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ABSTRACT
We propose a mean field control game (MFCG) model for the intra-
and-inter-bank borrowing and lending problem. This framework
allows to study the competitive game arising between groups of
collaborative banks. The solution is provided in terms of an asymp-
totic Nash equilibrium between the groups in the infinite horizon.
A three-timescale reinforcement learning algorithm is applied to
learn the optimal borrowing and lending strategy in a data driven
way when the model is unknown. An empirical numerical analysis
shows the importance of the three-timescale, the impact of the
exploration strategy when the model is unknown, and the conver-
gence of the algorithm.

CCS CONCEPTS
• Theory of computation → Reinforcement learning; Solu-
tion concepts in game theory; •Mathematics of computing
→ Stochastic control and optimization.
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1 INTRODUCTION
Many problems in finance involve a large number of strategic agents.
A typical example is how traders interact in a common market
through the price of some assets. At a larger scale, another example
is how banks interact through the money they borrow from or lend
to each other or to a central bank. When the agents are competing,
one can represent the problem as a game and look for a Nash
equilibrium. On the other hand, when the agents are cooperating,
one can look for a social optimum. The problems have different
solutions, and the non-cooperative equilibrium has a higher average
cost per player, which is interpreted as a lack of efficiency. This
leads to the notion of price of anarchy [19].

When the number of agents is large, studying every pairwise
interactions becomes intractable. To simplify the analysis, a mean
field approximation can be used, assuming that the population is
homogeneous and the interactions are symmetric. This idea led
to the notion of mean field games (MFGs) and mean field control
(MFC) problems (also known as McKean Vlasov control problems)
depending on whether the agents are competitive or cooperative,
[6, 9, 17, 21]. A related notion is the concept of mean field type
game (MFTG), in which a finite number of players compete and
each player’s problem is of MFC type [12]. MFG, MFC and MFTG
have found applications in energy production and management [1,
11, 15], crowd trading [7], systemic risk [10], to cite just a few
examples. See e.g. [8] for a recent survey of applications to finance
and economics.

In the past few years, the question of learning solutions to MFG
and MFC problems using model-free methods based on reinforce-
ment learning (RL) has gained momentum. Many of these methods
rely on updating a value function and a distribution. In particular,
stationary MFG solutions have been approximated in [16] using
fixed point iterations and Q-learning, and in [13] using fictitious
play and deep RL. Two-timescale analysis to learn MFG solutions
have been used in [22, 23]. Recently, a two timescale algorithm
has been introduced in [5] to solve MFG or MFC depending on the
choice of learning rates for the distribution and the value function.
This allows to have a unified point of view on these two types
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of problems and a common RL method. In [3], the approach has
been extended to mean field control games (MFCG) using a three-
timescale RL algorithm. It was developed in a finite horizon setting
for extended MFCGs arising naturally in the context of the trader’s
liquidation problem between competitive groups of collaborative
traders who share the inventory cost of their group.

In the present paper, our main contributions are threefold. First,
in Section 2, we introduce a model of intra-and-inter-bank borrow-
ing and lending, which can be viewed as an extension of the model
studied in [10] where there are local coalitions inside each bank. Sec-
ond, in Section 3, we apply a three-timescale RL algorithm to solve
this class of infinite horizon problems. Last, in Section 4, we show
numerical results that illustrate the performance of our method on
the model of intra-and-inter-bank borrowing and lending.

2 INTRA-AND-INTER-BANK BORROWING
AND LENDING PROBLEM

A model of inter-bank borrowing and lending has been introduced
in [10] as a linear-quadratic stochastic differential game between
banks which control their drifts and minimize a quadratic cost with
incentive to stay close to the average capitalization of the system.
The model has been studied as a finite-player game in finite horizon.
Open-loop and closed-loop Nash equilibria have been computed
using Forward-Backward Stochastic Differential Equations (FBSDE)
and Hamilton-Jacobi-Bellman (HJB) partial differential equations.
In this model the central bank acts as the clearing house. Systemic
risk has then been considered as a large deviation event. In addition
to the finite player game a mean field game (MFG) limit has been
discussed as well. In the present paper we first propose an exten-
sion of the aforementioned model where the competitive banks are
made of collaborative branches leading to a mean field control game
(MFCG) model, and, second, we use a three-timescales reinforcement
learning algorithm to solve this problem when the structures of the
dynamics and of the cost are unknown to the agents. This repre-
sents a natural and interesting development of the two-timescales
reinforcement learning algorithm introduced in [5] to solve MFG or
mean field control (MFC) problems. The following model of intra-
and-inter-bank borrowing and lending provides a benchmark for
our algorithm, which can be applied to a wide range of models.

2.1 System of𝑀 Banks with 𝑁 Branches
In the model considered below, we consider 𝑀 ∈ N bank groups.
Each bank has 𝑁 ∈ N local branches and is involved in both intra-
and-inter bank borrowing and lending activity. Let tuple (𝑚,𝑛) for
𝑚 ∈ {1, . . . , 𝑀} and 𝑛 ∈ {1, . . . , 𝑁 } index the 𝑛-th branch of the
𝑚-th bank. The one-dimensional diffusion process (𝑋𝑚,𝑛

𝑡 )𝑡 ∈[0,∞)
stands for the log-monetary reserve of the branch (𝑚,𝑛) over an
infinite time horizon, whose dynamics has the following form:
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represents borrowing and lending activity between branch (𝑚,𝑛)
with the other branches of the same bank. As can be seen on the
right-hand side, branches with more liquidity lend to branches with
less liquidity at a rate 𝜅 , normalized by the number 𝑁 of branches.
The left-hand side can be interpreted as mean-reversion to the
average liquidity reserve of the branches of that bank. To some
degree (depending on 𝜅) this mean reversion will be facilitated by
the branches at no cost because branches that are well equipped
with liquidy have an interest in investing their excess liquidity and
branches with too little liquidity have an interest in borrowing.
In addition to this mean-reversion behavior, local branch (𝑚,𝑛)
has the possibility to borrow and lend from a central bank. This
borrowing happens at a rate that depends on the liquidity reserve
of (𝑚,𝑛) but needs to comply with the (time-dependent) feedback-
form policy of bank group𝑚, which is reflected in the control term
𝛼𝑚 : R → R. The entire system is driven by 𝑀 × 𝑁 independent
standard Brownian motions (𝑊𝑚,𝑛

𝑡 )𝑡,𝑚,𝑛 . For simplicity, we assume
the same constant diffusion rate 𝜎 > 0. Bank group𝑚 designs its
policy of control 𝛼𝑚𝑡 of the borrowing and lending rate for all of its
branches at time 𝑡 in order to minimize the group objective function

𝐽 (𝛼𝑚 ;𝛼−𝑚) = 1
𝑁

𝑁∑︁
𝑛=1
E

{∫ ∞

0
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(
𝑋
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𝑡 , 𝛼𝑚𝑡 (𝑋𝑚,𝑛

𝑡 ), 𝜇𝑡 , 𝜇̃𝑚𝑡
)
𝑑𝑡

}
,

(2)

where 𝛽 > 0 denotes the time discount rate, and the interac-
tion with the other banks is through the global empirical distri-
bution 𝜇𝑡 = 1
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of reserves of the entire system
across all branches and all banks, while the interaction within
the branches of bank𝑚 is through the local empirical distribution
𝜇̃𝑚𝑡 = 1
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𝑗=1 𝛿𝑋𝑚,𝑗
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. We denote by 𝛼−𝑚 the control profile for all

bank groups except 𝑚, i.e., 𝛼−𝑚 = (𝛼1, . . . , 𝛼𝑚−1, 𝛼𝑚+1, . . . , 𝛼𝑀 ).
Here, we consider a quadratic running cost function given by

𝑓 (𝑥, 𝛼, 𝜇, 𝜇̃) = 1
2
𝛼2 + 𝑐1 (𝑥 − 𝑐2𝜇)2 + 𝑐̃1 (𝑥 − 𝑐̃2 𝜇̃)2 + 𝑐̃3 (𝜇̃ − 𝑐̃)2,

(3)

which depends on the global and local empirical distributions 𝜇, 𝜇̃ ∈
P(R) only through their first moments, denoted respectively by
𝜇, 𝜇̃. So in (2), the cost at time 𝑡 depends only on the global and local
empirical means 𝜇𝑡 = 1

𝑀𝑁

∑𝑀
𝑖=

∑𝑁
𝑗=1 𝑋

𝑖, 𝑗
𝑡 and 𝜇̃

𝑚

𝑡 = 1
𝑁

∑𝑁
𝑗=1 𝑋

𝑚,𝑗
𝑡 .

Here, 𝑐1, 𝑐2, 𝑐̃1, 𝑐̃2, 𝑐̃3, 𝑐̃ ∈ R are some constants. The running cost is
interpreted as follows. The first term represents the quadratic cost
of control on borrowing and lending rate. The second and third
term shows the bank’s intention to keep the reserve of its branch
close to both global average reserve 𝜇 and local average reserve
𝜇̃ to some extend quantified by 𝑐1, 𝑐2, 𝑐̃1, 𝑐̃2. Meanwhile, the bank
prefers its local average centering around a target level 𝑐̃ .

The above system of 𝑀 banks constitutes a competitive game
between the𝑀 banks, while it is a collaborative (distributed) game
within each bank group. We are looking for a closed-loop Nash
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equilibrium between the banks. This kind of mixed competitive-
collaborative game is described in [3] in the context of finite horizon
extended games applied to the liquidation trader’s problem. Mathe-
matically, the problem is defined as follows: find a control profile
(𝛼𝑚)𝑚 such that for every𝑚 = 1, . . . , 𝑀 , 𝛼𝑚 minimizes:

𝛼𝑚 ↦→ 𝐽 (𝛼𝑚 ;𝛼−𝑚).
We are interested in the mean field control game limit when both𝑀
and 𝑁 go to infinity and its solution using reinforcement learning
as presented in Section 3.

2.2 Mean Field Control Game Limit
Associated to the finite-player game introduced above, we associate
the MFCG obtained in the asymptotic limit where both𝑀 and 𝑁
go to∞. The problem is to find a pair (𝛼, 𝜇) such that the following
two conditions are satisfied:

(1) A representative bank confronted with a fixed flow of prob-
ability distributions 𝜇 := (𝜇𝑡 ) solves the McKean-Vlasov
(MKV) control problem of finding a minimizer 𝛼 for

𝛼 ↦→ 𝐽 (𝛼 ; 𝜇) = E
{∫ ∞

0
𝑒−𝛽𝑡 𝑓 (𝑋𝑡 , 𝛼𝑡 (𝑋𝑡 ), 𝜇𝑡 ,L(𝑋𝑡 )) 𝑑𝑡

}
, (4)

subject to

𝑑𝑋𝑡 = [𝜅 (E(𝑋𝑡 ) − 𝑋𝑡 ) + 𝛼𝑡 (𝑋𝑡 )] 𝑑𝑡 + 𝜎𝑑𝑊𝑡 , 𝑋0 ∼ 𝜇0 . (5)

(2) The law of the state 𝑋𝑡 controlled by 𝛼 satisfies the fixed
point condition

L(𝑋𝑡 ) = 𝜇𝑡 , 𝑡 ∈ [0,∞) . (6)

The justification of such a limit is treated mathematically in the
forthcoming paper [2]. See also the Appendix in [3] for a formal
justification in the case of the linear-quadratic trader’s liquidation
problem.

2.2.1 Value Function and HJB Equation. Since we are looking for
an equilibrium among Markovian feedback strategies, we solve
the MFCG system (4)-(6) through the Hamilton-Jacobi-Bellman
(HJB) equation approach. Following the computation detailed in
the Appendix A of [5], we first solve the finite horizon problem
with zero terminal condition when the global distribution flow is
given by (𝜇𝑡 )𝑡 ∈[0,𝑇 ] :

𝑉𝑇 (𝑡, 𝑥) = inf
𝛼
E

{∫ 𝑇

𝑡

𝑒−𝛽𝑠 𝑓 (𝑋𝑠 , 𝛼𝑠 (𝑋𝑠 ), 𝜇𝑠 ,L(𝑋𝑠 )) 𝑑𝑠
}
, (7)

subject to:

𝑑𝑋𝑠 = [𝜅 (E(𝑋𝑠 ) − 𝑋𝑠 ) + 𝛼𝑠 (𝑋𝑠 )] 𝑑𝑠 + 𝜎𝑑𝑊𝑠 , 𝑋𝑡 = 𝑥

and with the fixed point condition (6) over [𝑡,𝑇 ]. Denoting by A
the infinitesimal generator of 𝑋 , the Hamiltonian is given by

𝐻 (𝑡, 𝑥, 𝛼 (𝑡, 𝑥), 𝜇𝑡 , 𝜇̃𝑡 ) = inf
𝛼

{
A𝑉𝑇 (𝑡, 𝑥) + 𝑓 (𝑥, 𝛼, 𝜇𝑡 , 𝜇̃𝑡 )

}
, (8)

which attains its minimum at 𝛼 (𝑡, 𝑥) = −𝜕𝑥𝑉𝑇 (𝑡, 𝑥) in our case
where 𝑓 is given by (3), and the dynamics of 𝑋 by (5). The HJB
equation with MKV dynamic reads (see e.g. [6, Section 4.1])

𝜕𝑡𝑉
𝑇 (𝑡, 𝑥) − 𝛽𝑉𝑇 (𝑡, 𝑥) + 𝐻 (𝑡, 𝑥, 𝛼 (𝑡, 𝑥), 𝜇𝑡 , 𝜇̃𝑡 ) (9)

+
∫
R

𝜕𝐻

𝜕𝜇̃𝑡
(𝑡, 𝜉, 𝛼 (𝑡, 𝜉), 𝜇𝑡 , 𝜇̃𝑡 ) (𝑥)𝑑𝜇̃𝑡 (𝜉) = 0,

with 𝑉𝑇 (𝑇, 𝑥) = 0. We compute

𝐻 (𝑡, 𝑥, 𝛼 (𝑡, 𝑥), 𝜇𝑡 , 𝜇̃𝑡 ) = −1
2
(𝜕𝑥𝑉𝑇 (𝑡, 𝑥))2 + 1

2
𝜎2𝜕𝑥𝑥𝑉

𝑇 (𝑡, 𝑥)

+ 𝜅 (𝜇̃𝑡 − 𝑥)𝑉𝑇
𝑥 (𝑡, 𝑥) + 𝑐1 (𝑥 − 𝑐2𝜇𝑡 )2

+ 𝑐̃1 (𝑥 − 𝑐̃2 𝜇̃𝑡 )2 + 𝑐̃3 (𝜇̃𝑡 − 𝑐̃)2,
and ∫

R

𝜕𝐻

𝜕𝜇̃𝑡
(𝑡, 𝜉, 𝛼 (𝑡, 𝜉), 𝜇𝑡 , 𝜇̃𝑡 ) (𝑥)𝑑𝜇̃𝑡 (𝜉) = −2̃𝑐1𝑐̃2 (1 − 𝑐̃2)𝜇̃𝑡𝑥

+ 2̃𝑐3 (𝜇̃𝑡 − 𝑐̃)𝑥 .
We then formulate the following ansatz for the value function

𝑉𝑇 (𝑡, 𝑥) = Γ𝑇2 (𝑡)𝑥2 + Γ𝑇1 (𝑡)𝑥 + Γ𝑇0 (𝑡), (10)

with the zero terminal conditions Γ𝑇2 (𝑇 ) = Γ𝑇1 (𝑇 ) = Γ𝑇0 (𝑇 ) = 0.
We have 𝛼 (𝑡, 𝑥) = −2Γ𝑇2 (𝑡)𝑥 − Γ𝑇1 (𝑡). Plugging the ansatz and its
partial derivatives into (9) and identifying the coefficients of powers
of 𝑥 leads to a system of ODEs for Γ𝑇1 , Γ

𝑇
2 , Γ

𝑇
0 with zero terminal

conditions. This system is complemented with the forward equation

𝑑𝜇𝑡 = E (𝛼 (𝑡, 𝑋𝑡 )) 𝑑𝑡 = −
[
2Γ𝑇2 (𝑡)𝜇𝑡 + Γ𝑇1 (𝑡)

]
𝑑𝑡, 𝜇0 = 𝑥, (11)

obtained by taking expectation in (5) and using the expression of the
control 𝛼 . The ODE system for (Γ𝑇2 (𝑡), Γ𝑇1 (𝑡), Γ𝑇0 (𝑡), 𝜇𝑡 )𝑡 ∈[0,𝑇 ] is a
two-point boundary value problem which can be solved explicitly
as in in the Appendix A of [5].

2.2.2 Explicit Formulas. The solution to our infinite horizon prob-
lem is obtained by taking the limit 𝑇 → ∞. Furthermore, since
we are interested in the asymptotic solution, or equivalently the
stationary solution, we take the limit 𝑡 → ∞ to obtain that the
limiting value function

𝑉 (𝑥) = Γ2𝑥
2 + Γ1𝑥 + Γ0,

where Γ0, Γ1, Γ2 are constants, must satisfy (9) with 𝜕𝑡𝑉𝑇 = 0, no
terminal condition at 𝑇 = +∞, and 𝜇𝑡 = 𝜇 being the stationary
point of (11) satisfying 2Γ2𝜇 + Γ1 = 0. We deduce the formulas:

𝛼 (𝑥) = −2Γ2𝑥 − Γ1,

Γ2 =
−(𝛽 + 2𝜅) +

√︁
(𝛽 + 2𝜅)2 + 8(𝑐1 + 𝑐̃1)

4
,

Γ1 =
2̃𝑐3 (𝜇 − 𝑐̃) − 2̃𝑐1𝑐̃2 (2 − 𝑐̃2)𝜇 − 2𝑐1𝑐2𝜇

𝛽 + 𝜅 + 2Γ2
,

Γ0 =
−𝜅𝜇 − 1

2 Γ
2
1 + 𝜎2Γ2 + 𝑐1𝑐22𝜇 + 𝑐̃1𝑐̃

2
2𝜇 + 𝑐̃3 (𝜇 − 𝑐̃)

2

𝛽
,

𝜇 = − Γ1
2Γ2

=
𝑐̃3𝑐̃

𝑐1 (1 − 𝑐2) + 𝑐̃1 (1 − 𝑐̃2)2 + 𝑐̃3 − 𝜅Γ2
.

Note that at Nash equilibrium and asymptotically when time is
large, 𝑋𝑡 behaves like an Ornstein–Uhlenbeck process with a rate
of mean-reversion 𝜅 + 2Γ2 around the center 𝜇 and diffusion 𝜎2.
Consequently, the equilibrium asymptotic distribution is Gaussian
with 𝜇 = N

(
𝜇, 𝜎2

2𝜅+4Γ2

)
. In other words, each bank is trying to

anchor the log-monetary reserve of its branches to the average level
𝜇 of the entire bank system. If a branch has sufficient reserve above
the average, it will lend money to other branches at a rate which is
linear to its current reserve until the average level is reached, and
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vice versa. Corresponding to such mean-reversion dynamic, the
reserve over all branches is normally distributed around the mean
reserve and its diffusion depends on the mean-reversion speed.

3 THREE-TIMESCALE Q-LEARNING
ALGORITHM

3.1 Discrete time formulation and Q-learning
We now describe our algorithm to learn the solution to the mixed
Control Game problem (4)-(6). Since the algorithm itself is only
a minor modification of the algorithm used in [3], we keep this
paragraph brief. The algorithm rests on the concept of Q learning,
a well established method to solve Markov Decision problems. We
first discretize the time interval [0,∞] into an equally spaced grid
0 = 𝑡0 < 𝑡1 < . . . and assume for notational simplicity that 𝑡𝑖 = 𝑖 .
We then recast the problem (4)-(6) into a discrete time mean field
control game problem given by:

(1) Given {𝜇𝑛}𝑛∈N, find a minimizer 𝛼 for

𝐽 (𝛼 ; 𝜇) = E
[ ∞∑︁
𝑛=0

𝑒−𝛽𝑛 𝑓 (𝑋𝑛, 𝛼𝑛 (𝑋𝑛), 𝜇𝑛,L(𝑋𝑛))
]
, (12)

subject to

P
(
𝑋𝑛+1 = 𝑥 ′ |𝑋𝑛 = 𝑥, 𝛼𝑛 (𝑋𝑛) = 𝑎, 𝜇𝑛 = 𝜇,L(𝑋𝑛) = 𝜇̃

)
= 𝑝 (𝑥 ′ |𝑥, 𝑎, 𝜇, 𝜇̃),

where the transition kernel 𝑝 : X×A×Δ |X | ×Δ |X | → Δ |X |

arises from a discrete counterpart to (5).
(2) The law of the state 𝑋𝑛 matches the fixed point condition

L(𝑋𝑛) = 𝜇𝑛, 𝑛 ∈ N. (13)

In order to solve this discrete time problem we discretize the
state space and action space into X = {𝑥0, . . . , 𝑥 |X |−1}, and A =

{𝑎0, . . . , 𝑎 |A |−1} respectively.
Our reinforcement learning algorithm to solve the discrete time

and discrete state problem (12) and (13) follows [3]. The algorithm
is based on well established ideas from Q-learning. The algorithm
is model agnostic which means that no information is needed about
the model that generates the data. In the control part of our problem
(12), the local distribution L(𝑋𝑛) depends on the control that is
chosen. For this reason it can not simply be treated as an additional
parameter but the Q-learning has to be adapted slightly. For an
admissible control 𝛼 : X → A, we define the new control 𝛼𝑥,𝑎 that
deviates from 𝛼 only at the state 𝑥 where it takes the value 𝑎:

𝛼𝑥,𝑎 (𝑥 ′) =
{
𝑎 if 𝑥 ′ = 𝑥
𝛼 (𝑥) otherwise.

(14)

Given a fixed global measure 𝜇 and strategy 𝛼 , the Q-function for
our problem is then given by:

𝑄𝛼
𝜇 (𝑥, 𝑎) = 𝑓 (𝑥, 𝑎, 𝜇, 𝜇𝛼𝑥,𝑎 )

+ E

[ ∞∑︁
𝑛=1

𝑒−𝛽𝑛 𝑓 (𝑋𝑛, 𝛼 (𝑋𝑛), 𝜇, 𝜇𝛼 ) |𝑋0 = 𝑥,𝐴0 = 𝑎

]
.

One can then consider the optimal cost function

𝑄∗
𝜇 (𝑥, 𝑎) := min

𝛼
𝑄𝛼
𝜇 (𝑥, 𝑎),

which, conditioned on being in state 𝑥 and choosing action 𝑎 at
time 0, minimizes the cost over all strategies 𝛼 chosen in all steps
to follow. From the function 𝑄∗

𝜇 one obtains the optimal control
𝛼∗ (𝑥) = argmin𝑎 𝑄∗

𝜇 (𝑥, 𝑎). In Section 3.3 we will see that actually
a randomized counterpart of 𝛼∗ should be chosen to ensure a wide
enough exploration range of the possible actions. We stress that
the minimizing strategy usually depends on the global measure 𝜇.
For fixed 𝜇, it follows from [4], as the measure 𝜇 is fixed and does
not depend on 𝛼 , that the function 𝑄∗

𝜇 follows a Bellman equation
given by:

𝑄∗
𝜇 (𝑥, 𝑎) = 𝑓 (𝑥, 𝑎, 𝜇, 𝜇∗𝑥,𝑎) + 𝛾

∑︁
𝑥 ′
𝑝 (𝑥 ′ |𝑥, 𝑎, 𝜇, 𝜇∗𝑥,𝑎)min

𝑎′
𝑄∗
𝜇 (𝑥 ′, 𝑎′) .

The measure 𝜇∗𝑥,𝑎 = lim𝑛→∞ L(𝑋𝛼∗
𝑥,𝑎,𝜇

𝑛 ) corresponds to the strat-
egy 𝛼∗𝑥,𝑎 as derived from 𝛼∗ by changing the action in state 𝑥 to 𝑎,
see (14).

3.2 Three-Timescale Updating Rates
Our algorithm to approximate the Q-function, optimal policy and
the equilibrium distribution mimics the idea of nested optimization.
For a given global distribution, the Q-function that describes the
optimal action has to be found, and based on this, the local distri-
bution. This idea of nested simulation leads to a Three-Timescale
approach which is sketched in the following. With updating rates
𝜌
𝜇

𝑘
for the global distribution, 𝜌𝑄

𝑘
for the Q table, and 𝜌𝜇

𝛼

𝑘
for the

local distribution, where we assume 𝜌𝜇
𝑘
< 𝜌

𝑄

𝑘
< 𝜌

𝜇𝛼

𝑘
, the updates

that can be derived from the Bellman equation are described by

𝜇𝑘+1 = 𝜇𝑘 + 𝜌𝜇
𝑘
P(𝑄𝑘 , 𝜇𝑘 ),

𝜇𝛼
𝑘+1 = 𝜇𝛼

𝑘
+ 𝜌𝜇

𝛼

𝑘
P(𝑄𝑘 , 𝜇

𝛼
𝑘
),

𝑄𝑘+1 = 𝑄𝑘 + 𝜌𝑄
𝑘
T (𝑄𝑘 , 𝜇𝑘 , 𝜇

𝛼
𝑘
),

with

P(𝑄,𝜈) (𝑥) = (𝜈𝑃𝑄,𝜇,𝜇𝛼 ) (𝑥) − 𝜈 (𝑥),
T (𝑄, 𝜇, 𝜇𝛼 ) (𝑥, 𝑎) = 𝑓 (𝑥, 𝑎, 𝜇, 𝜇𝛼 )

+ 𝛾
∑︁
𝑥 ′
𝑝 (𝑥 ′ |𝑥, 𝑎, 𝜇, 𝜇𝛼 )min

𝑎′
𝑄 (𝑥 ′, 𝑎′) −𝑄 (𝑥, 𝑎)

𝑃𝑄,𝜇,𝜇𝛼 (𝑥, 𝑥 ′) = 𝑝 (𝑥 ′ |𝑥, argmin
𝑎
𝑄 (𝑥, 𝑎), 𝜇, 𝜇𝛼 ),

(𝜈𝑃𝑄,𝜇,𝜇𝛼 ) (𝑥) =
∑︁
𝑥0

𝜈 (𝑥0)𝑃𝑄,𝜇,𝜇𝛼 (𝑥0, 𝑥).

Note that in our model agnostic approach, the transition probabil-
ities 𝑝 need to be estimated from the data. As samples from the
state and the rewards are obtained incrementally, we update these
estimates with Robbins–Monro rates. We refer the reader to [3] for
more details. Note that in the example we introduced in Section 2.1,
a representative agent interacts with both the local distribution
and the global distribution. For this reason, the three timescale
algorithm is more natural than a two timescale algorithm, since it
allows the algorithm to treat differently the two distributions on
top of the Q-function.

3.3 Action Exploration
An efficient algorithm is designed to well balance the tendencies
between exploring a range of policies and staying in the current
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best choice, i.e. exploration and exploitation. An over-exploring
algorithm is less likely to converge to the optimal policy while
the over-exploiting one will possibly be stuck in a local optimal,
which is the well known exploration-exploitation dilemma [18].
As other reinforcement learning algorithms, our three-time scale
Q-learning algorithm is confronted with this dilemma. Therefore,
we shall develop methods to balance the exploration-exploitation
trade-off.

Over the recent decades, various action exploration techniques
have been developed to overcome the exploration and exploitation
dilemma. Those can roughly be distinguished into two categories:
undirected and directed [24]. Undirected exploration takes actions
based on some probability distribution and does not account for
the learning progress itself. Widely applied undirected methods
include 𝜖-greedy, Boltzmann, and Max-Boltzmann [26]. In contrast,
directed exploration adapts the action preference by the learning
progress, such as the number of times of a state-action pair being
visited (counter-based), the environment with large errors from
previous exploration (error-based), states not being visited recently
(recency-based).

Depending on specific learning tasks, sophisticated directed ex-
ploration might require more efforts to calibrate but does not neces-
sarily outperform simple undirected heuristics [20, 25]. Therefore,
for the new three-timescale algorithm that has not been compre-
hensively tested, we shall first focus on the undirected methods,
with preference for its generality and simplicity. It can then serve
as a benchmark for the application of more complicated directed
exploration methods. In particular we consider the following three
undirected exploration methods:

(1) 𝜖-greedy.

𝜋𝜖𝑡 (𝑥) =
{
𝑎 ∼ Unif(A), w.p. 𝜖,
argmax𝑎∈A 𝑄𝑡 (𝑥, 𝑎), w.p. 1 − 𝜖.

(15)

Parameter 𝜖 is the exploration rate.
(2) Boltzmann exploration.

𝜋𝐵𝑜𝑙𝑡𝑧𝑡 (𝑥, 𝑎) ∼ 𝐵𝑜𝑙𝑡𝑧 (𝑄𝑡 (𝑥, 𝑎);𝑄𝑡 (𝑥, ·), 𝜏) (16)

with 𝐵𝑜𝑙𝑡𝑧 (𝑥 ;𝑋, 𝜏) := 𝑒−𝑥/𝜏∑
𝑥 ′ ∈𝑋 𝑒−𝑥/𝜏

known as the Boltzmann
distribution. Parameter 𝜏 is referred as the temperature.

(3) Max-Boltzmann combines the 𝜖-greedy with Boltzmann ex-
ploration by replacing Unif(A) in (15) by 𝐵𝑜𝑙𝑡𝑧 distribution
in (16),

where the exploration propensity of the algorithm is controlled by
the exploration rate 𝜖 or constant temperature 𝜏 . To search for the
appropriate exploration heuristic, for each of the three heuristics,
we consider the following three configurations: (1) constant rate; (2)
linearly decaying rate w.r.t episode; and (3) exponentially decaying
rate w.r.t episode, which will be specified in Section 4.

3.4 Algorithm
The Algorithm 1 applied to learn the asymptotic solution discussed
in section 2.2.2 is the three-timescale mean field Q-learning algo-
rithm (U3-MF-QL) presented in [3]. By interacting with the environ-
ment in a trial and error fashion, we are able to learn the optimal Q
table, together with the local and global distribution at equilibrium.

As discussed in the previous section, the learning rates assume a
core role and they are defined as

𝜌
𝑄

𝑥,𝑎,𝑛,𝑘
:=

1
(1 + #| (𝑥, 𝑎, 𝑘, 𝑛) |)𝜔𝑄

, 𝜌𝜈
𝑘
:=

1
(1 + 𝑘)𝜔𝜈 ,

where 𝜈 is replaced by 𝜇 and 𝜇̃ for the local and global distribution
respectively, and #| (𝑥, 𝑎, 𝑘, 𝑛) | counts the visits of the pair (𝑥, 𝑎)
up to the episode 𝑘 and time 𝑛. This form of learning rates is in-
spired by the ones used for Q-learning with provable convergence
guarantees [14]. The triplet (𝜔𝑄 , 𝜔𝜇 , 𝜔 𝜇̃ ) should be chosen such
that 𝜔𝜇 > 𝜔𝑄 > 𝜔 𝜇̃ , so that 𝜌𝜈

𝑘
< 𝜌

𝑄

𝑘
< 𝜌 𝜈̃

𝑘
, and it should satisfy

𝜔𝑄 ∈ (0.5, 1).

Algorithm 1 Three-Timescales Mean Field Q-Learning - Infinite
Horizon
Require:
1: T: number of time steps in a learning episode,
2: Truncated state space: X = {𝑥0, . . . , 𝑥 |X |−1},
3: Truncated action space: A = {𝑎0, . . . , 𝑎 |A |−1},
4: Initial distribution of the representative player: 𝜇0,
5: Exploration rule s.t. 𝜋𝑣 ∈ Δ |A | for any |A|−dim vector 𝑣 ,
6: Break rule tolerances: 𝑡𝑜𝑙𝑄 , 𝑡𝑜𝑙𝜇 , 𝑡𝑜𝑙𝜇̃ .
7: Initialization:
8: 𝑄0 (𝑥, 𝑎) = 0 for all (𝑥, 𝑎) ∈ X × A,
9: 𝜇0𝑛 = 1

|X | 𝐽 |X | and 𝜇̃0𝑛 = 1
|X | 𝐽 |X | for 𝑛 = 0, . . . ,𝑇 ,

10: where 𝐽𝑚 is an𝑚-dimensional unit vector.
11: for each episode 𝑘 = 1, 2, . . . do
12: Set 𝑄𝑘 ≡ 𝑄𝑘−1

13: Observe initial state: 𝑋𝑘
0 ∼ 𝜇𝑘−1

𝑇
.

14: for 𝑛 = 0, . . . ,𝑇 do
15: Choose action:
16: choose 𝐴𝑘𝑛 using the exploration policy 𝜋𝑄

𝑘 (𝑋𝑘
𝑛 ,· ) .

17: Update distributions:
18: 𝜇𝑘𝑛 = 𝜇𝑘−1𝑛 + 𝜌𝜇

𝑘
(𝜹 (𝑋𝑘

𝑛 ) − 𝜇𝑘−1𝑛 ),
19: 𝜇̃𝑘𝑛 = 𝜇̃𝑘−1𝑛 + 𝜌 𝜇̃

𝑘
(𝜹 (𝑋𝑘

𝑛 ) − 𝜇̃𝑘−1𝑛 ),
20: where 𝜹 (𝑋𝑘

𝑛 ) =
(
1𝑥 (𝑋𝑘

𝑛 )
)
𝑥∈X

.
21: Observe next state:
22: observe 𝑋𝑘

𝑛+1 from the environment.
23: Observe cost:
24: observe 𝑓𝑛 = 𝑓 (𝑋𝑘

𝑛 , 𝐴
𝑘
𝑛, 𝜇

𝑘
𝑛 , 𝜇̃

𝑘
𝑛).

25: Update Q table:

26:
𝑄𝑘 (𝑥, 𝑎) =𝑄𝑘 (𝑥, 𝑎) + 1𝑥,𝑎 (𝑋𝑘

𝑛 , 𝐴
𝑘
𝑛)𝜌

𝑄

𝑥,𝑎,𝑛,𝑘

(𝑓𝑛 + 𝛽 min
𝑎′∈A

𝑄𝑘 (𝑋𝑘
𝑛+1, 𝑎

′) −𝑄𝑘 (𝑥, 𝑎)),
27: where 𝛽 is the discount parameter.
28: end for

29: if


𝛿 (𝜇𝑘 , 𝜇𝑘−1) ≤ 𝑡𝑜𝑙𝜇 ,
𝛿 (𝜇̃𝑘 , 𝜇̃𝑘−1) ≤ 𝑡𝑜𝑙𝜇̃ ,
∥𝑄𝑘 −𝑄𝑘−1∥1,1 ≤ 𝑡𝑜𝑙𝑄 ,

then break

30: end if
31: end for
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4 NUMERICAL RESULTS
For the MFCG problem setting, we choose the following parameters:
(𝑐1, 𝑐2, 𝑐̃1, 𝑐̃2, 𝑐̃3, 𝑐̃) = (1.5, 0.75, 2.5, 0.5, 4, 2) and discount rate 𝛽 = 1
for the running cost 𝑓 ; (𝜅, 𝜎) = (1, 2) for the dynamic of state 𝑑𝑋 .
We truncate the infinite time horizon by [0,𝑇 ] with 𝑇 = 20 and
discretize it by steps of size 𝛿𝑡 = 1/16. The state and action spaces
are trimmed into X = {𝑥0 = −1.5, 𝑥1 = −1.5 + 𝛿𝑥, . . . , 𝑥 |X |−1 =

4.5} and A = {𝑎0 = −6, 𝑎1 = −6 + 𝛿𝑎, . . . , 𝑎 |A |−1 = 6} by 𝛿𝑥 =

𝛿𝑎 =
√
𝛿𝑡 = 1/4. For the reinforcement learning setup, we take

𝐾 = 50, 000 episodes and consider the specifications for the action
exploration in Table 1. The initial exploration rate is set small for
the constant 𝜖-greedy action explorer, mildly greater for the linearly
decaying rate, and large for the exponentially decaying rate. The
initial temperature for Boltzmann explorers are the same. The Max-
Boltzmann explorers takes in a constant exploration rate combined
with the Boltzmann explorers.

Table 1: Action Exploration Heuristics

𝜖-greedy 𝜖 (𝑘) Boltzmann 𝜏 (𝑘)
𝜖𝐶𝑜𝑛 0.01 𝐵𝑜𝑙𝑡𝑧𝐶𝑜𝑛 5
𝜖𝐿𝑖𝑛 0.05(𝐾 − 𝑘)/𝐾 𝐵𝑜𝑙𝑡𝑧𝐿𝑖𝑛 5(𝐾 − 𝑘)/𝐾
𝜖𝐸𝑥𝑝 0.9995𝑘 𝐵𝑜𝑙𝑡𝑧𝐸𝑥𝑝 5 × 0.9999𝑘

Max-Boltz (𝜖, 𝜏 (𝑘))
𝑀𝐵𝐶𝑜𝑛 (0.05, 5)
𝑀𝐵𝐿𝑖𝑛 (0.05, 5(𝐾 − 𝑘)/𝐾)
𝑀𝐵𝐸𝑥𝑝 (0.05, 5 × 0.9999𝑘 )

Algorithm 1 learns the solution of the mean field control game
based on three different learning rates for theQ-table and local/global
distributions. Figure 1 shows the results obtained when the learn-
ing rate parameters (𝜔𝜇 , 𝜔𝑄 , 𝜔 𝜇̃ ) are equal to (0.75, 0.55, 0.15). The
𝑥-axis represents the state variable 𝑥 while the left, right 𝑦- axes
correspond to the action 𝛼 (𝑥) and the probability mass 𝜇 (𝑥) re-
spectively. The green dot-marked line and continuous curves show
the theoretical solutions of the MFCG discussed in section 2.2.2
in terms of the control function and the asymptotic distribution
at equilibrium. The blue dots and curve are the corresponding ac-
tion and distribution learned by the algorithm, averaged over the
last 5k episodes. Only the global distribution is plotted because
the local distribution perfectly aligns with it. From Figure 1 we
clearly observe the linear pattern of optimal control and the normal
distribution of state, which were discussed in Section 2.2.2.

Figure 2 shows how different choices of the learning rate param-
eters let the algorithm converge to different solutions. The green
set of line and curve refers to the same theoretical solution to the
MFCG problem as in Figure 1. The violet (resp. orange) set shown
is obtained when 𝜔𝜇 = 𝜔 𝜇̃ and their values are set to 0.75 (resp.
0.15) such that 𝜌𝜇 < 𝜌𝑄 (resp. 𝜌𝜇 > 𝜌𝑄 ). The values of actions and
distributions plotted are the average of the last 5k episodes. These
choices reduce the algorithm to the two-timescale approach dis-
cussed in [5]. The algorithm then converges to the corresponding
MFG and MFC versions of our model depending on the choice of

Figure 1: MFCG three-timescale Q-learning result

the learning rates, where the support of the MFG deviates from the
current trimmed state space.

Figure 2: Two-timescale Q-learning result

The convergence of the algorithm 1 is analyzed in terms of
the evolution of the estimations of the optimal Q table and the
local/global distributions at equilibrium w.r.t. the learning episodes.
The changes are evaluated through the total variation and the 1, 1-
norm as follows

𝛿 (𝜈𝑘 , 𝜈𝑘 ) =
∑︁
𝑥𝑖 ∈X

���𝜈𝑘 (𝑥𝑖 ) − 𝜈𝑘−1 (𝑥𝑖 )���,
∥𝑄𝑘 −𝑄𝑘−1∥1,1 =

∑︁
𝑖, 𝑗

���𝑄𝑘
𝑖,𝑗 −𝑄

𝑘−1
𝑖, 𝑗

���,
where the episode is tracked by the index 𝑘 and 𝜈 is replaced by
𝜇 and 𝜇̃. Figure 3 shows how the convergence improves w.r.t. the
number of episodes. The 𝑥-axis represents the learning episode
𝑘 . The 𝑦-axis represents the value of the 1, 1-norm and the total
variation respectively with the averaged values over 10 runs (solid
line) and standard deviations (shaded region).
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Figure 3: Total variation of Q, 𝜇, and 𝜇̃

The optimal control function learned by the algorithm is eval-
uated w.r.t. the limiting distribution of the population at the equi-
librium. In particular, we analyze the mean square error averaged
over multiple runs as follows

MSE𝛼 (𝑖, 𝑘) =
|X |−1∑︁
𝑗=0

(𝛼𝑖,𝑘 (𝑥 𝑗 ) − 𝛼 (𝑥 𝑗 ))2𝜇 (𝑥 𝑗 ),

MSE𝛼 (𝑘) =
1

#𝑟𝑢𝑛𝑠

#𝑟𝑢𝑛𝑠∑︁
𝑖=0

MSE𝛼 (𝑖, 𝑘),

where 𝜇 (𝑥 𝑗 ) =
∫ 𝑥 𝑗

𝑥 𝑗−1
𝑑𝜇 (𝑥) is obtained by the asymptotic distribu-

tion at equilibrium 𝜇 using the convention 𝑥−1 = −∞. Similarly,
we evaluate the learning of the first moment of the asymptotic
distribution at equilibrium as

MSE𝜇 (𝑘) =
1

#𝑟𝑢𝑛𝑠

#𝑟𝑢𝑛𝑠∑︁
𝑖=0

(𝜇𝑖,𝑘
𝑇

− 𝜇)2,

MSE
𝜇̃
(𝑘) = 1

#𝑟𝑢𝑛𝑠

#𝑟𝑢𝑛𝑠∑︁
𝑖=0

(𝜇̃𝑖,𝑘𝑇 − 𝜇)2 .

Figure 4 shows the decrease of the errors w.r.t. the number of
learning episodes. The 𝑥-axis corresponds to the learning episode
𝑘 . The 𝑦-axis represents the errors averaged over 10 runs (solid
line) and their standard deviations (shaded region). As shown in the
above results, the three timescale algorithm learns a solution that
approximately matches the analytical solution in terms of control,
Q-function and distribution. So if the agents use the policy obtained
by RL algorithms, we can expect them to have a behavior close to
the Nash equilibrium one.

We conclude by presenting an empirical comparison of the action
exploration strategies discussed in section 3.3. Figures 5 and 6
show the results obtained by applying the 𝜖-greedy (red set of
lines), Boltzman (green set of lines), and Max-Boltzman (purple
set of lines) exploration rules when the rate is constant, linear, or
exponential decaying w.r.t. the episodes, as in Table 1. The subplot
on top of Figure 5 shows the 1, 1-norm of the learned Q table and
the two subplots following are total variations of learned 𝜇 and 𝜇̃

Figure 4: Mean squared error of 𝛼 , 𝜇, and 𝜇̃

distribution. The 𝑥-axis is the log-scaled episode number, and the 𝑦-
axes correspond to the value of those total variations. The 𝜖-greedy
with constant exploration rate 𝜖𝐶𝑜𝑛 surprisingly outperforms any
other heuristic in converging speed. The worst result is obtained
by the Boltzmann exploration group. 𝐵𝐶𝑜𝑛 fails to converge in
Q table, while 𝐵𝐿𝑖𝑛 and 𝐵𝐸𝑥𝑝 waste almost 10k episodes before
the variation is reduced. Obviously, the Boltzmann exploration
set is under-tuned with a high initial temperature, and reducing
it will hopefully improve its performance. Recall that we aim to
control the exploration propensity via the probability distribution,
however, the Boltzmann distribution (16) depends on the value of
the Q table whose scale is previously unknown. Thus, it requires
extra investigation to figure out both the temperature range and
the decaying rate. The Max-Boltzmann exploration set performs
mediocrely, which is due to its under-tuned Boltzmann component.
On the contrary, in Figure 6, we observe that most of the heuristics
result in lower mean squared error on 𝛼 than 𝜖𝐶𝑜𝑛 , except 𝐵𝐶𝑜𝑛 ,
𝐵𝐸𝑥𝑝 , and 𝜖𝐸𝑥𝑝 . Despite that the 𝜖𝐶𝑜𝑛 still achieves the lowest
mean squared error, this result indicates that the Boltzmann and
Max-Boltzmann explorations could possibly lead to better results if
well-tuned. Therefore, in the linear-quadratic bank borrowing and
lending MFCG, the naive 𝜖-greedy heuristic handles the learning
task well and can serve as a useful benchmark for developing more
sophisticated exploration strategies.
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Figure 5: Comparison on total variation of Q, 𝜇, and 𝜇̃

Figure 6: Comparison on mean squared error of 𝛼 , 𝜇, and 𝜇̃
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