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A B S T R A C T

This paper presents an integrated path planning and tracking control framework for a marine current turbine
(MCT), where the MCT is treated as an energy-harvesting autonomous underwater vehicle (AUV). Considering
the ocean (space of action) is continuous, the proposed framework employs two modules to address path
planning and path tracking enabled by the proximal policy optimization (PPO) algorithm, which is a policy
gradient deep reinforcement learning (RL) method. To enable fully autonomous operation in a stochastic
oceanic environment, the proposed path planning seeks a primary objective of maximizing the harvested
energy; then, the path tracking module is designed to minimize the tracking error and avoid collisions
with static and dynamic obstacles. Using field-collected acoustic Doppler current profiler (ADCP) data, the
performance of the proposed framework is evaluated. Comparative studies with baseline algorithms in three
different scenarios of path planning, path tracking without an obstacle, and path tracking with collision
avoidance verify the effectiveness of our proposed approach.
1. Introduction

Autonomous underwater vehicles (AUVs) have gained ever-
increasing attention recently. To deal with a general framework for
autonomous and unmanned driving, two major tasks, including path
planning and path tracking, should be taken into account. Path plan-
ning and tracking have been widely addressed as two separate duties
in the literature to realize smooth path and autonomous driving op-
erations. However, embracing planning and tracking in an integrated
framework is necessary to reach a completely autonomous AUV. This
paper deals with an energy-harvesting AUV, which requires an inte-
grated framework in a real-time application to realize an autonomous
and intelligent system capable of harnessing maximum power through
path planning and following the optimal path without collision with
static or dynamic obstacles, such as marine animals or underwater
infrastructures. In the light of classical control, an efficient path control
has entailed optimized ultimate goals such as collision-free optimal
path (Ali et al., 2005; Wiig et al., 2019; Yao et al., 2023), minimum
path length (Steinhauser and Swevers, 2018; Bortoff, 2000), minimum
consumed time (Zeng et al., 2014), minimum energy consumption (Di
Franco and Buttazzo, 2015), maximum harnessed energy (Cobb et al.,
2021), etc., followed smoothly with minimized tracking error.

✩ This work was supported in part by the National Science Foundation under Grant No. CMMI-2145571 and the U.S. Department of Energy under Grant No.
E-EE0008955.
∗ Corresponding author.
E-mail addresses: ahasankhani2019@fau.edu (A. Hasankhani), tangy@fau.edu (Y. Tang), jvanzwi@fau.edu (J. VanZwieten).

To address an independent task of path planning, research has been
done in the classical control literature, followed by a multitude of
algorithms grouped into Debnath et al. (2019) (i) combinatorial algo-
rithms (i.e., c-space and graph search-based algorithms); (ii) sampling-
based algorithms; and (iii) biologically inspired and evolutionary-based
algorithms (Xu and Mohseni, 2013). Popular methods for path plan-
ning include Dijkstra (Dijkstra et al., 1959), 𝐴∗ (Hart et al., 1968),
probabilistic road map (PRM) (Geraerts and Overmars, 2004), rapidly-
exploring random trees (RRT) (LaValle et al., 1998), artificial potential
field (APF) (Lee and Park, 2003), heuristic-based algorithm such as ge-
netic algorithm (GA) (Tuncer and Yildirim, 2012), and particle swarm
optimization (PSO) (Roberge et al., 2012; Krell et al., 2022). The
classical graph search methods (Dijkstra and 𝐴∗) have been enabled
to cope with a minimized cost path through a weighted graph, suffer-
ing from a so-called curse of dimensionality due to discrete precision
increase (Ferguson et al., 2005). Suppose that the environment graph
is updated through sensors, several methods (i.e., Focused Dynamic
𝐴∗ (𝐷∗) (Stentz et al., 1995), 𝐷∗ Lite (Koenig and Likhachev, 2002),
Anytime Repairing 𝐴∗ (𝐴𝑅𝐴∗) (Likhachev et al., 2003), etc.) have
been proposed instead of replanning from the scratch; still facing with
optimality issues and occasionally high computational complexity than
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planning from scratch (Ferguson et al., 2005). These algorithms face
challenges when dealing with an uncertain and dynamic environment,
such as in the open ocean. Moreover, we need such an intelligent
planning algorithm to seek a feasible path while avoiding collisions. To
meet these requirements of path planning, other new methods, e.g., re-
inforcement learning (RL) (Xi et al., 2022; Hasankhani et al., 2023,
2021a; Hadi et al., 2022), model predictive control (Hasankhani et al.,
2021a; Bin-Karim et al., 2017), and extremum seeking (Bafande and
Vermillion, 2016), have been used. From a path planning perspective,
RL is a powerful and intelligent algorithm due to its capability to extract
robust features from an uncertain and noisy environment. However,
developing planning algorithms is still an active research topic to cope
with a partially observable dynamic environment.

For path tracking, the major task is to follow the path with mini-
mized tracking error through the smooth path with continuous velocity
and acceleration functions. Line-of-sight (LOS) guidance law has been
employed to connect waypoints using straight lines (Fossen et al.,
2003). This approach is limited to following the lines, even though en-
hanced as advanced types of LOS (Wu et al., 2021; Fossen et al., 2014;
Fossen and Lekkas, 2017; Weng et al., 2022), or combined with com-
licated methods like MPC (Zhang et al., 2020; Yan et al., 2020) and
uzzy controller (Mu et al., 2018). To follow a curve-based smooth path,
n addition to the classical approach of PID controller (Fossen, 2011),
ore intricate methods have been investigated, including MPC (Ji
t al., 2016; Cheng et al., 2020; Li and Yan, 2016), sliding mode con-
trol (Truong et al., 2021), adaptive control (Antonelli et al., 2001; Yu
et al., 2021; Guerrero et al., 2019), fuzzy control (Zhang et al., 2021),
ack-stepping control (Cho et al., 2020), recently artificial intelligence-
ased approaches like RL (He et al., 2021; Sun et al., 2019; Wang et al.,
023), or any combination thereof. To endow the path following, a set
f control commands (such as velocity, acceleration, and actuator in-
tructions) should be generated due to the autonomous vehicle’s model
nd environment model. Meanwhile, the utmost concern is defined in
elation to the underactuated autonomous vehicles (i.e., plants with
ewer actuators than their degree-of-freedom) (Aguiar and Hespanha,
007) and underactuated AUV (Jin et al., 2015) intensified subject to
pplication in a dynamic and unpredictable environment.
An integrated framework for path control, contributing to a single

omplex task of path planning and tracking, represents a possible
olution to the fully autonomous systems operating in an inherent
tochastic environment. Such a framework deals with high-level path
lanning and low-level path tracking in real-time, subject to nonholo-
omic constraints. As an instance, a multiconstrained model predictive
ontrol (MMPC) has been developed to construct a collision-free path
or autonomous driving and successfully follow the path (Ji et al.,
016). An integrated path planning and tracking for an AUV has been
roposed in Shen et al. (2017) following a spline path defined due to
UV’s dynamic. Deep reinforcement learning (DRL), as an approach in
achine learning widely applied for autonomous control applications,
as demonstrated impressive results in the field of path control. For
xample, DRL has been applied to address collision avoidance as a
ath planning task and path following for the AUV in the presence
f stationary obstacles (Meyer et al., 2020b; Havenstrøm et al., 2021)
nd a complex layout of dynamic obstacles (Meyer et al., 2020a).
or a similar application of AUV, path planning and tracking have
een developed in a bi-level framework taking advantage of DRL
n both levels (He et al., 2021), thereby enabling more complicated
lanning objectives but increasing the complexity and simulation time.
he DRL algorithm as a model-free algorithm learning policy from its
nteractions with the environment seems a better choice compared to
he MPC (Hasankhani et al., 2021a), which is identified as a model-
ased algorithm and would be sensitive to the model precision. For
ur specific application of AUV and MCT, using the DRL would be very
elpful, where the real-recorded data from the ocean environment can
e directly used to train the integrated path planning and tracking. The
2

RL will then capture the uncertainties in the ocean environment and
earn how to react when facing an obstacle. Hence, the DRL is by its
ature a wise candidate for the integrated path planning and tracking
f the AUV systems in the uncertain oceanic environment.
In this paper, we focus on an oceanic environment, and a marine

urrent turbine (MCT) interpreted as the AUV (Hasankhani et al., 2021b)
ith the primary task of energy generation. Several prerequisites
hould be entailed to formulate the challenging path control problem
or the MCT. The path planning task should be defined by a major
bjective of power maximization, introducing a different problem from
he AUV’s common path planning. Further, to enable path tracking in
he ocean, waypoints selected by the path planner can be connected
hrough either a straight-line path (Martinsen and Lekkas, 2018) or
curved path (Marrtinsen and Lekkas, 2018); however, the main
ifficulties arise in the necessity of defining a feasible curved path
or the MCT system. For path tracking, the tracking error should be
inimized, and the collision should be avoided due to the stochastic
ceanic environment. Hence, to address path control, this paper will
dvance the integrated framework of path planning and tracking for
highly nonlinear dynamic MCT while modeling a stochastic oceanic
nvironment. The underactuated MCT controlled by three actuators is
argeted to achieve two major objectives of power maximization and
ollision avoidance, which distinguishes us from previous works in AUV
iterature (Meyer et al., 2020b; Havenstrøm et al., 2021; Meyer et al.,
020a; He et al., 2021), by defining a smooth curved reference path
and following that path while considering MCT dynamics and avoiding
any aggressive motion through an integrated framework to deal with
the real-time autonomous path control.

Building on our previous work in MCT dynamic modeling
(Hasankhani et al., Accepted), this paper will develop a powerful
path planning and tracking framework enabled by proximal policy
optimization (PPO) algorithm, with the following major contributions:

• We present an integrated path planning and tracking control
framework to enable path control for a fully autonomous under-
actuated energy-harvesting AUV in a real-time application. The
proposed algorithm takes advantage of PPO capable of learn-
ing dynamic and robust features from the field-recorded ocean
current profile from an uncertain environment.

• We formulate a novel path planning algorithm to maximize the
harnessed power from the energy-harvesting AUV. To ensure a
feasible path for AUV and avoid any abrupt movement, PPO-
based path planning leverages primary AUV constraints on po-
sition, velocity, and acceleration. Then, by employing a path
smoother, the planned path is smoothed for the path tracking
controller, who is responsible for following the optimal path
without collision. To the best of the authors’ knowledge, it is
the first time to propose such an integrated path planning and
tracking control for the energy-harvesting AUV.

• We verify the efficiency of the proposed approach to tame an
underactuated MCT with 7 Degree-of-freedom (DOF) and 3 ac-
tuators to cope with power maximization and collision avoidance
with static and dynamic obstacles when the agent operating in
the stochastic oceanic environment.

The rest of the paper is organized as follows. Section 2 formulates
the framework for integrated path planning and tracking, consisting
of the system model, path model, environment model, and integration
strategy. Section 3 presents a DRL-based integrated control architec-
ture. Section 4 describes a specific application of our integrated model
for the MCT system. Section 5 presents the simulation results, and
Section 6 draws conclusions and future works.

2. Problem statement for underactuated AUV

In this section, the AUV model, underwater environment model, and
proposed integrated path planning and tracking framework for the AUV

are discussed.
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2.1. System modeling

AUV Model: Consider a dynamic model for an underactuated AUV:

̇ (𝑡) = 𝑓 (𝑋(𝑡), 𝑈 (𝑡))

𝑌 (𝑡) = 𝑔(𝑋(𝑡))
(1)

ith the state vector 𝑋 ∈ R𝑛, the control inputs 𝑈 ∈ R𝑚, and 𝑌 ∈ R𝑜
such that the control inputs are fewer than the DOF of the system.
Should the nonlinear model be linearized around an equilibrium oper-
ating point, and using the linearized model reduces the computational
complexity of the problem, the nonlinear model may be replaced with
a linear model.

The AUV system is generally described with twelve states, including
𝜂 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]𝑇 , with 𝑥, 𝑦, 𝑧 representing the surge, sway, and heave,
as well as 𝜙, 𝜃, and 𝜓 denoting the roll, pitch, and yaw, respectively.
The six remaining states represent the linear velocity and angular
velocity of the AUV system denoted by  = [𝑢 𝑣 𝑤 𝑝𝑏 𝑞 𝑟]𝑇 . Note that in
a specific AUV system, the other states, such as rotor angular velocity,
can be added to these twelve states.

Uncertain Underwater Environment Model: To perform success-
ful path planning and tracking, an underwater environment should
be carefully observed and modeled with respect to the spatial and
temporal uncertainties arising from turbulence, wave, and lower fre-
quency flow structures. Meanwhile, the learning-based integrated path
planning and tracking framework entails the requirement to rely on
previously recorded underwater data from historical observations. The
underwater environment data, including current speed, northward cur-
rent velocity, and eastward current velocity, can be recorded by an
acoustic Doppler current profiler (ADCP). Note that the ADCP can
measure the water velocity directly above the instrument at depth
increments of about 5 m to 8 m (depth resolution depends on the
configuration); hence, to extend the recorded velocity data spatially,
multiple ADCPs should be deployed at the same time. Also, to justify
the collision avoidance objective, the environment should be observed
to detect the obstacles; hence, a sonar sensor is needed to mount on the
top of AUV (Havenstrøm et al., 2021).

Path Model: Let 𝑝 = {𝑝𝑖=1∶𝑛𝑤 ∈ R3
|𝑝𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)} denote a set of

𝑤 3D waypoints expressed in an inertial frame; a well-defined path
ssociated with these waypoints should satisfy a smooth and at least
𝐺2 continuous path (Chang and Huh, 2015). The 𝐺2 continuity

evokes the continuous velocity and acceleration functions and thus a
continuous curvature to satisfy a real-world application. Hence, the
proposed framework includes a path smoother to yield a smooth 𝐺2

ontinuous path.

.2. Proposed integration framework

The proposed framework targets the integrated path planning and
racking control by generating an energy-optimized reference path,
s well as following this path with a minimized tracking error and
voiding the collision. The overall proposed framework is represented
n Fig. 1, consisting of five primary modules of (i) underwater envi-
onment, (ii) PPO-based path planner, (iii) PPO-based path tracking,
iv) AUV model, and (v) path smoother. Let us suppose that the
ampling time for ‘‘path planner’’ is 𝑇 spp and the sampling time for
‘path tracking’’ is 𝑇 spt , where 𝑇 spt ≤ 𝑇 spp.
The underwater environment inputs the ADCP data and sonar sensor

ata to the PPO-based path tracking module to enable the observations
rom the environment. The PPO-based path planner is responsible for
enerating the energy-optimized reference path due to the current
peed data (ADCP data) received from the underwater environment and
he AUV’s current position, which output the reference path with the
osition [𝑥∗ 𝑦∗ 𝑧∗]T for a 3D path planning; this module is discussed
n detail in Section 3.1. The path smoother takes care of generating a
3

mooth path from the reference points received from the path planner o
ubject to the AUV constraints, continuous velocity and acceleration,
nd the sampling time of path tracking module 𝑇 spt , so resulting in a
eference vector of position and velocity [𝑥∗ 𝑦∗ 𝑧∗ 𝑢∗ 𝑣∗ 𝑤∗]T. The main
oal for the path smoother is to generate several points between every
wo points coming from the path planner and switch from the coarse
ath planning sampling time 𝑇 spp (e.g., 1 h) to the higher resolution
ath tracking sampling time 𝑇 spt (e.g., 2 s). The generated path from
he path smoother will ensure a smooth and feasible path for the path
racking controller. The AUV model interprets the movement of the
UV system and outputs the states and dominant operation constraints
o the PPO-based path planner and path tracker, respectively, which
lso receives the actuators (control inputs) from the PPO-based path
racking module as inputs. Eventually, the PPO-based path tracking
akes care of the safe collision-free path, as well as complying with
minimized error tracking of the reference path; this module is also
iscussed in detail in Section 3.2.
Note that generally the path tracking is executed in a higher fre-

uency than the path planning (Falcone et al., 2008) (i.e., 𝑇 spt ≤ 𝑇 spp).
oth path planning and tracking are fed with the system model and
nvironmental model; however, these modules are constructed based
n different levels of model fidelity constrained by computational com-
lexity and accuracy. Developing a path planner subject to the detailed
ynamic model of the system reduces the computation burden for the
ath tracker still increases the complexity of the planning module.
n the proposed framework, the initial path planner will leverage the
rimary AUV constraints (i.e., the constraints on the position, velocity,
nd acceleration in a 3D movement).

. PPO-based integrated control design

The PPO, a policy gradient deep reinforcement learning method
Schulman et al., 2017) is nominated to address the integrated path
lanning and path tracking problem. The PPO algorithm is a favorable
andidate to solve the problem at hand over a continuous space of
ction. Here, the preliminaries on the PPO algorithm are discussed;
hen, the details on the PPO algorithm application for path planning
nd path tracking are explained.
The AUV as an agent observes states 𝑠, accomplishes an action 𝑎,

nd receives a reward 𝑅 accordingly. Let define the advantage function
(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉 (𝑠), where 𝑉 (𝑠) denotes the state-value function
nd 𝑄(𝑠, 𝑎) denotes the action-value function. An estimator from the
dvantage function over 𝑇 timesteps is built as a generalized advantage
stimate (GAE), namely:

𝑡̂ = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 +⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1 (2)

here

𝑡 = 𝑅𝑡 + 𝛾𝑉 (𝑠𝑡+1) − 𝑉 (𝑠𝑡) (3)

with 𝛾 denoting the discount factor and 𝜆 denoting a parameter for scal-
ng the state-value function. A surrogate objective function is defined
s follows:

CLIP(𝜃) = Ê𝑡[min(
𝜋𝜃(𝑎|𝑠)
𝜋𝜃o (𝑎|𝑠)

𝐴𝑡, clip(
𝜋𝜃(𝑎|𝑠)
𝜋𝜃o (𝑎|𝑠)

, 1 − 𝜖, 1 + 𝜖)𝐴𝑡)] (4)

where 𝜋𝜃(𝑎|𝑠) denotes the policy with 𝜃 being a learnable parameter in
he PPO network, and 𝜖 denotes the clipping parameter.

.1. PPO-based path planning

To endow the PPO algorithm for the AUV path planning, the first
tep is to define 𝑠pp, 𝑎pp, and 𝑅pp. The state space as an input to the
PPO network is built upon the underwater environment velocity (ADCP
data) 𝑣e with (.)e denoting the environment and the position of the
UV system, i.e., 𝑠pp ≜ [𝑣e 𝑥 𝑦 𝑧]. For path planning, the action,
hich is represented as an output of the PPO network, interprets the
ptimal position of the AUV, so the action space should contain the
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Algorithm 1 PPO for path planning (training phase)
1: Input: underwater environment velocity, AUV position, feasible
underwater environment positions for AUV, and PPO parameters;

2: for each iteration do
3: Initialize state 𝑠pp ← [𝑣e 𝑥 𝑦 𝑧];
4: Proceed policy 𝜋𝜃ppo (𝑎pp|𝑠pp) over 𝑁pp timesteps and accomplish
action 𝑎pp;

5: Compute the path planning reward function 𝑅pp:

𝑅pp = 𝜗1𝑅
pp
P + 𝜗2𝑅

pp
v

6: Compute the generalized advantage function estimate:

𝐴p
𝑡 = 𝛿𝑡 + (𝛾pp𝜆pp)𝛿𝑡+1 + ... + (𝛾pp𝜆pp)𝑁

pp−𝑡+1𝛿𝑇−1

7: Optimize the surrogate function:

𝐿CLIP(𝜃pp) = Ê𝑡[min(
𝜋𝜃pp (𝑎pp|𝑠pp)
𝜋𝜃ppo (𝑎pp|𝑠pp)

𝐴𝑡, clip(
𝜋𝜃pp (𝑎pp|𝑠pp)
𝜋𝜃ppo (𝑎pp|𝑠pp)

, 1−𝜖, 1+𝜖)𝐴𝑡)]

8: Update 𝜃ppo ← 𝜃pp every 𝑏pp iterations;
9: end for
0: Output: optimal PPO for path planning;

feasible positions from the underwater environment to be occupied by
the AUV, i.e., 𝑎pp ≜ [𝑥e 𝑦e 𝑧e]. Finally, the reward function should be
haracterized based on the ultimate objective of power maximization,
here the second objective of collision avoidance is included in path
racking. The reward function for path planning is formulated by two
erms to reward the AUV in case of following the maximum velocity
nd maximum power, namely:
pp = 𝜗𝑃𝑅

pp
P + 𝜗𝑣𝑅

pp
v (5)

where

𝑅pp
P = clip(𝑃 − 𝑃 d

𝑃 d
,−1,+1) (6)

𝑅pp
v = clip(

𝑣e − 𝑣de
𝑣de

,−1,+1) (7)

with 𝜗P and 𝜗v represent the coefficients for two terms of the reward
function; the maximum values for velocity and power are denoted by
desired values of 𝑃 d and 𝑣de . The algorithm for the PPO-based path
planning is presented in Algorithm 1 with 𝜃pp showing the PPO-based
path planning network coefficient.

3.2. PPO-based path tracking

For path tracking, the main objective is to follow an optimal path
determined by the path planner while avoiding collision with an obsta-
4

cle. To perform this task, the state space is defined by sonar sensor data
𝑠𝑠, underwater environment velocity (ADCP recorded data), linear
position error 𝛥𝜂L = [𝛥𝑥 𝛥𝑦 𝛥𝑧] and linear velocity error from the
optimal values 𝛥L = [𝛥𝑢 𝛥𝑣 𝛥𝑤], so the PPO path tracking states are
pt ≜ [𝑣e 𝑠𝑠 𝛥𝜂L L]. The action space 𝑎pt that is characterized as
the output in the PPO-based path tracking is represented by the AUV
actuators.

The reward function is defined by four terms: (i) reward (or penalty)
for actuators to limit the changes in actuators; (ii) reward for the
position following to penalize any error between the actual position and
reference position; (iii) reward for velocity following to penalize any
error between actual velocity and reference velocity; and (iv) reward
for collision avoidance to penalize the collision. The reward function
for path tracking is formulated as follows:

𝑅pt = −𝜍a(𝑎pt )2 − 𝜍𝜂L (𝑅
pt
𝜂L
)2 − 𝜍𝐕L (𝑅pt

𝐕L )
2 − (1 − 𝜍𝜂L )(𝑅

pt
ca)2 (8)

where

𝑅pt
𝜂L

= clip(𝜅𝜂L
𝜂L − 𝜂L ∗

𝜂Lr
,−1,+1) (9)

𝑅pt
L = clip(𝜅L

L − L ∗
𝐋𝐫 ,−1,+1) (10)

ith 𝜍a, 𝜍𝜂L , and 𝜍𝐕L represent the coefficients for different terms of
he reward function; 𝜅𝜂L and 𝜅L show the coefficients to enlarge the
impact of the position and velocity error; 𝜂Lr and 𝐋𝐫 denote the
onstant reference values for position and velocity to normalize the
rrors. The collision avoidance term of the reward function is defined
s follows:
pt
ca = (𝛿ca(max(1 − 𝑐, 𝜖ca))2)−1 (11)

here 𝑐 = clip(1 − 𝑑
𝑑max

, 0, 1) is the obstacle closeness with 𝑑 showing
the distance measurement and 𝑑max denoting the maximum sensor
range; 𝛿ca represents the coefficient for the collision avoidance term;
and 𝜖ca denotes the constant value. The algorithm for the PPO-based
path tracking is presented in Algorithm 2 with 𝜃pt representing the
PPO-based path tracking network coefficient.

3.3. Integrated path planning and tracking for real-time application

After constructing the optimal PPO networks for path planning and
path tracking, these two trained networks are combined as an inte-
grated framework and then applied in a real-time manner to seek the
optimal path through PPO-based path planning. Afterward, the optimal
path is smoothed to find the reference path and velocity according to
the path tracking timestep 𝑇 spt . Finally, the reference path is given to
the PPO-based path tracking module to determine the optimal actuators
for an AUV. The algorithm for real-time application of the integrated

path planning and tracking is presented in Algorithm 3.
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Algorithm 2 PPO for path tracking (training phase)
1: Input: underwater environment velocity, sonar sensor data,
position error, velocity error, and PPO parameters;

2: for each iteration do
3: Initialize state 𝑠pt ← [𝑣e 𝑠𝑠 𝛥𝜂L L];
4: Proceed policy 𝜋𝜃pto (𝑎

pt
|𝑠pt ) over 𝑁pt timesteps and accomplish

action 𝑎pt ;
5: Compute the path planning reward function 𝑅pt :

𝑅pt = −𝜍a(𝑎pt )2 − 𝜍𝜂L (𝑅
pt
𝜂L
)2 − 𝜍𝐕L (𝑅pt

𝐕L )
2 − (1 − 𝜍𝜂L )(𝑅

pt
ca)2

6: Compute the generalized advantage function estimate:

𝐴t
𝑡 = 𝛿𝑡 + (𝛾pt𝜆pt )𝛿𝑡+1 + ... + (𝛾pt𝜆pt )𝑁

pt−𝑡+1𝛿𝑇−1

7: Optimize the surrogate function:

𝐿CLIP(𝜃pt ) = Ê𝑡[min(
𝜋𝜃pt (𝑎pt |𝑠pt )
𝜋𝜃pto (𝑎

pt
|𝑠pt )

𝐴𝑡, clip(
𝜋𝜃pt (𝑎pt |𝑠pt )
𝜋𝜃pto (𝑎

pt
|𝑠pt )

, 1 − 𝜖, 1 + 𝜖)𝐴𝑡)]

8: Update 𝜃pto ← 𝜃pt every 𝑏pt iterations;
9: end for
10: Output: optimal PPO for path tracking;

Algorithm 3 PPO for integrated path planning and tracking (real-time
application phase)
1: Input: real-time measured current velocity, real-time sonar sensor
data, optimal PPO for path planning, optimal PPO for path tracking;

2: for each timestep 𝑇 spp do
3: Initialize state 𝑠pp ← [𝑣e 𝑥 𝑦 𝑧];
4: Select action 𝑎pp (optimal path) according to the optimal PPO
for path planning;

5: Output: optimal path;
6: Smooth the optimal path and generate the optimal reference
vector of position and velocity [𝑥∗ 𝑦∗ 𝑧∗ 𝑢∗ 𝑣∗ 𝑤∗]T;

7: for each timestep 𝑇 spt do
8: Initialize state 𝑠pt ← [𝑣e 𝑠𝑠 𝛥𝜂L L];
9: Select action 𝑎pt (optimal actuators) according to the optimal
PPO for path tracking;

10: Output: optimal actuators;
11: end for
12: end for

4. Case study on an energy harvesting AUV: Marine current tur-
bine

4.1. Marine current turbine model

The MCT considered in this study consists of a turbine tethered to
an anchor through a mooring cable as shown in Fig. 2. This system
is designed to operate in the Gulf Stream off Florida’s East Coast to
deliver a rated power of 700 kW under nominal operation following the
prototype MCTs from IHI Corp. Ueno et al. (2018) and the University of
Naples (Coiro et al., 2017). The represented MCT consists of four major
elements: body, variable pitch rotor, variable buoyancy tank including
two variable buoyancy sections, and mooring cable. The MCT system
is primarily controlled to move in a vertical direction.

The investigated MCT system is modeled with 14 states 𝑋, consist-
ing of the position 𝜂 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]T and the velocity of the MCT
system  = [𝑢 𝑣 𝑤 𝑝b 𝑞 𝑟]T; two remaining states of the MCT system
are the angular velocity of the rotor 𝑝r , and rotation angle of the rotor
blade 𝜙𝑟, thereby symbolizing the state vector by 𝑋 = [𝜂  𝑝r 𝜙𝑟]T.

Kinematics and Coordinate Frame: To derive the equations of
motion for the MCT system, five coordinate frames are used, including
5

(i) an inertial coordinate frame (I), (ii) a body-fixed coordinate frame b
(B), (iii) a momentum mesh coordinate frame (M), (iv) a shaft
coordinate frame (S), and (v) a rotor blade coordinate frame (R) (see
Fig. 2) (VanZwieten et al., 2012). The transformation matrix from the
inertial coordinate frame (I) to the body-fixed coordinate frame (B),
𝐿B
I
, is defined as follows (Fossen, 1999):

𝐿𝐵
𝐼

=
⎡

⎢

⎢

⎣

𝑐𝜓 𝑐𝜃 𝑠𝜓 𝑐𝜃 −𝑠𝜃
𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑠𝜓 𝑐𝜙 𝑐𝜓 𝑐𝜙 + 𝑠𝜓𝑠𝜃𝑠𝜙 𝑐𝜃𝑠𝜙
𝑐𝜓𝑠𝜃𝑐𝜙 − 𝑠𝜓𝑠𝜙 −𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙 𝑐𝜃𝑐𝜙

⎤

⎥

⎥

⎦

(12)

̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚 0 0 0 𝑚b𝑧bG 0
0 𝑚 0 −𝑚b𝑧bG 0 𝑚𝑥G
0 0 𝑚 0 −𝑚𝑥G 0
0 −𝑚b𝑧bG 0 𝐼b𝑥 0 −𝐼b𝑥𝑧

𝑚b𝑧bG 0 −𝑚𝑥G 0 𝐼𝑦 0
0 𝑚𝑥G 0 −𝐼b𝑥𝑧 0 𝐼𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹𝑥 + 𝑚(𝑣𝑟 −𝑤𝑞) + 𝑚𝑥G
(

𝑞2 + 𝑟2
)

− 𝑚b𝑧bG𝑝
b𝑟

𝐹𝑦 − 𝑚𝑢𝑟 +𝑤
(

𝑚b𝑝b + 𝑚r𝑝r
)

− 𝑚b𝑧bG𝑞𝑟
−𝑚b𝑥bG𝑞𝑝

b − 𝑚r𝑥rG𝑞𝑝
r

𝐹𝑧 + 𝑚𝑢𝑞 − 𝑣
(

𝑚b𝑝b + 𝑚r𝑝r
)

+ 𝑚b𝑧bG
(

𝑝b2 + 𝑞2
)

−𝑚b𝑥bG𝑟𝑝
b − 𝑚r𝑥rG𝑟𝑝

r

𝑀𝑥 +𝑀 s
𝑥 − 𝑞𝑟

(

𝐼b𝑧 − 𝐼b𝑦
)

+ 𝐼B𝑥𝑧𝑝
b𝑞

−𝑚b𝑧bG
(

𝑤𝑝b − 𝑢𝑟
)

𝑀𝑦 − 𝑟𝑝b
(

𝐼b𝑥 − 𝐼b𝑧
)

− 𝑟𝑝r
(

𝐼 r𝑥 − 𝐼
r
𝑧
)

− 𝐼b𝑥𝑧
(

𝑝b2 − 𝑟2
)

+𝑚b𝑧bG(𝑣𝑟 −𝑤𝑞) − 𝑚𝑥G𝑢𝑞 + 𝑚
b𝑥bG𝑣𝑝

b + 𝑚r𝑥rG𝑣𝑝
r

𝑀𝑧 − 𝑞𝑝b
(

𝐼b𝑦 − 𝐼b𝑥
)

− 𝑞𝑝r
(

𝐼 r𝑦 − 𝐼
r
𝑥

)

− 𝐼b𝑥𝑧𝑟𝑞
−𝑚𝑥G u 𝑟 + 𝑚b𝑥bG𝑤𝑝

b + 𝑚rv𝑥rG𝑤𝑝
r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

𝑝̇r =
𝑀𝑥r −𝑀

s
𝑥 − 𝑞𝑟(𝐼𝑧r − 𝐼𝑦r )
𝐼𝑥r

(14)

here 𝑠(.) = 𝑠𝑖𝑛(.) and 𝑐(.) = 𝑐𝑜𝑠(.).
Equations of Motion: Given that the motion of the MCT system is

efined in B, instead of the rotation about the 𝑥-axis, the location of
he center of gravity and center of buoyancy of the MCT system are
epresented by 𝑟G = [𝑥G 𝑦G 𝑧G]T and 𝑟B = [𝑥B 𝑦B 𝑧B]T, respectively. A
et of twelve equations of motion are reduced to the seven equations
epresenting an MCT system with 7-DOF (VanZwieten et al., 2012),
ith 6-DOF describing the main body’s rotation, and the last DOF
epresenting the rotor’s rotation about the 𝑥-axis. These equations of
otion are summarized in a matrix form as presented in .
In this matrix representation 13, 𝐹(.) denotes the force; 𝑀(.) is the
oment; (.)𝑥, (.)𝑦, and (.)𝑧 are the portion (.) about 𝑥−, 𝑦−, and 𝑧−
xes; (.)r and (.)b denote the rotor and body portions; 𝑀𝑠

𝑥 denotes the
lectromechanical torque. The mass 𝑚(.), the moment of inertia 𝐼 (.), and
he center of gravity (.)G are defined with respect to both the actual
nertial properties and added inertial properties of the MCT (denoted
s virtual in VanZwieten et al. (2012)).
The total external forces acting on the MCT, 𝐹 , consists of forces due

o gravitational and buoyancy forces, rotor force, body force, variable
uoyancy force, and tether force, namely:

= 𝐹GB + 𝐹 r + 𝐹 b + 𝐹 vb + 𝐹 t (15)

Similarly, the total moment acting about the center of mass of
he MCT is equal to the sum of moments due to buoyancy moment,
otor moment, body moment, variable buoyancy moment, and tether
oment, as follows:

=𝑀B +𝑀 r +𝑀b +𝑀vb +𝑀 t (16)

The forces and moments acting on the MCT system defined through
he hydrostatics, hydrodynamic, and tether forces are detailed in
anZwieten et al. (2012).
Linear Model: The linear model of the MCT system is constructed
y averaging the equations of motion around the equilibrium point and
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Fig. 2. Schematic of the marine current turbine system representing the inertial frame
(I) and the body-fixed frame (B).

Table 1
Dimensions of a simulated buoyancy controlled marine current turbine.
Symbol Description Unit Value

𝐼𝑥 Moment of Inertia about 𝑥 kg m3 1.35 × 107

𝐼𝑦 Moment of Inertia about 𝑦 kg m3 4.74 × 107

𝐼𝑧 Moment of Inertia about 𝑧 kg m3 3.45 × 107

𝐼 𝑟𝑥 Moment of Inertia of rotor about x-axis kg m3 4.78 × 105

𝑚 Total Mass not including buoyancy water kg 4.98 × 105

𝐵 Buoyancy kN 3.2 × 104

𝑑𝑟 Rotor Diameter m 20
𝑑𝑏 Body Average Diameter m 3
𝑙𝑏 Body Length m 10.653
𝑙𝑐 Cable Length m 607
𝑑𝑐 Cable Diameter m 0.16
𝜈𝑣𝑏 Volume of each buoyancy tank m3 31.215
𝑧min Minimum bound of vertical position m 50
𝑧max Maximum bound of vertical position m 150
𝑤 Maximum linear velocity about 𝑧 m∕s 0.21
𝑤̇ Maximum linear acceleration about 𝑧 m∕s2 0.0015

the homogeneous current speed of 1.6 m∕s. For the MCT linear model,
he rotation angle of the rotor blade 𝜙r is removed, and the number of
states is decreased from 14 states in the nonlinear model to 13 states
by averaging the MCT response over one rotor blade rotation. Also,
the control input vector is established by the MCT actuators, including
forward and aft buoyancy tank fill fractions 𝑏𝑓 and 𝑏𝑎, as well as the
electromechanical torque 𝑀𝑠

𝑥, i.e., 𝑈 = [𝑏𝑓 𝑏𝑎 𝑀𝑠
𝑥]

T.

4.2. Gulf stream environment model

To model the current flow speed of the Gulf Stream off Florida’s
East Coast, the historical observations are collected by a 75 kHz ADCP,
recorded at a latitude of 26.09◦ N and longitude of −79.80◦ E with a
resolution of 6 m within 400 m depth (see Fig. 3). Given that the bad
data (primarily happen above a depth of 50 m) is removed through
filtering the measured data (Maria Carolina et al., 2016).

4.3. MCT-specific integrated control

The MCT is primarily controlled in the vertical direction, so the
6

movement is limited to the 1D direction. Hence, the PPO-based path
Table 2
Parameters of PPO-based path planning and PPO-based path tracking.
Symbol Description Unit Value

Path planning

𝛾pp Discount factor – 0.5
𝜆pp Scaling parameter – 0.9
𝜗𝑃 Coefficient of power term in (5) – 0.8
𝜗𝑣 Coefficient of velocity term in (5) – 0.2
𝑃 d Desired power in (6) kW 700
𝑣de Desired velocity in (7) m∕s 2

Path tracking

𝛾pt Discount factor – 0.6
𝜆pt Scaling parameter – 0.95
𝜍a Coefficient of action term in (8) – 0.1
𝜍𝜂L Coefficient of linear position term in (8) – 0.5
𝜍𝐕L Coefficient of linear velocity term in (8) – 0.5
𝜂Lr Constant position in (9) m 20
𝜅𝜂L Coefficient of position error in (9) – 200
Lr Constant velocity in (10) m/s 0.0056
𝜅L Coefficient of velocity error in (10) – 50
𝛿ca Coefficient of collision avoidance in (11) – 2
𝜖ca Constant value in (11) – 0.05
𝑑max Sonar sensor range in (11) m 20

planner input is characterized by [𝑧] and the PPO-based path tracker
input is defined by [𝑧∗ 𝑤∗]T, where the remaining inputs are similar
o the general framework introduced in Section 2.2. The actuators are
hen updated subject to the MCT actuators, i.e., [𝑏𝑓 𝑏𝑎 𝑀𝑠

𝑥]
T.

. Simulation results

.1. Simulation setup

The simulations are implemented in Python 3.7 and Tensorflow 1.14
n a PC with a 2.6 GHz CPU and 16 GB of RAM. The parameters of
he MCT system and PPO networks are presented below.
MCT system: The primary dimensions of the simulated MCT system

re presented in Table 1. The MCT constraints, i.e., maximum linear
elocity and linear acceleration about 𝑧, as well as the minimum and
aximum movement bound of the MCT, are shown in this table.
he MCT system operates in the Gulf Stream off Florida’s East Coast,
here the real ocean current speed data are recorded by an ADCP (as
iscussed in Section 4.2).
PPO-based benchmarks: Two PPO networks are applied for path

lanning and path tracking. The sampling time for path tracking is
spt = 2 s, and the parameters of the PPO-based path tracking are
resented in Table 2. Furthermore, the sampling time for path planning
s 𝑇 spp = 60 min, where the path planning parameters are listed in
able 2. Note that the path smoother module takes care of smoothing
the path to shift from the path planning time step to the path tracking
time step.

5.2. Quantitative results

PPO-based Path Planning: To evaluate the performance of the
path planning for the MCT system, we compare with multiple methods,
including A∗ algorithm, model predictive control (MPC) algorithm,
and two other candidate RL algorithms, i.e., Q-learning, and deep Q-
network (DQN). Those methods have been previously applied to MCT
either path planning or path tracking, detailed in Hasankhani et al.
(2023, 2021a). These baseline methods are briefly introduced here:

• A∗ Algorithm: This algorithm finds the optimal path in the ocean
environment modeled with a discrete grid of depth, which utilizes
a greedy strategy to find the maximum power and, accordingly
the optimal path.
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Fig. 3. Histories of the flow recorded by a 75 kHz ADCP at a latitude of 26.09◦ N and longitude of −79.80◦ E (Maria Carolina et al., 2016).
• MPC Algorithm: In the MPC algorithm, power maximization is
defined as an objective function to seek the optimal path over a
prediction horizon subject to the operational constraints of the
MCT system.

• Q-learning Algorithm: This algorithm solves the path planning
optimization problem through a constructed Q-value table, where
the Q-value is calculated for each cell of the Q-value table repre-
senting a discrete depth at a specific time.

• DQN Algorithm: In the DQN algorithm, the Q-value is approxi-
mated through the neural networks to avoid computational com-
plexity arising from the Q-value table in a large environment.
Note that both DQN and Q-learning algorithms are defined for
the discrete environment.

We first show the cumulative reward obtained in the offline training
of the PPO-based path planning and DQN-based path planning in
Fig. 4. As shown in this figure, the PPO needs almost three times
more episodes to be fully trained than the DQN algorithm, which is
predictable due to the continuous states and actions defined for the
PPO algorithm compared to the finite number of actions (depths) and
states (current depth and ocean current velocity in the discrete depths)
in the DQN algorithm. From the figure, we can observe the convergence
of both rewards, confirming successful training.

Moreover, the reward values are different for the PPO algorithm
(left axis in Fig. 4) from the DQN reward values (right axis in Fig. 4)
since the reward function defined for the DQN algorithm is different
from the PPO reward function (5) to improve the performance of
the DQN algorithm according to its discrete nature (see Hasankhani
et al. (2023) for more details). To verify the efficiency of two reward
functions for DQN and PPO algorithms, similar trends in increasing the
cumulative energy of MCT during training are illustrated. The DQN
reward function includes two terms of power and velocity, which are
defined as follows:

𝑅DQN = 𝑅DQN
P + 0.5𝑅DQN

v (17)

𝑅DQN
P =

{

𝜁1, 𝛥𝑃net > 𝛿1
0, otherwise

(18)

𝑅DQN
v =

{

𝜁2, 𝛥𝑣e > 𝛿2 (19)
7

0, otherwise
with 𝜁1 = 𝜁2 = 1, 𝛿1 = 1 kW, 𝛿2 = 0.001 m∕s, and 𝛥𝑃net and 𝛥𝑣e showing
changes in the net power and ocean current velocity due to changes in
the depth.

The comparative results on the optimal depths, optimal ocean cur-
rent velocity, and optimal power for different algorithms are repre-
sented in Fig. 5. The optimal path chosen by each algorithm verifies
different policies of multiple approaches, where the A∗ algorithm tends
to pick sharp changes in the vertical position for the MCT. However,
the MPC algorithm limits the MCT movement, still experiencing high
values of harnessed power than the A∗ algorithm. The Q-learning
and DQN algorithms show almost the same performance with minor
differences, justifying that the DQN algorithm successfully estimates the
Q-value table, but the precision of these algorithms are limited to the
discrete depths. Finally, the PPO algorithm outperforms other methods,
finding the optimal path with the maximum power. The cumulative
harnessed energy after 100-hour operation is 29.799 MWh (A∗), 31.089
MWh (MPC), 32.250 (QL), 32.168 (DQN), and 34.930 (PPO).

It should be noted that we consider two modes of application for
the PPO-based path planning: (i) offline path planning: the optimal
path is planned offline, and (ii) online path planning: in case the offline
planned path is not tracked, the optimal path will be re-planned online
(The importance of the second case will be highlighted in the collision
avoidance scenario).

PPO-based Path Tracking: We evaluate the PPO-based path track-
ing to follow the optimal path commanded by the PPO-based path
planning. It should be noted that we first evaluate the capability of the
path tracking algorithm to follow a reference path successfully; then,
the collision avoidance is simulated in the next section. A PI controller
is introduced as a baseline algorithm to assess the performance of our
proposed algorithm. The main objective of the path tracking module is
to minimize the tracking error while the fill fractions (MCT’s actuators)
remain within the allowable limit. It is noteworthy to mention that the
electromechanical torque is set to stay constant since the fill fractions
are the main actuators affecting the MCT.

The path tracking results for a sample reference path over 24 h
through the PPO-based path tracking and PI algorithm are shown in
Fig. 6 (Basic Scenario). The simulated results confirm a successful path
tracking for both the PI controller and PPO-based path tracking module,
where the main error for the PI controller happens at the beginning of
the tracking procedure. Also, the actuators in the PI controller change
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Fig. 4. Cumulative reward and energy for (i) PPO-based path planning; and (ii) DQN-based path planning.
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Fig. 5. Comparing optimal results obtained by PPO-based path planning over 100 h
with A∗, MPC, Q-learning, and DQN algorithms. (a) Optimal vertical path, (b) Optimal
velocity, and (c) Optimal power.

in a larger interval than the PPO algorithm, still keeping within the
allowable range. Meanwhile, for the PPO-based path tracking method,
the tracking error is mostly visible within 𝑡 = 5 to 𝑡 = 10 while making
an effort to minimize the changes in the fill fractions. The main reason
for this small error is that we use a single trained PPO network for
path tracking to meet both minimizing tracking error and collision
avoidance; the PPO network is trained under different scenarios of path
tracking and obstacles, and the trained PPO network is the best one
8

to operate for both successful path tracking and collision avoidance.
Hence, some small errors in path tracking are anticipated.

PPO-based Path Tracking with Collision Avoidance: The second
primary task for the PPO-base path tracking module is to avoid collision
with an obstacle, which is the main motivation to apply a learning-
based and intelligent path tracking algorithm. An intelligent RL-based
path tracking is capable of identifying and avoiding an obstacle, unlike
the conventional PI controller. In this case, we simulate two scenarios
of a stationary obstacle at a constant depth and a dynamic obstacle
changing its depth, where the MCT operating depth is demonstrated
regarding the reference path and the obstacle. It should be noted that
in this scenario, the path tracking module completed an offline training
phase considering both stationary and dynamic obstacles, where the
reward term for collision avoidance in (8) is enabled.

The path tracking results and MCT actuators for the static obstacle
are summarized in Fig. 6 (Static Obstacle Scenario), where the obstacle
emains at a depth of 66 m. Two application modes of PPO path planner
re active in this scenario. For an offline path planner, the reference
ath hits the obstacle at four points, where the path tracking module
pdates the MCT’s actual path to avoid collision. Hence, the MCT
ystem keeps its operating depth near the obstacle at an acceptable
istance to ensure safe movement. Also, the MCT continues following
he optimal path when its sensor does not detect the obstacle at 𝑡 = 10,
ustifying the intelligence of the PPO-based path tracking to distinguish
he collision avoidance and path tracking scenarios. For the online path
lanner, the reference path is re-planned after detecting the obstacle to
void the collision. Both modes of application are successful in collision
voidance, while the online path planner is able to re-planning the path
or harnessing the maximum power.
The final scenario interprets a dynamic moving obstacle (like a

arge fish) in a vertical direction, where the simulation results are
resented in Fig. 6 (Dynamic Obstacle Scenario). The dynamic obstacle
oves between four different depths, so the task of the path tracking
odule is complicated to see the obstacle, identify the case of collision
ccurrence, and avoid this case, as well as follow the optimal path
uring a safe movement. As the results show in the offline planner,
he path tracking module successfully detects the collision scenarios in
our cases, such as an interval between 𝑡 = 4 to 𝑡 = 10, and defines
new reference path for the MCT to stay near the obstacle. Also, the
ath tracking module follows the optimal path after 𝑡 = 10 when the
PO ensures a safe path without collision, thereby fulfilling its primary
ask of path tracking with minimized error. In the online planner, the
lanned path is actively updated according to the obstacle. During the
ath tracking scenario with collision avoidance, the fill fractions are
lso kept within the allowable limits.

.3. Discussion

The PPO-based path planning and tracking framework, as a can-
idate among RL algorithms, entails offline training with a dataset
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a
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Fig. 6. Simulation results for integrated path planning and path tracking control: (i) Base Scenario: The left plot shows the path followed by the PPO-based path tracking and PI
controller along with the reference optimal path obtained by the PPO-based path planning. The right plot shows the actuators (fill fractions) for the PPO-based path tracking and
PI controller. (ii) Static Obstacle Scenario: The left plot shows the path followed by the PPO-based path tracking along with the reference optimal path obtained by the offline
and online PPO-based path planning and obstacle. The right plot shows the actuators (fill fractions) for the PPO-based path tracking and PI controller. The collision that occurred
in the case of the PI controller is shown. (iii) Dynamic Obstacle Scenario: The left plot shows the path followed by the PPO-based path tracking along with the reference optimal
path obtained by the offline and online PPO-based path planning and obstacle. The right plot shows the actuators (fill fractions) for the PPO-based path tracking and PI controller.
Again, the collision that occurred in the case of the PI controller is illustrated.
p
o
b
t
t
m
T
a
o

p
d

of the recorded ocean current velocity, which is then applied in an
online operation of the MCT system. The main feature and superiority
of the RL algorithm to other approaches in both path planning and path
tracking tasks are its capability of learning from experiencing different
scenarios and then making the best decision (choosing the best action)
in any similar scenario. In the path planning task, the PPO-based
path planning module shows better performance than the MPC and A∗

lgorithms by learning from the real recorded ocean current velocity
ata. Also, the PPO-based path planning considers a continuous set of
ctions (depths), which improves its ability to solve the path planning
roblem and find the optimal power than the discrete algorithms with
imited choices in the depth changes, such as Q-learning and DQN
lgorithms.
9

f

The path tracking module enabled with the PPO algorithm out-
erforms a classical PI controller considering the complicated task
f collision avoidance. In this case, the path tracking module should
e qualified with intelligence to detect the obstacle and distinguish
he collision avoidance and path tracking scenarios. More specifically,
he path tracking module should follow the commanded path with a
inimized error; still, it would avoid the collision facing an obstacle.
he PPO-based path tracking for the MCT can detect both stationary
nd dynamic obstacles and avoid collision while keep following the
ptimal path in the absence of the obstacle.
Although the proposed approach is a successful attempt to address

ath planning and tracking control for the MCT system, we need further
etails to meet all the complexities in the real-world application. The
irst limitation is that the current approach uses the MCT’s linear model,
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which is precise enough, still requires further analysis and a compar-
ison with the model enabled with the dynamic model. The proposed
approach relies on the assumption that the ocean environment is fully
observable, whereas the real ocean environment deals with partial
observability, which should be considered in future studies. Also, the
proposed approach should be tested for other collision scenarios, which
can verify the performance or detect the probable limitations. This test-
ing procedure would be necessary to justify the generalization of our
proposed approach and ensure a safe operation for various conditions.

6. Conclusions

In this paper, we presented an integrated path planning and track-
ing control framework for turbines operating in a dynamic marine
environment, where the system was treated as an energy-harvesting
autonomous underwater vehicle. The whole framework was designed
based on the proximal policy optimization, where the main objective
of the path planning module was to find the optimal path with the
maximum energy harvesting, and the path tracking module was trained
to follow the optimal path with minimum error and avoid a collision.
The simulation results verified the successful operation of the proposed
framework in comparison with several baseline approaches in different
scenarios of path planning, simple path tracking, and path tracking
with collision avoidance. Future work is anticipated to extend the
integrated path planning and tracking framework to apply to other
energy-harvesting AUVs. Also, in the proposed framework, we currently
use the linear model of the MCT, which can be replaced with a dynamic
and nonlinear model of the MCT. The presented framework can become
more mature by proposing a solution for partial observability in an
underwater environment.

CRediT authorship contribution statement

Arezoo Hasankhani: Conceptualization, Methodology, Original
draft preparation. Yufei Tang: Supervision, Review & editing. James
VanZwieten: Data creation, Review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Yufei Tang reports financial support was provided by
National Science Foundation. Yufei Tang reports financial support
was provided by US Department of Energy. Yufei Tang reports a
relationship with National Science Foundation that includes: funding
grants.

Data availability

Data will be made available on request.

References

Aguiar, A. Pedro, Hespanha, Joao P., 2007. Trajectory-tracking and path-following of
underactuated autonomous vehicles with parametric modeling uncertainty. IEEE
Trans. Automat. Control 52 (8), 1362–1379.
10
Ali, M.S. Ajmal Deen, Babu, N. Ramesh, Varghese, Koshy, 2005. Collision free path
planning of cooperative crane manipulators using genetic algorithm. J. Comput.
Civ. Eng. 19 (2), 182–193.

Antonelli, Gianluca, Chiaverini, Stefano, Sarkar, Nilanjan, West, Michael, 2001. Adap-
tive control of an autonomous underwater vehicle: experimental results on ODIN.
IEEE Trans. Control Syst. Technol. 9 (5), 756–765.

Bafande, Alireza, Vermillion, Chris, 2016. Altitude optimization of airborne wind
energy systems via switched extremum seeking—design, analysis, and economic
assessment. IEEE Trans. Control Syst. Technol. 25 (6), 2022–2033.

Bin-Karim, Shamir, Bafandeh, Alireza, Baheri, Ali, Vermillion, Christopher, 2017. Spa-
tiotemporal optimization through gaussian process-based model predictive control:
A case study in airborne wind energy. IEEE Trans. Control Syst. Technol. 27 (2),
798–805.

Bortoff, Scott A., 2000. Path planning for UAVs. In: Proceedings of the 2000 American
Control Conference. ACC (IEEE Cat. No. 00CH36334), Vol. 1, No. 6. IEEE, pp.
364–368.

Chang, Seong-Ryong, Huh, Uk-Youl, 2015. G 2 continuity smooth path planning using
cubic polynomial interpolation with membership function. J. Electr. Eng. Technol.
10 (2), 676–687.

Cheng, Shuo, Li, Liang, Chen, Xiang, Wu, Jian, et al., 2020. Model-predictive-control-
based path tracking controller of autonomous vehicle considering parametric
uncertainties and velocity-varying. IEEE Trans. Ind. Electron. 68 (9), 8698–8707.

Cho, Gun Rae, Li, Ji-Hong, Park, Daegil, Jung, Je Hyung, 2020. Robust trajectory
tracking of autonomous underwater vehicles using back-stepping control and time
delay estimation. Ocean Eng. 201, 107131.

Cobb, Mitchell, Reed, James, Daniels, Joshua, Siddiqui, Ayaz, Wu, Max, Fathy, Hosam,
Barton, Kira, Vermillion, Chris, 2021. Iterative learning-based path optimization
with application to marine hydrokinetic energy systems. IEEE Trans. Control Syst.
Technol.

Coiro, DP, Troise, G, Scherillo, F, De Marco, A, Calise, G, Bizzarrini, N, 2017.
Development, deployment and experimental test on the novel tethered system GEM
for tidal current energy exploitation. Renew. Energy 114, 323–336.

Debnath, Sanjoy Kumar, Omar, Rosli, Latip, Nor Badariyah Abdul, 2019. A review
on energy efficient path planning algorithms for unmanned air vehicles. In:
Computational Science and Technology. Springer, pp. 523–532.

Di Franco, Carmelo, Buttazzo, Giorgio, 2015. Energy-aware coverage path planning of
UAVs. In: 2015 IEEE International Conference on Autonomous Robot Systems and
Competitions. IEEE, pp. 111–117.

Dijkstra, Edsger W., et al., 1959. A note on two problems in connexion with graphs.
Numer. Math. 1 (1), 269–271.

Falcone, Paolo, Borrelli, Francesco, Tseng, H Eric, Asgari, Jahan, Hrovat, Davor, 2008.
A hierarchical model predictive control framework for autonomous ground vehicles.
In: 2008 American Control Conference. IEEE, pp. 3719–3724.

Ferguson, Dave, Likhachev, Maxim, Stentz, Anthony, 2005. A guide to heuristic-
based path planning. In: Proceedings of the International Workshop on Planning
under Uncertainty for Autonomous Systems, International Conference on Automated
Planning and Scheduling. ICAPS, pp. 9–18.

Fossen, Thor I., 1999. Guidance and Control of Ocean Vehicles (Doctors thesis).
University of Trondheim, Norway, ISBN: 0 471 94113 1, Printed By John Wiley &
Sons, Chichester, England.

Fossen, Thor I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons.

Fossen, Thor I., Breivik, Morten, Skjetne, Roger, 2003. Line-of-sight path following of
underactuated marine craft. IFAC Proc. Vol. 36 (21), 211–216.

Fossen, Thor I., Lekkas, Anastasios M., 2017. Direct and indirect adaptive integral
line-of-sight path-following controllers for marine craft exposed to ocean currents.
Internat. J. Adapt. Control Signal Process. 31 (4), 445–463.

Fossen, Thor I., Pettersen, Kristin Y., Galeazzi, Roberto, 2014. Line-of-sight path
following for dubins paths with adaptive sideslip compensation of drift forces. IEEE
Trans. Control Syst. Technol. 23 (2), 820–827.

Geraerts, Roland, Overmars, Mark H., 2004. A comparative study of probabilistic
roadmap planners. In: Algorithmic Foundations of Robotics V. Springer, pp. 43–57.

Guerrero, Jesus, Torres, Jorge, Creuze, Vincent, Chemori, Ahmed, 2019. Trajectory
tracking for autonomous underwater vehicle: An adaptive approach. Ocean Eng.
172, 511–522.

Hadi, Behnaz, Khosravi, Alireza, Sarhadi, Pouria, 2022. Deep reinforcement learning for
adaptive path planning and control of an autonomous underwater vehicle. Appl.
Ocean Res. 129, 103326.

Hart, Peter E., Nilsson, Nils J., Raphael, Bertram, 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4
(2), 100–107.

Hasankhani, Arezoo, Ondes, Ertugrul Baris, Tang, Yufei, Sultan, Cornel, VanZwi-
eten, James, Accepted. Integrated path planning and tracking control of marine
current turbine in uncertain ocean environments. In: 2022 Annual American Control
Conference. ACC.

Hasankhani, Arezoo, Tang, Yufei, VanZwieten, James, Sultan, Cornel, 2021a. Compari-
son of deep reinforcement learning and model predictive control for real-time depth
optimization of a lifting surface controlled ocean current turbine. In: 2021 IEEE
Conference on Control Technology and Applications. CCTA, IEEE, pp. 301–308.

http://refhub.elsevier.com/S0141-1187(23)00132-3/sb1
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb1
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb1
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb1
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb1
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb2
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb2
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb2
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb2
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb2
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb3
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb3
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb3
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb3
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb3
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb4
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb4
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb4
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb4
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb4
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb5
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb5
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb5
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb5
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb5
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb5
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb5
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb6
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb6
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb6
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb6
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb6
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb7
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb7
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb7
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb7
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb7
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb8
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb8
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb8
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb8
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb8
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb9
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb9
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb9
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb9
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb9
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb10
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb10
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb10
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb10
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb10
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb10
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb10
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb11
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb11
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb11
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb11
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb11
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb12
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb12
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb12
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb12
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb12
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb13
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb13
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb13
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb13
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb13
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb14
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb14
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb14
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb15
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb15
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb15
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb15
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb15
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb16
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb16
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb16
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb16
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb16
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb16
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb16
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb17
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb17
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb17
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb17
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb17
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb18
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb18
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb18
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb19
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb19
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb19
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb20
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb20
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb20
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb20
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb20
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb21
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb21
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb21
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb21
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb21
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb22
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb22
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb22
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb23
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb23
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb23
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb23
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb23
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb24
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb24
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb24
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb24
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb24
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb25
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb25
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb25
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb25
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb25
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb26
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb26
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb26
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb26
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb26
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb26
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb26
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb27
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb27
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb27
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb27
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb27
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb27
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb27


Applied Ocean Research 137 (2023) 103591A. Hasankhani et al.

H

H

H

J

J

K
K

L

L

L

L

M

M

M

M

M

M

R

S

Hasankhani, Arezoo, Tang, Yufei, VanZwieten, James, Sultan, Cornel, 2023. Spatiotem-
poral optimization for vertical path planning of an ocean current turbine. IEEE
Transactions on Control Systems Technology 31 (2), 587–601. http://dx.doi.org/
10.1109/TCST.2022.3193637.

asankhani, Arezoo, VanZwieten, James, Tang, Yufei, Dunlap, Broc, De Luera, Alexan-
dra, Sultan, Cornel, Xiros, Nikolaos, 2021b. Modeling and numerical simulation of
a buoyancy controlled ocean current turbine. Int. Mar. Energy J. 4 (2), 47–58.

avenstrøm, Simen Theie, Rasheed, Adil, San, Omer, 2021. Deep reinforcement learning
controller for 3D path following and collision avoidance by autonomous underwater
vehicles. Front. Robot. AI 7, 211.

e, Zichen, Dong, Lu, Sun, Changyin, Wang, Jiawei, 2021. Asynchronous multi-
threading reinforcement-learning-based path planning and tracking for unmanned
underwater vehicle. IEEE Trans. Syst. Man Cybern.

i, Jie, Khajepour, Amir, Melek, Wael William, Huang, Yanjun, 2016. Path planning
and tracking for vehicle collision avoidance based on model predictive control with
multiconstraints. IEEE Trans. Veh. Technol. 66 (2), 952–964.

in, Sangrok, Kim, Jihoon, Kim, Jongwon, Seo, TaeWon, 2015. Six-degree-of-freedom
hovering control of an underwater robotic platform with four tilting thrusters via
selective switching control. IEEE/ASME Trans. Mechatronics 20 (5), 2370–2378.
http://dx.doi.org/10.1109/TMECH.2014.2378286.

oenig, Sven, Likhachev, Maxim, 2002. Dˆ* lite. Aaai/Iaai 15.
rell, Evan, King, Scott A., Carrillo, Luis Rodolfo Garcia, 2022. Autonomous surface
vehicle energy-efficient and reward-based path planning using particle swarm
optimization and visibility graphs. Appl. Ocean Res. 122, 103125.

aValle, Steven M., et al., 1998. Rapidly-Exploring Random Trees: a New Tool for Path
Planning. Ames, IA, USA.

ee, Min Cheol, Park, Min Gyu, 2003. Artificial potential field based path planning for
mobile robots using a virtual obstacle concept. In: Proceedings 2003 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Vol. 2. AIM 2003,
IEEE, pp. 735–740.

i, Huiping, Yan, Weisheng, 2016. Model predictive stabilization of constrained under-
actuated autonomous underwater vehicles with guaranteed feasibility and stability.
IEEE/ASME Trans. Mechatronics 22 (3), 1185–1194.

ikhachev, Maxim, Gordon, Geoffrey J., Thrun, Sebastian, 2003. Ara*: Anytime a* with
provable bounds on sub-optimality. Adv. Neural Inf. Process. Syst. 16, 767–774.

aria Carolina, P.M. Machado, VanZwieten, James H., Pinos, Isabella, 2016. A
measurement based analyses of the hydrokinetic energy in the gulf stream. J. Ocean
Wind Energy 3 (1), 25–30.

arrtinsen, Andreas B., Lekkas, Anastasios M., 2018. Curved path following with
deep reinforcement learning: Results from three vessel models. In: OCEANS 2018
MTS/IEEE Charleston. IEEE, pp. 1–8.

artinsen, Andreas B., Lekkas, Anastasios M., 2018. Straight-path following for under-
actuated marine vessels using deep reinforcement learning. IFAC-PapersOnLine 51
(29), 329–334.

eyer, Eivind, Heiberg, Amalie, Rasheed, Adil, San, Omer, 2020a. COLREG-compliant
collision avoidance for unmanned surface vehicle using deep reinforcement
learning. IEEE Access 8, 165344–165364.

eyer, Eivind, Robinson, Haakon, Rasheed, Adil, San, Omer, 2020b. Taming an
autonomous surface vehicle for path following and collision avoidance using deep
reinforcement learning. IEEE Access 8, 41466–41481.

u, Dongdong, Wang, Guofeng, Fan, Yunsheng, Bai, Yiming, Zhao, Yongsheng, 2018.
Fuzzy-based optimal adaptive line-of-sight path following for underactuated un-
manned surface vehicle with uncertainties and time-varying disturbances. Math.
Probl. Eng. 2018.

oberge, Vincent, Tarbouchi, Mohammed, Labonté, Gilles, 2012. Comparison of parallel
genetic algorithm and particle swarm optimization for real-time UAV path planning.
IEEE Trans. Ind. Inform. 9 (1), 132–141.

chulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, Klimov, Oleg, 2017.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
11
Shen, Chao, Shi, Yang, Buckham, Brad, 2017. Trajectory tracking control of an
autonomous underwater vehicle using Lyapunov-based model predictive control.
IEEE Trans. Ind. Electron. 65 (7), 5796–5805.

Steinhauser, Armin, Swevers, Jan, 2018. An efficient iterative learning approach to
time-optimal path tracking for industrial robots. IEEE Trans. Ind. Inform. 14 (11),
5200–5207.

Stentz, Anthony, et al., 1995. The focussed dˆ* algorithm for real-time replanning. In:
IJCAI, Vol. 95. pp. 1652–1659.

Sun, Yushan, Zhang, Chenming, Zhang, Guocheng, Xu, Hao, Ran, Xiangrui, 2019. Three-
dimensional path tracking control of autonomous underwater vehicle based on deep
reinforcement learning. J. Mar. Sci. Eng. 7 (12), 443.

Truong, Thanh Nguyen, Vo, Anh Tuan, Kang, Hee-Jun, 2021. A backstepping global fast
terminal sliding mode control for trajectory tracking control of industrial robotic
manipulators. IEEE Access 9, 31921–31931.

Tuncer, Adem, Yildirim, Mehmet, 2012. Dynamic path planning of mobile robots with
improved genetic algorithm. Comput. Electr. Eng. 38 (6), 1564–1572.

Ueno, Tomohiro, Nagaya, Shigeki, Shimizu, Masayuki, Saito, Hiroyuki, Murata, Show,
Handa, Norihisa, 2018. Development and demonstration test for floating type ocean
current turbine system conducted in kuroshio current. In: 2018 OCEANS-MTS/IEEE
Kobe Techno-Oceans. OTO, IEEE, pp. 1–6.

VanZwieten, James H., Vanrietvelde, Nicolas, Hacker, Basil L., 2012. Numerical
simulation of an experimental ocean current turbine. IEEE J. Ocean. Eng. 38 (1),
131–143.

Wang, Zhanyuan, Li, Yulong, Ma, Caipeng, Yan, Xun, Jiang, Dapeng, 2023. Path-
following optimal control of autonomous underwater vehicle based on deep
reinforcement learning. Ocean Eng. 268, 113407.

Weng, Yang, Matsuda, Takumi, Sekimori, Yuki, Pajarinen, Joni, Peters, Jan,
Maki, Toshihiro, 2022. Establishment of line-of-sight optical links between au-
tonomous underwater vehicles: Field experiment and performance validation. Appl.
Ocean Res. 129, 103385.

Wiig, Martin Syre, Pettersen, Kristin Ytterstad, Krogstad, Thomas Røbekk, 2019.
Collision avoidance for underactuated marine vehicles using the constant avoidance
angle algorithm. IEEE Trans. Control Syst. Technol. 28 (3), 951–966.

Wu, Wentao, Peng, Zhouhua, Wang, Dan, Liu, Lu, Han, Qing-Long, 2021. Network-
based line-of-sight path tracking of underactuated unmanned surface vehicles with
experiment results. IEEE Trans. Cybern.

Xi, Meng, Yang, Jiachen, Wen, Jiabao, Liu, Hankai, Li, Yang, Song, Houbing Her-
bert, 2022. Comprehensive ocean information enabled AUV path planning via
reinforcement learning. IEEE Internet Things J.

Xu, Yiming, Mohseni, Kamran, 2013. Bioinspired hydrodynamic force feedforward for
autonomous underwater vehicle control. IEEE/ASME Trans. Mechatronics 19 (4),
1127–1137.

Yan, Zheping, Gong, Peng, Zhang, Wei, Wu, Wenhua, 2020. Model predictive control of
autonomous underwater vehicles for trajectory tracking with external disturbances.
Ocean Eng. 217, 107884.

Yao, Peng, Sui, Xinyi, Liu, Yuhui, Zhao, Zhiyao, 2023. Vision-based environment
perception and autonomous obstacle avoidance for unmanned underwater vehicle.
Appl. Ocean Res. 134, 103510.

Yu, Caoyang, Zhong, Yiming, Lian, Lian, Xiang, Xianbo, 2021. An experimental study
of adaptive bounded depth control for underwater vehicles subject to thruster’s
dead-zone and saturation. Appl. Ocean Res. 117, 102947.

Zeng, Zheng, Lammas, Andrew, Sammut, Karl, He, Fangpo, Tang, Youhong, 2014.
Shell space decomposition based path planning for AUVs operating in a variable
environment. Ocean Eng. 91, 181–195.

Zhang, Jialei, Xiang, Xianbo, Lapierre, Lionel, Zhang, Qin, Li, Weijia, 2021.
Approach-angle-based three-dimensional indirect adaptive fuzzy path following of
under-actuated AUV with input saturation. Appl. Ocean Res. 107, 102486.

Zhang, Hanwen, Zeng, Zheng, Yu, Caoyang, Jiang, Zhining, Han, Bo, Lian, Lian, 2020.
Predictive and sliding mode cascade control for cross-domain locomotion of a
coaxial aerial underwater vehicle with disturbances. Appl. Ocean Res. 100, 102183.

http://dx.doi.org/10.1109/TCST.2022.3193637
http://dx.doi.org/10.1109/TCST.2022.3193637
http://dx.doi.org/10.1109/TCST.2022.3193637
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb29
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb29
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb29
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb29
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb29
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb30
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb30
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb30
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb30
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb30
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb31
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb31
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb31
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb31
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb31
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb32
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb32
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb32
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb32
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb32
http://dx.doi.org/10.1109/TMECH.2014.2378286
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb34
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb35
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb35
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb35
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb35
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb35
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb36
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb36
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb36
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb37
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb37
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb37
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb37
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb37
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb37
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb37
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb38
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb38
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb38
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb38
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb38
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb39
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb39
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb39
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb40
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb40
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb40
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb40
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb40
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb41
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb41
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb41
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb41
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb41
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb42
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb42
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb42
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb42
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb42
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb43
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb43
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb43
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb43
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb43
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb44
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb44
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb44
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb44
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb44
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb45
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb45
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb45
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb45
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb45
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb45
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb45
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb46
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb46
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb46
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb46
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb46
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb48
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb48
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb48
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb48
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb48
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb49
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb49
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb49
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb49
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb49
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb50
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb50
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb50
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb51
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb51
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb51
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb51
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb51
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb52
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb52
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb52
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb52
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb52
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb53
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb53
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb53
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb54
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb54
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb54
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb54
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb54
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb54
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb54
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb55
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb55
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb55
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb55
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb55
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb56
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb56
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb56
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb56
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb56
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb57
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb57
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb57
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb57
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb57
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb57
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb57
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb58
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb58
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb58
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb58
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb58
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb59
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb59
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb59
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb59
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb59
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb60
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb60
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb60
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb60
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb60
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb61
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb61
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb61
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb61
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb61
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb62
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb62
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb62
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb62
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb62
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb63
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb63
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb63
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb63
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb63
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb64
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb64
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb64
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb64
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb64
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb65
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb65
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb65
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb65
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb65
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb66
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb66
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb66
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb66
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb66
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb67
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb67
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb67
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb67
http://refhub.elsevier.com/S0141-1187(23)00132-3/sb67

	Integrated path planning and control through proximal policy optimization for a marine current turbine
	Introduction
	Problem Statement for Underactuated AUV
	System Modeling
	Proposed Integration Framework

	PPO-based Integrated Control Design
	PPO-based Path Planning
	PPO-based Path Tracking
	Integrated Path Planning and Tracking for Real-time Application

	Case Study on an Energy Harvesting AUV: Marine Current Turbine
	Marine Current Turbine Model
	Gulf Stream Environment Model
	MCT-specific integrated Control

	Simulation Results
	Simulation Setup
	Quantitative Results
	Discussion

	ConclusionS
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


