
´ ´

ar
X

iv
:2

20
6.

00
23

3v
3

[c
s.

M
A

]
13

 M
ar

 2
02

3

DM2: Decentralized Multi-Agent Reinforcement Learning via Distribution
Matching

Caroline Wang 1*, Ishan Durugkar 1*, Elad Liebman 2*, Peter Stone 1,3

1 The University of Texas at Austin
2 SparkCognition Research

3 Sony A I
caroline.l.wang@utexas.edu, ishand@cs.utexas.edu,

eliebman@sparkcognition.com, pstone@cs.utexas.edu

Abstract

Current approaches to multi-agent cooperation rely heavily
on centralized mechanisms or explicit communication proto-
cols to ensure convergence. This paper studies the problem of
distributed multi-agent learning without resorting to cen-
tralized components or explicit communication. It examines
the use of distribution matching to facilitate the coordination
of independent agents. In the proposed scheme, each agent
independently minimizes the distribution mismatch to the cor-
responding component of a target visitation distribution. The
theoretical analysis shows that under certain conditions, each
agent minimizing its individual distribution mismatch allows
the convergence to the joint policy that generated the target
distribution. Further, if the target distribution is from a joint
policy that optimizes a cooperative task, the optimal policy for a
combination of this task reward and the distribution matching
reward is the same joint policy. This insight is used to formu-
late a practical algorithm (DM2), in which each individual
agent matches a target distribution derived from concurrently
sampled trajectories from a joint expert policy. Experimental
validation on the StarCraft domain shows that combining (1) a
task reward, and (2) a distribution matching reward for expert
demonstrations for the same task, allows agents to outperform a
naive distributed baseline. Additional experiments probe the
conditions under which expert demonstrations need to be
sampled to obtain the learning benefits.

1 Introduction
Multi-agent reinforcement learning (MARL) (Littman 1994)
is a paradigm for learning agent policies that may interact
with each other in cooperative or competitive settings (Sil-
ver et al. 2017, 2018; Barrett and Stone 2012; Leibo et al.
2017). Training multiple agents at once is challenging, since
an agent updating its own strategy induces a nonstationary
environment for other agents, potentially leading to training
instabilities, and offsetting any theoretical guarantees single
agent R L algorithms confer. To overcome these issues, agent
policies can be set up as a single, centralized joint policy, be
trained together but then deployed individually (Rashid et al.
2018; Foerster et al. 2018), or be coordinated through some
form of communication (Lowe et al. 2017; Jaques et al. 2019;
Liu et al. 2021).

*Equal contribution.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Fully distributed training of agent policies remains an open
problem in MARL. Distributed, or decentralized, training is
desirable particularly in situations where parallelism, robust-
ness, flexibility, or scalability is needed. Such settings include
where there are a large number of agents, where agents are
faced with changing environments (Marinescu, Dusparic,
and Clarke 2017), where agents must perform tasks in vary-
ing team configurations over their lifetime (Thrun 1998), or
where ensuring privacy is a concern (Leaute and Faltings
2013).

This paper considers the setting of cooperative tasks involv-
ing K agents, where the goal is to learn a high-performing
joint policy in a fully distributed fashion. To mitigate the
limitations imposed by this setting, we propose distribution
matching to a target state-action distribution, as a strategy
to induce coordination. We assume that this distribution is
associated with the execution of some joint policy, such as
demonstrations of expert teams (Song et al. 2018), or from
high-performing trajectories from the agents’ past interac-
tions (Hao et al. 2019). One tempting way to utilize this
distribution is to assign each agent the distribution associated
with its corresponding expert, and have the agent minimize
the distribution mismatch to this target distribution over states
and actions.

At first glance, this approach is fraught with complications.
Since the target distribution over states and actions is based
on the execution of some joint policy, a single agent trying
to adjust its policy might not make meaningful progress on
its own, given that other agents could change their behaviors
at the same time. Second, this distributed approach to distri-
bution matching could suffer from the same destabilization
that causes distributed M A R L to diverge (Hernandez-Leal,
Kartal, and Taylor 2019; Yang and Wang 2020).

This paper shows that despite the above complications,
individual distribution matching can be combined with maxi-
mization of shared task rewards to learn effectively. In partic-
ular, the contributions of the paper are:
• Theoretical analysis showing that distributed distribution

matching to the target distributions converges to the joint
expert policy that generated the demonstrations.

• The DM2 algorithm, a practical method combining the dis-
tribution matching reward with the task reward. Experimen-
tal validation shows that if demonstrations are aligned with
the shared objective, DM2 accelerates learning compared

i

i ;g a i l

env

i

0

0

demo
data

Figure 1: In DM2, each agent independently learns from the
sum of a distribution matching reward, r , and a shared
task reward, r . The distribution matching reward is com-
puted by comparing the marginal state visitation distribution
of the agent, , with the state visitation distributions implied
by the corresponding expert E i ’s demonstrations .

to a decentralized baseline learning with the task reward
only.

• Ablations that empirically verify our assumption that the
target distribution needs to be induced by demonstrations
from coordinated policies, but do not necessarily need to
be concurrently sampled.

2 Related Work
This section details related work, separated into work that re-
lates to decentralized learning and that relates to distribution
matching.

Cooperation in the Decentralized Setting: Many algo-
rithms for multi-agent cooperation tasks require some degree
of information sharing between agents. Centralized training
decentralized execution (CTDE) methods use a single cen-
tralized critic that aggregates information during training, but
is no longer required at execution time (Lowe et al. 2017;
Sunehag et al. 2018; Rashid et al. 2018; Foerster et al. 2018;
Yu et al. 2022). In practical implementations, agent
networks often share parameters during training as well.

Rather than sharing model components, methods may also
explicitly communicate information between agents. Agents
may be allowed to directly communicate information to each
other (Jaques et al. 2019; Li and He 2020; Konan, Seraj, and
Gombolay 2022). There might also be a central network that
provides coordinating signals to all agents (He et al. 2020;
Liu et al. 2021). Knowledge of other agents’ policies during
training may also be assumed to limit the deviation of the
joint policy (Wen et al. 2021).

This work studies the fully decentralized setting without
communication or shared model components. To our knowl-
edge, relatively few works consider this setting. Early work
analyzed simple cases where two agents with similar but
distinct goals could cooperate for mutual benefit under a
rationality assumption (Rosenschein and Breese 1989; Gene-
sereth, Ginsberg, and Rosenschein 1986). More recently, in

the A L A N system for multi-agent navigation (Godoy et al.
2018), agents learn via a multi-armed bandits method that
does not require any communication. Jiang and Lu (2021)
study the decentralized multi-agent cooperation in the offline
setting—in which each agent can only learn from its own
data set of pre-collected behavior without communication—
and propose a learning technique that relies on value and
transition function error correction.

Distribution Matching in M A R L : Ho and Ermon (2016)
originally proposed adversarial distribution matching as a
way to perform imitation learning in the single agent setting
(the G A I L algorithm). Song et al. (2018) extend G A I L to the
multi-agent setting in certain respects. Their analysis sets up
independent imitation learning as searching for a Nash equi-
librium, and assumes that a unique equilibrium exists. Their
experiments focus on training the agent policies in the CTDE
paradigm, rather than the fully distributed setting. This work
instead leverages recent single-agent G A I L convergence the-
ory (Guan, Xu, and Liang 2021) to demonstrate convergence
to the joint expert policy, and performs experiments with
distributed learning. Wang et al. (2021) study MA R L using
copula functions to explicitly model the dependence between
marginal agent policies for multi-agent imitation learning.
Durugkar, Liebman, and Stone (2020) and Radke, Larson,
and Brecht (2022) show that balancing individual preferences
(such as matching the state-action visitation distribution of
some strategies) with the shared task reward can accelerate
progress on the shared task. In contrast to these works, the
goal of this paper is not to study imitation learning, but rather to
study how distribution matching by independent agents can
enhance performance in cooperative tasks.

Perhaps most closely related to this work, Hao et al. (2019)
use self-imitation learning (SI L) (Oh et al. 2018) to encourage
agents to repeat actions that led to high returns in the past.
The above approach can be considered as a special case of the
setting this paper studies, where the target distribution can
be non-stationary, and is generated by the agents themselves.
This paper further presents a theoretical analysis, showing
that in the case where the target distribution is generated by
demonstrations (and is therefore stationary), each agent
attempting to minimize mismatch to their individual target
distributions leads to convergence to the joint target policy.
Due to the non-stationary nature of the target distribution in
S I L , similar guarantees cannot be obtained.

3 Background
This section describes the problem setup for MARL, imita-
tion learning, and distribution matching.

Markov games: A Markov game (Littman 1994) or a
stochastic game (Gardner and Owen 1983) with K agents
is defined as a tuple hK; S ; A; ; T ; R; i , where S is the

set of states, and A A K is the product of the set of ac-
tions A available to each agent. The initial state distribu-

tion is described by : S ! (S), where () indicates a
distribution over the corresponding set. The transitions

between states are controlled by the transition distribution
T : S A 0 A 1 : : : A K 1 ! (S). Each agent i

i i

1 K

i

0 i 1 i + 1 K 1

i 0 K 1 P 1
t = 0 i ; t i ; t

i i i i

P 1
t = 0 ; i ; t

P 1
t = 0

^ ;i i

P 1
t = 0

t
i ; t

0 1

0 0 1 1

E

E

E

Y X

X

E

0 0

P
t = 0s i ; t

0E E K

acts according to a parameterized policy : S ! (A),
and the joint policy = [; ;] is the vector of the
individual agent policies. Occasionally, the policy
parameters are omitted for convenience. Note that each
agent observes the full state. We use subscript i to refer to
all agents except i, i.e., refers to the agent policies, f
; : : : ; ; ; : : : ; g.

Each agent i is also associated with a reward function
R : S A : : : A ! R. The agent aims to
maximize its expected return E [t r], where r is
the reward received by agent i at time step t, and the
discount factor 2 [0; 1) specifies how much to discount
future rewards. In the cooperative tasks considered by this
paper, the task rewards are identical across agents.

In Markov games, the optimal policy of an agent depends
on the policies of the other agents. The best response policy
is the best policy an agent can adopt, given the other agent’s
policies = argmax E [t r]. If no agent can

unilaterally change its policy without reducing its return,
then the policies are considered to be in a Nash equilibrium.
That is, 8i 2 [0; K 1]; 8^i = i ; E i ; i [t r i ;t] E

[r].
The theoretical analysis in Section 4 deals with the above

fully observable setting, and assumes a discrete and finite
state and action space. However, the experiments are con-
ducted in partially observable MDPs (POMDPs) with contin-
uous states, which can be formalized as Dec-POMDPs in the
multi-agent setting (Oliehoek 2012). Dec-POMDPs include
two additional elements: the set of observations
 and each agent’s observation function Oi : S ! (
).

Distribution matching and imitation learning: Imitation
learning (Bakker and Kuniyoshi 1996; Ross, Gordon, and
Bagnell 2011; Schaal 1997) is a problem setting where an
agent tries to mimic trajectories f ; ; : : :g where each tra-
jectory = f(s ; a); (s ; a); : : :g is demonstrated by an
expert policy . Various methods have been proposed to
address the imitation learning problem. Behavioral cloning
(Bain and Sammut 1995) applies supervised learning to ex-
pert demonstrations to recover the maximum likelihood pol-
icy. Inverse reinforcement learning (IRL) (Ng, Russell et al.
2000) recovers a reward function which can then be used to
learn the expert policy using reinforcement learning. To do
so, IR L () aims to recover a reward function under which
the trajectories demonstrated by are optimal.

Ho and Ermon (2016) formulate imitation learning as a
distribution matching problem and propose the G A I L algo-
rithm. Let the state-action visitation distribution of a joint
policy = h1; : : : K i be:

K 1

(s; a) : = (1) i (ai js) t P (st = sj()):
i = 1 t = 0

In a multi-agent setting, for agent i,
1

i ; i (s; a) : = (1)i (ajs) tp(st = sji ; i) t = 0

refers to the marginal state-action visitation distribution of
agent i’s policy i , given the other agents’ policies i . In

the single agent setting, a policy that minimizes the mismatch
of its state-action visitation distribution to the one induced
by the expert’s trajectories and maximizes its causal entropy
H () is a solution to the RL IR L () problem (Ho and Ermon
2016). That is, distribution matching is a solution to the
imitation learning problem.

Guan, Xu, and Liang (2021) showed that in the single-
agent case, the G A I L algorithm converges to the expert pol-
icy under a variety of policy gradient techniques, including
TRPO (Schulman et al. 2015). Let r be a reward function
(based on a discriminator) parameterized by , and let () be
a convex regularizer. Guan, Xu, and Liang (2021) formu-late
the G A I L problem as the following min-max problem:

min max L(;) (1)

s.t. L (;) : = V (E ; r) V (; r) ()

where V (; r) = E E [1 t r] is the expected
return from some start state when following policy and
using reward function r.

In the multi-agent setting, imitation learning has the added
complexity that the expert trajectories are generated by the
interaction of multiple expert policies h ; : : : ; i. Suc-
cessful imitation in this setting thus involves the coordination
of all K agents’ policies.

4 Theoretical Analysis
This section provides theoretical grounding for the core
proposition of this paper. The target distribution is assumed to
be the empirical distribution of demonstrations from a set of
“expert” agents in order to ensure that it is achievable by
the agents. Under the conditions stated below, the analysis
shows that if K agents independently minimize the
distribution mis-match to their respective demonstrations in
a turn-by-turn fashion, then agent policies will converge to
the joint expert policy.

The three conditions are as follows. First, this joint expert
policy needs to be coordinated,1 but does not have to be a
Nash equilibrium with respect to any particular task. Second,
for every policy considered, there is a minimal probability
of visiting each state. Third, each agent learns via a single-
agent imitation learning algorithm such that it improves its
distribution matching reward at each step.

Next, we establish that if the agents are learning to maxi-
mize the mixture of an extrinsic task reward and a distribution
matching reward, then the agent policies will converge to a
Nash equilibrium with respect to the joint reward.

Convergence of Independent G A I L Learners
This analysis considers the setting where each agent i per-
forms independent learning updates according to the G A I L
algorithm, to match the visitation distribution of the ith ex-
pert. It proposes a condition on an individual agent’s G A I L
objective improvement. If this condition is satisfied, it shows
that a lower bound on a joint distribution matching objective
is improved. Further, the lower bound objective converges,
demonstrating the convergence of independent G A I L .

1Condition is made concrete in Section 5.

i i i

i

i i 2 i i i

i i

i

i

i

1
;a i

h i

P
t = 0 t

j

h

a
E

i

i i i

E

X

a i i
E

i

X
" #

X X
E

t + 1 a ti i

i
i t i

i

E

j

i

i
E i

 ; Ei i

T

 ; Ei i

T T

T

T I ; i

T

E

T

T E

Let the parameterized (discriminator) reward of agent i
be r : S A ! R, for 2 . At each agent’s up-
date, all the other agent policies are held fixed, and the
corresponding discriminator has converged to ropt, where

opt 2 argmax L (; j). Guan, Xu, and Liang
(2021) showed that the learning process of a single agent
repeatedly updating converges to opt. The update scheme
we consider for theoretical purposes is specified in Algorithm
2, located in Appendix A. 2

Define the per-agent G A I L loss as follows:

L(i ; i j i) : = V (E i ; r opt jE i)

 V (i ; ropt ji) (i)

s.t. V (i ; ropt ji) : =
1 s

E
i i

ropt (s; ai)

where (s) = (1) 1 t P (s = sj) is the dis-
counted state visitation distribution.

Consider the random variable that is the indicator function
1 a j = a E (s) for the event that at state s, agent j would take an
action that matched expert j ’s action. Note that the ex-
pectation of this indicator is the probability of matching the
expert’s action3. Define the joint action-matching objective
as the probability that agent actions match their correspond-
ing experts (plus a constant), weighted by the probability of
visiting states:

J () =
X

(s) (K 1) + E [1 T
i a i = a i

(s)] : (2) s 2 S

where 1 T
a = a E (s) indicates the event that all agents take

actions that match their corresponding experts. Maximizing
J () precisely corresponds to solving the multi-agent imita-
tion learning problem because the joint expert policy is
the unique maximizer of J () (Lemma 5, Appendix A).
Theorem 1 (action-matching objective). The joint action-
matching objective J () is lower bounded by the following
sum over individual action-matching rewards 1 a i = a E (s) :

K

L () : = (s) E [1 a i = a i
(s)] : (3)

s 2 S i = 1

When an agent updates its policy to optimize its component
of L () , the state visitation distribution might change such that
the expected action rewards for other agents decrease. The
next corollary introduces a lower bound on L () that is
independent of the state visitation distribution .
Corollary 1 (lower bound). Let be the minimum probability of
visiting any state. For all , L () is lower bounded by L () :

K

L ()

>
 s 2 S i = 1

a i

E
i
[1 a i = a i

(s)] = : L () : (4)

2 A technical appendix is included in the arXiv version of this
paper, h t t p s : / / a r x i v . o r g / a b s / 2206 . 00233 .

3For the purpose of exposition, assume that the expert policy is
deterministic. The theory in this section can be extended to the case
where E is stochastic by comparing the distributions over actions.

With the lower bound, L we make the following assump-
tion to relate our action-matching reward to the GAIL dis-
criminator reward that is improved by the GAIL algorithm.
Assumption 1 (action-matching reward). For all agents i
and all states s, an increase in the expected converged GAIL
discriminator reward implies an increase to the expected
action-matching reward function:

E [r (s; ai)] > E [r (s; ai)]
a i i i i

=)
a i

E
t + 1

[1 a i = a E (s)] >
a i

E
i

[1 a i = a E (s)]:

If the reward r (s; a) = log D(s; a), as it is in G A I L ,
then the assumption above is valid (see Appendix A).

Assumption 1 ensures each agent updating its policy leads
to improvement in L (). This L () is a lower bound on the
actual objective of interest J ()—by Theorem 1 and
Corollary 1. Further, L () has a unique global maximizer,
which is = (Lemma 7). Thus, while the action reward for
the other agents r might decrease in the short term, the
joint action matching objective across all agents will increase
as the learning process continues. Since J () is bounded
from above (Lemma 4), this process of improving the lower
bound will converge to the optimal policy for this objective—
the joint expert policy.
Theorem 2 (convergence). Each agent maximizing its in-
dividual return over the individual action rewards r will
converge to the joint expert policy E .

Multi-agent Learning with Mixed Task and
Imitation Reward
Lemma 5 in Appendix A shows that the joint expert policy
uniquely maximizes the joint imitation learning objective. Let
op t ; E i be the optimal discriminator parameters for the ith

expert, . From a game theoretic perspective, this lemma
implies that these expert policies are a Nash equilibrium for
the imitating agents with respect to ropt .

Next, note that in imitation learning, it is typically not
necessary for the agents to know what the demonstration
actor’s task reward is. However, suppose that the agents have
access to both demonstrations from policies optimal at task
T , and the corresponding reward function R .

Let R I ; i = ropt , and let the expert policies maximize
R . The expert policies that maximize R are in a Nash
equilibrium with respect to R . Theorem 3 states that if the
agents are trained to maximize a reward function that is a
linear combination of the task reward R and R , then the
converged agent policies are also in a Nash equilibrium with
respect to R T .
Theorem 3. Let R be the reward function used to train the
expert policies , and let the expert policies have converged
with respect to R (i.e., they are in a Nash equilibrium with
respect to reward R). Then are a Nash equilibrium for
reward functions of the form, R T + R I ; i , for any ; > 0.

Theorem 2 does not require that the demonstrations origi-
nate from optimal policies for some task. However, Theorem
3 implies that if the demonstrations do maximize the reward

K
i = 1i i

i
 ;î i

1 K

0 0
0

X
i i

0 K

k

env

k

k ;

en
m m

m

of a desired task, then the task reward and distribution match-
ing reward can be combined to optimize the same task. The
proposed algorithm, DM2, takes this approach.

5 Methods
This section discusses practical considerations of fully dis-
tributed multi-agent distribution matching, and proposes DM2,
an algorithm whose performance is analyzed in Section 6.

Generating Expert Demonstrations
Section 4 shows that agents individually following demon-
strations from an existing joint policy can converge to said
joint policy without centralized training or communication.
In practice, these demonstrations should imply an achievable
joint expert policy.

For illustration, consider a four tile gridworld, where only
one agent is allowed on a tile at a time. Let one of the tiles be
labelled, “A”. Suppose there are two agents, and each agent i
is provided with a separate target state-action distribution,
consisting of agent i occupying a tile “A”, and the other
agent occupying one of the three remaining tiles. If both
agents simultaneously attempt to match their provided target
distributions, then both agents will attempt to occupy tile “A”.
With these demonstrations, it is impossible for both agents to
fully match their desired distributions.

The example above shows that for each agent to completely
match its desired distribution, the state-action distributions
for all agents must be compatible in some way. This notion
of compatibility is defined below.

Definition 1 (Compatible demonstrations). State-action vis-
itation distributions i ; ^ i from a collection of K poli-cies
f g (where ^ are the other agent policies exe-
cuted with to obtain the state-action visitation distribution

) are compatible if for all i, s 2 S ; a 2 A , there exists
a joint policy 0 = h0 ; : : : ; 0 i with the joint state-action
visitation distribution (s; a) (Equation 3) such that the
marginal state-action visitation distribution for agent i is:

1

i ; i
 (s; a) : = (1)i (ajs) t P (st = sj0; 0

) t = 0

= i ; ^ i (s; a):

Observe that K expert policies that are trained in the same
environment to perform a task induce compatible individ-
ual state-action visitation distributions, providing a practical
method to obtain compatible demonstrations.

Practical Multi-Agent Distribution Matching
DM2 is inspired by the theoretical analysis in Section 4, and
balances the individual objective of distribution matching
with the shared task. To do so, the agents are provided a
mixed reward: part cost function for minimizing individ-
ual distribution mismatch, part environment reward. This
approach has been shown to be effective in balancing individ-
ual preferences with shared objectives in M A R L (Durugkar,
Liebman, and Stone 2020; Cui et al. 2021). The individual
agent policies are learned by independently updating each

Algorithm 1: DM2 (Decentralized M A R L via
distribution matching)

Input: Number of agents K , expert demonstrations
D ; : : : ; D , environment env, number of
epochs N , number of time-steps per epoch M,
reward mixture coefficient c

1 for k = 0; : : : ; K 1 do
2 Initialize discriminator parameters ; 3

Initialize policy parameters k ;
4 end
5 for n = 0; 1; : : : ; N 1 do
6 Gather m = 1; : : : ; M steps of data

(sm ; am ; r m) from env;
7 for k = 0; : : : ; K 1 do
8 Sample M states from demonstration Dk ;
9 Update discriminator D;

10 Compute G A I L reward
r m

G A I L = log Dk ; (sm) for all M
demonstration states;

11 Set agent reward r k ; m i x = r m
v + rk ; G A I L c;

12 Update agent policy k with data
(sm ; am ; rk ; m i x) for m = 1; : : : ; M;

13 end
14 end

Output: K agent policies

agent’s policy using an on-policy R L algorithm of choice.
The experiments here use PPO (Schulman et al. 2017).

In the experiments, the demonstrations used as targets
for the distribution matching are compatible, state-only
trajectories—i.e., originating from policies trained jointly
on the task of interest. The use of state-only demonstrations
enables learning purely from observations of other agents
(e.g. online videos), and is supported by research in the
sub-area of imitation from observation alone (Torabi,
Warnell, and Stone 2019). Our experiments also validate the
effective-ness of the approach in this setting. In Section 6, we
show that the demonstrator policies may possess
intermediate compe-tency in the task at hand, and that the
demonstrations do not need to be jointly sampled for all the
agents. The proposed learning scheme for training individual
agents is summarized by Algorithm 1 and Figure 1.

6 Experimental Evaluation
This section presents two main experiments. The first experi-
ment evaluates whether DM2 may improve coordination–and
therefore efficiency of learning–over a decentralized MARL
baseline. A comparison against CTDE algorithms is also per-
formed. The second experiment is an ablation study on the
demonstrations that are provided to DM2. These ablations
seek to answer the question whether the faster, improved
learning above is due to coordination between experts, or due
to individual experts being competent.

Additional experiments in Appendix B evaluate the
effect of the demonstration quality on learning, ana-

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

M
e
a
n
 B

a
tt

le
 W

o
n
 R

a
te

env i ; m i x env

i ; G A I L

5v6 3sv4z 3sv3z
1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

0.0
0.00 0.25 0.50 0.75 1.00

Timesteps 1e7

dm2, ippo demo (5m) qmix baseline

dm2, ippo demo (7m) rmappo baseline

dm2, qmix demo ippo demo (5m)

dm2, sil ippo demo (7m)

ippo baseline qmix demo

0.0
0.00 0.25 0.50 0.75 1.00

Timesteps 1e7

dm2, ippo demo (5m) qmix baseline

dm2, ippo demo (6m) rmappo baseline

dm2, qmix demo ippo demo (5m)

dm2, sil ippo demo (6m)

ippo baseline qmix demo

0.0
0.00 0.25 0.50 0.75 1.00

Timesteps 1e7

dm2, ippo demo (10m) qmix baseline

dm2, qmix demo rmappo baseline

dm2, sil ippo demo (10m)

ippo baseline qmix demo

Figure 2: Learning curves of DM2 (ours), compared to IPPO, RMAPPO, and Q M I X baselines on the 5v6, 3sv4z, and 3s3z tasks.
DM2 is trained with demonstrations from IPPO and Q M I X experts. IPPO demonstrations are sampled from varying points in the
training process of the IPPO experts, and therefore vary in quality. A variation with S I L is also shown.

lyze the usage of demonstrations for behavioral cloning
(Bain and Sammut 1995) instead of distribution match-
ing, and examine the impact of using only distribution
matching G A I L rewards for learning instead of mixing
them with the task rewards. The code is provided at
ht tps : / / g i t hub. com / c a ro l ine w ang01/dm2.

Environments: Experiments were conducted on the Star-
Craft Multi-Agent Challenge domain (Samvelyan et al. 2019).
It features cooperative tasks where a team of controllable al-
lied agents must defeat a team of enemy agents. The enemy
agents are controlled by a fixed AI. The battle is won and the
episode terminates if the allies can defeat all enemy agents.
The allies each receive a team reward every time an enemy
agent is killed, and when the battle is won. StarCraft is a par-
tially observable domain, where an allied agent can observe
features about itself, as well as allies and enemies within a
fixed radius. The specific StarCraft tasks used here (with two
additional tasks in Appendix B) are:
• 5v6: 5 Marines (allies) and 6 Marines (enemies)
• 3sv4z: 3 Stalkers (allies) and 4 Zealots (enemies)
• 3sv3z: 3 Stalkers (allies) and 3 Zealots (enemies)

Baselines: DM2 is compared against a naive decentralized
M A R L algorithm, independent PPO (Schulman et al. 2017)
(IPPO), where individual PPO agents directly receive the team
environment reward. Although agents trained under the IPPO
scheme cannot share information and see only local obser-
vations, prior work has shown that IPPO can be surprisingly
competitive with CTDE methods (Yu et al. 2022). We also
compare against two widely used CTDE methods, Q M I X
(Rashid et al. 2018) and RMAPPO (Yu et al. 2022). These
CTDE methods have the advantage of a shared critic network
that receives the global state during training. Thus, their per-
formance is expected to be better than that of decentralized
methods with no communication.

Setup: DM2 uses the same IPPO implementation as the
baseline, with the addition of a G A I L discriminator for each
independent agent i to generate an imitation reward signal,
ri ; G A I L . The scaled G A I L reward is added to the environment

reward r , with scaling coefficient c 2 R: r = r +
r c. Learning curves of all algorithms are the mean of 5
runs executed with independent random seeds, where each
run is evaluated for 32 test episodes at regular intervals during
training. The shaded regions on the plots show the standard
error. The evaluation metric is the mean rate of battles won
against enemy teams during test episodes.

The data for the G A I L discriminator consists of 1000 joint
state-only trajectories (no actions). The data is sampled from
checkpoints during training runs of baseline IPPO with the en-
vironment reward, and Q M I X with the environment reward. In
runs of DM2, each agent imitates the marginal observations of
the corresponding agent from the dataset (i.e., agent i will im-
itate agent i’s observations from the dataset) 4. For each task,
demonstrations are sampled from IPPO and QMIX-trained
joint expert policies, executed stochastically for IPPO and
with an -greedy sampling for QM I X. The win rates achieved
by the demonstration policies are plotted as horizontal lines
on the graphs. Additionally, SIL(Hao et al. 2019) can be seen
as a variation of DM2, with the target demonstrations being
the agent’s most successful prior trajectories. Experimental
details such as hyperparameters are specified in Appendix C.

Main Results
Figure 2 shows that in all three tasks, DM2 significantly im-
proves learning speed over IPPO (the decentralized baseline).
Q M I X and RM APPO (the CTDE baselines) learn faster than
DM2 and IPPO on both tasks, illustrating the challenging na-
ture of the decentralized cooperation problem. However, on
5v6 and 3sv3z, all methods converge to a similar win rate

towards the end of training. For the demonstrations from
IPPO experts, DM2 surpasses the win rate of the demonstra-
tions. Despite the significant variance in win rates among
the demonstrations for each task, DM2 performs similarly.
Similar robustness to demonstration quality is seen even with

4The allied agent teams in our experiments have the same
state/action spaces. Thus, the mapping of agents to demonstration
trajectories does not matter, as long as it is fixed

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

m i x

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

dm2 (concur., joint) concur., indep. nonconcur., indep. nonconcur., joint demo

Figure 3: Ablations for IPPO trained with r on the 5v6 task. The case where the demonstrations are concurrently sampled
from co-trained (joint) expert policies corresponds to DM2. Left: Experiments performed with lower quality IPPO demonstration
(5m). Right: Experiments performed with higher quality IPPO demonstration (7m).

10 different demonstration qualities (Figure 7 in Appendix
B). The relative invariance to demonstration quality suggests
that the demonstrations provide a useful coordinating sig-
nal, enabling agents to discover higher-return behaviors than
those portrayed in the demonstrations.

On the other hand, using trajectories from earlier in train-
ing as demonstrations (SI L) shows inconsistent performance.
Its performance is comparable to RMAPPO in 5v6, but it
learns more slowly in the other domains. This may occur be-
cause S I L requires examples of successful coordination by the
agents, which may be rare in certain tasks. Using past trajec-
tories as demonstrations also leads to a nonstationary target
distribution for imitation, potentially negatively impacting
the learning procedure.

Ablation Study
This section presents an ablation study on the demonstrations.
It investigates whether the coordination of expert agents or
their individual competency is more important to the success
of DM2 in the main experiment. This comparison is done
by considering demonstrations that vary in two dimensions:
whether they were sampled from expert teams that form
a joint policy (co-trained), or whether they were sampled
simultaneously (concurrently sampled).

The first dimension tests the requirement that agents are
trained to coordinate with each other, while the second tests
whether agents must act together when generating demon-
strations. Concurrently sampled demonstrations of agents
that were not co-trained, gives us examples of individually
competent agents acting in the multi-agent setting.

The experiments apply DM2 to four possible demonstration
styles that vary in the aforementioned two dimensions. A
detailed explanation of how these four demonstration styles
were constructed is provided in Appendix C. The study is
performed on the 5v6 task, with the same hyperparameters
used in the experiments of the previous section.

Figure 3 shows the learning curves of the four combina-
tions. The axis that appears to make the greatest difference
in learning is whether the demonstrations originate from ex-
pert policies that were co-trained, and were thus coordinated.
Whether the agent demonstrations were concurrently sam-

pled does not appear to significantly impact learning. Similar
trends are observed when DM2 is trained with the lower qual-
ity demonstration (Figure 3, left).

7 Discussion and Future Work
This paper studies distributed M A R L for cooperative tasks
without communication or explicit coordination mechanisms.
Fully distributed MA R L is challenging, since simultaneous
updates to different agents’ policies can cause them to diverge.
The benefits of distributed M A R L are abundant. Decentral-
ized training could make agents more robust to the presence
of agents they were not trained with (e.g. humans). Decentral-
ized training could also enable coordination while preserving
the privacy of each agent.

The theoretical analysis of this paper shows that individual
agents updating their policies turn-by-turn to reduce their
distribution mismatch to corresponding expert distributions
improves a lower bound to the joint action-matching objective
against the joint expert policy. Fully maximizing the lower
bound corresponds to recovering the joint expert policy. The
experiments verify that mixing the task reward with the dis-
tribution matching reward accelerates cooperative task learn-
ing, compared to learning without the distribution matching
objective. The ablation experiments show that expert demon-
strations should be from policies that were trained together,
but not necessarily concurrently sampled.

While this work is a meaningful step towards fully dis-
tributed multi-agent learning via distribution matching, some
open questions remain. Future work could consider whether
demonstrations sampled from expert policies with other prop-
erties, such as those trained with reward signals correspond-
ing to different tasks, could be beneficial for distributed learn-
ing. The method proposed in this paper could also be lever-
aged to combine human demonstrations with a task reward
for applications of MARL ranging from expert decision mak-
ing (similar to that done by Gombolay et al. (2018) in the
context of medical recommendation) or in the context of com-
plex multi-agent traffic navigation (Behbahani et al. 2019).
Another potential path forward would be considering human
in the loop settings such as the TAMER architecture (Knox
and Stone 2009), but in a fully distributed multi-agent setting.

´ ´

Acknowledgements
This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The
University of Texas at Austin, and at SparkCognition Applied
Research. LARG research is supported in part by the National
Science Foundation (CPS-1739964, IIS-1724157, FAIN-
2019844), the Office of Naval Research (N00014-18-2243),
Army Research Office (W911NF-19-2-0333), DARPA, Gen-
eral Motors, Bosch, and Good Systems, a research grand
challenge at the University of Texas at Austin. The views
and conclusions contained in this document are those of the
authors alone. Peter Stone serves as the Executive Director
of Sony A I America and receives financial compensation
for this work. The terms of this arrangement have been re-
viewed and approved by the University of Texas at Austin in
accordance with its policy on objectivity in research.

References
Bain, M.; and Sammut, C. 1995. A Framework for Be-
havioural Cloning. In Machine Intelligence 15, 103–129.
Bakker, P.; and Kuniyoshi, Y. 1996. Robot see, robot do:
An overview of robot imitation. In AISB96 Workshop on
Learning in Robots and Animals, 3–11.
Barrett, S.; and Stone, P. 2012. An analysis framework for ad
hoc teamwork tasks. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-
Volume 1, 357–364.
Behbahani, F.; Shiarlis, K.; Chen, X.; Kurin, V.; Kasewa, S.;
Stirbu, C.; Gomes, J.; Paul, S.; Oliehoek, F. A.; Messias, J.;
et al. 2019. Learning from demonstration in the wild. In
2019 International Conference on Robotics and Automation
(ICRA), 775–781. IEEE.
Cui, J.; Macke, W.; Yedidsion, H.; Goyal, A.; Urielli, D.; and
Stone, P. 2021. Scalable Multiagent Driving Policies For
Reducing Traffic Congestion. In Proceedings of the 20th
International Conference on Autonomous Agents and Multi
Agent Systems (AAMAS).
Durugkar, I.; Liebman, E.; and Stone, P. 2020. Balancing
individual preferences and shared objectives in multiagent
reinforcement learning. In Proceedings of the 29th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual Multi-Agent Policy Gra-
dients. Proceedings of the AAAI Conference on Artificial
Intelligence, 32.
Gardner, R.; and Owen, G. 1983. Game Theory (2nd Ed.).
Journal of the American Statistical Association, 78: 502.
Genesereth, M. R.; Ginsberg, M. L.; and Rosenschein, J. S.
1986. Cooperation without Communication. In Proceedings
of the AAAI Conference on Artificial Intelligence.
Godoy, J.; Chen, T.; Guy, S. J.; Karamouzas, I.; and Gini,
M. L . 2018. ALAN: adaptive learning for multi-agent navi-
gation. Autonomous Robots, 42: 1543–1562.
Gombolay, M.; Yang, X . J.; Hayes, B.; Seo, N.; Liu, Z.;
Wadhwania, S.; Yu, T.; Shah, N.; Golen, T.; and Shah, J. 2018.
Robotic assistance in the coordination of patient care. The

International Journal of Robotics Research, 37(10): 1300–
1316.
Guan, Z.; Xu, T.; and Liang, Y. 2021. When Will Generative
Adversarial Imitation Learning Algorithms Attain Global
Convergence. In AISTATS.
Hao, X.; Wang, W.; Hao, J.; and Yang, Y. 2019. Independent
Generative Adversarial Self-Imitation Learning in Coopera-
tive Multiagent Systems. In Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and Multi Agent
Systems, 1315–1323.
He, X.; An, B.; Li , Y.; Chen, H.; Wang, R.; Wang, X.; Yu,
R.; Li , X.; and Wang, Z. 2020. Learning to Collaborate in
Multi-Module Recommendation via Multi-Agent Reinforce-
ment Learning without Communication. Fourteenth ACM
Conference on Recommender Systems.
Hernandez-Leal, P.; Kartal, B.; and Taylor, M. E. 2019. A
survey and critique of multiagent deep reinforcement learn-
ing. Autonomous Agents and Multi-Agent Systems, 33: 750 –
797.
Ho, J.; and Ermon, S. 2016. Generative adversarial imitation
learning. Advances in neural information processing systems,
29: 4565–4573.
Jaques, N.; Lazaridou, A.; Hughes, E.; Gulcehre, C.; Ortega,
P.; Strouse, D.; Leibo, J. Z.; and De Freitas, N. 2019. Social
Influence as Intrinsic Motivation for Multi-Agent Deep Rein-
forcement Learning. In Chaudhuri, K.; and Salakhutdinov,
R., eds., Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine
Learning Research. PMLR.
Jiang, J.; and Lu, Z. 2021. Offline Decentralized Multi-Agent
Reinforcement Learning. ArXiv, abs/2108.01832.
Knox, W. B.; and Stone, P. 2009. Interactively shaping agents
via human reinforcement: The TAMER framework. In Pro-
ceedings of the fifth international conference on Knowledge
capture, 9–16.
Konan, S.; Seraj, E.; and Gombolay, M. 2022. Iterated Rea-
soning with Mutual Information in Cooperative and Byzan-
tine Decentralized Teaming. In ICLR.
Leaute, T.; and Faltings, B. 2013. Protecting privacy through
distributed computation in multi-agent decision making. Jour-
nal of Artificial Intelligence Research, 47: 649–695.
Leibo, J. Z.; Zambaldi, V.; Lanctot, M.; Marecki, J.; and
Graepel, T. 2017. Multi-agent Reinforcement Learning in
Sequential Social Dilemmas. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems,
464–473.
Li, H.; and He, H. 2020. Multi-Agent Trust Region Policy
Optimization. CoRR, abs/2010.07916.
Littman, M. L . 1994. Markov games as a framework for
multi-agent reinforcement learning. In Machine learning
proceedings 1994, 157–163. Elsevier.
Liu, B.; Liu, Q.; Stone, P.; Garg, A.; Zhu, Y.; and Anand-
kumar, A. 2021. Coach-Player Multi-Agent Reinforcement
Learning for Dynamic Team Composition. In International
Conference on Machine Learning.

Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; and
Mordatch, I. 2017. Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments. In NeurIPS.
Marinescu, A.; Dusparic, I.; and Clarke, S. 2017. Prediction-
based multi-agent reinforcement learning in inherently non-
stationary environments. ACM Transactions on Autonomous
and Adaptive Systems (TAAS), 12(2): 1–23.
Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Icml, volume 1, 663–670.
Oh, J.; Guo, Y.; Singh, S.; and Lee, H. 2018. Self-imitation
learning. In International Conference on Machine Learning,
3878–3887. PMLR.
Oliehoek, F. A. 2012. Decentralized POMDPs, 471–503.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-
642-27645-3.
Radke, D.; Larson, K.; and Brecht, T. B. 2022. Explor-
ing the Benefits of Teams in Multiagent Learning. ArXiv,
abs/2205.02328.
Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2018. QMIX: Monotonic Value
Function Factorisation for Deep Multi-Agent Reinforcement
Learning. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings of
Machine Learning Research. PMLR.
Rosenschein, J. S.; and Breese, J. S. 1989. Communication-
Free Interactions among Rational Agents: A Probabilistic
Approach. In Distributed Artificial Intelligence.
Ross, S.; Gordon, G.; and Bagnell, D. 2011. A reduction of
imitation learning and structured prediction to no-regret on-
line learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 627–635.
Samvelyan, M.; Rashid, T.; de Witt, C. S.; Farquhar, G.;
Nardelli, N.; Rudner, T. G. J.; Hung, C.-M.; Torr, P. H. S.;
Foerster, J.; and Whiteson, S. 2019. The StarCraft Multi-
Agent Challenge. CoRR, abs/1902.04043.
Schaal, S. 1997. Learning from demonstration. In Advances
in neural information processing systems, 1040–1046.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In International
conference on machine learning, 1889–1897. PMLR.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science,
362(6419): 1140–1144.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature, 550(7676): 354–359.
Song, J.; Ren, H.; Sadigh, D.; and Ermon, S. 2018. Multi-
Agent Generative Adversarial Imitation Learning. In Ad-
vances in Neural Information Processing Systems, vol-
ume 31.

Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.; Zam-
baldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo,
J. Z.; Tuyls, K.; and Graepel, T. 2018. Value-Decomposition
Networks For Cooperative Multi-Agent Learning Based On
Team Reward. In Proceedings of the 17th International Con-
ference on Autonomous Agents and Multi Agent Systems,
AAMAS ’18.
Thrun, S. 1998. Lifelong learning algorithms. In Learning
to learn, 181–209. Springer.
Torabi, F.; Warnell, G.; and Stone, P. 2019. Generative Ad-
versarial Imitation from Observation. arXiv:1807.06158 [cs,
stat]. ArXiv: 1807.06158.
Wang, H.; Yu, L.; Cao, Z.; and Ermon, S. 2021. Multi-agent
Imitation Learning with Copulas. In Machine Learning and
Knowledge Discovery in Databases. Research Track, 139–
156.
Wen, Y.; Chen, H.; Yang, Y.; Tian, Z.; Li, M.; Chen, X.; and
Wang, J. 2021. A Game Theoretic Approach to Multi-Agent
Trust Region Optimization.
Yang, Y.; and Wang, J. 2020. An overview of multi-agent
reinforcement learning from game theoretical perspective.
ArXiv, abs/2011.00583.
Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; and
Wu, Y. 2022. The Surprising Effectiveness of MAPPO in
Cooperative Multi-Agent Games. In Proceedings of the Neu-
ral Information Processing Systems Track on Datasets and
Benchmarks.

0 K

k

k

en
opt

k

k

a
E

i i

E

E

E

iE i i ii i

i i

Appendix
A Convergence Proof Details

In Section 4, we lay out some of the conditions for our theoretical analysis. One of these conditions, that for every policy
considered there is a minimal probability of visiting each state, is formalized below.
Condition 1. Let 0 < < 1, and let be the state visitation distribution induced by any joint policy during training. For all
agents i and for all s, suppose that (s) .

Algorithm 2: Distributed MA R L with distribution matching
Input: Number of agents K , expert demonstrations D ; : : : ; D , environment env, number of time-steps per epoch M

1 for k = 0; : : : ; K 1 do
2 Initialize discriminator parameters ; 3

Initialize policy parameters k ;
4 end
5 while any() not converged do
6 for k = 0; : : : ; K 1 do
7 Gather m = 1; : : : ; M steps of data (sm ; am ; r m

v) from env;
8 Update agent discriminator r k to maximize Equation 1 until convergence to r ; 9

Update agent policy using TRPO to minimize Equation 1
10 end
11 end

Output: K agent policies

Recall that the joint action-matching objective is defined over the expected state visitation as the probability that all agent
actions match their corresponding experts (plus a constant):

J () =
X

(s)
h

(K 1) + E [1 T
i a i = a i

(s)]
i
: s 2 S

where 1 T
a i = a E (s) indicates the event that all the agents took actions that matched their corresponding experts.

We first prove some properties of J () .
Lemma 4. The objective J () is bounded by

(K 1) J () K : Proof.

As shorthand, define f () =
P

s 2 S (s) E a [1 T
i a i = a i

(s)]. Then,

J () = (K 1) + f () :

First, note that f () 0 because it is a weighted sum of expectations over indicator functions, where all weights are non-
negative, and it is precisely 0 if for all states, the joint agent policy does not match the correct expert actions. Thus, J () is
lower bounded by (K 1). For the upper bound, notice that the outer summation is equivalent to the expectation under state
visitation distribution . Inside, each expectation over the indicators can be at most 1, implying that f () is at most 1. Thus,
J () K .

Lemma 5. Suppose the joint expert policy E is deterministic. Then E is the unique maximizer of J () .

Proof. (Maximization) Since E is deterministic, by definition, each term

a
E

E
[1 T

i a i = a i
(s)] = 1:

Thus, J (E) = K , which means that E achieves the upper bound of J .
(Uniqueness) Suppose there exists another policy = that also achieves the upper bound, i.e. J () = K . Let

a E : = (s). Then there must be an agent i such that with positive probability, a (s) such that a = aE . Then it is immediate
that at state s, E a [1 T

a i = a E (s)] < 1. Combined with the non-zero probability of visiting every state (Condition 1), this
inequality then implies J (E) < K . By contradiction, E is the unique optimizer for J .

Next, we establish that individual agents performing GA I L updates maximizes a lower bound on J () . We leverage the
single-agent GAIL convergence result by (Guan, Xu, and Liang 2021) to show this result.

j
t

i i i i i i
t

k k

t
i i

t t t

t
i

i i

i i

i
1 1 ti ii i

i
ti ii i

i i

K

a i i
E

X
E

X
a

E

X X
i

X KX
a i i i

#

a j j

X X
E

Lemma 6. Let t be the time step at which agent i’s policy is updated. For all agents j , denote the optimal discriminators of
Equation 1 as ropt. Suppose agent i updates its policy parameters from i to t + 1 such that L(t+1 ; opt jt

) < L(t ; opt ji). This
decrease in loss is equivalent to increasing the agent i’s expected discriminator reward.

Proof. First, note that updating a single agent policy while keeping all discriminators fixed does not alter the expert value term
V (E k ; ro p t) or the regularizer term (opt) in the loss definition L . Thus, the condition that agent i’s loss has decreased is
equivalent to the value of agent i increasing:

V (i
+1 ; opt ji) > V (i ;

opt ji): (5)

For convenience of notation, agent i’s policy at time t will be written as i , and the ith discriminator ropt implicitly indicated by
the action subscript, r(s; ai). Similarly, we will write the state visitation distribution induced by the policies t+1 ; t by t +1 , and
the distribution induced by t ; t as t .

Rewriting Equation 5 in terms of visitation distributions:

1
E [r (s; a)] >

1
E [r (s; a)]

s t + 1 ; a i
t + 1 s t ; a i i

E [r (s; a)] > E [r (s; a)]: (6)
s t + 1 ; a i

t + 1 s t ; a i i

We next show that J () is lower bounded by the sum of the individual action-matching rewards for all agents i, over all states.
Theorem 1 (action-matching objective). The joint action-matching objective J () is lower bounded by the following sum over
individual action-matching rewards 1 a = a E (s) :

L () : =
X

(s)

"
X

E [1 a i = a i
(s)]

#

: (3)
s 2 S i = 1

Proof. Let us begin by rewriting J () in terms of action mismatches.

h i
J () =

s 2 S

(s)

h

(K 1) +
a
E[1 1 S

i a i = a i
(s)]

i
= (s) (K 1) + 1 + E [1 S

i a i = a i
(s)] :

s 2 S

This formulation allows us to apply the Union Bound:
"

K
#

J ()
s 2 S

(s)

"

K +
i = 1

a i
E

i
[1 a i = a E (s)]

= (s) E [1 1 a i = a E (s)]
s 2 S i = 1

= L () :

Theorem 1 relates the multi-agent imitation learning objective to a sum over single-agent imitation learning objectives. This is
important because each agent updates independently to improves its own learning objective in our setting. Note also that the

additive form of L () is similar to the value factorization assumptions made by algorithms like VDN (Sunehag et al. 2018).
It is difficult to say anything directly about the expected action-matching reward of agent j = i, E s t + 1 [1 E

= a (s)], as t + 1 may be
a state distribution over which agent j makes more mistakes (i.e. taking actions that don’t match the expert’s). While in general
agent j ’s expected reward may decrease due to agent i’s update, we show that under Assumptions 1 and 1, agent i’s update
increases a lower bound to L () that is independent of the state distribution.

Corollary 1 (lower bound). Let be the minimum probability of visiting any state. For all , L () is lower bounded by L () : K

L () >
s 2 S i = 1

a i

E
i
[1 a i = a i

(s)] = : L () : (4)

E E

E

E E

i E i

i i i i

i

i

t + 1 a ti i

i
ia = a i t ia = a i

i i i

E i (s; a)

= log

 log

i i

i i

i

i i

i i

i i i

t

Proof. The proof follows from the definition of L () and that for all s 2 S , and all encountered in training, (s) > .

Observation 1. L () is bounded by
0 L () jS jK :

Lemma 7. Suppose the joint expert policy E is deterministic. Then E is the unique maximizer of L () .

Proof. Proof for this Lemma follows closely the proof for Lemma 5.
(Maximization) Since E is deterministic, by definition, for each agent i, each term

a i E i

[1 a i = a i
(s)] = 0

a i

E
E i

[1 1 a i = a i
(s)] = 1:

Summing over all agents and taking the sum weighted by over all states, L () = jS jK , which means that achieves the upper
bound of L .

(Uniqueness) Suppose there is at least one agent policy = such that the joint policy also achieves the upper bound,
i.e. L () = jS jK . Then there must be a state s such that with non-zero probability, a (s) such that a = aE . It follows that
E a i E i [1 a i = a E (s)] > 0, meaning L (E) < jS jK . By contradiction, E is the unique optimizer of L .

Lemma 6 states that a single agent i updating its policy to improve its own GAIL loss is equivalent to increasing the expected
action reward r (s; a), where the expectation over states is with respect to some updated state visitation distribution t + 1

(Equation 6). Next, we make an assumption to relate our action-matching reward to the GA I L discriminator reward that is
improved by the GAIL algorithm.
Assumption 1 (action-matching reward). For all agents i and all states s, an increase in the expected converged GAIL
discriminator reward implies an increase to the expected action-matching reward function:

E [r (s; ai)] > E [r (s; ai)]
a i i i i

=) E [1 E (s)] > E [1 E (s)]:
a i

t + 1 a i i

This assumption is not as strong as it may first appear.
First, note that the converged GAIL reward consists of the negative discriminator prediction, r (s; a) = log D(s; a).
The discriminator predicts the likelihood ratio between the target visitation and the mix of target and agent visitation.

 r i

(s; ai) = log D(s; ai) = log
E (s; ai) + (s; ai)

E (s) E (ai js)
E (s) E (ai js) + (s) (ai js) E (s)

E (ai js)
E (s) E (ai js) + (ai js) = :

r(s; ai):

The minimal state visitation assumption states that (s) for all s, allowing us to relate r (s; a) to a state-visitation
independent reward, r (s; a). As we will argue next, r (s; a) is a similar quantity to the action-matching indicator reward.

To see this, first suppose ai = aE , which would imply that the action-matching indicator function is 0. Since the expert policy
is assumed to be deterministic, E (ai js) = 0, implying that r(s; ai) = 0 as well. If ai = aE , then r(s; aE) is not zero, and the
only way for agent i to increase r (s; aE) is to increase (aE js) — the probability of matching the expert’s action. Thus, an
increase in r (s; a) implies an increase in r (s; a), which behaves similarly to the action-matching indicator function.

Thus far, we have established that each individual agent’s policy improvement under the GA I L reward improves a lower
bound to the joint action-matching objective, J () . The following shows that within finite updates, each agent will be able to
independently improve its value function until it converges to the expert policy.
Condition 2. Let V () denote the value of an agent following a single-agent imitation learning algorithm. jV () V (E) j is
then the optimality gap at update t of the agent. Suppose that jV (t) V (E) j (t), where as t ! 1 , (t) ! 0.

This condition says that the single-agent imitation learning process should converge to the optimal (expert) policy with
convergence rate dictated by (t). For our setting, Guan, Xu, and Liang (2021) shows that the single-agent GAIL algorithm
converges (Theorem 3 and 4).

The next corollary shows that convergence of the single-agent imitation learning process is sufficient to guarantee the
convergence of the multi-agent imitation learning scheme discussed in the main paper.

X X1

i

i

1
c c t i

1

X

1 1X X

c
1
c

P
s 2 S i i

E E

E E

E

T E

T T E

c; i T I ; i c ; i I ; i

Corollary 2. There exists H 2 N+ ; H < 1 such that within H updates, agent i is able to improve its policy such that it
increases the probability of matching the expert’s action, summed over all states:

" #
E [r (s; a)] > E [r (s; a)] :

s 2 S a t + H
s 2 S

a i

Proof. For a single agent i, define V () =
P

s 2 S (s) c E a i [r i (s; a)]. Rewrite as follows:

V () =
s 2 S

(s)
a

E
i
[r i (s; a)]

=
c

s 2 S

((s))
a

E
i
[r i (s; a)] +

c
s 2 S

a
E

i
[r i (s; a)]:

Define the first term as a() : = 1 P
s 2 S ((s)) E a i [r i (s; a)], and the second term as b() : =

E a [r (s; a)]. Note that b() is the quantity of interest in the corollary.
The properties of the max operation directly imply that

max V () = max[a() + b()]

 max a() + max b():

The expert policy should maximize V () for any single-agent imitation learning algorithm. Note also that maximizes a()
and b(). Thus in our setting, the inequality in the above set of equations is actually an equality for the expert policy:

max V () = V (E)

= a(E) + b(E) = max a() + max b():

Assume that there is a policy = such that b() < b(), and that b() cannot be improved within finite updates. This contradicts
Condition 2, which establishes that the single-agent imitation learning algorithm should be able to improve the agent policy until
its value converges to the value of the expert policy.

Corollary 2 implies that within a finite number of policy updates by agent i, the quantity L () increases, because the other
terms corresponding to agents j = i are unchanged. By Theorem 2 and Lemma 7, L () is upper bounded by the constant jS jK .
Thus, by the monotone convergence theorem, the objective L () converges. Further, the expert policy is a maximizer of
L() , L () , and J () (Lemma 5 and Lemma 7).

Mixed Task and Imitation Reward
Theorem 3. Let R be the reward function used to train the expert policies , and let the expert policies have converged with
respect to R (i.e., they are in a Nash equilibrium with respect to reward R). Then are a Nash equilibrium for reward
functions of the form, R T + R I ; i , for any ; > 0.

Proof. Let R = R + R . The following reasoning is on a per-agent basis, so we drop the i from R and R for
convenience. For E i to not be a Nash equilibrium with respect to R c there needs to exist a policy ~i such that

That implies

But by definition, for all E i (s),

and

which is a contradiction.

E[Rc (~ i (s)jE i)] > E [R c (E i (s)jE i)]:

E [R T (~ i (S) jE i)] + E [R I (~ i (S) j E i)]
> E [R T (E i (s)jE i)] + E [R I (E i (s)jE i)]:

E [R T (E i (s)jE i)] E [R T (~ i (S) jE i)]

E [R I (E i (s)jE i)] E [R I (~ i (S) j E i)];

M
e
a
n
 B

a
tt

le
 W

o
n
 R

a
te

M
e
a
n
 B

a
tt

le
 W

o
n
 R

a
te

0 0 1 1 N N

m i x

3sv5z 8v9
1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

dm2, ippo demo (10m)

dm2, qmix demo

dm2, sil

ippo baseline

qmix baseline

rmappo baseline

ippo demo (10m)

qmix demo

dm2, ippo demo (10m)

dm2, qmix demo

dm2, sil

ippo baseline

qmix baseline

rmappo baseline

ippo demo (10m)

qmix demo

Figure 4: DM2 comparison with baselines in additional maps in the StarCraft domain. These results are an extension of the main
results from the paper.

B Supplemental Experimental Results
This section provides further commentary on results in the main paper and presents additional, supporting experiments. Figure 4
is an extension of our core results on two more maps in the Starcraft domain (3sv5z and 8v9), presented here due to space
constraints.

Demonstration Styles of Ablation Study. The ablation study examines expert demonstrations that vary in two dimensions:
co-trained versus concurrently sampled. For co-trained agents with demonstrations sampled non-concurrently, the demonstrations
may be sampled from co-trained expert policies, but each agent’s demonstrations originate from disjoint episodes. However, for
agents that were not trained together but whose demonstrations are sampled concurrently, demonstrations could be obtained
from expert policies that were each trained in separate teams, but executed together in the same environment. To ensure that each
expert policy is of similar quality—despite not being trained together—the joint expert policies are trained with different seeds of
the same algorithm.

Behavioral Cloning Pretraining. Distribution matching is not the only method to use demonstrations. A more naive approach to
utilize demonstrations is to use behavioral cloning (BC) (Bain and Sammut 1995) (a form of supervised learning) on the
dataset of state-action pairs D = h(s ; a); (s ; a); : : : ; (s ; a)i. B C is accomplished by learning to predict the maximum
likelihood action according to the dataset on the states present in the dataset. In practice, this prediction is learned by minimizing the
negative log likelihood of the expert action on these states. This experiment pre-trains the agent policy with B C before the agents
interact with the environment, after which point they learn using IPPO.

B C typically suffers from a distribution mismatch problem (also known as the covariate shift problem), where the agent’s
state visitation when interacting with the environment differs from the expert data distribution, leading to poor imitation even in
single-agent settings. Behavioral cloning also requires a dataset of a size that increases quadratically with the horizon of the
problem to learn successful policies (Ross, Gordon, and Bagnell 2011). These issues are likely to be exacerbated when dealing
with multiple agents. The agents might minimize the supervised learning loss, but it is unlikely that the agents would learn to
coordinate effectively. A second issue with using the supervised learning loss to pre-coordinate agent policies is that such
coordination is unlikely to last once training with IPPO proceeds.

The result for this alternative usage of the expert demonstrations is presented in Figure 5. As detailed above, BC does not learn
to imitate the demonstrations well enough to recover their performance (indicated by the dashed lines), and as training proceeds,
the benefits of B C vanish as IPPO training proceeds.

Effect of G A I L Reward. DM2 consists of IPPO trained with r , which is a mixture of the environment and GAIL reward
signal. Here, we present a brief ablation on the mixed reward (Figure 6). For both IPPO demonstration qualities, IPPO trained

on the GAIL reward achieves a far lower win rate than IPPO trained on the environment reward (labelled as IPPO baseline) or
DM2. This result provides further evidence that the primary benefit derived by DM2 comes from the coordination shown in the
demonstrations, rather than from individual imitation of expert behaviors.

Sensitivity to Demonstration Quality. One finding in the experimental section of the paper is that DM2 is relatively insensitive
to demonstration quality beyond a certain baseline level of competence. To further support this claim, we train DM2 with more
demonstration qualities (where demonstrations are sampled from IPPO policies). Figure 7 shows that the algorithm improves
monotonically as the demonstration quality improves, but quickly saturates. This result indicates it is important to supply good
demonstrations, but not necessary to supply optimal demonstrations.

M
e
a
n
 B

a
tt

le
 W

o
n
 R

a
te

M
e
a
n
 B

a
tt

le
 W

o
n
 R

a
te

m i x

Timesteps 1e7

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

functions.

5v6 - Effect of BC Pretraining
1.0

3sv4z - Effect of BC Pretraining
1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

ippo baseline ippo w/bc pretrain demo
dm2, ippo demo (5m)

ippo baseline ippo w/bc pretrain demo
dm2, ippo demo (5m)

Figure 5: IPPO trained with r , with and without behavioral cloning pretraining on the expert dataset. Demonstration qualities
are shown as horizontal lines. Al l experiments are performed with demonstrations sampled from IPPO at 5m timesteps of
training.

C Experimental Details
Implementation Details. The algorithm implementa-
tions are based on the multi-agent PPO implementations
provided by Yu et al. (2022) (MIT license) and the Py- 5v6

M A R L code base (Samvelyan et al. 2019) (Apache li- 1.0

cense). The StarCraft environment is also provided by
Samvelyan et al. (2019) (MIT license). 0.8

All decentralized MARL implementations in this paper
have fully separate policy/critic networks and optimizers 0.6

per agent. That is, there is no parameter sharing amongst
agents. For all IPPO agents, the policy architecture is two 0.4

fully connected layers, followed by an RNN (GRU) layer.
Each layer has 64 neurons with ReLU activation units. 0.2

The critic architecture is the same as the policy architec-
ture. For DM2 agents, the policy and critic architectures 0.0

are identical to IPPO. The discriminator architecture con- 0.0 0.2 0.4 0.6 0.8 1.0

sists of two fully connected layers with tanh activation
qmix baseline, fc=2

The centralized M A R L algorithms implement agent
qmix baseline, fc=3

policy networks with parameter sharing, where agents
have a centralized value network. For QMIX agents, the Figure 8: QMIX is sensitive to the agent policy architecture.
policy architecture is the same except there is only a sin- Performance on the 5v6 task suffers significantly when an extra
gle fully connected layer before the RNN layer 5. We fully connected layer is added.
attempted running QMIX with the the IPPO agent archi-
tecture, but found that the performance of QMIX signifi-
cantly suffered (Figure 8 on 5v6). Thus, for the QMIX experiments in the main body of the paper, the better-performing policy
architecture was applied. RMAPPO agents were trained directly using the code published by Yu et al. (2022).

Hyperparameters. For QMIX, the default parameters specified in Rashid et al. (2018) are used for both tasks. For IPPO,
and the IPPO component of DM2, mostly default parameters (as specified in (Rashid et al. 2018; Yu et al. 2022)) were used.
Algorithm hyperparameters that varied between tasks or were tuned are provided in Table 1. The remaining hyperparameters
may be viewed with the code repository.

We found that for DM2 to learn successfully from QMIX demonstrations, it was sometimes necessary to inject a small amount of
random noise into the demonstration sampling process, so that the demonstrations did not constrain the exploration of the
learning policies. Specifically, the demonstrations from QMIX were sampled from -greedy QMIX policies, where was chosen so
that the win rate did not fall more than 10%. QMIX values are provided in Table 1.

5This is the architecture used in Rashid et al. (2018)

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

g ai l env

5v6 - Effect of GAIL Rew
1.0

3sv4z - Effect of GAIL Rew
1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

dm2, ippo demo (5m)

ippo w/gail rew, ippo demo (5m)

dm2, ippo demo (7m)

ippo w/gail rew, ippo demo (7m)

ippo baseline

ippo demo (5m)

ippo demo (7m)

dm2, ippo demo (5m)

ippo w/gail rew, ippo demo (5m)

dm2, ippo demo (6m)

ippo w/gail rew, ippo demo (6m)

ippo baseline

ippo demo (5m)

ippo demo (6m)

Figure 6: IPPO trained with r and IPPO trained with r only on the 5v6 and 3sv4z tasks. DM2 is shown for reference.
Demonstrations are sampled from IPPO policies. The win rates achieved by demonstrations are plotted as horizontal lines.

We conducted a hyperparameter search over the following GA I L parameters: the GAIL reward coefficient, the number of
epochs that the discriminator was trained for each IPPO update, the buffer size, and the batch size. The final selected values are
given in Table 2.

Computing Architecture. All IPPO, QMIX, DM2 experiments were performed without parallelized training; RMAPPO
experiments were performed with parallelized training (as is the default in the RMAPPO codebase). The servers used in our
experiments ran Ubuntu 18.04 with the following configurations:

• Intel Xeon CPU E5-2698 v4; Nvidia Tesla V100-SXM2 GPU.
• Intel Xeon CPU E5-2630 v4; Nvidia Titan V GPU.
• Intel Xeon Gold 6342 CPU; Nvidia A40 GPU.

epochs
buffer size
gain
clip
qmix epsilon

5v6 3sv4z 3sv3z
10 15 15
1024 1024 1024
0.01 0.01 0.01
0.05 0.2 0.2
0 0 0.1

5v6 3sv4z 3sv3z
gail rew coef 0.3 0.05 0.3
discr epochs 120 120 120
buffer size 1024 1024 1024
batch size 64 64 64
n exp eps 1000 1000 1000

Table 1: IPPO Hyperparameters. Table 2: GAIL Hyperparameters.

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

M
e
a
n

 B
a
tt

le
 W

o
n

 R
a
te

5v6 3sv4z

1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

ippo baseline

qmix baseline

dm2, ippo demo (1m)

dm2, ippo demo (2m)

dm2, ippo demo (3m)

dm2, ippo demo (4m)

dm2, ippo demo (5m)

dm2, ippo demo (6m)

dm2, ippo demo (7m)

dm2, ippo demo (8m)

dm2, ippo demo (9m)

dm2, ippo demo (10m)

ippo demo (1m)

ippo demo (2m)

ippo demo (3m)

ippo demo (4m)

ippo demo (5m)

ippo demo (6m)

ippo demo (7m)

ippo demo (8m)

ippo demo (9m)

ippo demo (10m)

Figure 7: Learning curves of DM2 (our method) trained with demonstrations sampled every million steps in the learning of the
original demonstrator policy. Horizontal dotted lines indicate the demonstration qualities, colored to match corresponding
learning curves. QMIX (centralized baseline) is included for reference.

