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ARTICLE INFO ABSTRACT

3 This article eomnsiders Ui problem of dagnosing certain common errors i reward design.
Recelved 10 January 2022 Its insights are also applicable to the design of cost functions and performance metmcs
:*W;'"‘ 1 revised. farm 30 Sephesber more genesally, To diaghose common erfors, we develop B simple sanity checks for

identifying flaws i reward functions. We survey research that is published in top-
tier venues and focuses on reinforcement leaming (RL) for autonomous driving (AD).
Specifically, we closely examine the reparted reward function in each publication and
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Feywerils: present these reward functions in & complete and standardized format in the appendix.
Reinforcement learning Wherever we have sufficient infarmation, we apply the & sanity checks o each surveyed
Ruward design teward function, revealing near-tniverssl aws in reward design for AD thar might also
Utility exist pervasively across reward design for ather fasks, Lastly. we explore promising
) directions that may aid the design of reward lipctions Tor AD i subsequent feseasch,
:;:“' following a process of nquiry that can be adapted m ather domains.

@ 2022 The Authors. Published by Elsevier BV. This is an open access article under the

Asuxamol gy CC BY Jicense (hitpcreativecommons, ong lieenses byi4 0],

1. Introduction

Treatments of reinforcement leaming often assume the reward function is given and fixed Howewver, in practice, the
correct reward function for a sequential decision-making problem is rarely clear. Unformunately, the process for designing a
reward function (ie., reward design}—despite its criticality in specifying the problem to be solved—is given scant attention in
introductory texts,! For example, Sutton and Barto's standard text on reinforcement learning [45, pp. 53-54, 469] devotes
merely 4 paragraphs to reward design in the absence of a known performance metric Anecdotally, reward design is widely
acknowledged as a difficult task. especially for people without considerable experience doing so. Further, Dulac-Amald
et al. |14] recently highlighted learning from “multi-objective or poorly specified reward functions” as a critical obstacle
hampenng the application of reinforcement learning to real-world problems. Additicnally, the problem of reward design is
highly related to the more general problem of designing performance metrics for optimization—whether manual or auto-
mated optimizati ul is to ing cost functions for planning and control (Section ). making a discussion
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1 Unless athervise roted, any discussion herein of rewand design focuses cn the specification of the envimamental rvand, before any shupisg rewards are
added W alsn focus by defamit on monust reward specificatinn, whach difiers from mverse reanforcement kearning and other methods for |eamisg reward
Fanctions, Hewever. we discuss the application of this work 1o such methods in Section 54
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