model was developed to
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Fig. 1. Schematic of the buoyancy controlled OCT (Hasankhani et al., 2021b).

simulate this system (Hasankhani et al., 2021b) and is used here. This
model includes the OCT rigid body dynamics, as well as the mooring
cable dynamics and environmental effects, as briefly described next.

The rotor model was developed to calculate forces for both axial
and non-axial flow fields that vary in space and time (VanZwieten et al.,
016). Rotor airfoils vary along the blade length from nearly cylindrical
t the hub to an FX-83 W airfoil with a thickness ratio of 21% at 20%
f the rotor radius and FX-83 W with a thickness ratio of 10.8% at
he blade tip (see VanZwieten et al., 2016 for details). To calculate
ydrodynamic forces on the rotor blades, an unsteady version of the
lade Element Momentum (BEM) model was used (see VanZwieten
t al., 2013 for details). Besides the rotor forces, the hydrodynamic
forces that act on the main body, variable buoyancy tank, and cable el-
ements were included in the model. In addition to these hydrodynamic
forces, the effects of gravity, buoyancy, and elastic cable forces were
also included (VanZwieten et al., 2013).

This ocean current turbine is modeled as having a single 607 m
long mooring cable with a diameter of 0.16 m (Hasankhani et al.,
2021b). This cable is modeled as having a displaced mass of 20.6 kg/m,
and a mass of 46 kg/m is assumed based on the average density of a
double-armor umbilical suggested for offshore wind in Rentschler et al.
(2019). This cable is modeled using the finite element lumped mass
cable modeling approach as described in VanZwieten et al. (2013) and
originally in Radanovic and Driscoll (2002). It was found, via nonlinear
simulations, that five cable elements are sufficient to describe the OCT
dynamics accurately (Vanrietvelde, 2009). Using a larger number of
cable elements has negligible effects on predicted system performance
but increases computational cost.

2.1.1. Kinematic and coordinate frames
The following coordinate frames are utilized by the OCT numerical

simulation: the inertial coordinate frame (𝐼 ), the body-fixed coordinate
frame (𝐵), the momentum mesh coordinate frame (𝑀 ), the shaft
coordinate frame (𝑆 ), and multiple rotor blade coordinate frames
(𝑅). The frame (𝐼 ) is located at the mean ocean level, with its 𝑥-
axis pointing north, the 𝑦-axis pointing east, and the 𝑧-axis pointing
vertically downwards. The origin of (𝐵) is placed at the location
where the shaft is connected to the rotor blade, with its 𝑥-axis pointing
3

towards the nose and co-axial with the rotor shaft, the 𝑧-axis pointing
towards the bottom of OCT, and the 𝑦-axis obtained through the right-
hand rule. The origin of (𝑀 ) is at the center of rotor rotation and
does not rotate with the rotor, with the axial direction parallel to the
𝑥-axis, the tangential direction pointing toward the rotor’s rotational
direction, and the radial direction pointing outward from the rotor’s
center. Finally, (𝑆 ) is located at the center of the rotor’s rotation and
rotates with the rotor, and the (𝑅) frames are defined at the quarter
chord line of each rotor blade section (VanZwieten et al., 2013).

The transformation matrix from (𝐼 ) to (𝐵) is defined by successive
rotations about the yaw angle 𝜓 , the pitch angle 𝜃, and the roll angle
(i.e., a 3-2-1 Euler angle sequence):

𝐵
𝐼

=
⎡

⎢

⎢

⎣

𝑐𝜓 𝑐𝜃 𝑠𝜓 𝑐𝜃 −𝑠𝜃
𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑠𝜓 𝑐𝜙 𝑐𝜓 𝑐𝜙 + 𝑠𝜓𝑠𝜃𝑠𝜙 𝑐𝜃𝑠𝜙
𝑐𝜓𝑠𝜃𝑐𝜙 + 𝑠𝜓𝑠𝜙 −𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙 𝑐𝜃𝑐𝜙

⎤

⎥

⎥

⎦

(1)

here 𝑠(.) = sin(.) and 𝑐(.) = cos(.).
The 6 DOF kinematic equations are given (Fossen, 2011)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥̇
𝑦̇
𝑧̇
𝜙̇𝑏
𝜃̇
𝜓̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑐𝜓 𝑐𝜃 + 𝑣(𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑠𝜓 𝑐𝜙) +𝑤(𝑠𝜓𝑠𝜙 + 𝑐𝜓 𝑐𝜙𝑠𝜃)
𝑢𝑠𝜓 𝑐𝜃 + 𝑣(𝑐𝜓 𝑐𝜙 + 𝑠𝜙𝑠𝜃𝑠𝜓 ) +𝑤(𝑠𝜃𝑠𝜓 𝑐𝜙 − 𝑐𝜓𝑠𝜙)

−𝑢𝑠𝜃 + 𝑣𝑐𝜃𝑠𝜙 +𝑤𝑐𝜃𝑐𝜙
𝑝𝑏 + 𝑞𝑠𝜙

𝑠𝜃
𝑐𝜃

+ 𝑟𝑐𝜙
𝑠𝜃
𝑐𝜃

𝑞𝑐𝜙 − 𝑟𝑠𝜙
𝑞
𝑠𝜙
𝑐𝜃

+ 𝑟 𝑐𝜙𝑐𝜃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2)

where 𝜃 ≠ ±90◦, (∙̇) denotes the time derivative, 𝑥, 𝑦, 𝑧 are the
artesian coordinates of the origin of the OCT main body (𝐵) with
espect to the inertial reference frame, 𝑢, 𝑣, 𝑤 are the linear velocities
n the 𝑥, 𝑦, 𝑧 directions respectively, 𝑝∙ denotes the rotational velocities
bout the 𝑥-axis of (𝐵) with the subscript denoting a reference to
ither the main body, 𝑝𝑏, or the rotor 𝑝𝑟, 𝑞, 𝑟 are the rotational
elocities common to both the rotor and main body about 𝑦, 𝑧 of (𝐵),
espectively, 𝜓, 𝜃, 𝜙𝑏 are the Euler angles describing the orientation of
he OCT main body (𝐵) with respect to the inertial reference frame
espectively.

.1.2. Dynamic equations of motion
The dynamic equations of motion for the buoyancy-controlled OCT

re described using 7-DOF: 6-DOF corresponding to the main rigid body
hich are based on Fossen (2011) with modifications to account for

the rotation of the rotor as suggested in VanZwieten et al. (2013), and
1-DOF corresponding to the rotor’s rotation about the 𝑥-axis of the
(𝐵). These equations are obtained using the Newton–Euler approach,
and they are summarized here from VanZwieten et al. (2013). Note
that the following equation can be used to find the angular accelera-
tion of the rotor directly using the system’s states, inertial properties,
electromagnetic torque, and hydrodynamic rotor torque

̇ 𝑟 =
[

𝑀𝑥𝑟 −𝑀𝑥𝑠 − 𝑞𝑟
(

𝐼𝑣𝑧𝑟 − 𝐼
𝑣
𝑦𝑟

)]

∕𝐼𝑣𝑥𝑟 (3)

where 𝑀𝑥𝑠 denotes the electromagnetic shaft moment about the 𝑥-axis
of (𝐵), 𝑀𝑥𝑟 denotes the total external rotor moment about the 𝑥-axis
of (𝐵), 𝐼𝑣∙𝑟 denotes the virtual mass moment of inertia of the rotor for
𝑥, 𝑦, 𝑧 axes according to the bullet subscript.

The other six equations are coupled and they provide the accelera-
tion components.
[

𝑢̇ 𝑣̇ 𝑤̇ 𝑝̇𝑏 𝑞̇ 𝑟̇
]T =𝑀−1𝐶 (4)

where

𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑚𝑣 0 0 0 𝑚𝑣𝑏𝑧
𝑣
𝐺𝑏

0
0 𝑚𝑣 0 −𝑚𝑣𝑏𝑧

𝑣
𝐺𝑏

0 𝑚𝑣𝑥𝑣𝐺
0 0 𝑚𝑣 0 −𝑚𝑣𝑥𝑣𝐺 0
0 −𝑚𝑣𝑏𝑧

𝑣
𝐺𝑏

0 𝐼𝑣𝑥𝑏 0 −𝐼𝑣𝑥𝑧𝑏
𝑚𝑣𝑏𝑧

𝑣
𝐺𝑏

0 −𝑚𝑣𝑥𝑣𝐺 0 𝐼𝑣𝑦 0
𝑣 𝑣 𝑣 𝑣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(5)
⎣ 0 𝑚 𝑥𝐺 0 −𝐼𝑥𝑧𝑏 0 𝐼𝑧 ⎦
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𝐶 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓𝑥 + 𝑚𝑣(𝑣𝑟 −𝑤𝑞) + 𝑚𝑣𝑥𝑣𝐺
(

𝑞2 + 𝑟2
)

− 𝑚𝑣𝑏𝑧
𝑣
𝐺𝑏
𝑝𝑏𝑟

𝑓𝑦 − 𝑚𝑣𝑢𝑟 +𝑤
(

𝑚𝑣𝑏𝑝𝑏 + 𝑚
𝑣
𝑟𝑝𝑟

)

− 𝑚𝑣𝑏𝑧
𝑣
𝐺𝑏
𝑞𝑟

−𝑚𝑣𝑏𝑥
𝑣
𝐺𝑏
𝑞𝑝𝑏 − 𝑚𝑣𝑟𝑥

𝑣
𝐺𝑟
𝑞𝑝𝑟

𝑓𝑧 + 𝑚𝑣𝑢𝑞 − 𝑣
(

𝑚𝑣𝑏𝑝𝑏 + 𝑚
𝑣
𝑟𝑝𝑟

)

+ 𝑚𝑣𝑏𝑧
𝑣
𝐺𝑏

(

𝑝2𝑏 + 𝑞
2)

−𝑚𝑣𝑏𝑥
𝑣
𝐺𝑏
𝑟𝑝𝑏 − 𝑚𝑣𝑟𝑥

𝑣
𝐺𝑟
𝑟𝑝𝑟

𝑀𝑥𝑏 +𝑀𝑥𝑠 − 𝑞𝑟
(

𝐼𝑣𝑧𝑏 − 𝐼
𝑣
𝑦𝑏

)

+ 𝐼𝑣𝑥𝑧𝑏𝑝𝑏𝑞

−𝑚𝑣𝑏𝑧
𝑣
𝐺𝑏

(

𝑤𝑝𝑏 − 𝑢𝑟
)

𝑀𝑦 − 𝑟𝑝𝑏
(

𝐼𝑣𝑥𝑏 − 𝐼
𝑣
𝑧𝑏

)

− 𝑟𝑝𝑟
(

𝐼𝑣𝑥𝑟 − 𝐼
𝑣
𝑧𝑟

)

− 𝐼𝑣𝑥𝑧𝑏
(

𝑝2𝑏 − 𝑟
2)

+𝑚𝑣𝑏𝑧
𝑣
𝐺𝑏
(𝑣𝑟 −𝑤𝑞) − 𝑚𝑣𝑥𝑣𝐺𝑢𝑞 + 𝑚

𝑣
𝑏𝑥

𝑣
𝐺𝑏
𝑣𝑝𝑏 + 𝑚𝑣𝑟𝑥

𝑣
𝐺𝑟
𝑣𝑝𝑟

𝑀𝑧 − 𝑞𝑝𝑏
(

𝐼𝑣𝑦𝑏 − 𝐼
𝑣
𝑥𝑏

)

− 𝑞𝑝𝑟
(

𝐼𝑣𝑦𝑟 − 𝐼
𝑣
𝑥𝑟

)

− 𝐼𝑣𝑥𝑧𝑏 𝑟𝑞

−𝑚𝑣𝑥𝑣𝐺 u 𝑟 + 𝑚
𝑣
𝑏𝑥

𝑣
𝐺𝑏
𝑤𝑝𝑏 + 𝑚𝑣𝑟𝑥

𝑣
𝐺𝑟
𝑤𝑝𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

where 𝑚 is the mass of the entire OCT or the component denoted by
a subscript, (∙)𝑣 denotes that the virtual mass, the virtual product of
inertia, or virtual center of gravity, (∙)𝑟 denotes the rotor portion of
the system (everything attached to the rotor and aft of the shaft), (∙)𝑏
denotes the main body portion of the system (everything that is not
attached to the rotor and aft of the shaft), (∙)𝐺 denotes the center
of gravity, 𝑓∙ denotes the total external force in the direction of its
subscript defined in (𝐵), 𝑀∙ denotes the total external moment about
the axis denoted by its subscript defined in (𝐵), 𝐼∙ denotes the mass
moment or product of inertia denoted by its subscript defined in (𝐵),
[∙]−1 denotes the inverse operator.

In the dynamic equations of motions given in Eqs. (5)–(6), 𝑓𝑥,
𝑓𝑦, and 𝑓𝑧 are the net external forces on the OCT system (the main
body and rotor collectively) in the 𝑥, 𝑦, and 𝑧 directions shown in
Fig. 1, 𝑀𝑦 and 𝑀𝑧 are the net external moments on the ocean current
turbine system (the main body and rotor collectively) about the 𝑦 and
𝑧 directions shown in Fig. 1. Additionally, 𝑀𝑥𝑏 is the total external
moment on the main body (i.e., everything that does not rotate with
the rotor) of this OCT system and 𝑀𝑥𝑟 is the total external moments
on the rotor (and everything that rotates with the rotor) portion of this
OCT system.

The OCT equations of motion, which include the kinematics in
Eq. (2) and dynamics in Eqs. (3)–(4) represent a set of strongly coupled
nonlinear first-order autonomous ODEs that can be written formally as

𝑥̇𝑝 = 𝑓 (𝑥𝑝, 𝑢𝑝, 𝜂𝑐 ,𝑐 ,𝐕𝑤, 𝐶) (7)

where 𝑥𝑝 and 𝑢𝑝 represent the state vector and control vector; 𝜂𝑐 =
[𝑥𝑐 𝑦𝑐 𝑧𝑐 ]T and 𝑐 = [𝑢𝑐 𝑣𝑐 𝑤𝑐]T denote the Cartesian coordinates
and linear velocities of the mooring cable nodes respectively; 𝐕𝑤 =
[𝑈𝑤 𝑉𝑤 𝑊𝑤]T denotes a vector of the ocean current velocity; 𝐶 =
[𝐶𝐴 𝐶𝑇 ] denotes a matrix of axial and tangential induction coefficients
calculated over the swept area of the rotor blade, which are found
using the angles of attack, lift coefficient, drag coefficient, and flow
field (see VanZwieten et al., 2013 for details). The state vector, 𝑥𝑝, and
the control vector, 𝑢𝑝, are defined as:

𝑥𝑝 = [𝑢 𝑣 𝑤 𝑝𝑏 𝑝𝑟 𝑞 𝑟 𝑥 𝑦 𝑧 𝜙𝑏 𝜙𝑟 𝜃 𝜓]T (8)

𝑢𝑝 = [𝐵𝑓 𝐵𝑎]T (9)

where the control input includes front and aft buoyancy chamber fill
fractions, 𝐵𝑓 and 𝐵𝑎, respectively.

2.2. Actuators - variable buoyancy system

The OCT system used in this work has one type of actuator defined
as follows.

Variable Buoyancy System Model: The variable buoyancy system
has two separate variable buoyancy chambers. Each chamber can hold

3

4

31.251 m of air/water and is sufficiently baffled such that the center f
of mass of the ballast in each chamber does not depend on OCT
orientation.

This model is developed to predict ballast pump power usage to
provide reasonable limits on the rate at which water can be transferred
into or out of these chambers.

The power required to pump seawater out of the buoyancy tank
can be calculated using pressure, volumetric flow rate, 𝑄B, and pump
efficiency, 𝜂pump:

𝑃 𝑒𝑚𝑝𝑡𝑦B =
𝑃𝑄B
𝜂pump

(10)

where 𝜂pump = 0.75 is the pump efficiency, 𝑃 = 𝑃atm + 𝑃HS. Assuming
𝑃atm is atmospheric pressure (101 kPa) and 𝑃HS is hydrostatic pressure
(

i.e. 𝑃HS = 𝜌.𝑔.𝑧
)

in kPa, where 𝑔 = 9.81 m∕s2 is the gravitational
acceleration. 𝑃 empty𝐵 in kW can be rewritten as:

𝑃 emptyB =
(101 + 10.1𝑧)𝑄B

0.75
(11)

To define the constraints on the slew rates, the limits for the volumetric
flow rate of water as a function of depth should be calculated. This can
be rewritten as:

𝑄B =
0.75𝑃 emptyB
101 + 10.1𝑧

(12)

At the typical operational point, a depth of 50 m, the volumetric flow
rate, 𝑄B, is 0.023 m3∕s by assuming a ballast pump power equal to the
WWII era submarines, i.e. 𝑃 emptyB = 18.8 kW (Navy, 2008). Since each
of the two ballast chambers has a volume of 31.251 m3, these chambers
can be completely emptied in 22.2 min at this depth.

2.3. Faulty rotor models

In this section, the modeling details of the rotor faults are described.
For energy production turbines, wind or ocean, rotor faults can occur
as a result of manufacturing defects and construction, or they can
occur during their service life because of the accumulation of wear
and tear. The most common rotor faults can be categorized as a pitch
offset (Freeman et al., 2019), hydrofoil performance degradation, or
mass imbalance.

In this work, we focus on pitch offset faults occurring in one of
the three blades of the OCT system described in the sections above. In
Fig. 2, the healthy rotor blade 2(a), and faulty rotor blade 2(b) diagrams
re shown. The pitch angle of one blade differs from the other blades’
itch angle, and so the balance in the hydrodynamic behaviors of the
lades is disrupted during the operation. This disruption is caused due
o having a different angle of attack in the faulty blade, which makes
he axial and tangent hydrodynamic forces, 𝑭 𝑎, 𝑭 𝑡, diverge and result
n unbalanced moments of inertia and torques onto the turbine‘s rotor
haft (Jiang et al., 2009).
For a blade pitch offset fault, the blade pitch angle of one blade, 𝛽𝑒,

s offset from the other blade pitch angles by 𝛽𝑖:

𝑒 = 𝛽ref − 𝛽𝑖 (13)

here the desired pitch angle of all blades is 𝛽ref.
In a healthy rotor blade, the blade pitch angle is equal to the desired

ne, and so 𝛽𝑒 = 0. To simulate a blade pitch offset fault, a blade angle
f 𝛽𝑒 is used to replace the default angle of a single rotor blade in the
onlinear model given in 2.1, and then the linearize faulty models are
btained in the same manner as explained in the following section.

.4. Linearization process

Several linear models are derived from the nonlinear model dis-
ussed in Section 2.1. These models are used later (i.e. in Section 4.3)

or the multi-model approach to control design. All linear models of
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Fig. 2. The pitch offset faults representations (Freeman et al., 2019).
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the faulty OCT used in this article are determined for the pitch fault
conditions. The resulting linear systems are written as:

𝛿𝑥̇𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑢̇
𝛿𝑣̇
𝛿𝑤̇
𝛿𝑝𝑏
𝛿𝑞̇
𝛿𝑟̇
𝛿𝑥̇
𝛿𝑦̇
𝛿𝑧̇
𝛿𝜙̇𝑏
𝛿𝜃̇
𝛿𝜓̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= [𝐴𝑝]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑢
𝛿𝑣
𝛿𝑤
𝛿𝑝𝑏
𝛿𝑞
𝛿𝑟
𝛿𝑥
𝛿𝑦
𝛿𝑧
𝛿𝜙𝑏
𝛿𝜃
𝛿𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ [𝐵𝑝]
[

𝛿𝐵f
𝛿𝐵a

]

+ [𝐹𝑝]
⎡

⎢

⎢

⎣

𝛿UN
𝛿UE
𝛿UD

⎤

⎥

⎥

⎦

(14)

here 𝛿 denotes the difference between the state or control variables
nd the equilibrium values about which the system is linearized, 𝐴𝑝
s the system matrix, and 𝐵𝑝 is the input matrix. 𝐹𝑝 is the flow matrix
here 𝛿U∙ denotes the differences in the flow speed for the North, East,
nd Down axes according to the bullet subscript.
The output vector, 𝑦𝑝, is defined as

𝑦𝑝 = [𝐶𝑝]
[

𝛿𝑢 𝛿𝑣 𝛿𝑤 𝛿𝑝𝑏 𝛿𝑞 𝛿𝑟 𝛿𝑥 𝛿𝑦 𝛿𝑧 𝛿𝜙𝑏 𝛿𝜃 𝛿𝜓
]T

(15)

here 𝐶𝑝 is the output matrix, which is an identity matrix of 12 × 12.
This linearization is conducted for a steady and homogeneous flow

ield about the equilibrium states and control values. To remove the
ependence of the linear system response on rotor blade rotation angle,
𝑟, the system response is averaged over one rotor blade rotation when
alculating equilibrium values. Additionally, this linear model assumes
hat the rotor is rotating at a constant rotational speed, 𝜙̇𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,
hus reducing the number of states in the linear model to 12 (from 14
or the non-linear model).
The matrices of the linear model corresponding to the healthy

ase, i.e., system matrix 𝐴𝑝 and input matrix 𝐵𝑝, are presented in
he Appendix B. They were obtained using the following process that
tilizes the described nonlinear model, as in Section 2.1. To remove the
ependence of linear system models on the states of the individual cable
odes, all intermediate cable nodes were assumed to fall to unique
quilibrium values based on the perturbations applied during each step
f the linearization process. Quasi-static cable force dependencies on
CT position and attitude were determined by recalculating equilib-
ium cable node states and the resulting forces on the OCT during
inearization each time the OCT position or attitude states were varied.
ependencies of cable forces on the OCT velocity states were accounted
5

or during linearization by allowing velocity perturbations to alter cable
node position and velocity equilibrium states. This allows the effects
of changes in all OCT states to be incorporated into the linear model
without directly accounting for the individual cable node states.

3. Multi-model predictive control design for fault-tolerant control

We propose a novel method based on multiple linear models and model
predictive control, which is abbreviated as Multi-Model Predictive
Control (MMPC). Because it uses multiple models for control design,
this method is expected to handle nonlinearities much better than
a method that uses a single linear model obtained via linearization
around only one operating point. For the same reason, this method
can improve robustness and thus have better performance when system
failures occur than a control method that uses only one model. Also,
this method will benefit from MPC advantages, such as the excellent
capability of MPC to handle multiple states, outputs, and control inputs
and to guarantee that numerous system constraints are not violated.
The method is described in detail next and is illustrated on the control
of OCT when failures occur.

3.1. Linearized system sets definition

For the MMPC method description, several linear systems and sys-
tem sets must be defined as follows.

Consider the following set of continuous linear time-invariant (CLTI)
systems:

𝑥̇𝑝 = 𝐴𝑝𝑥𝑝 + 𝐵𝑝𝑢𝑝 (16)

𝑦𝑝 = 𝐶𝑝𝑥𝑝 +𝐷𝑝𝑢𝑝 (17)

or 𝑝 = 1, 2,… , 𝑁 . The corresponding set of discrete linear time-
nvariant (DLTI) systems is:

𝑝(𝑘 + 1) = 𝐴𝑑𝑝𝑥𝑝(𝑘) + 𝐵𝑑𝑝𝑢𝑝(𝑘) (18)

𝑦𝑝(𝑘) = 𝐶𝑑𝑝𝑥𝑝(𝑘) +𝐷𝑑𝑝𝑢𝑝(𝑘) (19)

ach discrete linear time-invariant (DLTI) system is obtained via stan-
ard discretization of a CLTI, i.e., the discretized system matrices are

𝑑𝑝 = 𝑒𝐴𝑇𝑑 , 𝐵𝑑𝑝 = ∫

𝑇𝑑

𝜏=0
𝑒𝐴𝑝𝜏𝐵𝑝𝑑𝜏, 𝐶𝑑𝑝 = 𝐶𝑝, 𝐷𝑑𝑝 = 𝐷𝑝. (20)

he sampling time, 𝑇𝑑 , used for discretization is determined according
o the Shannon sampling theorem described in Jerri (1977) after
etermining the dominant eigenvalues as explained in Section 4.1.1 on
the applied system.

The set of CLTI systems described by Eqs. (16)–(17) or in DLTI form
–(19) will be called the model bank. These systems represent
by Eqs. (18)
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Fig. 3. Visualization of the selected models’ selection process at time steps 𝑘 and 𝑘 + 1.
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𝐺
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‖

ll of the linear models used throughout the MMPC method application.
n the specific case of MMPC for OCT with failures, they will include
he nominal linearized model (i.e., corresponding to the ideal operating
ondition), as well as models of faulty OCT systems. The model bank is
uilt offline before the system is launched, based on the expected states
nd conditions (e.g., failures) of the physical system (the OCT in this
pplication). The state vector, 𝑥𝑝, and the control vector, 𝑢𝑝, are the
ame vectors as defined in Section 2.1.2 as Eq. (7).
The current model is the linear model obtained via linearization of a

onlinear model at the current time. Note that this model may or may
ot be part of the model bank because the model bank is built before the
ystem is launched. The current OCT state and condition (e.g., faulty
CT or healthy) may or may not be among the ones used when the
odel bank was created.
The selected models set is a subset of the model bank which, at

he current time, contains elements of the model bank that are ‘‘close
nough’’ (in a sense that will be made mathematically precise shortly)
o the current model. The selected models set is dynamically evolving in
ime: some elements of the model bank may enter this set while others
ay leave as time progresses.
To understand the process of determining the selected models and

he manner in which the individual control actions are combined, a
rief review of the 𝜈-gap, a robust control metric that has proven very
ffective (Vinnicombe, 1993), is necessary and is given next.

.2. The 𝜈-gap metric

There are several metrics that capture the closeness between plants,
nd the 𝜈-gap metric, i.e. Vinnicombe gap, was introduced in Vinni-
ombe (1993) and was proved to be less conservative than its precursor,
he gap metric (El-Sakkary, 1985). The 𝜈-gap metric measures the
loseness between two plants based on their closed-loop behavior, and
ts numerical value is between 0 and 1. If the plants have similar closed-
oop behavior, the value is closer to zero, and if they have different
losed-loop characteristics, the value is 1. The 𝜈-gap metric is very
seful in robust control design: if 𝑃1 and 𝑃2 are two LTI models of a
hysical system, and if the 𝜈-gap is sufficiently small, then any feedback
ontroller which is satisfactory for one model will also be satisfactory
or the other. Thus, the difference between 𝑃1 and 𝑃2 is not important
rom a feedback control perspective. The numerical value of 𝜈-gap
etric is used in Eq. (36) to obtain the aggregated control input from
ultiple plants, which is explained in Section 3.4.2.
The 𝜈-gap metric, 𝛿𝜈 (⋅, ⋅), was defined mathematically in Vinnicombe

1993) as:

𝜈 (𝑃1, 𝑃2) ∶=

{

‖𝐺̃2𝐺1‖∞ if 𝑑𝑒𝑡(𝐺∗
2𝐺1)(𝑗𝜔) ≠ 0 ∀𝜔 and wno 𝑑𝑒𝑡(𝐺∗

2𝐺1) = 0
1 otherwise
6

(21)
here:

𝑖 ∶=
[

𝑁𝑖
𝑀𝑖

]

, (22)

̃ 𝑖 ∶=
[

−𝑀̃𝑖 𝑁̃𝑖
]

, (23)

𝐺‖∞ = 𝑠𝑢𝑝
{

‖𝐺𝑣̂‖2
‖𝑣̂‖2

∶ 𝑣̂ ≠ 0
}

, (24)

𝑃1 and 𝑃2 are two continuous LTI systems that we want to compute
the 𝜈-gap between, wno(𝑟) is the winding number around the origin of
𝑟(𝑠) when 𝑠 follows the Nyquist D-contour, ⋅∗ is the complex conjugate
transpose, and [𝑁𝑖,𝑀𝑖] and [𝑀̃𝑖, 𝑁̃𝑖] denote a normalized right and left
coprime factorization of 𝑃𝑖 respectively. For practical applications, in-
cluding the results in this article, the ‘‘nugap’’ function from MATLAB’s
𝜇-Analysis and Synthesis Toolbox is used to calculate the 𝜈-gap (the
details of the computational method are given in Vinnicombe, 1999).

3.3. Construction of the selected models set

To construct the selected models set from the model bank, the fol-
lowing process is applied. At each discrete time step, 𝑘, determined
by the MPC implementation, the 𝜈-gap between the current model and
each exponentially stable element of the model bank is calculated. If
this 𝜈-gap is smaller than a prescribed value (i.e. 𝜈-gap radius), 𝑅𝑘, the
corresponding system from the model bank is included in the selected
models set.

In other words, a sphere centered at the current model and with
radius (as defined by the 𝜈-gap metric) equal to 𝑅𝑘 is created, and the
exponentially stable systems from the model bank which are interior to
this sphere are included in it. At the next time step, 𝑘 + 1, the process
is repeated: the current model at time step 𝑘 + 1 is considered to create
a new sphere of radius 𝑅𝑘+1 and the exponentially stable systems from
the model bank which belong to the interior of this sphere are selected
to construct the selected models set at time step 𝑘 + 1.

The generalized concept of the process is schematically represented
in Fig. 3, each DLTI system inside the model bank is represented as ‘‘𝐱’’,
and selected models at each time step 𝑘 are the ones inside the circle
defined by the 𝜈-gap radius 𝑅𝑘. The selected models are represented
with green color at each time step 𝑘, and the ones left out of the 𝜈-
gap radius 𝑅𝑘 are shown with orange color. Also, a summary of the
selection algorithm is given in Algorithm 1.

In Section 4, the application of the process on OCT is given in detail.
In the OCT application, the current model and the 𝜈-gap radius are
chosen to be the same through the designated operation duration, and it
is assumed that the information about the degree of fault in the system
has already been detected by a separate algorithm as given in Freeman
et al. (2021, 2022), which is out of scope of this work.

http://matrix.etseq.urv.es/manuals/matlab/toolbox/mutools/gap.html
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Fig. 4. Multi-model predictive control architecture.
Algorithm 1 Construction the selected models set
1: Create the model bank
2: Define the selected models to be used in MMPC according to 𝑅𝑘;
3: for 𝑘 = 1 𝑡𝑜 𝑁operation length do
4: The 𝜈-gap between the current model and model bank is
calculated.

5: if 𝜈-gap < 𝑅𝑘 then
6: The corresponding system is included in the selected models
set.

7: end if
8: end for

3.4. Aggregate control action for the MMPC algorithm

At the current time, for each system in the selected models set,
PC design generates a discrete sequence of control actions. These
re combined to generate an ‘‘aggregate’’ control action, 𝑢𝑝,𝑘, which
is applied to the linear or nonlinear current model at step time 𝑘,
depending on the model that is available or feasible. Of course, in
a practical implementation, this control action will be applied to the
physical system and not to a model of the system; however, in design
studies (like this one), it is applied to a model. This control architecture
is represented in Fig. 4 and related details are discussed next.

3.4.1. MPC cost function
To design an MPC for a generic DLTI system indexed by 𝑝 as given

in Eqs. (16)–(17), the following cost must be minimized subject to
constraints:

𝑉 (𝑘) ≡ 1
2

⎛

⎜

⎜

⎝

𝑘+𝐻𝑝−1
∑

𝑖=𝑘+1

(

(

𝑦𝑖|𝑘 − 𝑟𝑖
)𝑇 𝑄𝑝𝑎𝑟𝑡

(

𝑦𝑖|𝑘 − 𝑟𝑖
)

)

+
𝑘+𝐻𝑐−1
∑

𝑖=𝑘

(

(

𝑢𝑖|𝑘 − 𝑢𝑖−1|𝑘
)𝑇 𝑅𝛥part

(

𝑢𝑖|𝑘 − 𝑢𝑖−1|𝑘
)

+
(

𝑢𝑖|𝑘 − 𝑑𝑖
)𝑇 𝑅part

(

𝑢𝑖|𝑘 − 𝑑𝑖
)

)

+
(

𝑦𝑘+𝐻𝑝|𝑘 − 𝑟𝑘+𝐻𝑝

)𝑇
𝑄term

(

𝑦𝑘+𝐻𝑝|𝑘 − 𝑟𝑘+𝐻𝑝

)

)

(25)

where 𝑘 is the current time index, 𝐻𝑝 is the prediction horizon, 𝐻𝑐 is
the control horizon, 𝑦𝑖|𝑘 is the vector of the outputs at time step 𝑖, 𝑟𝑖
is the vector of the target outputs at time step 𝑖, 𝑢𝑖|𝑘 is the vector of
the control inputs at time step 𝑖, 𝑑𝑖 is the vector of the arbitrary user-
selected target controls at time step 𝑖, 𝑄part is the user-selected weight
matrix for the target outputs, 𝑄 is the user-selected weight matrix
7

term
for the final target output, 𝑅𝛥part is the user-selected weight matrix for
the control input changes, 𝑅part is the user-selected weight matrix for
the desired control inputs.

Quadratic form of the cost function
After algebraic manipulations as described in Greer and Sultan

(2020), the cost function is converted to a quadratic form as follows:

𝑉 (𝑘) = 1
2
𝑢𝑇𝑘|𝑘,𝐻𝑐

𝑆𝑢𝑘|𝑘,𝐻𝑐
+ 𝑓𝑇 𝑢𝑘|𝑘,𝐻𝑐

+ 𝑐 (26)

where

𝑆 = 𝐻𝑇𝑄tot𝐻 + 𝐺𝑇𝑅𝛥𝐺 + 𝑅tot (27)

𝑐 = 1
2
(

𝐹 𝑇𝑄tot𝐹 − 2𝐹 𝑇𝑄tot𝑟 + 𝑟𝑇𝑄tot𝑟 + 𝐽𝑇𝑅𝛥𝐽 + 𝑑𝑇𝑅tot𝑑
)

(28)

and

𝑓 =
(

𝐻𝑇𝑄tot𝐹 −𝐻𝑇𝑄tot𝑟 − 𝐺𝑇𝑅𝛥𝐽 − 𝑅tot𝑑
)

(29)

The user-selected weight matrices are constructed as follows:

𝑄tot =

⎡

⎢

⎢

⎢

⎢

⎣

𝑄part ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 𝑄part 0
0 ⋯ 0 𝑄term

⎤

⎥

⎥

⎥

⎥

⎦

(30)

where there is a number of 𝐻𝑝 matrices along the diagonal of 𝑄tot and
all other entries in the matrix are zeros.

𝑅𝛥 =
⎡

⎢

⎢

⎣

𝑅𝛥part ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅𝛥part

⎤

⎥

⎥

⎦

(31)

where there is a number of 𝐻𝑐 number of 𝑅𝛥part matrices along the
diagonal of 𝑅𝛥 and the other entries in the matrix are zero.

Matrix 𝑅tot follows the same structure as 𝑅𝛥, and it has 𝐻𝑐 matrices
𝑅part along the diagonal and the rest of the entries are zero:

𝑅tot =
⎡

⎢

⎢

⎣

𝑅part ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅part

⎤

⎥

⎥

⎦

(32)

The constraints are written as follows:

𝑢min
𝑗 (𝑖) ≤ 𝑢𝑗 (𝑖) ≤ 𝑢max

𝑗 (𝑖), 𝑖 = 1, 2,… , 𝑚 (33)

𝛥𝑢min
𝑗 (𝑖) ≤ 𝛥𝑢𝑗 (𝑖) ≤ 𝛥𝑢max

𝑗 (𝑖), 𝑖 = 1, 2,… , 𝑚 (34)

𝑦min
𝑔+1(𝑖) ≤ 𝑦𝑔+1(𝑖) ≤ 𝑦max

𝑔+1(𝑖), 𝑖 = 1, 2,… , ℎ (35)

for all integers 𝑗 such that 𝑘 ≤ 𝑗 ≤ 𝑘+𝐻𝑐−1 and all integers 𝑔 such that
𝑘 ≤ 𝑔 ≤ 𝑘+𝐻𝑝 − 1, where 𝑚 is the number of controls, ℎ is the number

of outputs, 𝑎𝑗 (𝑖) is the 𝑖 value of 𝑎 at time step 𝑗 (𝑎 can be 𝑢, 𝛥𝑢 or 𝑦),
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𝑎min
𝑗 (𝑖) and 𝑎max

𝑗 (𝑖) are the minimum and maximum values respectively
f 𝑎𝑗 (𝑖), 𝛥𝑢 is the control change at time step 𝑗 is the difference between
the previous control and the new control at time step 𝑗.

The cost function given in Eq. (26) is strictly convex if 𝑆 in Eq. (27)
s positive definite. With constraints, the MPC design problem is con-
erted into a quadratically constrained optimization problem, where
he quadratic cost, Eq. (26), is minimized subject to inequality con-
traints as listed in Eqs. (33)–(35). This formulation of the optimization
roblem is solved efficiently using interior point methods (Vanderbei
nd Carpenter, 1993; Altman and Gondzio, 1999).

.4.2. Weight function & aggregate control input
Recall that if 𝑃1 and 𝑃2 are LTI models of a physical system, and the

-gap between 𝑃1 and 𝑃2 is small, then the difference between 𝑃1 and
2 is not important from a feedback control perspective. This justifies
he following definition. The similarity factors 𝛾𝑖(𝑡) for the systems in
he selected models set at a given discrete time step 𝑘 (i.e. at time 𝑡𝑘)
re

𝑖(𝑡𝑘) = 𝛿𝜈 (𝐹𝑖, 𝐹 ), 𝑖 = 1,… , 𝑁𝑚 (36)

here 𝐹𝑖 are the selected models models, 𝐹 is the current model, and 𝑁𝑚
s the number of selected models. These factors are used to define the
ombination weights 𝑤𝑖(𝑡𝑘) at a given discrete time instant 𝑡𝑘 as:

𝑖(𝑡𝑘) =
(1 − 𝛾𝑖(𝑡𝑘))𝑘𝑒

∑𝑁𝑚
𝑗=1(1 − 𝛾𝑗 (𝑡𝑘))

𝑘𝑒
, 𝑖 = 1,… , 𝑁𝑚 (37)

here 𝑘𝑒 is a tuning factor.
Note that a small 𝛾𝑖(𝑡𝑘) means that the current model has a response

loser to that of 𝑃𝑖, so 𝑤𝑖(𝑡𝑘) has a larger value. Therefore, the con-
roller developed using the 𝑃𝑖 model has a bigger weight and is more
mportant in the global control action.
The resulting aggregate control input 𝑢𝑝(𝑡𝑘) is:

𝑝(𝑡𝑘) =
𝑁𝑚
∑

𝑖=1
𝑤𝑖(𝑡𝑘)𝑢𝑖(𝑡𝑘) (38)

here 𝑢𝑖(𝑡𝑘) is the current control action generated by the MPC al-
orithm used on the selected models set 𝐹𝑖. The aggregate control is
mplemented on the current model to obtain the next system state. Then,
he selected model set is updated as described previously, and the
rocess is repeated until the terminal point is reached.

.5. Algorithm steps

In this section, the algorithm steps of the MMPC are given as a
ummary of the previous sections, divided into offline and online parts.

ffline Steps

1. Obtain the CLTI system models set Eqs. (16)–(17) from the
high-fidelity nonlinear model for various pitch blade faults by
linearizing it around the equilibrium conditions given in Tables 6
and 7.

2. Conduct stability analysis to find the eigenvalue which deter-
mines the sampling time, 𝑇𝑑 , satisfying the minimum require-
ment based on the Shannon sampling theorem.

3. Based on the stability analysis, eliminate the unstable systems
inside the CLTI set to obtain the model bank.

4. Using the ‘‘nugap’’ function in MATLAB, construct the 𝜈-gap
table for the selected models with the values of Eq. (36) as given
in Table 2.

5. Discretize the CLTI models Eqs. (16)–(17) obtained in Step 1 to
generate DLTI systems Eqs. (18)–(19).

6. Define the actuator constraints and slew rate constraints of the
system.

7. Define the prediction and control horizon, 𝐻 , 𝐻 ,
8

𝑝 𝑐
8. Define the following properties for the cost function 𝑉 in
Eq. (25):

• Reference vector, 𝑟, which includes the optimal path to
generate maximum power,

• User-selected weight matrices, 𝑄part, 𝑄term, 𝑅𝛿part, 𝑅part,

Online Steps
The online steps of the MMPC are given in Algorithm 2 below.

Since there are several loops inside, a listing structure is preferred to
represent the online part of the MMPC used in this article.

Algorithm 2 Multi-model predictive control
1: Identify the pitch blade fault angle in the system;
2: Define the 𝜈-gap radius, 𝑅𝑘, and the tuning factor 𝑘𝑒 in Eq. (37);
3: Define the selected models to be used in MMPC according to 𝑅𝑘;
4: for 𝑖 = 1 𝑡𝑜 𝑁operation length do
5: for 𝑗 = 1 𝑡𝑜 𝑁selected models do
6: Define the DLTI plant 𝑗 to be used in MPC;
7: Using the interior point method, solve the cost function 𝑉 in
Eq. (25);

8: Obtain optimal [𝑢∗𝑗 (𝑖|𝐻𝑐 ), ..., 𝑢∗𝑗 (𝑖|𝑖+𝐻𝑐−1)] and save its initial
input 𝑢∗𝑗 (𝑖|𝐻𝑐);

9: end for
0: Using the weight function given in Eq. (37), obtain the
aggregate control input 𝑢∗𝑝(𝑖|𝐻𝑐 ) from 𝑢∗𝑗 (𝑖|𝐻𝑐 ) vectors;

11: Apply 𝑢∗𝑝(𝑖|𝐻𝑐 ) to the faulty DLTI plant and obtain the next
system state 𝑥(𝑖 + 1);

12: end for

4. Multi-model predictive control of MIMO nonlinear systems
with actuator failures case study: Ocean current turbine system

4.1. Linearized models analysis

The nonlinear OCT model is linearized around a nominal condition
that corresponds to maximum power production in steady axial flow.
This condition is characterized by averaged flow velocity of 1.6 m/s
and the following equilibrium control values,

𝑢𝑝𝑒𝑞 =
[

46.77% 46.77%
]T , (39)

and the following equilibrium state values were obtained for the
healthy case:

𝑥𝑝𝑒𝑞 =
[

0 0 0 0 0 0 554.50 m 0.38 m 50.00 m 0.01◦ 0 3.14◦
]T

(40)

hese equilibrium values for the control inputs and the states both
hange when the OCT system experiences failures (i.e. faulty condi-
ions). Their values are tabulated in Table 6 for the equilibrium states,
𝑝𝑒𝑞 , and in Table 7 for the equilibrium control inputs, 𝑢𝑝𝑒𝑞 as given
n Appendix B. When finding these equilibrium conditions, the control
ariables are manipulated until the operating depth is approximate
𝑒𝑞 = 50𝑚 (within ±8 cm) and pitch, 𝜃𝑒𝑞 , is nearly zero (within ±0.015
egrees) to maximize power production and achieve the targeted depth.
or this reason, the equilibrium states are very similar for all faults,
hile the corresponding equilibrium control varies significantly.

.1.1. Stability analysis — eigenvalue–eigenvector analysis
Eigenvalue–eigenvector analysis is performed using the nominal

ealthy linear system to identify the dominant dynamics. This study
s also necessary to choose the sampling time for system discretization.
or the linearized system of the healthy OCT, i.e., described by (B.1)
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Table 1
Eigenvector analysis of the linear OCT model.
Eigenmodes −0.1128 ± 0.1645𝑖 −0.0037 ± 0.0024𝑖

Index State Magnitude Phase (◦) Magnitude Phase (◦)

1 𝑢 1.34×10−1 ∓55.60 1.02×10−3 ∓75.35
2 𝑣 9.20×10−2 ±174.68 4.16×10−3 ±147.68
3 𝑤 1.05×10−1 ∓88.53 1.08×10−3 ±104.55
4 𝑝𝑏 4.45×10−3 ±151.29 6.50×10−7 ±77.26
5 𝑞𝑏 6.22×10−4 ∓157.13 2.39×10−6 ±112.00
6 𝑟𝑏 2.56×10−2 ±172.70 6.98×10−6 ∓9.42
7 𝑥 6.74×10−1 0 2.32×10−1 ∓42.92
8 𝑦 4.61×10−1 ∓130.43 9.39×10−1 ±180
9 𝑧 5.27×10−1 ±146.42 2.54×10−1 ∓41.52

⎫

⎪

⎬

⎪

⎭

Dominant States

10 𝜙𝑏 2.24×10−2 ±26.90 1.47×10−4 ∓70.78
11 𝜃 1.95×10−3 ±101.90 5.51×10−4 ∓34.12
12 𝜓 1.28×10−1 ±48.27 1.58×10−3 ∓157.03
Table 2
𝜈-gap metric table.
Fault 0◦ 1◦ 2◦ 3◦ 4◦ 5◦ 6◦ 7◦ 8◦ 9◦ 10◦ 12◦ 14◦ 16◦ 18◦ 20◦

0◦ 0.00 0.41 0.40 0.40 0.50 1.00 0.96 0.62 1.00 0.95 1.00 1.00 1.00 1.00 0.48 0.71
1◦ 0.41 0.00 0.06 0.22 0.57 0.99 0.92 0.70 1.00 0.91 0.99 1.00 0.99 0.99 0.45 0.76
2◦ 0.40 0.06 0.00 0.28 0.62 0.98 0.89 0.74 1.00 0.88 0.98 1.00 0.97 0.98 0.43 0.79
3◦ 0.40 0.22 0.28 0.00 0.37 1.00 0.98 0.53 1.00 0.98 1.00 1.00 1.00 1.00 0.42 0.65
4◦ 0.50 0.57 0.62 0.37 0.00 1.00 1.00 0.20 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.47
5◦ 1.00 0.99 0.98 1.00 1.00 0.00 0.26 1.00 0.21 0.28 0.14 0.30 0.28 0.32 1.00 1.00
6◦ 0.96 0.92 0.89 0.98 1.00 0.26 0.00 1.00 0.44 0.09 0.32 0.50 0.33 0.40 0.98 1.00
7◦ 0.62 0.70 0.74 0.53 0.20 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.42
8◦ 1.00 1.00 1.00 1.00 1.00 0.21 0.44 1.00 0.00 0.45 0.14 0.13 0.20 0.25 1.00 1.00
9◦ 0.95 0.91 0.88 0.98 1.00 0.28 0.09 1.00 0.45 0.00 0.33 0.51 0.33 0.40 0.97 1.00
10◦ 1.00 0.99 0.98 1.00 1.00 0.14 0.32 1.00 0.14 0.33 0.00 0.22 0.14 0.19 1.00 1.00
12◦ 1.00 1.00 1.00 1.00 1.00 0.30 0.50 1.00 0.13 0.51 0.22 0.00 0.21 0.16 1.00 1.00
14◦ 1.00 0.99 0.97 1.00 1.00 0.28 0.33 1.00 0.20 0.33 0.14 0.21 0.00 0.08 1.00 1.00
16◦ 1.00 0.99 0.98 1.00 1.00 0.32 0.40 1.00 0.25 0.40 0.19 0.16 0.08 0.00 1.00 1.00
18◦ 0.48 0.45 0.43 0.42 0.41 1.00 0.98 0.54 1.00 0.97 1.00 1.00 1.00 1.00 0.00 0.58
20◦ 0.71 0.76 0.79 0.65 0.47 1.00 1.00 0.42 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.00
in Box I, (B.3), the eigenvalues are:

𝜆1,2 = −0.2729 ± 1.2585𝑖, 𝜆7,8 = −0.1560 ± 0.0661𝑖,
𝜆3,4 = −0.2563 ± 0.9573𝑖, 𝜆9,10 = −0.1128 ± 0.1645𝑖,
𝜆5,6 = −0.1803 ± 0.3755𝑖, 𝜆11,12 = −0.0037 ± 0.0024𝑖

(41)

As shown in Table 1, for the modes associated with the less damped
eigenvalues (i.e., eigenvalues that are very close to the imaginary axis),
the position states, 𝑥, 𝑦, 𝑧, are dominant (the associated magnitudes are
the largest). Considering the OCT’s working environment and its aim
to maximize the energy harvested, the Z-position is the most important
one considering the power density distribution (Haas, 2013; Lund et al.,
2006). This is true because open ocean current speed typically varies
much more rapidly in the vertical (𝑧) direction than in the cross-stream
(𝑦) direction or in the downstream direction (𝑥). The eigenvalue–
eigenvector analysis shows that for the modes corresponding to the
lightly damped eigenvalues (−0.1128 ± 0.1645𝑖 and −0.0037 ± 0.0024𝑖),
the OCT coordinates are the dominant states. Thus, perturbations in
the OCT position will be eliminated in a very long time, i.e., the OCT
will return to the unperturbed nominal operating condition very slowly.
This is not acceptable because the OCT must return to its unperturbed
nominal operating condition in a very short time to avoid interference
with shipping traffic or neighboring OCTs when deployed in arrays.
OCT feedback control using MMPC can guarantee disturbance rejection
and rapid return to the nominal unperturbed OCT state, as illustrated
next.

This stability analysis is limited to be valid only for the linear
models obtained around the equilibrium condition and for the envi-
ronmental conditions of the ocean specified before. It is verified that
the proposed control framework can successfully drive the OCT system
between ±20 m in depth, for a given flow speed of 1.6 m/s. These
are the limitations of the OCT system application given here as an
9

example. Therefore, if these conditions are modified (for example the
system must operate in other locations of the ocean), the model bank
should be extended to include models that correspond to these modified
conditions. Extension of the model bank for additional equilibrium
conditions requires additional numerical calculations, but as mentioned
earlier these models are created offline. During the real-time operation,
the algorithm only decides which models inside the model bank to be
used and so model bank extension would not cause any burden on the
computational performance online.

4.2. Multi-model predictive controller design

Following the discussion in Section 3, the weight matrices were
selected for controller implementation as follows.

• Since it is desired to accurately track the depth reference, and
the corresponding weight for the related state, 𝑧, indexed as 9 th
in 𝑄part is set equal to 10. The system should be reaching that
depth without violating the pitch limitation, and therefore the
pitch angle state, 𝜃 indexed as 11 th in 𝑄part is set equal to 1,
and the others equal to 0:

𝑄part = diag
[

0 0 0 0 0 0 0 0 10 0 1 0
]

,

• To achieve or get closer to the reference points at the end of each
prediction horizon, the weight matrix for the final (e.g., terminal)
target output is chosen as 1:

𝑄term = 𝐼12,

• To achieve the minimum control input change as the optimal

solution calculated, the weight matrix for the desired control
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input changes is chosen as 1:

𝑅𝛥part = 𝐼2

• The weight matrix for the desired control inputs is chosen as zero,
as it satisfies the positive semi-definite requirement for the cost
function, and the only requirement for the control input is to keep
it as small as possible:

𝑅part = 0

here 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.
Besides the user-selected matrices, the prediction horizon 𝐻𝑝 and

he control horizon 𝐻𝑐 must be defined. For the OCT system, they were
hosen as 𝐻𝑝 = 40 to capture the important behavior of the OCT, and
𝑐 = 2, to reduce the computation time per iteration. During tuning,
10

t was observed that for a slow system like OCT, a longer prediction
orizon does not improve the performance, but it only slows down
he computation. Initially, the control horizon was given a high value,
𝑐 = 20 which was half of the prediction horizon 𝐻𝑝, to avoid having
roblems during some extreme conditions (e.g., a higher degree of fault
nd higher change in the reference). In these cases, the optimization
roblem may become infeasible for short instances with the given
ctuator constraints, and the simulation was able to make use of the
ontrol inputs generated in the previous iteration for the horizon of
0. Several simulations for different faulty conditions were run for
much smaller control horizon (𝐻𝑐 = 2) in non-extreme conditions
nd any significant changes were not ascertained in the simulation
esults compared to when the control horizon was 20. Reducing the
ontrol horizon from 20 to 2, the computation time was decreased
pproximately by 13% per iteration. Since these horizons affect the
omputational time excessively for systems with multiple inputs like
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Fig. 7. Control inputs of the OCT system, comparison between the Unconstrained and Constrained MPC.
Fig. 8. The depth, 𝑧 state, of the OCT as it follows the optimal trajectory.
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OCTs, they were chosen as the minimum required values that capture
with sufficient accuracy the dynamics of the system. Since the MPC’s
horizon is receding, the controller keeps calculating the next horizon
values at every other time step. Therefore, avoiding the unnecessary
future states’ prediction is beneficial to reduce the computational cost
while not compromising performance.

After defining the above elements related to the cost function, the
system constraints must be specified to ensure that the optimal control
inputs, i.e., the solution for the constrained optimization problem de-
fined by MPC, is in the suitable range of the physical system. For OCT,
the following were chosen:
[

|

|

𝐵a|| |

|

𝐵f||
]

≤
[

50% 50%
]

(42)

and the slew rates constraints,
[

|

|

𝐵̇a|| |

|

𝐵̇f||
]

≤
[

7.45 × 10−6 %∕s 7.45 × 10−6 %∕s
]

(43)

These constraints are defined by the physical model as given in Navy
(2008) for the variable buoyancy actuator and in VanZwieten et al.
11

a

(2013) for the generator. The MPC algorithm finds the control input
actions based on these constraints so that the nonlinear system is
controlled such that the real-life scenarios are simulated accurately.

4.3. Constructed model bank: 𝜈-gap metric table of the faulty models

Following the procedure described in Section 2.3, 16 linear models
of the OCT system were obtained. They constitute the model bank and
the 𝜈-gap values between them, computed as described in 3.2, and are
tabulated in Table 2. In Table 2, ‘‘Fault’’ means the blade pitch offset
fault, 𝛽𝑒 as given in Eq. (13). Each column represents the 𝜈-gap value
etween the model corresponding to the fault value written at the top of
hat column and the other models. For example, the first column gives
he 𝜈-gap values between the healthy model (for which 𝛽𝑒 = 0◦) and
he other models. The diagonal of the table consists of zeros because
he 𝜈-gap value between a model and itself is 0.
From this model bank, the exponentially unstable ones, i.e., having

t least one eigenvalue with a positive real part, are eliminated. The
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Fig. 9. Control inputs applied to the OCT system to track the optimal trajectory.
Fig. 10. The depth, 𝑧 state, of the faulty & the healthy OCT systems during the optimal trajectory following.
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models which survive this elimination process constitute the selected
models set, and in the model bank given in Table 2, all of them are
exponentially stable, and they will be used inside the MMPC without
any elimination.

4.4. Simulation results

In this subsection, several simulation results are given to highlight
the benefits of using MMPC for reference tracking (eventually, maxi-
mizing the power generation by going to the depth where the highest
ocean current occurs) when there exists a blade pitch fault in the rotor.

4.4.1. Open-loop linear vs nonlinear systems comparison
The linearization process is verified by comparing the responses

of the nonlinear system with those of the system linearized around
12

r

the nominal equilibrium solution as given in Tables 6 and 7 in Ap-
endix B.4. In the results provided in this section, both the healthy and
he faulty systems are considered, and only one example is shown in
ig. 5, which belongs to the faulty system with 𝛽𝑒 = 1◦. Both systems
re subjected to an identical step input change in the fill fraction of the
ront buoyancy chamber, 𝐵𝑓 equal to +1%. The results for the position
tates variations, which are the most important, are shown in Fig. 5. It
s ascertained that the linear model’s responses follow a similar pattern
o the nonlinear model’s ones.

It must also be emphasized that, in the case of MPC, an agreement
etween linear and nonlinear responses is important only for the first
econds after the application of the step input or an external pertur-
ation. This is true because of the nature of MPC, which repeatedly
ecomputes control actions every 𝑇 second, i.e., 2 s for the OCT system,
𝑠
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Fig. 11. Position states of the faulty & healthy OCT systems during the optimal trajectory following.
Fig. 12. Euler angles states of the faulty & healthy OCT systems during the optimal trajectory following.
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nd takes the current state of the system into account during that
omputation.
We also remark that the behavior of the position states is represen-

ative of the variation of other states, i.e., small discrepancies between
he nonlinear and linear system’s behaviors are observed for relatively
mall perturbations.

.4.2. Constrained vs unconstrained single MPC
To verify that the developed algorithm is working accurately, in

his subsection, an MPC design problem is formulated and initially
olved without any constraints on the actuators or on the states, and
hen the results are compared with the constrained case to observe
he performance of the controller when there are small perturbations
n its equilibrium Cartesian coordinates. For this purpose, the healthy
13
OCT nonlinear model was linearized around the nominal solution
corresponding to 𝑈 = 1.6 m∕s flow speed, and it was assumed that
here was no change in the flow speed, i.e., 𝐹𝑝 matrix in Eq. (14) is
neffective. The equilibrium states can be found in Table 6 with the
quilibrium control inputs in Table 7. The linear model was perturbed
m in 𝑥 and 𝑧, and −5 m in 𝑦 positions. The system controlled by
PC was expected to return to the equilibrium point, which was set as
he reference inside the controller. The results are shown in Fig. 6 for
he position states. They clearly indicate that the system returns to the
quilibrium 𝑧 position in less than 10 s when there are no constraints
pplied (see the dash-dot blue line in Fig. 6). The other 10 states also
eturn to the equilibrium values as desired. In Fig. 6 we also plot the
results for the constrained case (see the dashed green line), as they
are defined in Section 4.2. For this case, the system’s settling time for



Ocean Engineering 278 (2023) 114201E.B. Ondes et al.

s
a
s
i
t
a
h
m

Fig. 13. Control inputs of the faulty & healthy OCT systems during the optimal trajectory following.
Fig. 14. Position states of the OCT systems to validate the robustness of the switching.
the 𝑧 state is less than 200 s, indicating satisfactory performance for
a heavy system like OCT. Besides the settling time, the system follows
the reference with zero steady-state error after 800 s for all the states.
Therefore, MPC provides the OCT system with high-accuracy reference
tracking performance for multiple states with or without constraints.

In Fig. 7, the control inputs’ time histories are plotted. For the un-
constrained case, there were no constraints on the actuator in this MPC
formulation, so control input values (dotted blue lines) do not obey
the constraint limits defined in 4.2. From the unconstrained system’s
imulation, it can be observed that the buoyancy chamber fill fractions
re the more effective actuators compared to the electromechanical
haft torque. Note that the constrained system’s behavior is represented
n green dashed lines, and they are in the limitations defined by
he actuator constraints shown with the red solid lines. It indicates
nd verifies that the small perturbations can be eliminated with the
ard constraints on the actuator inputs in a short period of time, as
entioned previously.
14
4.4.3. Reference tracking with a single MPC

In this subsection, we illustrate the capability of the MPC algorithm
to maximize the power generation of the OCT by changing the op-
erating water depth, 𝑧 position. Specifically, the controller follows a
prescribed depth (𝑧 position) variation and maintains the other states
(𝑥 and 𝑦 positions) constant (within acceptable tolerances). In this
scenario, the MPC algorithm is tested on a given reference path for 𝑧
that was ±8 m from the equilibrium point.

In Fig. 8, one of the desired trajectories of the system and the
simulation results for a healthy system are plotted. It can be seen that
the reference tracking is achieved very well with the developed MPC,
and the system was able to follow the desired path with less than
1 meter of steady-state error. In Fig. 9, the time histories of the control
inputs that were applied to the system are shown. It can be seen that
they do not violate the constraints that were defined in Eq. (42) and
the control rate limitations are followed as defined in Eq. (43).
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Fig. 15. Euler angles states of the OCT systems to validate the robustness of the switching.
Fig. 16. Control inputs of the OCT systems to validate the robustness of the switching.
4.4.4. Reference tracking of the faulty systems with MMPC controller

In this case, the faulty system with the highest 𝜈-gap value compared
to the healthy system, 𝛽𝑒 = 10◦ as given in Table 2, was tested with
different MPC structures to follow a reference trajectory for 1 h of
operation, which was shown to be the optimal trajectory in Hasankhani
et al. (2022b) and for comparison, the dash-dot blue line in Figs. 10–
13 is the same MPC in that previous work. Inside the MPC block,
the actuator constraints were enforced as defined in Section 4.2, and
also the pitch angle was limited to 0.06 radians as required in the
OCT design and operation. The 𝜈−gap radius was chosen as 0.45
for the selected model set. For this radius value, in the model bank
of the MMPC there are 8 models included, corresponding to 𝛽𝑒 =
6◦, 7◦, 9◦, 10◦, 11◦, 12◦, 13◦, 14◦. In Fig. 10, the 𝑧 position state was
plotted, and the healthy system performance, dash-dot blue line, was
15

compared with the faulty model controlled with a single MPC, dotted
magenta line, and with the faulty model controlled with the proposed
MMPC algorithm, dashed green line. The system performance decreases
when there is a fault in one of the blades of the OCT; however, the
MPC is still able to control it with an offset. It was desired to reach
the optimal depth and keep the 𝑧 position error of the OCT at a
minimum to maximize the power generation and using the MMPC on
the faulty system, the RMSE of 𝑧 position was lowered from 1.3328 m
to 0.7230 m, and that is even slightly better than the healthy case in
which RMSE of 𝑧 state was 0.7589 m.

In Fig. 11, all the position states were plotted. During the change of
depth maneuvers, the OCT was moved in 𝑥 and 𝑦 axes, but since they
were under 10 m, they were in acceptable margins for the system. The
user-selected weights were assigned to maximize the power generation
while keeping the computation time low as defined in Section 4.2, so
these offsets in other axes than 𝑧 were expected, and their effects on
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he power generation were insignificant. In Fig. 12, the Euler Angles for
different scenarios were given. The pitch angle constraint, ±4◦, was

not violated throughout the simulation for all the cases, including the
faulty system as desired, and the system was able to keep its attitude
in the defined limits while it changed the depth, 𝑧, inside the ocean.
The roll angle was fluctuating between ±0.5◦, which was in very low
agnitudes that can be neglected. The yaw angle had a change of
3◦ which was an expected result of the linearization in which the
estoring yaw moment of the system was eliminated. In the high-fidelity
onlinear model, that behavior would not occur, and since it was a low
mount of offset from the desired target (i.e. 0◦ rotation around 𝑧-axis),
he linear simulation results are in the acceptable margins. In Fig. 13,
he control inputs were plotted with the actuator constraints. It is seen
hat the constraints were not violated throughout the operation in
ealthy or faulty cases as a result of using the MPC structure. Buoyancy
hamber usage (𝐵𝑓 , 𝐵𝑎) was decreased on average, from 33% with
he single MPC to 12% with MMPC, which was an additional benefit
f using MMPC. On the other hand, the power generation increased
y at least 18% with the MMPC on a faulty system (green dashed
ine) compared to a single MPC on a faulty system (dotted magenta
ine) according to the formulation given in Hasankhani et al. (2021b),
as a result of following the desired depth reference with less error
as mentioned previously. Therefore, the system was able to generate
more power with less energy usage in the actuators during the faulty
case when MMPC architecture was chosen. There was a drawback in
computation time while using MMPC compared to single MPC, and
the average computation time per iteration was increased almost 8
times, from 0.18 s to 1.35 s for Dell XPS 15 9570 computer, in which
the lower time was for using the single MPC for a healthy system.
MATLAB was chosen as the simulation environment in this work due
to having the nonlinear model in Simulink, and this drawback can
be eliminated with ‘‘Parallel Computing Toolbox’’ or by using other
programming languages and optimization libraries. However, in this
work, optimization of the algorithm speed (i.e. the computation time)
was not within the scope of this paper and was instead considered an
implementation issue. Therefore, it was out of the scope, and we fo-
cused on the development of the proposed algorithm that increases the
16

p

power generation of the OCTs, rather than lowering the computational
resource requirements of the algorithm.

4.4.5. Robustness analysis of the MMPC controller
In this section, two different robustness studies are presented. The

first one investigates the effect of switching the model set used in con-
troller design, to see if the switching structure of the MMPC controller
leads to instability in the system. The second study is about the effect
of parametric uncertainties in the system, to ascertain if the MMPC
controller can achieve reference tracking sufficiently accurately under
10% uncertainty in the system matrix and input matrix parameters.

Switching Model Set Effect on MMPC Performance
To study the effect of switching, the following scenario was evalu-

ated. A healthy plant that has no faults on the rotor blade pitch angle
(i.e. 𝛽𝑒 = 0), with a single MPC was considered. After the first 900 s,
the plant model was changed to a 10-deg faulty model, and it was
controlled by a single MPC designed using a healthy model for the next
600 s. This time interval is considered sufficient for the system to detect
the magnitude of the fault in the rotor blades. At 1,500 s, it is assumed
that the fault condition has been detected and characterized by a
separate algorithm, and as a consequence, the controller is changed
to an MMPC designed using 8 models within a 𝜈-gap radius of 0.45,
corresponding to 𝛽𝑒 = 6◦, 7◦, 9◦, 10◦, 11◦, 12◦, 13◦, 14◦.

In Fig. 14, all the position states were plotted for this scenario. The
witching scenario study is represented using a dotted blue line. It can
e ascertained that switching from the single MPC to the MMPC did
ot result in any unstable behavior in any of the position states. This is
n illustration of the fact that the control methodology proposed in this
rticle is quite robust, even when dramatic switching (i.e. from single
PC to MMPC) is performed.
In Fig. 15, the Euler Angles for these two scenarios were given.

imilar to the simulations in the previous sections, the pitch angle
onstraint, ±4◦, was not violated throughout the simulation for the
witching case, either. Right after the fault was applied in the simu-
ation, there were sudden changes in the yaw and roll angles, but they
id not exceed 5◦ and 1◦ respectively. This is an indication of very good

erformance of the proposed control scheme when switching occurs.
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In Fig. 16, the control inputs were plotted with the actuator con-
straints depicted in red. The change of the model set in the controller
design process did not cause any violation of the constraints. Moreover,
the MMPC kept producing control inputs according to the slew rate
changes. Again, this is an indication that the proposed control scheme
has very good performance when switching occurs.

Effect of Parametric Uncertainty on MPC Performance
For the parametric uncertainty evaluation of the robustness, the

following test was performed. All of the elements that are not 1 or
0 in the system matrices and the input matrices given in Appendix B
were perturbed randomly by multiplying with a value in [−1.10, 1.10].
his is equivalent to perturbations within intervals of ±10% around the
ominal values for all these elements. All the randomly perturbed sys-
ems were exponentially stable & controllable. Each perturbed system
btained in this manner was controlled by the nominal MPC to ensure
ccurate tracking of the optimal reference trajectory given previously.
ig. 17 shows the standard deviations of the position errors for the
erturbed healthy system for 200 different cases randomly generated.
t is seen that the position errors are close to the nominal design in
ll cases as they do not exceed 0.5 m. This indicates that the nominal
esign is robust with respect to uncertainties in OCT parameters.

. Conclusion

multi-model predictive control algorithm for nonlinear systems is
roposed, and its effectiveness is presented with an application on an
cean current turbine system with pitch blade faults. The algorithm
ses the 𝜈-gap metric to identify the similarities of the models inside
model bank consisting of linear discrete-time models generated for
ifferent conditions from a high-fidelity, nonlinear model. This allows
he user to control the system with an effective fault-tolerant method,
nd the MPC is defined for these systems in the form of a constrained
uadratic program, so multiple states are controlled without violations
n the defined constraints inside the optimization framework.
In the OCT application, the faults were isolated by making use of the

-gap criteria for a given model bank. The control input to achieve the
esired reference for the system, where the 𝑧 position state is crucial
o generate the maximum power inside the ocean, is aggregated from
everal linear models instead of using only one, and the control inputs
re combined with a weight function defined on the basis of 𝜈-gap
metric. The controller obtains the control inputs to minimize the cost
with the minimum amount of energy used in the actuators.

The proposed method provides a satisfactory trajectory following
results for the OCT system, and with this proposed MMPC, even under
faulty conditions, the system can be controlled in similar behavior to
the single MPC case. This increases the power generated by the system
significantly since the depth of the turbine is important to catch the
highest flow speed inside the ocean. This approach can be used on other
complex systems with multiple states, and if it were possible for the
user to generate a model bank for different environmental conditions
(or faults similar to our example case), MMPC would eliminate the
performance differences that might have resulted from these different
conditions.

Since it is a multi-model predictive control (MMPC), the imple-
mentation in a real system (embedded controller) is harder because of
the complexity of the computations, which results in relatively high
computation times. This was out of the scope of our paper, but it
can be mitigated by using low-level programming languages instead of
MATLAB and by making use of parallel computing toolboxes.

In future works, the implementation of the developed method in
an experimental setup to test the algorithm under real-life conditions
can be explored. For this, in addition to the MATLAB/Simulink simu-
lation environment, other programming language options adequate for
fast nonlinear simulations and experimental setup may be necessary.
17

Also, instead of assuming that the fault is provided to the control
Table 3
Ocean current turbine system parameters.
Parameter Symbol Value

Rated power 𝑃gen 700 kW
Total mass (without the ballast water) 𝑚 4.98 × 105 kg
Buoyancy chamber’s water capacity – 31.251 m3

Moment of inertia of the entire system
w.r.t. 𝑥-axis

𝐼𝑥 1.35 × 107 kg m3

Moment of inertia the entire system
w.r.t. 𝑦-axis

𝐼𝑦 4.74 × 107 kg m3

Moment of inertia the entire system
w.r.t. 𝑧-axis

𝐼𝑧 3.45 × 107 kg m3

Moment of inertia of the entire system
w.r.t. 𝑥𝑧 plane

𝐼𝑥𝑧 −9.80 × 106 kg m3

Ocean current speed 𝑈 1.6 m∕s
Rotor radius – 20 m
Rotor airfoil – FX-83W
Mooring cable length – 607 m
Mooring cable diameter – 0.16 m
Generator efficiency 𝜂gen 0.98
Water pump efficiency 𝜂pump 0.75

framework by an external source, a more comprehensive framework
can be developed by integrating the fault detection algorithm with
the control algorithm. A long-term goal is to create a farm of OCTs
that are interconnected in arrays through a local feed-in that sends
generated power to a grid under different environmental conditions.
The method developed and illustrated here is expected to be useful for
the cooperative control framework for this farm to keep it operating
during failures.
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Appendix A. System parameters

In this section, the parameters of the OCT system are tabulated in
three different tables. In Table 3, the system parameters of the OCT are
given, which are used in the high-fidelity nonlinear model, along with
the dynamic equations of motion virtual parameters listed in Table 4.
nd in Table 5, the constraints are provided for the actuator and also
or the pitch angle limit of the OCT, which are used in the model
redictive control framework.

ppendix B. Stable linear OCT models data

In this section, the numerical values of the two stable CLTI models
re given. In following subsections, system matrices, 𝐴𝑝,𝑖, input matri-
es, 𝐵𝑝,𝑖, and the flow matrices, 𝐹𝑝,𝑖, are listed separately. As mentioned
n Section 2.4, the output matrices, 𝐶 are identity matrices of 12 × 12.
𝑝,𝑖
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Table 4
Dynamic equations of motion virtual parameters.
Parameter Symbol Value

Virtual mass of the entire system 𝑚𝑣 4.98 × 105 kg
Virtual mass of the main body 𝑚𝑣𝑏 4.36 × 105 kg
Virtual mass of the rotor 𝑚𝑣𝑟 6.16 × 104 kg
Virtual distance of the body from the center of gravity in 𝑧 axis 𝑧𝑣𝐺𝑏 −2.49 m
Virtual distance of the entire system from the center of gravity in 𝑥 axis 𝑥𝑣𝐺 6.51 m
Virtual moment of inertia of the entire system w.r.t. 𝑥-axis 𝐼𝑣𝑥 1.35 × 107 kg m3

Virtual moment of inertia of the entire system w.r.t. 𝑦-axis 𝐼𝑣𝑦 4.74 × 107 kg m3

Virtual moment of inertia of the entire system w.r.t. 𝑧-axis 𝐼𝑣𝑧 3.45 × 107 kg m3

Virtual moment of inertia of the entire system w.r.t. 𝑥𝑧 plane 𝐼𝑣𝑥𝑧 −9.80 × 106 kg m3

Virtual moment of inertia of the main body w.r.t. 𝑥-axis 𝐼𝑣𝑥𝑏 1.30 × 107 kg m3

Virtual moment of inertia of the main body w.r.t. 𝑦-axis 𝐼𝑣𝑦𝑏 4.62 × 107 kg m3

Virtual moment of inertia of the main body w.r.t. 𝑧-axis 𝐼𝑣𝑧𝑏 3.34 × 107 kg m3

Virtual moment of inertia of the main body w.r.t. 𝑥𝑧 plane 𝐼𝑣𝑥𝑧𝑏 −9.80 × 106 kg m3

Virtual moment of inertia of the rotor w.r.t. 𝑥-axis 𝐼𝑣𝑥𝑟 5.39 × 106 kg m3

Virtual moment of inertia of the rotor w.r.t. 𝑦-axis 𝐼𝑣𝑦𝑟 1.15 × 106 kg m3

Virtual moment of inertia of the rotor w.r.t. 𝑧-axis 𝐼𝑣𝑧𝑟 1.15 × 106 kg m3
𝐴𝑝,1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.31491 −0.079839 −0.0034405 −0.21682 −0.49486 0.19637 0.029143 2.5939e−05 −0.024974 0.0071045 −0.83916 −0.011334
0.00016831 −0.14103 0.60903 0.27299 1.5342 2.1564 −1.1136e−05 −8.8582e−05 1.5579e−05 1.2291 −0.063045 0.31007
−0.077123 −0.4697 −0.17188 −0.059573 −1.0222 1.2104 0.011597 8.1511e−06 −0.01094 0.0033554 −3.5767 −0.046007
9.9918e−05 −0.048285 −0.0040622 −0.65355 −0.020593 −0.38215 −2.57e−05 −0.0002044 3.5948e−05 −1.6596 −0.0044995 0.19277
−0.011835 −0.044001 −0.0019493 −0.0091395 −0.30809 0.10806 7.889e−05 1.3596e−06 0.00052729 −0.0002676 −0.60244 −0.0064492

−1.6543e−05 0.010637 −0.06426 0.0046065 −0.15236 −0.37469 2.5361e−05 0.0002017 −3.5473e−05 0.27403 0.01049 −0.13504
−1 0.0015468 −0.00038862 0 0 0 0 0 0 0 0 0

−0.0015513 −0.99993 0.012019 0 0 0 0 0 0 0 0 0
−0.00037 0.01202 0.99993 0 0 0 0 0 0 0 0 0

0 0 0 1 4.4473e−06 0.00036997 0 0 0 0 0 0
0 0 0 0 0.99993 −0.01202 0 0 0 0 0 0
0 0 0 0 0.01202 0.99993 0 0 0 0 0 0
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⎥
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Box I.
𝐴𝑝,2 =

⎡
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⎢
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−0.35342 −0.087492 0.042654 −0.10161 0.26711 0.21704 0.03157 2.8762e−06 −0.015506 0.0054306 −1.4937 −0.013491
−0.013203 −0.13488 0.65311 0.26671 1.7607 2.0998 −1.5849e−05 −1.9864e−05 8.3908e−06 1.111 −0.030719 0.24846
−0.086037 −0.45273 −0.15423 −0.022706 −0.65578 1.2382 0.023098 4.5005e−08 −0.01198 0.0073945 −4.5193 −0.02233
0.011887 −0.02478 −0.0018493 −0.60359 −4.5306e−05 −0.41491 −0.00023346 −0.00029258 0.00012359 −1.6043 −0.0038454 0.17225

−0.018081 −0.039829 0.0050952 −0.0038632 −0.13721 0.1038 0.0016424 5.9774e−07 −0.00066859 0.0014121 −0.7215 −0.0027226
−0.0022936 0.0013295 −0.070047 −0.012768 −0.17995 −0.24681 0.0001968 0.00024664 −0.00010418 0.3674 0.0062107 −0.11699

−0.9998 −0.020009 −0.0011137 0 0 0 0 0 0 0 0 0
0.019991 −0.9997 0.014325 0 0 0 0 0 0 0 0 0
−0.0014 0.014299 0.9999 0 0 0 0 0 0 0 0 0

0 0 0 1 2.0019e−05 0.0013999 0 0 0 0 0 0
0 0 0 0 0.9999 −0.0143 0 0 0 0 0 0
0 0 0 0 0.0143 0.9999 0 0 0 0 0 0

⎤
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Box II.
B

𝐵

Table 5
The constraint values of the actuator and the OCT system.
Parameter Symbol Value

Buoyancy chambers’ fill fraction upper/lower limit 𝐵aft,front ±50%
Buoyancy chambers’ fill fraction rate limit 𝐵̇aft,front 7.45 × 10−6 %/s
Pitch angle limit 𝜃lim ±4◦

Also, the equilibrium states and equilibrium control inputs are given in
Tables 6 and 7 in the last subsection.

𝐴𝑝,1 and 𝐴𝑝,2 indicate the system matrices for non-faulty system with
◦ fault, and faulty system with 10◦ fault, respectively. The rest of the
systems’ can be accessed via Elsevier’s system as a .mat file see Box II.

.1. System matrices
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See (B.1) and (B.2) given in Boxes I and II.
.2. Input matrices

𝑝,1 =

⎡

⎢
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⎢
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⎢

0.0053155 −0.085709
−0.0014029 −0.0069603

−0.23781 −0.56429
−0.0017502 −0.0020574
0.0028751 −0.047255
0.00022988 0.0011689

0 0
0 0
0 0
0 0
0 0
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Table 6
Equilibrium states of the systems.
Fault 𝑢𝑒𝑞 𝑣𝑒𝑞 𝑤𝑒𝑞 𝑝𝑏,𝑒𝑞 𝑞𝑒𝑞 𝑟𝑒𝑞 𝑥𝑒𝑞 𝑦𝑒𝑞 𝑧𝑒𝑞 𝜙𝑒𝑞 𝜃𝑒𝑞 𝜓𝑒𝑞

[m/s] [m/s] [m/s] [RPM] [RPM] [RPM] [m] [m] [m] [◦] [◦] [◦]

0◦ 0 0 0 0 0 0 554.50 0.38 50.00 0.01 0 3.14
1◦ 0 0 0 0 0 0 555.43 1.68 49.98 0.01 0 3.15
2◦ 0 0 0 0 0 0 555.10 1.53 49.99 0.01 0 3.15
3◦ 0 0 0 0 0 0 554.77 1.38 50.00 0.01 0 3.15
4◦ 0 0 0 0 0 0 554.77 1.38 50.00 0.01 0 3.15
5◦ 0 0 0 0 0 0 554.07 0.99 49.99 0.01 0 3.14
6◦ 0 0 0 0 0 0 553.69 0.81 50.02 0.01 0 3.14
7◦ 0 0 0 0 0 0 553.30 0.70 50.06 0 0.01 3.15
8◦ 0 0 0 0 0 0 552.88 0.58 50.04 0 0.01 3.14
9◦ 0 0 0 0 0 0 552.46 0.46 50.01 0.01 0 3.13
10◦ 0 0 0 0 0 0 552.00 0.12 49.99 0.01 0 3.12
12◦ 0 0 0 0 0 0 551.01 −0.05 49.92 0.02 −0.01 3.13
14◦ 0 0 0 0 0 0 549.91 0.25 49.93 0.02 −0.02 3.13
16◦ 0 0 0 0 0 0 549.19 0.99 49.91 0.02 −0.02 3.13
18◦ 0 0 0 0 0 0 548.28 1.90 50.01 0 0 3.16
20◦ 0 0 0 0 0 0 547.59 2.43 50.13 −0.02 0.02 3.14
B
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B.3. Flow matrices
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B.4. Equilibrium states and control inputs

See Tables 6 and 7.
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Table 7
Equilibrium control inputs of the systems.
Fault 𝐵𝑓,𝑒𝑞 𝐵𝑓,𝑒𝑞

[%] [%]

0◦ 47 47
1◦ 25 71
2◦ 24 71
3◦ 23 70
4◦ 21 70
5◦ 20 69
6◦ 18 69
7◦ 17 68
8◦ 16 68
9◦ 14 67
10◦ 13 67
12◦ 10 66
14◦ 8 65
16◦ 6 64
18◦ 5 63
20◦ 4 63
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