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Abstract— This paper presents a reinforcement learning (RL)
framework applied for an autonomous underwater vehicle
(AUV) path planning, focusing on a specific type of energy-
harvesting AUV, entitled marine current turbine (MCT). The
proposed RL-based approach improves a classical path plan-
ning to adopt with an underwater environment prone to
spatiotemporal uncertainties. The path planning problem is
formulated to achieve the goal of maximizing the harnessed
energy from the MCT subject to the agent dynamics and the
spatiotemporal environment constraints. Three RL algorithms,
including Q-learning, deep Q-network (DQN), and proximal
policy optimization (PPO), are nominated to deal with the path
planning over both discrete gridded and continuous underwater
environments modeling. The experimental results demonstrate
the efficiency of the RL-based approaches in seeking the
optimal path in the underwater environment, where further
discussion is presented to generalize the proposed approach to
other energy-harvesting autonomous vehicles operating in the
spatiotemporally varying environment, such as airborne wind
turbines.

I. INTRODUCTION

The goal of path planning is to generate a feasible and

valid path for an autonomous agent to perform a specific

mission and achieve an ultimate objective. In the field of

autonomous agents path planning, an autonomous underwa-

ter vehicle (AUV) has gained increasing attention due to its

complexity, and lack of human accessibility [1]. The AUV

systems have been primarily used for searching and investi-

gation in the underwater environment, implying minimized

power consumption and travel time [2]. This paper focuses

on a recently developed application of AUVs for harnessing

renewable energy from underwater environment [3].

The path planning problem becomes more complicated for

the autonomous agent vehicles operating in a spatiotempo-

rally varying environment [4], [5], [2], [1], especially for

the emerging field of energy-harvesting autonomous vehicles,

such as an airborne energy system [6], [7], ocean kite [8], and

marine current turbine (MCT) [9], [10]. In these applications,

the classical path planning algorithms, i.e., graph searching

techniques designed originally for the autonomous agents

operating in a static gridded environment [11], [12], are not

adequate in a spatiotemporally varying environment. Hence,

it is intuitive to develop an approach to fit a particular task
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Fig. 1: (Left) Autonomous MCT agent that has been inves-

tigated in this work; (Right) Overall schematic of the path

planning problem in a spatiotemporally varying underwater

environment, where the contour plot visualizes the ocean

current speed.

of seeking an optimal path in an environment with enhanced

space-time uncertainties.

The first attempts to address the path planning problem for

autonomous renewable energy agents have been devoted to

the airborne energy system, where an extremum seeking ap-

proach [7] and model predictive control (MPC) method [13]

have been proposed to find a sequence of optimal waypoints.

Similar problem has been then formulated in the context of

the energy-harvesting ocean kite [8] addressed through the

MPC approach. Finally, in the most recent application of

MCT, both MPC and reinforcement learning (RL) have been

used to find the optimal path [14]. The predictive approach

builds upon the forecasting of the spatiotemporally varying

environment, limiting the path planning to the forecasting

accuracy. It is then favorable to take a look at learning-based

algorithms that directly learn from real recorded data in an

uncertain environment.

Among many learning-based methods, RL has been in-

troduced as a promising nominee to cope with the planning

problem [15]. One of the most prevalent challenges existing

in the RL frameworks is to craft an appropriate reward

function to precisely describe the ultimate objective of the

problem at hand. The reward function usually serves as an

objective function in the conventional optimization problem,

and a large body of research in path planning has been

devoted to defining and solving an appropriate objective

function [16], [17]. The primary task in this paper is to

extend the ideas from objective functions in path planning

optimization problems to develop a favorable reward function

for energy harnessing. Although there exists research on

using the RL for the path planning of AUVs with the major

goal of collision avoidance [18], [19], [20], [21], [22], RL-
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based path planning for power maximization is still lacking.

The RL can leverage either discrete action space or

continuous action space to handle the path planning. The

action space here interprets the optimal path characterized

in the underwater environment, where there exist two av-

enues to select the optimal path: (i) a set of predefined

waypoints in a discrete gridded environment; and (2) any

point in a continuous environment. The first avenue can be

pursued through the RL approaches dealing with the discrete

space, such as Q-learning [23], [24] and deep Q-network

(DQN) [14]. Additionally, policy gradient-based methods

like deep deterministic policy gradient [25] and proximal

policy optimization (PPO) [20] can be employed to address

the latter. The room is then left for a comparative analysis

on the theoretical aspect and experimental results for the

RL algorithms over discrete and continuous environments,

considering this paper introduces a new application on path

planning of an autonomous MCT.

The purpose of this paper is to fill the gap in the de-

velopment of an RL-based approach for path planning in

an environment with enhanced space-time uncertainties. The

case study focuses specifically on the autonomous MCT (as

depicted in Fig. 1(a)), with the ultimate goal of placing

the agent at the operating depth that maximizes the total

accumulated power production in a given time range. This

vertical path planning problem of the agent operating in the

spatiotemporally varying underwater environment is visual-

ized in Fig. 1(b). Note that this paper focuses exclusively

on the path planning for the autonomous MCT, relying on

the authors’ prior work [26] on developing the path tracking

controller for the autonomous MCT that ensures navigating

the agent through the optimal path. Moreover, this paper fur-

thers the authors’ previous work [24] on the spatiotemporal

path planning for the MCT through exploring and evaluating

different RL candidates, designing proper reward functions

for each candidate, and eventually discussing the extension to

other energy-harvesting autonomous vehicles. The previous

study [24] has been mainly devoted to (i) modeling of power

equation and justifying the linear vertical movement with a

nonlinear model, and (ii) designing a Q-learning algorithm

to solve the spatiotemporal path planning.

Contribution: The main contribution of this paper is

to present an RL-based framework for path planning in

the spatiotemporally varying underwater environment while

performing comparative analysis on different RL algorithms.

Our intention is to open up a new perspective on performance

evaluation of RL approaches (i.e., Q-learning, DQN, and

PPO) enabled for path planning over the discrete gridded

and continuous environments. In a proposed case study

of the autonomous MCT, path planning is employed to

maximize the harnessed power from the agent, which is

finally discussed to be extended to a more general application

of the energy-harvesting autonomous vehicles operating in

the uncertain environment.

II. AUTONOMOUS MCT AND UNDERWATER

ENVIRONMENT MODELING

A. Marine Current Turbine Modeling

This paper investigates a specific case study of a 700 kW

autonomous MCT [9], which is tethered to the seafloor

and can be controlled and moved in a vertical direction to

harness the power from the underwater environment. The

MCT agent, consisting of the main body, buoyancy tank,

rotor, and mooring cable, with a detailed dynamic model,

equations of motion, and numerical simulation are given

in [9], [26]. The MCT agent is interpreted with 14 states

(x ∈ R
14) and 3 control inputs (u ∈ R

3). Given the state

vector x = [u v w pb pr q r x y z φb φr θ ψ]�, with

[x y z u v w]� being the linear position and velocity of

MCT body, [φb θ ψ pb q r]� being the attitude and velocity

of MCT body, and [φr pr]
� being the attitude and velocity

of the MCT rotor. Also, consider the control inputs u =
[B f Ba τem]

�, with B f and Ba being the forward and aft buoy-

ancy tank fill fractions, and τem being the electromechanical

torque. The vertical movement of the MCT is primarily

controlled with B f and Ba. Note that the flight controller of

the investigated MCT is precisely described in our previous

study [26], where we demonstrate that defining constraints

on the allowable operating depth and rate of changes in the

operating depths is enough to ensure a feasible path for the

MCT. The main objective of the flight controller is to track

the optimal path commanded by the path planning algorithm

with minimum error and find the optimal control inputs.

For the path planning, let us concentrate on the vertical

movement of the MCT (characterized with the vertical po-

sition z) and its interaction with the fill fractions as leading

actuators in the MCT movement, as well as underwater

current velocity ve. To form a linear interaction, the non-

linear dynamic model is approximated with the following

linear equation (see [24] for details and justification between

nonlinear and linear models):

ΔB(.) = α1Δve +α2Δz (1)

where this equation interprets that vertical movement z
is a function of current velocity ve and fill fraction B(.),

where the equilibrium point has a current velocity of 1.6

m/s and a vertical position of 50 m. α1 and α2 are the

constant coefficients approximated by the nonlinear model.

Moreover, equal values are assumed for fill fractions B(.).

Using a similar approach, the harnessed power from the MCT

is approximated with three terms of produced power PP,

consumed power to hold the vertical position due to changes

in the current velocity PHD, and consumed power to change

the vertical position PCD, as shown in the following equations

(see [24] for details):

Pnet = PP −PHD −PCD (2a)

PP = clip(
1

2
ρAv3

ecp,Pr) (2b)

PHD =

{
0, Δve < 0
α1
Ts

Δve, Δve ≥ 0
(2c)
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PCD =

{
0, Δz > 0
α2
Ts

Δz, Δz ≤ 0
(2d)

where ρ denotes the water density, A denotes the rotor area,

cp denotes the power coefficient, Pr denotes the rated power,

and Ts is the sampling time.

B. Underwater Environment Modeling

The path planning problem can be solved in an envi-

ronment characterized by either discrete gridded space or

continuous space. The gridded space entails prior knowledge

on the underwater current velocity ve at specific points of the

discrete environment denoted by zd
e , which is durable using

the field recorded data by an acoustic Doppler current profiler

(ADCP). The gridded spatiotemporally varying environment

is limited to finite size of n × h, given n discrete spatial

positions and h as a horizon in the temporal domain. Unlike

the discrete environment, the continuous space is constructed

with an assumption of a fully observable environment and

complete knowledge of the current velocity at any spatial

points denoted by ze. It is worthwhile to mention that the

continuous space is illustrated with an infinite spatial point

but in a finite horizon h similar to the discrete space.

III. REINFORCEMENT LEARNING APPROACH

FOR PATH PLANNING

A. Preliminaries on Reinforcement Learning

RL is an approach to deal with sequential decision-

making problems through trial and error and making final

decision based on the experience acquired by performing

actions in an uncertain environment and gained rewards [27].

RL is a promising candidate for the path planning in the

spatiotemporally varying underwater environment. The agent

observes the environment illustrated by states s ∈ S, with S
being the set of states, accomplish an action a ∈ A from an

action set A following a policy mapping the states to the

actions π(a|s) : S → A, thus the environment transitions to a

new state s′ ∈ S. This state transition gains scalar feedback

entitled a reward r. The agent’s goal is to learn the optimal

policy π∗ to maximize the cumulative reward over a horizon

T , R = ∑T
k=0 γkRk+1, with γ ∈ [0,1] being the discount

factor, demonstrating the priority of immediate rewards over

later ones. To quantify the state value, two functions are

introduced as: (i) state-value function V , estimating the

expected return when starting at s and following π; and

(ii) action-value function Q, calculating the expected return

starting at s, following π , and taking action a, namely:

V π(s) = E[R|s,π] (3)

Qπ(s,a) = E[R|s,a,π] (4)

B. Recast of MCT Path Planning Into RL Framework

In the path planning problem for MCT, the ultimate

objective of RL is to endow MCT with the ability to learn

how to find the optimal path that maximizes the harnessed

power from the agent. The first task is to define the state set,

action set, and reward function for the problem at hand. The

state set is illustrated by the MCT position and underwater

environment current velocity at t, i.e., S = {z(t),ve(t)}.

The action space is defined as a vector of feasible vertical

positions for the MCT, where an action taken at t should

enforce the MCT to reach the specified position at t + 1.

The action space is formulated by A = {ze(t)}, given that

ze(t)� zd
e for the discrete gridded environment.

It is favorable to tune shaping reward functions with

demonstrations of the ultimate objective of power maximiza-

tion, which is separately formulated for each candidate RL

algorithm to achieve the best performance. Since each RL

algorithm follows a specific approach to find the optimal

policy, it is predictable that the same reward function may

not yield the best results for all methods. The experimental

results for other applications also show the RL algorithm’s

performance highly depends on the reward function. Note

that different reward functions are tested, and the best reward

function for each algorithm is presented here.

Three RL algorithms, including two approaches over the

discrete environment and one for the continuous environ-

ment, are nominated to solve the MCT path planning prob-

lem. All algorithms are initially trained offline using the field-

recorded data from the Gulf Stream, which is then applied

in the online path planning.

Q-learning Algorithm: The Q-learning algorithm is as-

signed as the baseline, dealing with the problems defined

over the gridded environment with a set of discrete actions.

This algorithm employs a Q-table to store Q(s,a) for all

feasible states and actions, where the highest Q-value deter-

mines the optimal action taken at each state. The reward

function to fulfill the power maximization is defined as

follows:

RQ =

{
Pnet −Pb

net, Pnet −Pb
net > δ1

0, otherwise
(5)

where an action is rewarded while the power change is

greater than a constant threshold of δ1, and pb
net denotes a

base net power parameter while keeping the current vertical

position (i.e., no vertical movement).

To balance the exploration and exploitation, an ε-greedy

approach is used [14], namely:

a =

{
argmax

a
Qπ(s,a), 1− ε

random a, ε
(6)

where ε = εmin +(εmax − εmin)e−d·e, with d being the decay

factor, and e being the episode. The training of the Q-learning

application for path planning is presented in Algorithm 1.

Deep Q-Network (DQN) Algorithm: The DQN approx-

imates Q function with a neural network to deal with a large

size state space and action space. This algorithm utilizes

two neural networks with the same structure but different

weights, where the weight of “target network” Q(s,a|θ ′DQN)
is updated using the “Q-network” Q(s,a|θ DQN). The DQN

learns the optimal Q∗ function through the optimal policy

acquired by minimizing the following loss function:

L (θ DQN) = [Q(s(t),a(t);θ ′DQN)−Q(s(t),a(t);θ DQN)]2 (7)
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Algorithm 1 Q-learning for path planning

1: Input: field-recorded current velocity, discrete spatial

positions, and Q-learning parameters;

2: Output: optimal Q-table;

3: for each episode do
4: Sample an initial state s ←{z,ve};

5: for each step of episode do
6: Accomplish a ← zd

e using ε-greedy policy (6);

7: Gain RQ by (5), and update Q and s;

8: end for
9: end for

with

Q(s(t),a(t);θ ′DQN)� R(t +1)+ γmax
a

Q(s(t +1),a;θ ′DQN) (8)

The reward function for the DQN algorithm is defined

by two positive constant values ζ1 and ζ2 to avoid a high

increase in the cumulative reward; the reward is given to

the agent if it follows the increased velocity, as well as

the increased power. This shaping of the reward function

accelerates the training of the DQN by identifying a trend

for the velocity increase and accordingly the power increase.

The reward function is defined as follows:

RDQN = ϖ1RDQN
P +ϖ2RDQN

v (9)

with

RDQN
P =

{
ζ1, Pnet −Pb

net > δ1

0, otherwise
(10)

RDQN
v =

{
ζ2, ve − vb

e > δ2

0, otherwise
(11)

where the reward function consists of two terms due to the

reward for power RDQN
P , as well as velocity RDQN

v with ϖ1

and ϖ2 showing the constant coefficients; vb
e similar to pb

net

defined in (5) denotes a base environment velocity parameter

while holding the current vertical position.

The action is selected based on the same ε-greedy policy

defined in (6). The algorithm of DQN for offline training is

illustrated in Algorithm 2, where D denotes the experience

replay memory.

Proximal Policy Optimization (PPO) Algorithm: To

cope with the continuous states and actions, the PPO al-

gorithm [28] is adopted in this paper. Let define the advan-

tage function A as the difference between state-value and

action-value functions A (s,a) = Q(s,a)−V (s). To build an

estimate from the advantage function at t denoted as Â (t),
a critic network is used to approximate the value function V̂ ,

and the advantage function estimation Â (t) is defined by:

Â (t) = δ (t)+(γλ )δ (t+1)+ ...+(γλ )T−t+1δ (T −1) (12)

with

δ (t) = R(t)+ γV̂ (s(t +1))−V̂ (s(t)) (13)

where T denotes the time horizon, γ denotes the discount

factor, 0 ≤ λ ≤ 1 denotes a parameter to bias the variance

Algorithm 2 DQN for path planning

1: Input: field-recorded current velocity, discrete spatial

positions, and DQN parameters;

2: Output: optimal DQN;

3: for each episode do
4: Sample an initial state s ←{z,ve};

5: for each step of episode do
6: Accomplish a ← zd

e using ε-greedy policy (6);

7: Gain RDQN by (9), and update s;

8: Store transition (s,a,r,s
′
) in D ;

9: Sample random mini-batch from D ;

10: Calculate target Q-value by (8);

11: Perform a gradient descent step on loss in (7);

12: Update target network and update θ ′DQN ← θ DQN

every c1 steps;
13: end for
14: end for

trade-off. The ultimate goal of the PPO is to maximize a

“surrogate objective function”, formulated as follows:

LCLIP(θ PPO) = Êt [min(r(t;θ PPO)Â (t),clip(r(t;θ PPO),1−ϑ ,1+ϑ)Â (t))] (14)

with r(t;θ PPO) = π(a,s;θ PPO)

π(a,s;θ ′PPO)
being the probability ratio with

π(a,s;θ ′PPO) representing the old policy, which is clipped to

stay within a constant range of [1−ϑ ,1+ϑ ]. The reward

function is defined according to the continuous nature of the

action and state spaces:

RPPO = ς1RPPO
P + ς2RPPO

v (15)

with

RPPO
P = clip(

Pnet −Pdes
net

Pdes
net

,−1,+1) (16)

RPPO
v = clip(

ve − vdes
e

vdes
e

,−1,+1) (17)

where the reward function includes two terms corresponding

to the velocity and power with ς1 and ς2 denoting the

constant coefficients; vdes
e and Pdes

net denote large values as

desired velocity and power.

The PPO algorithm for the path planning is outlined in

Algorithm 3.

IV. EXPERIMENTAL RESULTS

A. Simulation Setup

The simulations are carried out for a sample autonomous

MCT agent, where the whole design parameters are given

in [9]. The main parameters corresponding to the linear

movement relation are α1 = 0.65 s/m, α2 = −0.0026 1/m,

ρ = 1024 kg/m3, A = 100π m2, Cp = 0.415, and Ts =
1 hour. For the RL algorithms, the primary parameters in

the simulation include δ1 = 1 kW, εmin = 0.01, εmax = 1,

d = 0.01, e = 3000, ϖ1 = 1, ϖ2 = 0.5, ζ1 = 1, ζ2 = 1, δ1 =
1 kW, δ2 = 0.001 m/s, ς1 = 0.8, ς2 = 0.2, Pdes = 700 kW,

vdes
e = 2 m/s. The discount factors for Q-learning, DQN,

and PPO algorithms are γQ = γDQN = γPPO = 0.5 with a
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Algorithm 3 PPO for path planning

1: Input: field-recorded current velocity, continuous spatial

positions, and PPO parameters;

2: Output: optimal PPO;

3: for each iteration do
4: Sample an initial state s ←{z,ve};

5: Run policy π(.;θ ′PPO) over T and take a ← ze;

6: Calculate advantage function estimates over T by

(12) using RPPO in (15);

7: Perform a gradient ascent on the surrogate function

in (14);

8: Update θ ′PPO ← θ PPO every c2 iterations;

9: end for

variance bias parameter of λ = 0.9 for PPO algorithm. In this

paper, real ocean current velocity data from the Southeast

Florida Gulf Stream measured by a 75 kHz ADCP at a

latitude of 26.09◦N and longitude of −79.80◦E are used. It

should be noted that we have trained our approach with large

datasets (to consider the stochastic nature of ocean currents)

for effective generalization.

B. Comparative Results

It is noteworthy to mention that the performance of the

RL algorithm has already been justified with the existing

methods, such as the MPC algorithm and A∗ algorithm, in

the authors’ previous works [14], [24], [29]. Three proposed

reward functions are verified through testing in different RL

algorithms, as shown in Fig. 2. To validate the performance

of the proposed reward function, the results are presented in

cumulative reward and cumulative harnessed energy during

the training phase. The superior reward function for each

algorithm should show a decent convergence in cumulative

reward and tend towards the maximum energy. In the QL

algorithm, the QL reward function and DQN reward function

demonstrate acceptable performance, while the QL reward

function is slightly better in terms of harnessed energy. All

reward functions perform well for the DQN algorithm, while

the convergence and harnessed energy for the DQN reward

function beat other reward functions. For the PPO algorithm,

the DQN and PPO reward functions surpass the QL reward

function in convergence, where the latter can harness the

maximum energy.

Also, the convergence results for QL, DQN, and PPO

algorithms along with training episodes, are represented in

Fig. 2, showing a different number of episodes to complete

the training for each algorithm. For example, the PPO

training needs more episodes than the DQN due to the larger

action and state spaces in the continuous space, where the

training episode takes 6.7 s for DQN and 0.107 s for PPO.

Hence, the PPO is significantly faster than the DQN for the

training per episode, but it needs almost three times more

episodes to be fully trained. It should be noted that different

values for the reward are gained by using different reward

functions for QL (5), DQN (9)-(11), and PPO (15)-(17).

Fig. 3 illustrates the vertical positions found through the

path planning, as well as the corresponding current velocity,

net power, and cumulative energy harvested from the MCT.

Two approaches are introduced as the baseline algorithms: (i)

static MCT maintaining an equilibrium operating depth z =
50 m, and (ii) A∗ algorithm as a nominee from classical path

planning algorithms. The planned path by the Q-learning in-

duces a globally optimal path due to the gridded environment

precision, which is used as a baseline for the DQN algorithm

as a representative of the deep RL algorithms for the gridded

environment. Therefore, it is justified by the experimental

results that the DQN is able to successfully find the optimal

path (similar to the Q-learning except for one position at the

time step of 68). Meanwhile, the PPO algorithm solves the

path planning problem in a continuous environment facing

a large set of feasible vertical positions, thereby increasing

the complexity of the problem but upbringing a capability

of larger space exploration to find a better optimal path than

the discrete gridded environment. From the obtained vertical

positions, the PPO follows almost a similar trend with the

discrete approaches with increased precision in opting the

positions.

The PPO algorithm outperforms the A∗ algorithm and the

discrete algorithms in terms of current velocity and harvested

power, resulting in cumulative energy of 34.585 MWh over

100 hour compared to the harvested energy in the case of

A∗ (29.848 MWh), Q-learning (31.905 MWh), and DQN

(31.822 MWh). It should be noted that applying spatiotempo-

ral optimization and even classical path planning approaches

increase the harvested energy than the static MCT with a

total energy of 29.296 MWh.

Switching from a discrete environment to the continuous

one leads to an intensive complexity but a higher accuracy

in path planning, where caution should be taken to evaluate

the required precision due to application and then make a

selection between discrete and continuous approaches. For

example, in our application, since the main objective is

to maximize the cumulative harvested energy, where any

little differences between various approaches (i.e., DQN and

PPO) are intensified over time (especially in the real-time

path planning for the MCT), it is important to select the

approach resulting in the highest energy. Another important

takeaway from this paper is that testing different reward

functions is essential to reach the best performance from

the RL algorithm. Although the results from this paper can

be extended to other energy-harvesting autonomous vehicles,

future works are required to narrow down some guidelines

on how to choose an appropriate reward function according

to the system (linear or non-linear), environment (continuous

or discrete), and the type of RL algorithm.

C. Extension to Energy-Harvesting Autonomous Vehicles

The proposed framework can be generalized to other

energy-harvesting autonomous vehicles (such as airborne

wind energy) to employ the real-recorded data from the

spatiotemporally varying environment for path planning. The

following steps are required to extend to other applications:
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Fig. 2: Testing three proposed reward functions in QL algorithm, DQN algorithm, and PPO algorithm; (Top) Cumulative

reward along with training episodes; (Bottom) Cumulative energy harnessed by MCT along with training episodes.

1) The ultimate objective is still power maximization; it

is then intuitive to find an equation modeling the net

power of the agent (similar to (2a)-(2d)).

2) The spatiotemporal environment can be modeled in

either discrete gridded or continuous manners with

respect to path accuracy. The key concern here is to

access sufficient field-recorded data to train the RL

algorithms.

3) The specific energy-harvesting vehicle should be

adapted with the RL framework, where the states

are defined according to the environment and agent’s

operating mechanism, and the action set introduces the

potential paths.

4) The final step is to find the most suitable reward

function to yield the optimal path with the highest har-

vested power. Three reward functions are introduced in

this paper to cope with both discrete and continuous

path planning, showing promising results and can be

adjusted to other applications.

V. CONCLUSIONS

In this paper, an RL-based framework was presented to

deal with the path planning of the AUV operating in the

spatiotemporally varying underwater environment. For this

framework, three RL algorithms were nominated to solve

the path planning for both discrete and continuous represen-

tations from the environment and compare the experimental

results. The investigated approach was tested on a case study

of autonomous MCT while presenting the primary ideas

on the extension to other energy-harvesting autonomous

vehicles in similar uncertain environments.
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