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Abstract— This paper presents a reinforcement learning (RL)
framework applied for an autonomous underwater vehicle
(AUV) path planning, focusing on a specific type of energy-
harvesting AUV, entitled marine current turbine (MCT). The
proposed RL-based approach improves a classical path plan-
ning to adopt with an underwater environment prone to
spatiotemporal uncertainties. The path planning problem is
formulated to achieve the goal of maximizing the harnessed
energy from the MCT subject to the agent dynamics and the
spatiotemporal environment constraints. Three RL algorithms,
including Q-learning, deep Q-network (DQN), and proximal
policy optimization (PPO), are nominated to deal with the path
planning over both discrete gridded and continuous underwater
environments modeling. The experimental results demonstrate
the efficiency of the RL-based approaches in seeking the
optimal path in the underwater environment, where further
discussion is presented to generalize the proposed approach to
other energy-harvesting autonomous vehicles operating in the
spatiotemporally varying environment, such as airborne wind
turbines.

I. INTRODUCTION

The goal of path planning is to generate a feasible and
valid path for an autonomous agent to perform a specific
mission and achieve an ultimate objective. In the field of
autonomous agents path planning, an autonomous underwa-
ter vehicle (AUV) has gained increasing attention due to its
complexity, and lack of human accessibility [1]. The AUV
systems have been primarily used for searching and investi-
gation in the underwater environment, implying minimized
power consumption and travel time [2]. This paper focuses
on a recently developed application of AUVs for harnessing
renewable energy from underwater environment [3].

The path planning problem becomes more complicated for
the autonomous agent vehicles operating in a spatiotempo-
rally varying environment [4], [5], [2], [1], especially for
the emerging field of energy-harvesting autonomous vehicles,
such as an airborne energy system [6], [7], ocean kite [8], and
marine current turbine (MCT) [9], [10]. In these applications,
the classical path planning algorithms, i.e., graph searching
techniques designed originally for the autonomous agents
operating in a static gridded environment [11], [12], are not
adequate in a spatiotemporally varying environment. Hence,
it is intuitive to develop an approach to fit a particular task
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Fig. 1: (Left) Autonomous MCT agent that has been inves-
tigated in this work; (Right) Overall schematic of the path
planning problem in a spatiotemporally varying underwater
environment, where the contour plot visualizes the ocean
current speed.

of seeking an optimal path in an environment with enhanced
space-time uncertainties.

The first attempts to address the path planning problem for
autonomous renewable energy agents have been devoted to
the airborne energy system, where an extremum seeking ap-
proach [7] and model predictive control (MPC) method [13]
have been proposed to find a sequence of optimal waypoints.
Similar problem has been then formulated in the context of
the energy-harvesting ocean kite [8] addressed through the
MPC approach. Finally, in the most recent application of
MCT, both MPC and reinforcement learning (RL) have been
used to find the optimal path [14]. The predictive approach
builds upon the forecasting of the spatiotemporally varying
environment, limiting the path planning to the forecasting
accuracy. It is then favorable to take a look at learning-based
algorithms that directly learn from real recorded data in an
uncertain environment.

Among many learning-based methods, RL has been in-
troduced as a promising nominee to cope with the planning
problem [15]. One of the most prevalent challenges existing
in the RL frameworks is to craft an appropriate reward
function to precisely describe the ultimate objective of the
problem at hand. The reward function usually serves as an
objective function in the conventional optimization problem,
and a large body of research in path planning has been
devoted to defining and solving an appropriate objective
function [16], [17]. The primary task in this paper is to
extend the ideas from objective functions in path planning
optimization problems to develop a favorable reward function
for energy harnessing. Although there exists research on
using the RL for the path planning of AUVs with the major
goal of collision avoidance [18], [19], [20], [21], [22], RL-
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based path planning for power maximization is still lacking.

The RL can leverage either discrete action space or
continuous action space to handle the path planning. The
action space here interprets the optimal path characterized
in the underwater environment, where there exist two av-
enues to select the optimal path: (i) a set of predefined
waypoints in a discrete gridded environment; and (2) any
point in a continuous environment. The first avenue can be
pursued through the RL approaches dealing with the discrete
space, such as Q-learning [23], [24] and deep Q-network
(DQN) [14]. Additionally, policy gradient-based methods
like deep deterministic policy gradient [25] and proximal
policy optimization (PPO) [20] can be employed to address
the latter. The room is then left for a comparative analysis
on the theoretical aspect and experimental results for the
RL algorithms over discrete and continuous environments,
considering this paper introduces a new application on path
planning of an autonomous MCT.

The purpose of this paper is to fill the gap in the de-
velopment of an RL-based approach for path planning in
an environment with enhanced space-time uncertainties. The
case study focuses specifically on the autonomous MCT (as
depicted in Fig. 1(a)), with the ultimate goal of placing
the agent at the operating depth that maximizes the total
accumulated power production in a given time range. This
vertical path planning problem of the agent operating in the
spatiotemporally varying underwater environment is visual-
ized in Fig. 1(b). Note that this paper focuses exclusively
on the path planning for the autonomous MCT, relying on
the authors’ prior work [26] on developing the path tracking
controller for the autonomous MCT that ensures navigating
the agent through the optimal path. Moreover, this paper fur-
thers the authors’ previous work [24] on the spatiotemporal
path planning for the MCT through exploring and evaluating
different RL candidates, designing proper reward functions
for each candidate, and eventually discussing the extension to
other energy-harvesting autonomous vehicles. The previous
study [24] has been mainly devoted to (i) modeling of power
equation and justifying the linear vertical movement with a
nonlinear model, and (ii) designing a Q-learning algorithm
to solve the spatiotemporal path planning.

Contribution: The main contribution of this paper is
to present an RL-based framework for path planning in
the spatiotemporally varying underwater environment while
performing comparative analysis on different RL algorithms.
Our intention is to open up a new perspective on performance
evaluation of RL approaches (i.e., Q-learning, DQN, and
PPO) enabled for path planning over the discrete gridded
and continuous environments. In a proposed case study
of the autonomous MCT, path planning is employed to
maximize the harnessed power from the agent, which is
finally discussed to be extended to a more general application
of the energy-harvesting autonomous vehicles operating in
the uncertain environment.

II. AUTONOMOUS MCT AND UNDERWATER
ENVIRONMENT MODELING

A. Marine Current Turbine Modeling

This paper investigates a specific case study of a 700 kW
autonomous MCT [9], which is tethered to the seafloor
and can be controlled and moved in a vertical direction to
harness the power from the underwater environment. The
MCT agent, consisting of the main body, buoyancy tank,
rotor, and mooring cable, with a detailed dynamic model,
equations of motion, and numerical simulation are given
in [9], [26]. The MCT agent is interpreted with 14 states
(x € R and 3 control inputs (u € R3). Given the state
vector X =[u v wp, pr qrxyzé ¢ 0 yl', with
[xy zuv w]' being the linear position and velocity of
MCT body, [¢, 8 W pp ¢ ] being the attitude and velocity
of MCT body, and [¢; p,]' being the attitude and velocity
of the MCT rotor. Also, consider the control inputs u =
[Bf B, Tem]T, with By and B, being the forward and aft buoy-
ancy tank fill fractions, and 7., being the electromechanical
torque. The vertical movement of the MCT is primarily
controlled with By and B,. Note that the flight controller of
the investigated MCT is precisely described in our previous
study [26], where we demonstrate that defining constraints
on the allowable operating depth and rate of changes in the
operating depths is enough to ensure a feasible path for the
MCT. The main objective of the flight controller is to track
the optimal path commanded by the path planning algorithm
with minimum error and find the optimal control inputs.

For the path planning, let us concentrate on the vertical
movement of the MCT (characterized with the vertical po-
sition z) and its interaction with the fill fractions as leading
actuators in the MCT movement, as well as underwater
current velocity ve. To form a linear interaction, the non-
linear dynamic model is approximated with the following
linear equation (see [24] for details and justification between
nonlinear and linear models):

AB() = oy Ave + Az (D

where this equation interprets that vertical movement z
is a function of current velocity ve and fill fraction B(_),
where the equilibrium point has a current velocity of 1.6
m/s and a vertical position of 50 m. o and oy are the
constant coefficients approximated by the nonlinear model.
Moreover, equal values are assumed for fill fractions B,).
Using a similar approach, the harnessed power from the MCT
is approximated with three terms of produced power Pp,
consumed power to hold the vertical position due to changes
in the current velocity Pyp, and consumed power to change
the vertical position Pcp, as shown in the following equations
(see [24] for details):

Pret = Pp — Pup — Pcp (2a)
|
P = chp(ipAvgcp,R) (2b)
0, Ave <0
= 2c
P {‘;ﬁ:mm Ave >0 (2)
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P 0, Az >0
P %62 A0

where p denotes the water density, A denotes the rotor area,
¢p denotes the power coefficient, P; denotes the rated power,
and 75 is the sampling time.

(2d)

B. Underwater Environment Modeling

The path planning problem can be solved in an envi-
ronment characterized by either discrete gridded space or
continuous space. The gridded space entails prior knowledge
on the underwater current velocity v, at specific points of the
discrete environment denoted by z9, which is durable using
the field recorded data by an acoustic Doppler current profiler
(ADCP). The gridded spatiotemporally varying environment
is limited to finite size of n x h, given n discrete spatial
positions and % as a horizon in the temporal domain. Unlike
the discrete environment, the continuous space is constructed
with an assumption of a fully observable environment and
complete knowledge of the current velocity at any spatial
points denoted by z.. It is worthwhile to mention that the
continuous space is illustrated with an infinite spatial point
but in a finite horizon & similar to the discrete space.

IIT. REINFORCEMENT LEARNING APPROACH
FOR PATH PLANNING

A. Preliminaries on Reinforcement Learning

RL is an approach to deal with sequential decision-
making problems through trial and error and making final
decision based on the experience acquired by performing
actions in an uncertain environment and gained rewards [27].
RL is a promising candidate for the path planning in the
spatiotemporally varying underwater environment. The agent
observes the environment illustrated by states s € S, with S
being the set of states, accomplish an action a € A from an
action set A following a policy mapping the states to the
actions 7(als) : S — A, thus the environment transitions to a
new state s' € S. This state transition gains scalar feedback
entitled a reward r. The agent’s goal is to learn the optimal
policy 7* to maximize the cumulative reward over a horizon
T, #=Y]_oYRi+1, with v € [0,1] being the discount
factor, demonstrating the priority of immediate rewards over
later ones. To quantify the state value, two functions are
introduced as: (i) state-value function V, estimating the
expected return when starting at s and following 7; and
(ii) action-value function Q, calculating the expected return
starting at s, following 7, and taking action a, namely:

Vi(s) = E[Z]s, 7] 3)
0" (s,a) =E[Z|s,a,T] 4)

B. Recast of MCT Path Planning Into RL Framework

In the path planning problem for MCT, the ultimate
objective of RL is to endow MCT with the ability to learn
how to find the optimal path that maximizes the harnessed
power from the agent. The first task is to define the state set,
action set, and reward function for the problem at hand. The

state set is illustrated by the MCT position and underwater
environment current velocity at 7, ie., S = {z(¢),ve(t)}.
The action space is defined as a vector of feasible vertical
positions for the MCT, where an action taken at ¢ should
enforce the MCT to reach the specified position at 7+ 1.
The action space is formulated by A = {z.(¢)}, given that
ze(t) 2 29 for the discrete gridded environment.

It is favorable to tune shaping reward functions with
demonstrations of the ultimate objective of power maximiza-
tion, which is separately formulated for each candidate RL
algorithm to achieve the best performance. Since each RL
algorithm follows a specific approach to find the optimal
policy, it is predictable that the same reward function may
not yield the best results for all methods. The experimental
results for other applications also show the RL algorithm’s
performance highly depends on the reward function. Note
that different reward functions are tested, and the best reward
function for each algorithm is presented here.

Three RL algorithms, including two approaches over the
discrete environment and one for the continuous environ-
ment, are nominated to solve the MCT path planning prob-
lem. All algorithms are initially trained offline using the field-
recorded data from the Gulf Stream, which is then applied
in the online path planning.

Q-learning Algorithm: The Q-learning algorithm is as-
signed as the baseline, dealing with the problems defined
over the gridded environment with a set of discrete actions.
This algorithm employs a Q-table to store Q(s,a) for all
feasible states and actions, where the highest Q-value deter-
mines the optimal action taken at each state. The reward
function to fulfill the power maximization is defined as
follows:

(&)

RQ _ Pnet_P[?en Pnet_Prtl)et > 51
0, otherwise

where an action is rewarded while the power change is
greater than a constant threshold of &, and p®,, denotes a
base net power parameter while keeping the current vertical
position (i.e., no vertical movement).

To balance the exploration and exploitation, an &-greedy
approach is used [14], namely:

d @) l—¢
B {argmleQ (s,a) ©

random a, €

where € = Enin + (Emax — €min)e ¢, with d being the decay
factor, and e being the episode. The training of the Q-learning
application for path planning is presented in Algorithm 1.
Deep Q-Network (DQN) Algorithm: The DQN approx-
imates Q function with a neural network to deal with a large
size state space and action space. This algorithm utilizes
two neural networks with the same structure but different
weights, where the weight of “target network” Q(s,a|6 PN)
is updated using the “Q-network” Q(s,a|@P). The DQN
learns the optimal Q* function through the optimal policy
acquired by minimizing the following loss function:

2(67) = [Q(s(0), a(r); 0™ — O(s(1),a(0); "N (7)
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Algorithm 1 Q-learning for path planning

Algorithm 2 DQN for path planning

1: Input: field-recorded current velocity, discrete spatial
positions, and Q-learning parameters;

2: Output: optimal Q-table;

3: for each episode do

4: Sample an initial state s < {z,ve };

5 for each step of episode do

6: Accomplish a < 73 using e-greedy policy (6);

7: Gain RQ by (5), and update Q and s;

8 end for

9: end for

with
Q(s(1),a(r): 0PN) £ R(r + 1)+ ymaxQ(s(r +1),a: 6N~ (8)

The reward function for the DQN algorithm is defined
by two positive constant values {; and {, to avoid a high
increase in the cumulative reward; the reward is given to
the agent if it follows the increased velocity, as well as
the increased power. This shaping of the reward function
accelerates the training of the DQN by identifying a trend
for the velocity increase and accordingly the power increase.
The reward function is defined as follows:

RPN = @ Y + RO )
with
, P — P >6
RPDQN _ Cl net .net 1 (1 0)
0, otherwise
poan _ 1 e e > & (an
0, otherwise

where the reward function consists of two terms due to the
reward for power RPDQN, as well as velocity RPN with @,
and @, showing the constant coefficients; 0 similar to pB,
defined in (5) denotes a base environment velocity parameter
while holding the current vertical position.

The action is selected based on the same €-greedy policy
defined in (6). The algorithm of DQN for offline training is
illustrated in Algorithm 2, where & denotes the experience
replay memory.

Proximal Policy Optimization (PPO) Algorithm: To
cope with the continuous states and actions, the PPO al-
gorithm [28] is adopted in this paper. Let define the advan-
tage function 7 as the difference between state-value and
action-value functions <7 (s,a) = Q(s,a) =V (s). To build an
estimate from the advantage function at ¢ denoted as .o (Q,
a critic network is used to approximate the value function V,
and the advantage function estimation <7 (¢) is defined by:

(1) =8(t)+(YA)S(t+1)+..4+(yA) 1 8(T—1) (12)
with R R

8(1) =R(t) +WV(s(t+1))—=V(s(t))

where T denotes the time horizon, ¥ denotes the discount

factor, 0 < A < 1 denotes a parameter to bias the variance

13)

1: Input: field-recorded current velocity, discrete spatial
positions, and DQN parameters;

2: Output: optimal DQN;

3: for each episode do

4: Sample an initial state s < {z,ve };

5 for each step of episode do

6: Accomplish a < 74 using e-greedy policy (6);

7: Gain RPN by (9), and update s;

8: Store transition (s,a,r, sl) in 7,

9: Sample random mini-batch from Z;

10: Calculate target Q-value by (8);

11: Perform a gradient descent step on loss in (7);

12: Update target network and update § PN «— gPQN
every ¢ steps;

13: end for

14: end for

trade-off. The ultimate goal of the PPO is to maximize a
“surrogate objective function”, formulated as follows:

LCLIP(9PPO) — , [min(r(1; 07P0).c7 (1), clip(r(t; 6770, 1 — 9,1+ )7 (1))] (14)

~ . gPPOY _ m(as:0™0) o . e Wi
with r(t: 0°) = (.00 being the probability ratio with
7t(a,s; 0 PPO) representing the old policy, which is clipped to
stay within a constant range of [I — ¥, 1+ ©¥]. The reward
function is defined according to the continuous nature of the
action and state spaces:

R0 = g RO + RV (1)
with s
Poet — P
REFO = clip(— "t —1,+1) (16)
net
PPO Ve — Vg
RYFO = clip(=——, = 1,+1) (17)

(S
where the reward function includes two terms corresponding
to the velocity and power with ¢; and & denoting the
constant coefficients; vd® and P denote large values as
desired velocity and power.
The PPO algorithm for the path planning is outlined in
Algorithm 3.

1V. EXPERIMENTAL RESULTS
A. Simulation Setup

The simulations are carried out for a sample autonomous
MCT agent, where the whole design parameters are given
in [9]. The main parameters corresponding to the linear
movement relation are o = 0.65 s/m, op = —0.0026 1/m,
p = 1024 kg/m?, A = 1007 m?, C, = 0.415, and T =
1 hour. For the RL algorithms, the primary parameters in
the simulation include 6; = 1 kW, &pin = 0.01, €mnax = 1,
d=0.01, e=3000, @; =1, @, =0.5, CI =1, CQ =1, 0, =
1 kW, & =0.001 m/s, g = 0.8, ¢ = 0.2, P4 =700 kW,
vges =2 m/s. The discount factors for Q-learning, DQN,
and PPO algorithms are YR = YPN = y*PO — 0.5 with a
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Algorithm 3 PPO for path planning

1: Input: field-recorded current velocity, continuous spatial
positions, and PPO parameters;

2: Output: optimal PPO;

3: for each iteration do

4: Sample an initial state s < {z,ve };

5 Run policy 7(.;6'FP0) over T and take a < z;

6: Calculate advantage function estimates over 7 by
(12) using RPP© in (15);

7: Perform a gradient ascent on the surrogate function
in (14);

8 Update 8PP0+ 6PPO every ¢, iterations;

9: end for

variance bias parameter of A = 0.9 for PPO algorithm. In this
paper, real ocean current velocity data from the Southeast
Florida Gulf Stream measured by a 75 kHz ADCP at a
latitude of 26.09°N and longitude of —79.80°E are used. It
should be noted that we have trained our approach with large
datasets (to consider the stochastic nature of ocean currents)
for effective generalization.

B. Comparative Results

It is noteworthy to mention that the performance of the
RL algorithm has already been justified with the existing
methods, such as the MPC algorithm and A* algorithm, in
the authors’ previous works [14], [24], [29]. Three proposed
reward functions are verified through testing in different RL
algorithms, as shown in Fig. 2. To validate the performance
of the proposed reward function, the results are presented in
cumulative reward and cumulative harnessed energy during
the training phase. The superior reward function for each
algorithm should show a decent convergence in cumulative
reward and tend towards the maximum energy. In the QL
algorithm, the QL reward function and DQN reward function
demonstrate acceptable performance, while the QL reward
function is slightly better in terms of harnessed energy. All
reward functions perform well for the DQN algorithm, while
the convergence and harnessed energy for the DQN reward
function beat other reward functions. For the PPO algorithm,
the DQN and PPO reward functions surpass the QL reward
function in convergence, where the latter can harness the
maximum energy.

Also, the convergence results for QL, DQN, and PPO
algorithms along with training episodes, are represented in
Fig. 2, showing a different number of episodes to complete
the training for each algorithm. For example, the PPO
training needs more episodes than the DQN due to the larger
action and state spaces in the continuous space, where the
training episode takes 6.7 s for DQN and 0.107 s for PPO.
Hence, the PPO is significantly faster than the DQN for the
training per episode, but it needs almost three times more
episodes to be fully trained. It should be noted that different
values for the reward are gained by using different reward
functions for QL (5), DQN (9)-(11), and PPO (15)-(17).

Fig. 3 illustrates the vertical positions found through the
path planning, as well as the corresponding current velocity,
net power, and cumulative energy harvested from the MCT.
Two approaches are introduced as the baseline algorithms: (i)
static MCT maintaining an equilibrium operating depth z =
50 m, and (ii) A* algorithm as a nominee from classical path
planning algorithms. The planned path by the Q-learning in-
duces a globally optimal path due to the gridded environment
precision, which is used as a baseline for the DQN algorithm
as a representative of the deep RL algorithms for the gridded
environment. Therefore, it is justified by the experimental
results that the DQN is able to successfully find the optimal
path (similar to the Q-learning except for one position at the
time step of 68). Meanwhile, the PPO algorithm solves the
path planning problem in a continuous environment facing
a large set of feasible vertical positions, thereby increasing
the complexity of the problem but upbringing a capability
of larger space exploration to find a better optimal path than
the discrete gridded environment. From the obtained vertical
positions, the PPO follows almost a similar trend with the
discrete approaches with increased precision in opting the
positions.

The PPO algorithm outperforms the A* algorithm and the
discrete algorithms in terms of current velocity and harvested
power, resulting in cumulative energy of 34.585 MWh over
100 hour compared to the harvested energy in the case of
A* (29.848 MWh), Q-learning (31.905 MWh), and DQN
(31.822 MWh). It should be noted that applying spatiotempo-
ral optimization and even classical path planning approaches
increase the harvested energy than the static MCT with a
total energy of 29.296 MWh.

Switching from a discrete environment to the continuous
one leads to an intensive complexity but a higher accuracy
in path planning, where caution should be taken to evaluate
the required precision due to application and then make a
selection between discrete and continuous approaches. For
example, in our application, since the main objective is
to maximize the cumulative harvested energy, where any
little differences between various approaches (i.e., DQN and
PPO) are intensified over time (especially in the real-time
path planning for the MCT), it is important to select the
approach resulting in the highest energy. Another important
takeaway from this paper is that testing different reward
functions is essential to reach the best performance from
the RL algorithm. Although the results from this paper can
be extended to other energy-harvesting autonomous vehicles,
future works are required to narrow down some guidelines
on how to choose an appropriate reward function according
to the system (linear or non-linear), environment (continuous
or discrete), and the type of RL algorithm.

C. Extension to Energy-Harvesting Autonomous Vehicles

The proposed framework can be generalized to other
energy-harvesting autonomous vehicles (such as airborne
wind energy) to employ the real-recorded data from the
spatiotemporally varying environment for path planning. The
following steps are required to extend to other applications:
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Fig. 2: Testing three proposed reward functions in QL algorithm, DQN algorithm, and PPO algorithm; (Top) Cumulative
reward along with training episodes; (Bottom) Cumulative energy harnessed by MCT along with training episodes.

1y

2)

3)

4)

The ultimate objective is still power maximization; it
is then intuitive to find an equation modeling the net
power of the agent (similar to (2a)-(2d)).

The spatiotemporal environment can be modeled in
either discrete gridded or continuous manners with
respect to path accuracy. The key concern here is to
access sufficient field-recorded data to train the RL
algorithms.

The specific energy-harvesting vehicle should be
adapted with the RL framework, where the states
are defined according to the environment and agent’s
operating mechanism, and the action set introduces the
potential paths.

The final step is to find the most suitable reward
function to yield the optimal path with the highest har-
vested power. Three reward functions are introduced in
this paper to cope with both discrete and continuous
path planning, showing promising results and can be
adjusted to other applications.

V. CONCLUSIONS

In this paper, an RL-based framework was presented to
deal with the path planning of the AUV operating in the

spatiotemporally varying underwater environment. For this
framework, three RL algorithms were nominated to solve
the path planning for both discrete and continuous represen-
tations from the environment and compare the experimental
results. The investigated approach was tested on a case study
of autonomous MCT while presenting the primary ideas
on the extension to other energy-harvesting autonomous
vehicles in similar uncertain environments.
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