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Abstract. We present a new combined mean field control game (MFCG) problem which can be interpreted
as a competitive game between collaborating groups and its solution as a Nash equilibrium between groups.
Players coordinate their strategies within each group. An example is a modification of the classical trader’s
problem. Groups of traders maximize their wealth. They face cost for their transactions, for their own terminal
positions, and for the average holding within their group. The asset price is impacted by the trades of all
agents. We propose a three-timescale reinforcement learning algorithm to approximate the solution of such
MFCG problems. We test the algorithm on benchmark linear-quadratic specifications for which we provide
analytic solutions.
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1 Introduction

Mean field approaches are based on the idea that the main properties of large coupled
systems of entities (e.g. agents, players, or particles) can be described by the distribution
of one representative entity. To answer many questions related to the system, it is not
required to know the individual states of all entities but only the distribution of their
representative. This reduces significantly the complexity of large systems.

Mean field approaches were first introduced in the context of statistical physics where
propagation of chaos among particles was studied. Under mild assumptions, in a system
of particles described by a large system of diffusion processes, the location of one particle
becomes independent of the others as the size of the system grows [29]. In the following
we think of the entities of the system being agents or players and we have mainly financial
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applications in mind. Mean field ideas have later been adapted to differential games with
large number of agents in the cooperative setting (mean field control, MFC), and in the
competitive framework (mean field games, MFG) [8,12,25]. MFC and MFG problems
arise in a number of applications ranging from engineering to economics. Mean field type
games (MFTG) [18] are games with a finite number of players who are of mean field type,
i.e., their dynamics and cost functions may depend on their own distribution.

Recently numerical solution of MFC and MFG problems has received greater attention
[1,7,11,21,22,26,30]; see e.g. [2] for a survey. Classical methods of optimization theory
have been complemented by deep neural networks [14,15,20,23,24] and by Reinforcement
Learning (RL) approaches which aim at calculating optimal strategies without the precise
knowledge of the underlying model [16,17,19,27,28,31].

In [4], a unified reinforcement Q-learning algorithm is proposed to solve MFG and
MEC problems based on the ratio of two learning rates, one for the decision Q-matrix
and the other for the distribution of the population. In the present paper, we argue that
this algorithm can be adapted for solving a new class of mean field control game (MFCG)
problems arising naturally in the context of many large groups where agents are cooper-
ating within each group but in competition with all agents in other groups. In this type
of games, a MFC problem is defined at each group level motivating the dependency on
the groups’ distribution of the agents. At the full system level, a MFG problem is defined
between groups explaining the freezing of the full system distribution and the following
fixed point problem typical of this framework. Our algorithm naturally involves three
learning rates: a fast one for the distribution of the group, a medium one for the agent’s
Q-matrix, and a slow one for the distribution of the overall population. We illustrate its
performance on linear-quadratic examples for which we derive explicit solutions for the
optimal strategy.

In [5], the unified reinforcement Q-learning algorithm proposed in [4] is generalized to
finite horizon extended MFC and MFG problems. It is applied to the problem of a trader
who wants to minimize transaction and inventory costs when trading an asset impacted
by all agents’ trades. We show in this paper that the algorithm can be naturally adapted
for solving MFCG when both the distributions of states and controls (for the group and
for the overall population) are involved.

In Section 2.1, we motivate the introduction of the new MFCG problem in the classi-
cal context of discrete time, finite horizon, differential games in discrete state and action
spaces. Agents control their drifts and minimize an expected cost which may depend on
the distributions of their own group and of the entire population. We give an intuitive
justification of the fact that the solution of the MFCG provides an approximate Nash equi-
librium between groups.

In Section 2.2 we introduce the discrete time and space infinite horizon MFCG consid-
ered in this paper. We focus on the asymptotic formulation of the problem introduced
in [4] where comparisons with time-dependent and stationary formulations were dis-
cussed. In Section 2.3, we generalize the results of [5] regarding finite time extended MFC
and MFG problems to the MFCG framework.

The Q-learning approach to solve these problems is described in Section 3 where we
state the Bellman equation for the optimal action-value function (Q-matrix), and we intro-
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duce its three timescales stochastic approximation based on well-separated three learning
rates: one for the states” distribution of the group, one for the action-value Q-matrix, and
one for the states” distribution of the overall population.

Algorithm and learning rates are presented in Section 4. Its performance on a linear-
quadratic benchmark are shown in Section 5.1. Section 5.2 illustrates the results on the
trader’s problem, an example where the states” distribution of the group and the controls’
distribution of the overall population appear in the objective function of the agent. We
compare the strategies learned by our algorithm with the theoretical solutions provided
in the Appendix B.

2 Maean field control games

2.1 Motivation

In order to introduce our notion of MFCGs, we consider the familiar context of discrete
time finite horizon differential games between agents evolving in a finite state space X’
by taking actions in a finite action space .A. The population is made of M groups, each
of size N. An agent will be indexed by a pair (m,n) where the first indexm = 1,..., M
indicates her group and index n = 1,..., N being her identifier in the group. Agents are
collaborating within their groups and competing with all agents of other groups. In other
words, all N agents of group m will try to collectively minimize the total cost of group m.
Between groups, agents play a Nash equilibrium. So every single agent (m, n) interacts,
possibly in different ways, on both the distribution within its group and the distribution
within the whole population.

We now present the general model that we consider, starting with the dynamics. At
timet =0,1,...,T — 1, agent (m, n) uses the control ;""" € A. The evolution of her state
is given by: X" ~ pg and fort =0,1,...,T -1,

P (X;Tll =¥ |X["" = x, 0" =a,p = p) = p(x'|x,a, 1),
where x and x' € X represent respectively current and next state, 2 € A is the action
taken, and p € Al¥| represents the empirical distribution of the whole population. Here,
p: X xAx Al¥1 = Al¥lis a transition kernel interpreted also as a function

p:X xX xAx Al¥l 0,1], (x,%,a,u)— p(x|x,a,u),

which provides the probability to jump to state x’ from state x if action a is taken. We
assume that this transition kernel depends on the global distribution y but not on the
local distribution p™ (that is the distribution of the agent’s group defined below). In
this finite-horizon setting, we allow for time-dependent feedback Markovian controls « :
{0,1,..., T —1} x X — A that depend only on time and the state. So if agent (1, n) uses
control w, then a"" = a(t, X;"").

Considering the behavior of other groups as fixed, the goal for agents of group m is to
minimize the expected cost of the group
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1 N T
@) = 5 Y Y F (X 0 ) + 8 (X77) |
n=1 t=0

where f is a running cost which may depend on the empirical distribution of the full
population y; = ﬁ yMoyN s X referred to as the global population, and on the em-

pirical distribution p}" = § YN 5x;"'” of the group m referred to as the local population.

The terminal cost ¢ could as well depend on these empirical distributions at terminal time.
Note that in this setting agents of group m interact with agents of other groups through
the distribution of the global population appearing in the cost.

Additional assumptions on f and g are needed, but we may keep in mind the simple
quadratic cost case with, for example,

. 1, N2, €222
St 2,00, 1) = 507+ 2 (x = )"+ S,
where ji and /i denote respectively the means of the global population y and the local pop-
ulation fi. The first term is the classical quadratic cost for controlling the drift, the second
term is an incentive to stay close to the global mean and the third term is a group incen-
tive to keep the local mean close to zero. For simplicity we assume a zero terminal cost
(g = 0) in this example. We will revisit a linear-quadratic (LQ) continuous-time variant of
this setting in Section 5.1. The key point is that the interaction through the global mean
is of mean field game (MFG) competitive nature, while the interaction through the local
mean is of mean field control (MFC) collaborative nature, motivating the name mean field
control game (MFCQG). In other words, this problem is a competition between M coalitions
of N players, all the players being identical in the sense that they have similar dynamics
and cost functions. The explicit solution for a continuous time and space version of this
finite-player MFCG is given in Appendix A.

Passing to the mean field limit M — oo, N — oo in a sense made precise in Ap-
pendix A.3, a representative agent faces the following problem. Given a sequence of
probability distributions g = (u¢)o<i<T, the goal is to solve the McKean-Vlasov (MKV)
control problem of finding a minimizer & for

J(a) =B

7

T
3 F (8w £(X5)) + 8 (X5)
t=0

subject to

X~ p (X ), t=0,1,..,T=1, X" ~ po.

Allowing for time-dependent feedback Markovian controls means that «; is given in the
form a; = a(t, X’tx’” ) for some control function «. Then, to find the Nash equilibrium, we
need to solve the fixed point compatibility condition

we=L(XM, vte{o1,...,T},

where £(X) denotes the law of the random variable X. This problem can be viewed as
an MFG in which each player is of McKean-Vlasov type, in the sense that her dynamics
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and her cost function depend on her own distribution. As such, this can correspond to the
limit of a MFTG [18] when the number of players goes to infinity. Solving this MFCG is
justified by showing that the control & enables the agents in the mixed finite-player game
to achieve an e-Nash equilibrium. This argument is developed in the Appendix A for the
LQ example.

The proof of this result in a general setting will be presented in the companion paper [6]
in preparation. In particular, the analysis covers the case where the global distribution is
involved in the dynamics. However, proving convergence when the local distribution
appears in the dynamics is more challenging, which is why we do not include it in the
dynamics studied in the present work. The algorithm presented in this paper is in the
context of finite state and action spaces. A version for continuous spaces based on a Deep
Learning Actor Critic algorithm is a work in progress [3].

2.2 Asymptotic formulation

In this section we present the discrete time infinite horizon setting and we consider the
asymptotic formulation of the game introduced in [4]. Our model involves the distribution
of states within the collaborative agent’s group (also called local distribution), and the
distribution of states of the overall competitive population (also called global distribution).

We allow for time homogeneous controls « : X — A that depend only on the state. We
denote by u* the asymptotic (long time) distribution of the controlled process following
the strategy a« which we assume to exist and to be unique (the state space being finite,
aperiodicity and irreducibility of the discrete time process ensure these properties).

We go from finite horizon to infinite horizon so that the problem will be simpler to
tackle with RL and we will look for stationary policy, see Section 2.3. Given a cost func-
tion f defined on X x A x Al¥l x Al¥l and a discount rate ¥ < 1, we now consider the
following infinite horizon asymptotic MFCG problem:

Find a strategy & and a distribution I such that:

1. (best response) & is the minimizer of

J(a; 1) = &

where Xg’ﬁ ~upandfort =0,1,...,

P (X = 21X = (X)) = a0 = 1) = p([x0,)

and p* = lim;_e0 L’,(Xf”)
2. (fixed-point) fi = limy e £(X) = pih,

In order to make sense of the above problem statement we have to restrict to actions
« : X — A which are such that the controlled process X;" has a limiting distribution,
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i.e., lims e £(X;") exists. For a finite state Markov chain this is the case if (X;");cn is
irreducible and aperiodic. We therefore assume that the strategy & is the minimizer over

all strategies such that (X;");cn is irreducible and aperiodic.

Remark 2.1. We could have also considered a classical formulation of MFCG where
and p*# are flows of distributions (fi);en and (p;")en in which case the fixed-point

requirement is fi; = L£(X;") for every t € IN, and where the strategy is time-dependent.
As well, we could have considered a stationary formulation of MFCG where p“ is the
stationary distribution of the controlled process, equal to fi in the fixed-point step. As in
[4], it can be shown that the optimal strategies for the asymptotic and stationary problems
coincide, and they coincide with the limiting optimal strategy (as t — o0) of the classical
formulation.

2.3 Finite horizon extended formulation

Following [5], we generalize the MFCG problem and its reinforcement learning algo-
rithm to the case with a discrete time finite horizon T, on a finite state space, and mean
tield of state and control. The state-action space is as described in Section 2. The state
follows a random evolution in which X;,1 is determined as a function of the current
state X}, the action «;, and some noise. We introduce the transition probability function
p(X'|x,a,v), (x,x',a,v) € X x X x AXx AlX>*Al which provides the probability to jump
to state x’ given its current state x, the action taken a and the global population distributed
as v. We assume no dependence on the state-action group distribution # in order to apply
the MKV Bellman equation introduced in [4]. For simplicity, we consider the homoge-
neous case where this function does not depend on time. Restoring this time-dependence
if needed is a straightforward procedure.
We now consider the MFCG cost function given by: for v = (v¢);—o 1.1

T-1
Jav) =E |} f(X aeve,vi") + (X7, pr p) |
t=0

where pr (resp. u7") is the first marginal of vr (resp. vy"). Again, for simplicity, we
assume that f does not depend on time. The process X*" has a given initial distribution
to € Al*l and follows the dynamics:

P (Xfﬁ =¥|XP =x 0 =av=v) =p(|x,a,v).

3 Q-learning

3.1 Action-value function

Our algorithm to solve the MFCG is based on the concept of Q-learning which is a well
known procedure to solve Markov decision problems. However, following [4] we combine
the idea of Q-learning with the model agnostic view of reinforcement learning. We first
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adapt the Q-learning concepts to our problem at hand. Since the local distribution is not
tixed and depends on the control itself, we have to adapt the classical Q-learning in the
spirit of [4]. For an admissible control « : X — A and a pair (x,a) € X x A, we define the

new control ay ; by
a, if x' =x,
tya(x') = { . (3.1)

a(x’), otherwise.

Given a global measure y and a strategy «, the Q-function for our problem is given by

Yo (X (X)) X" = x, Ao =

t=1

Qli(x,a) = f(x,a,u, u*") +E

where p“*@" is the local distribution relative to the strategy ay ;. The optimal function in
the sense of minimizing cost is given by

Qu(x,a) == rr}xin Qu(x,a).
From the function Q;j one obtains the control
a*(x) = arg min Qu(x,a)

(in fact in the algorithm presented in Section 4, we use a randomized policy, which is not
taken into account here). Note that the minimizing strategy may depend on the global
measure j. For fixed y, the function Q;, follows the Bellman equation given by

Q. (x,a) = f(x,a,m 1) +’yZp "Ix,a,u mey(x a). (3.2)

Note that using this modified (McKean-Vlasov type) Bellman equation established in [4]
allows us to consider the Q-function as a function of state and action only. The measure

Pk = limy e ﬁ(Xf;’”'M ) corresponds to the strategy a , which is derived from a* by
changing the action in state x to a4, see (3.1). The above Bellman equation follows from the
results in [5] as the measure y is fixed and does not depend on «.

3.2 Time-dependent Q-function

The definition of the time-dependent optimal Q-function in the extended framework is
given for a fixed flow of state-action global distributions v = (v¢);—01, T by

Qr,(x,a) = g(x, ur, uy"), (x,0) € X x A,
Qfy(x,a)
= ming E |72 £ (X5, a0 (XE"), v, Vi) + 9 (X5 i, )
t=0,1,...,T—1, (x,a) e X x A,

¢ :x,At:a},

where pr (resp. u7") is the first marginal of vr (resp. v"), and ay(-) = a(t,-). Using
dynamic programming, it can be shown that (Qf ) is the solution of the Bellman equation
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Qt(x,a) = g(x,ptT, V”}’V), (x,a) € X xX A,
QEV(X,E!) = f(x, a, v, vf‘rV) + /gXp(x’|x, a,l/) ran Q:H,v(x/,ﬂ'),
X
t:0/1/"'/T_1, (x,a)EXXA,

where vf"v takes into account the modification of a« due to the decision a at state x. The
corresponding optimal value function (V) is given by

Vi (x) :maianlv(x,a), t=0,1,...,T, xeX.

One of the main advantages of computing the action-value function instead of the value
function is that from the former one obtains the optimal control at time ¢ by computing
arg minge 4 Q; (x,a). This is particularly important in order to design model-free methods
as we will see in the next section.

The next step consists in describing the updates of the Q;’s tables, the flows of mea-

sures 1;’s and vf‘ V’s. As for the infinite horizon case discussed in the next section, a three-

timescale approach is implemented by introducing three learning rates p; < ka < pzw.
We skip the details for the finite horizon extended framework as they are similar to [5]
where it is presented for the two timescale case. This approach justifies the algorithm
presented in Section 4.

3.3 Stochastic approximation

In this section we propose a learning procedure that under reasonable assumptions on
the functions p and f approximates the solution of the discrete time MFCG. The algo-
rithm is based on the idea that the local distribution, the Q-function describing the optimal
strategy, and the global distribution should be updated at different rates. For the sake of
a lighter notation, we will use the notation y, Q and p* omitting the mutual dependencies
that are fully discussed in the previous sections.

For a pure MFC and a pure MFG problem the authors of [4] use results in [9,10] for clas-
sical Q-learning to show that a two-timescale approach involving the system distribution
and the optimal response can converge to either the MFC solution or the MFG solution
depending on how the learning rates are chosen. For a MFC problem, the system distribu-
tion resulting from a chosen strategy has to be updated more frequently than the strategy
itself. In contrast, the MFG case requires the strategy to be updated more frequently than
the distribution.

To gain some intuition for the three-timescale approach used to approximate our MFCG,
we start with the function Q : X x A — R inducing a strategy a’ such that at each time
the system is at state x, the action arg min, Q(x, a) is chosen. Say the global distribution
i is frozen (as it is in part 1 of our MFCG problem) and the local distribution is given
by u“, then the local population will be driven at the next step towards the new distribu-
tion Y, c v p*(x)p(x'|x, arg min, Q(x, a), u) if all players follow the strategy encoded in Q.
This continues until a fixed-point y”‘/ is reached. When a fixed-point is (approximately)
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reached, the strategy has to be updated, taking this new limiting distribution into account.
This leads to a new optimal strategy with action values given by

fxa, )+ D p( v, a, ) min Q' ).
x/

This procedure continues until an optimal pair of strategy a and resulting limiting mea-
sure u* is reached which depends on the frozen global measure y. In an outer global op-
timization the fixed-point for the global measure is now obtained by updating the global
measure via Y .cy #(x)p(x’|x, argmin, Q(x,a), ). The three timescales therefore arise
naturally by the different layers of optimization involved in the problem. It is intuitive
that in each layer one has to perform sufficiently many iterations to ensure that the op-
timization in the next layer is based on sufficiently accurate results. This idea leads to
a learning rate that decreases from the outer to the inner layer. In addition the ratios of the
increasing learning rates (from inner to outer layer) have to be sufficiently large.

These considerations lead to the following updating rules: (y, Q, u*) are updated with

rates p,’: < ka < pza by
M1 = pi+ O P (4 Qo k),
Qes1 = Qe+ g T (it Qe 1), (3.3)
Mier = 1+ 0k Pl Qe 1),

where k denotes the learning episode (see the algorithm below), and

P (1, Qv)(x) = (vPHQ)(x) —v(x),

T Q) (xa) = flxa 1) + v Lp('lx,a, ) min Q(x',a) = Q(x,a),

PrR(x,x") = p(x'|x, argme(x,a) )

(vPHR) (x) = Lv(xg)P¥ Q(xo, ).

X0

To see that the above system does in fact converge to a solution of our MFCG we assume

that pk < pk so that p /pk is of order € < 1, and pk < pk so that pg /pk is of order
EK 1.

Now, following [9], we denote by T a continuous time variable, and we consider the
following ODE system:

Hr = P(VT/ Qx, VT);

. 1

Qr = ET(,UT/ Qx, V%);

. 1

= — éP(Vr, Qv 1),

€
which tracks the system (3.3). Furthermore, we assume that the functions f and p are
such that the system fulfills a Lipschitz condition. As shown in [4], this can be ensured
by Lipschitz continuity of f and p and by smoothing the minimum in the definition of P.
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We refer to [4] where these considerations are treated in more detail for a two-timescale
approach.

We start with the fastest timescale. For a fixed global distribution i and a fixed action
table Q, we assume that the ODE

. 1
He = P (m Qur)
has a unique asymptotically (€ — 0) stable equilibrium u9# such that P(u, Q, u#) = 0.
Now, we plug this equilibrium #2# into the second equation and obtain the ODE

1
Qe = T (1 Qo u¥).

Again, we assume that the above ODE has a stable equilibrium (¢ — 0), which we call Q¥
and which satisfies that 7 (u, Q¥, yQF'V) = 0. Now, going to the slowest timescale, the first
equation has an asymptotic (T — o0) equilibrium, say pe that solves P (peo, Q¥, tieo) = 0.
By uniqueness of this equilibrium, we get that pie, = #2"“#>, which in turns implies that
e and the action given by minimizing Q¥ solves our MFCG.

4 Reinforcement learning algorithm

4.1 Asymptotic version

The three-timescale mean field Q-learning algorithm (U3-MF-QL) that we propose lever-
ages the two-timescale version (U2-MF-QL) introduced by [4]. It not only encompasses
learning the pure MFG and pure MFC problems, but, more importantly, it facilitates learn-
ing the generalized MFCG problems. Despite of its advantage and flexibility, it inherits
the very simple intuition that by manipulating the relative value of learning rates we can
induce the algorithm to updating distributions in either MFG’s or MFC’s manner, as de-
scribed in the last Section 3.3. Depending on whether the problem has infinite horizon or
finite horizon, the U3-MF-QL algorithm will be specified accordingly. Here we first intro-
duce the infinite horizon version (U3-MF-QL-IH) in Algorithm 1. The intuition underlying
the algorithm is based on the asymptotic formulation but, as explained in Remark 2.1, this
is equivalent to solving the stationary problem. Furthermore, for the sake of simplicity
we present the algorithm for an MFCG involving only the state distribution but it can be
adapted to solve an MFCG involving the state-action distribution, i.e., an extended MFCG.
In Section 4.2, Algorithm 2 is presented for the finite horizon extended MFCG. Both algo-
rithms can be adapted to solve continuous states and actions problems by applying the
necessary truncation and discretization techniques as originally discussed in [4].

Algorithm 1 Three-Timescale Mean Field Q-Learning — Discrete Time Infinite Horizon

Require:
1: Time stepst =0,1,..., Twith T > 0,
2: Finite state space: X = {x, .. .,x|X‘,1},
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Finite action space: A = {a, ..., a4/-1},

Initial distribution of the representative player: o,
Factor of the e-greedy policy: ¢,

Break rule tolerances: tolg, toly, toly.

. Initialization:

Q%x,a) = 0forall (x,a) € X x A,

9; y?:ﬁ]m andﬁ?:ﬁ]m fort <T,

10: where J; is a d-dimensional vector.

11: for each episodek =1,2,...do

122 Observe initial state: X§ ~ p51 and set QF = Q1.
13: fort=20,...,Tdo

® N > gk @

14: Choose action:

15: choose AF using the e-greedy policy derived from Q(XF, -).
16: Update distributions:

17 i = o (8(XF) —pf ),

15: =g e (O(XH — ),

19: where §(XF) = (1:(XF)) e -

20: Observe next state:

21: observe Xi‘ 1 from the environment.

22: Observe cost:

23: observe f; = f(XF, A¥, uk, iik).

24: Update Q table:

25: Qk(x/ ll) = Qk (x/ ll) +1x4 (Xilf(’ A]t()pg,a,t,k

26: X (fi + ymingc 4 QX(XF, 1, a') — Q% (x,a)),
27: where 7 is the discount parameter.

28: end for

200 if |QF = QY| < tolg, [|uk — pkY| < toly,, and ||jiF — i*~1|| < tol; then
30: break

31: end if

32: end for

4.1.1 Learning rates

By choosing p,’: < p,?, we induce the global distribution y to converge in the fashion of
MEFG. On the other hand, by letting p,? < p,i[ , we allow the local distribution i to renew

towards the MFC style. Combining both such that p,’: < ka < pf: , the algorithm is expected
to learn both the global and local distributions simultaneously. In addition, to ensure that
the learned Q-table and distributions can stabilize at the end of the episode iteration, all
the three learning rates shall also decay as the number of episodes, k, increases. Adapting
the learning rate discussed in [4], we design the triplet of learning rates as follows:

1 uo 1 1
A+#(xakn)e? &7 A+ 1+ k)=

Q _ f._
px,a,t,k T P = (4.1)
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where #|(x,a,k, t)| counts the visits of the pair (x,a) up to the episode k and time t. The
triplet (w®, w, w") should be chosen such that w# > w? > wF, so that p} < ka < Py,
and it should satisfy w® € (0.5,1).

4.2 Time-dependent version

The three-timescale mean field Q-learning approach specified for the finite horizon (U3-
MEF-QL-FH) is shown in Algorithm 2. Although its overall structure is similar to that of
Algorithm 1, we shall highlight several important differences. First, in the finite horizon
problem, the algorithm must learn the optimal control and state-action distribution for
each time point. So, the number of Q tables to be learned is T — 1, each corresponding
to a time step, except for the terminal time which is excluded because no action is taken
at time T. In contrast, in the infinite horizon problem we had just a single Q table to
learn. Second, in each episode, the initial state Xy is always drawn from the initial distri-
bution pg. This is in contrast to the infinite horizon case where the initial state X is drawn
from the terminal empirical distribution learned up to the last episode y’%‘l. Third, within
each episode, the algorithm only iterates through the time steps from 0 to T — 1. It skips
the terminal time T, because at time T — 1, once the action Ar_ is chosen, the final state
Xt can be generated and henceforth the terminal cost ¢(Xr) is observed, which already
completes the episode. In the infinite horizon case, whether one iteratesupto T —1or T
does not make a big difference. Fourth, when updating the Q; table, the table Q; 1 for the
next time step t < T needs to be taken into account, in contrast to the infinite horizon case.
Lastly, the learning rate for the Q-tables in the finite horizon case are

1
14+ T#|(x,a,k, 1))«

Pl = ( (4.2)

where #|(x,a,k,t)| counts separately for each time step t the visits of tuples (x,a) up to
episode k.

The approximation of this time-dependent version of the algorithm to the MFCG solu-
tion can be shown similarly as we did for the asymptotic problem in Section 3.3. We refer
the reader to [4] where this is done for the pure mean field control and the pure mean field
game problem.

Algorithm 2 Three-Timescale Mean Field Q-Learning — Discrete Time Finite Horizon

Require:
1: Time steps: t =0,1,...,T,
2 Finite state space: X = {xo,..., X|x|-1},
3 Finite action space: A = {a, ..., a4/-1},
4 Initial distribution of the representative player: o,
5 Factor of the e-greedy policy: ¢,
6: Break rule tolerances: tolg, tol,, toly.
7. Initialization:
Q(x,a) = 0forall (x,a) € X x A, forallt € {0,1,...,T},
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9: 1/? = ﬁ]‘/ﬂxvu, 17? = ﬁ]LX‘X‘A‘ forallt € {0,1,. . .,T},
10: where [« is an n X m unit matrix.
11: foreach episodek =1,2,...do
12: Observe initial state: Xy ~ p.
13: fort=0,1,..., T—1do
14: Choose action:
15: choose A; using the e-greedy policy derived from Q’fl (Xt,-).
16: Update empirical distributions:
17: vl‘ = vf’l + pZ(J(Xt,At) — vf’l),
18: 175 = 175_1 +pZ(5(Xt,At) —175_1),
19: where 5(Xt, At) = (1x,a(Xt/ At))xEX,aEA'
20: Observe next state:
21: observe X;. 1 from the environment
22: Observe cost:
23: running cost f; = f(X¢, As, vf, ﬁf),
24: terminal cost g7 = ¢(X7) whenreacht+1=T.
25: Update Q;:
2%: Qf(x,a) = QF 1 (x,a) + 1ua(Xs, A)pS, . (fi + B— QF 1 (x,2)),
27: where B = 14, 1-181 + 131 1<7) Minge 4 Qﬁ%(xtﬂzﬂ)'
28: end for

200 if ||QF— QY| < tolg, [|vF — vETY| < toly, and ||7F — 7571 < toly then
30: break

31: end if

32: end for

5 Numerical experiments

We illustrate the performance of our algorithms on benchmark models for which we have
explicit solutions: in the infinite horizon case (Algorithm 1) in Section 5.1, and in a finite
horizon extended game setting (Algorithm 2) in Section 5.2.

5.1 Asymptotic problem

For MFG or MFC problems in finite spaces, explicit solutions are usually not available and
we would have to rely on approximate solutions obtained by other numerical methods to
compare with the solutions obtained with our RL algorithm. Instead, here we choose to
work with a linear-quadratic model in continuous time and space for which we can easily
derive explicit solutions (see Appendix B.1). We then apply our algorithm to a discretiza-
tion in time and space of this model described in Section 5.1.1. We do not address here
the quality of this discretization which has been widely studied. We simply compare the
results of our algorithm with the explicit solutions of the continuous model.

Specifically, we consider a continuous-time and space benchmark linear-quadratic
MFCG problem with a running cost given by
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1
£t 0, ) = 0% 1 (x = cam)? + c3(x = €4)% + 81 (x — Eom 2 + S5 (mt )2, (5.1)

where
m= [ xdu(x), m = [xdpi(x),

and ¢y, €1, and és are positive constants. Here, 1 and u*# are understood as global envi-
ronment and local environment. The constant ¢; determines the magnitude of the global
effect and the constants ¢, ¢5 specify local effects.

The asymptotic formulation of this MFCG problem is given by

inf J(a; u) = infE [ / e P o, V""“)dt]
« « 0

= infE [/Oooe_ﬁt<%oc%+c1(xf’”—czm)2+C3(Xf"”—c4)2

+ o (X — aymt)® 4 c”5(m"‘"‘)2> dt}
subject to de’” = w;dt + odW;, Xg’” ~ Ho, and the fixed point condition

—1; 5(,‘1/[ — [)2/],1
m tlggo]E(Xt ) = m"#,

where & is the optimal action.

5.1.1 Results

We consider the asymptotic MFCG with the following choice of parameters: ¢; = 0.5,
cp =153 =05 ¢4 =025¢ = 03,8 = 125, ¢ = 0.25, discount rate p = 1, and
volatility of the state dynamics o = 0.5. We truncate the infinite time horizon at T = 20,
and discretize the interval [0, T| with time steps of size At = 10~2. The discount factor in
the discrete time setting is then given by  := ¢~ P!, The state space is

X:{xoz—2—|—xc,...,x‘X|,1:2—|—xC}

centered at x, = 0.25, and the action spaceis A = {ay = —3,..., a4 = 3}, where the step

sizes are Ax = Aa = /At = 107L. The e-greedy policy parameter is 0.01. We remind the
reader on the choice of the learning rates. In contrast to the pure MFG and MFC problems
which can be learned by the two-timescale parameterization proposed in [4], the MFCG
problem requires the three-timescale as explained in Section 3.3. We choose the three
learning rates to be (w#,w?, wh") = (0.85,0.55,0.15), which satisfy p} < p,? <p} . In
addition, we also demonstrate that if we miss-specify the learning rates (w#, w<, w") by
either (0.85,0.55,0.85) in which case p} = p} < p,? or by (0.15,0.55,0.15) in which case

p;: = p;: > ka, then the algorithm fails to learn the correct result.
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Figure 5.1: Control and distributions for the benchmark asymptotic MFCG learned by Algorithm 1. The x-axis
shows the state variable x, the left y-axis refers to the value of the control a(x), and the right y-axis marks the
probability mass of p(x) and u*(x). The green dotted line (labeled by &) is the theoretical control function and
green curve (labeled by f1) shows the theoretical distribution of state, where the global distribution equals to the
local distribution. The dots (labeled by &) are the learned controls and the overlapping dashed curves (labeled
by u and p®) refer to the overlapping empirical global and local distributions learned by the algorithm, colored in
blue, violet, and orange according to the selection of learning rates.

Fig. 5.11s generated with 5 runs of K = 100,000 episodes with the above setting. We re-
port the average of the learned control and distribution in the last 10,000 episodes over
the 5 runs. In Fig. 5.1(a) the control and distribution learned with the correct three-
timescale rates by the algorithm are plotted against the theoretical optimal control ob-
tained in Eq. (B.4) and with the theoretical distribution. The control learned by the algo-
rithm (blue dots) lies well along the theoretical control function (dotted green line) except
for states never visited by the algorithm. That is, within the support of the distribution the
algorithm learns the optimal control well. Also, we observe that the learned global distri-
bution overlaps the local distribution (both dashed blue curve), and that both match the
theoretical distribution (solid green curve). Therefore, the algorithm successfully learns
the correct local and global distributions as well. Figs. 5.1(b) and 5.1(c) illustrate the fail-
ure of the algorithm in cases where the learning rates are misspecified as described in the
last paragraph.
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5.2 Trader’s problem

As we did for the infinite horizon case, we consider a finite horizon extended game in con-
tinuous time and spaces. In particular, we reassess the renowned trader’s execution prob-
lem presented in [13] starting with the finite number of players case. Instead of a game
among traders, we consider a game between groups of traders as follows. Suppose there
are M homogeneous trading groups, each with N traders trading on a single stock. Let
the index tuple (m, n) denotes the n-th trader in the m-th group.

Trader (m, n) is controlling the drift term in the dynamic of her stock inventory,

dx;"" = af" (X{"")dt + o dW™",
by the trading rate a}"(X;"") with which all the traders in the m-th group comply. Her
cash position K;"" evolves as
dK{"" = — [af" (X}"") St + ca (af' (XF""))] dt

with & — ¢, (a) a non-negative convex function representing the cost of trading at rate «a.
The stock price is impacted by a function h(+) of the transactions and follows the dynamic

Z Zh (af(X) ) dt + oPdWy.

11]

The total wealth V""" of her self-financing portfolio consists of her cash position and her
stock value,
‘/tm,?l _ K;’I’l,i’l _|_ X;’I’l,i’lst
with dynamic
dv"" = dK{"" 4 S d X" 4+ X[ dS;
M N

e (xp) + xp LY Y (wd (X))

i=1j=1

dt

+ S0 AWM X GO AW,

We assume that the individual trader is subject to a running liquidation constraint mod-
eled by a function cx of the average shares held by her own group. In this model, the
individual trader’s objective function is given by

]m’”(ocl,...,ocM)
= TC l al erj dt Xm,n _Vm,n
= ) X N.Z t +8 (Xp") = Vr
]:

o [ () somonn e B o)

i=1j=1

dt

g (X2 }
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In the limit of a large number of large groups without precising the relation between M
and N (see Appendix A.3 for more details about this type of limit for a finite horizon linear-
quadratic model), and assuming ¢;"" = ¢, this problem leads to the following mixture of
MEFCG problems: Minimize

T
J5) = B { [ [ex () + cu () = X5 [ hiadenta)| e +5(35) |
where 0; is the law of the control «;, m’t’"e = lE(Xf"e) and

dxy? = adt + 0dW;, t<T, X§¥=x
Note that the problem is of MFG style in control through 6; and MFC style in state through

mlx,G
ol
In what follows we focus on the Linear-Quadratic case where

¢ c
Cx(m) = Tszl CDL(“) = EUC ’ h(ﬂ) = Cp4a, g(x) = ngz

so that
T c
J(a;0) = E {/o [%( (m‘;‘,e)Z i %‘"rx% - chxf"e/adf)t(a)] dt + Eg(X"T‘ﬁ)Z} .

5.2.1 Results

We consider the trader’s problem with the choice of parameters: ¢, = 1, cx = 0.75,
cp = 1.25, ¢ = 1, and with a volatility for the state dynamic ¢ = 0.75. We test three
distributions for the initial inventory Xy: Gaussian with mean xy = 0, 0.5, and 1 and the
same standard deviation ¢ = 0.5. The terminal time is T = 1, and we choose a time grid
T = {0,At,..., T} with time step At = 1/16. We discretize the state space into X = {xp =
=2, Xy = 2.5}, and the action space into A = {ay = =2, 441 = 1.5}, where
the step sizes are Ax = Aa = /At = 1/4. The triplet of the learning rates is chosen as
(w?, w?, wh) = (0.85,0.55,0.15). For the e-greedy policy we choose € = 0.05. We run the
experiment 10 times, each with K = 200,000 episodes. We average the control and state
distributions learned by Algorithm 2 over the last 10,000 episodes and over 10 runs. We
report the results in Fig. 5.2. We present the results for every time step in 7, except for
the last time step T. The subplots are ordered by time, from left to right and top to bot-
tom. Note that the theoretical optimal control &; (dotted green line) changes over time. As
time increases, the slope and intercept of &; increase. Also, the theoretical local state dis-
tribution y; (green curve) under the optimal control changes over time. As time increases
from O to T, the center of iy moves towards zero and the standard deviation increases. To
evaluate the effectiveness of Algorithm 2, we compare the learned action (blue dots) and
the learned local state distribution (dashed blue curve) with their theoretical counterparts.
Again we observe that except for the tails of the distribution, the control learned by the
algorithm is very close to the theoretical value. This means that the algorithm success-
fully learns the optimal control for states that are frequently sampled. Also, we see that
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Figure 5.2: Control and distributions for the trader's MFCG learned by Algorithm 2. The x-axis shows the state
variable x, the left y-axis refers to the value of the control a(x), and the right y-axis marks the probability mass of
state, p(x). The dotted green lines (labeled by &;) are the theoretical control function and the blue dots (labeled
by at) are the learned control. The green curves (labeled by ;) show the theoretical distributions of state and
dashed blue curves (labeled by pi;) refer to the empirical distribution of state learned by the algorithm.

the dashed blue curve perfectly overlaps with the solid green curve, hence the algorithm
succeeds in capturing the evolution of the state distribution under the correctly learned
control.

6 Conclusion

We have introduced a type of mean field control game (MFCG) that models a competitive
game between a large number of large collaborative groups. It turns out that the two-
timescale reinforcement learning algorithm (U2-MF-QL) that was proposed in [4] for infi-
nite horizon problems and in [5] for finite horizon extended problems, for learning either
MEFG or MFC problems, is naturally adapted for learning MFCG problems by managing
three learning rates in the three-timescale reinforcement learning algorithm (U3-MF-QL)
proposed in this paper. We illustrate the results with linear quadratic problems for which
we derive explicit formulas. In particular, a new type of trader problem is presented. The
theory associated for MFCGs is a work in progress [6], as well as an actor-critic version of
the U3-MF-QL algorithm in the context of continuous spaces [3].



J. Mach. Learn., 2(2):108-137 127

Appendix A. Linear-quadratic example

In this appendix we provide additional details about the LQ example presented in Sec-
tion 5.1, here in a finite horizon setting. In particular, we explain the relation between the
finite-player game and its corresponding MFCG limiting problem.

A.1 The finite-player model

There are M competitive groups each made of N collaborative players (m = 1, ..., M is the
group number and n =1, ..., N is the player number within the group). The dynamics of
the state of player (m, n) is

dXy"" = o dt + odWM, X3~ o,

where we aim at an open-loop equilibrium (the a’s are adapted to the W’s). The objective
of the collaborative group m is to minimize

1 N T (1 2 1, 2022
P =g LB {30 G X S )
where

—m_l N mmn
M —NZXt

n=1
is the empirical mean of group m, and

. 1 M N Xm,n
:ut - MN Z Z t
m=1n=1

is the empirical mean of the total population (c; and c, are positive constants and we
assume a zero terminal condition for simplicity).
Accordingly, we introduce the Hamiltonian H" of group m

mn MY m' ' mm' mn’ N 1 mmny2 | €l N - mm\2 | €2 —m\2
= Y3 @yt 3 @2 Y (I,
n=1 n=1

m'=1n'=1

where ym'ml'”'”/ are the adjoint variables.
Minimizing the Hamiltonian H™" with respect to a™", we get
oH™"
o

— ym,m,n,n 4" =0 s A — _ym,m,n,n'

The backward stochastic differential equation (BSDE) that the adjoint process Y™ "
must satisfy is

M N
! ! ! ! "o "o
m,m' n,n mmn mm’ nn’ ,m” n m”n
dy! =~ H™dt+ Y Y 7] AW,

m’=1n"=1
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1

m, 1
= — [Clz X k <M 5{m’ —m k= n’n}> +C2N]/lt < 5{m’ mn’n})] dt

m,m/,n/n//mll,nrl m",?l"
LY Y7 AW,
m’=1n"=1
! /!
with a zero terminal condition Y7 "
must be adapted.
The diagonal adjoint process Y;""""" = Y;"" satisfies

= 0. The Z-processes are part of the solution and

N
) 1
Y™ = — [Cl Y (= X)) (MN Ok= n}> + o ] dt
=1
M N o Y
mmmnnm”’,n m”,n
+ 2 Y.z A
m’=1n"=1
1 = 1 —m m,n =m
= | 1_M yt—i—ﬁyt—Xt — cofty | dt
M N o Y
+ Y Yz g (A.1)

m’=1n"=1

We omit the non-diagonal adjoint processes which can be treated analogously, and we
formulate the ansatz

Y =X+ e+ Geif!,
where 7, ¢ and ¢; are deterministic functions to be determined. We have

N
= % Y dX = Y+ Zdw’””
=1

where
mo__ l N mmn __ o= —m
M= L Y= e+ O+ S
n=1
and N M N M
=% Y dxi = Y+ Ty Y dw,
MN n=1m=1 MN n=1m=1
where N M
- 1
Yt M—ZZ 77t+47t+6t)
n=1m=1

Differentiating the ansatz gives

dY"" = qi X{" At + e d X[+ gpigdt + gpdjiy + Cijaydt + Ged !
= m Xy dt — e (e X7+ Qefie 4 Cef" ) dt + Pyt
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= ¢t (e + @p + 8o) fuedt + Sy dt — Sy(@ufie + (e + G ") dt + dMart
:{%—WﬂX?WV+Wﬁ-m@-¢¢%+@+@0-§@§%ﬂ
+ 88 = i€ — Ce(ne + &1)] " dt + dMart
= {772 - ’7t2} Xy"dt + [47; — ¢F = 2upr — 2@t¢t] fudt
+ {CQ —&— 217@4 fiy'dt + dMart.
Comparing the drift terms with the previous expression (A.1) for dY;"", we get the fol-

lowing system of Riccati equations for which explicit solutions can be obtained (omitted
here):

n—ni = —ci, nr =0,

1
O —¢F = 20001 + 1) = —c2+ 51, ¢r =0,
1
éi—é?—2mét261<1—ﬁ), ¢r = 0.
As usual the Z’s processes are deterministic (hence adapted) and identified by matching

the martingale terms.
One can define {; = 17; + ¢, so that the system of ODEs becomes

n—ni=—ci, nr =0,
1
$r — ¢F — 2015t = —C2 + My ¢r=0 (A.2)
1
gi‘ - g% = _Mcll gT = O/

which highlights the limit M — co where {; vanishes.

A.2 The corresponding limiting MFCG

To the previous finite-player model, we propose to associate the following MFCG prob-
lem: For a fixed flow of distributions y = (), one agent controls her state given by

dX;w/[ = zxtdt + Uth, Xg’y ~ Ho-

The agent solves the MKV control problem which consists in minimizing
T(1 1 2 ¢ 2
Jwm) =B [ 50d+ 2 (= X"+ Z(BOGM)
0o (2 2 2
where ji; = [ xp(dx). One then solves the fixed point condition

E(X{") =, Vt<T,
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Introducing the adjoint process Y; and using the lighter notation X; for the state process,
the optimal strategy &; is given by —Y; which satisfies the BSDE

dYy = [c1(B(X;) — Xi) — B(Xy)]dt + ZydW;,  Yr = 0.

The term ¢, E(X;) comes form the differentiation of % (E(X;"))? with respect to the mea-
sure.
One verifies easily that the solution is

Y = —ne(fir — X¢) + Pefi

with
ni—ni=—c1, nr=0, (A.3)
¢p— ¢t = —c2, ¢ =0, (A.4)
and
djiy = —@ifit,  flo = Xo,
that is

fir = xp€ fot ¢psds
Note that the functions # and ¢ are given explicitly by

e2Ve(T—1) _q e2ve (T—t) _q

Mt = \/am/ ¢r = \/am

A.3 From finite-player to MFCG

The limit N — oo ensures that ji}" = ji; for every m, and the limit M — oo ensures that the
coefficient functions given by (A.2) converge to those given by (A.3).

Our goal is to show that the strategy obtained from the limiting problem in Section A.2
provides an e-Nash equilibrium for the finite-player game described in Section A.1.

Here we use the notation (#;°, ¢5°, fii°) for the quantities obtained in the system of
equations (A.3) (not to be confused with the corresponding quantities obtained in (A.2)).

We denote by a® the optimal strategy obtained in Section A.2, that is

aff = =Yy =ni (7 = Xe) — 7R

which we apply to all the players in the finite-player game. The value function for the
m-th group is given by

S T(1 2 o, 2 2
n=

where

~8
|
e
&
=
|
=
3
=i
78

" =i (
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and

X" = " dt + odW™", X3 ~ .
Note that " = & Y1 X" is given by

) - B - 1 N B 1 N
dpy' = [0 (= p) — O Rdt + 55 ) AW o= 55 ) Xg"
n=1

n=1
and
f= ——
MN ~ — t
is given by
diiy = [— ¢ 1] dt+— Z Zdw’””, flg = Z ZX’””
m 1n= m 1n=

Now we consider a strategy («® ", ™) where the players from group m use B;"" instead

of af"", and the players from the other groups m’ continue using a}" . We denote by X;""
the state of player (m, n) which satisfies

AT = BIdE 4 cd W, X~ g,

We denote the corresponding group empirical mean by i}, and the population empirical
mean by ji;. We also denote

o _ 1 _ _
Flx o, i) = 502+ F(x, i, 7)o i) = 5 {er (=002 + o)

Principle of the proof. First, show that for € > 0 there exists My and Ny such that for
M > Mpand N > Ny, we have

1 Y T emn - - o €
N Z E/O (F(X;n/n/ Ht, ‘u;n> - F<X;n,n/ Ht, VT)) dt| < E/ (A5)
n=1

where in the first term the strategy (a (a%—™, B™) is used, while in the second term the
strategy (&=, p™) is used with & the optimal strategy obtained in Section A.1 for the
finite-player game. Adding 2( )2 to both terms, we obtain

]T”l (“OO,—m, ﬁﬂ’l) > ]m <&—m“3m) o g
Using the fact that & is a Nash equilibrium for the finite-player game, we get

€

@, ) > (@) - 5
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As in the first step we can derive

" (a) = "(&)] < =

5 (A.6)

and, therefore
]m(lxoo,fm, ’Bm) > ]Wl(lxoo) — €
that is #® is an e-Nash equilibrium for the finite-player game.

Of course, (A.5) and (A.6) require some technical work which will be given in a general
setting in [6].

Finally we observe that the limits N — co and M — co can be taken sequentially.

If N = oo for M fixed, we obtain a game between competitive MKV agents called
mean field type game in [18]. Then, our limit describes the MFG limit between these
MKYV agents. If N is fixed and M — oo, on can consider each group as one player in the
higher dimension N and this is a classical MFG. Our MFCG describes the subsequent limit
N — co.

Appendix B. Analytic solutions

In this appendix we provide details about the solutions of the problems discussed in Sec-
tions 5.

B.1 Solution of the asymptotic problem
The corresponding HJB equation is given by

BV (x) — Hx,a 1) — | %H (1) () A () = 0
R 7,
with the Hamiltonian

H(x, o, p) = inf { AXV () + f(x, 0,1, 1) }

. 1 5. 1
= inf {sz(x) + EUZV(x) + szz +c1(x — cym)?
o

+aalx = et aula -t + s () |

1. 1,
= —EV(x)2 + EUZV(x) +c1(x — cam)? + c3(x — c4)?

+ &1 (x — Gm®H)? 4 G5 (m""”)2 ,
and the derivative with respect to u*# due to the MFC part, calculated at the optimal
&(x) = —V(x) as follows:

oH

gy =V (), 0, 1) =

A (51 (h— cm"*)? + &5 (m“’”)z) (x)
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_ a}% (al (h—fz /R ydy“f”<y>)2+as ( /R ydu“*‘(y))z) (%)

= —2818x <h — & / ydy""”(y)> + 265x / ydp**(y)
R R
= —2¢16x (l’l — 52771“’”) + 2&5xm™H,
and
/ B_H (h —V(h) ”"”) (x)du**(h) = —=2¢&162(1 — & )xm™* + 2&5xm™
w apeh U U 2 = 102 2 5 .

Finally, the HJB equation reduces to

1. 1 5.
BV(x) + EV(JC)Z — EUZV(x) —c1(x — com)? — c3(x — ¢4)? — &1 (x — Eam™H)?
— &5 (m™")? + 2616 (1 — &) xm™* — 2esxm™H = 0. (B.1)
Using the following ansatz for the value function and its derivatives

V(x) = Tox? 4+ T1x + T,

V(x) = 2Tpx + Ty, (B.2)
V(x) = 2T,
we obtain the optimal control
a(x) = —V(x) = —2Ix —T7y. (B.3)

Plugging the ansatz (B.2) into the H]JB (B.1) we have
(Br2+213 — (c1 + s +1) ) 2
+ (,BF1 + 2511 + 2c1com + 281Eom** + 2c3c4 + 25152(1 - 52)111“”’[ — 2557]1“”’[) X
1
+ BT + EF% — 0?Ty — cieam?® — (515% + C5) (m*H)? — ¢3¢ = 0.

The solution is given by

- BrVE+8(atata)
)=

4 7
I = 25571’1“’” - 25152(2 — 52)111“”’[ — 26162111 — 2C3C4
e B+ 2T, ’
r c1c§m2 + (515% + 55) (m"‘rﬂ)2 + 02T — I‘%/Z + c\a,cézL
0= :
P

Taking the expectation of the dynamics of X; " with the control &(x), we obtain the fol-
lowing ODE for m®#:
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il = —2Tymit — T,
which is solved by
N A T i I
ap _ 1 ap s _ 11 ap 11 —2It
ot =t =t (= + (" ) )
Ty 2emM = 2815 (2 — G)m — 2e1cym — 20304
M, 2T (B +2T2) '

From the fixed point condition m = mit we deduce

C3C4

1= mhf = ,
Cl(l—Cz) +51(1 —52)2+C3+55

and the explicit form of the optimal control (B.3)
a(x) = —2Ip (x —1M). (B:4)

Note that u*# = N (11,07 / (4T3)) is the limiting distribution of the OU process (X;").

B.2 Solution of the Traders’ problem

In order to solve this problem, one first freezes the flow (6;) as in the MFG problem, and
then solves the control problem which is of MKV type due to the term m; = E(X;) of MFC
style. Differentiating the corresponding Hamiltonian with respect to &, one gets

R 1
Ny = ——Yt.
Ca

On the other hand,
dY; = —( — ChlE[&t] + cxE [Xt])dt + ZidW,
which leads to the following FBSDE:

1
dXt = —C—Ytdt + O'th, XO ~ Ho,
®

dY; = — <Z—h]E[Yt] + cxE [Xt]> dt + Z;dWy, Yr = CgXT.

4

Note that this is a different system than the one studied in [5, Section 6.2.]. Taking expec-
tation in this system one obtains

JE[X] = — L EB[v,]dt, E[Xo] = xo,

Cu

dE[Y;] = — <C—hlE[Yt] +cxE [Xt]> dt, E[Yr] = cgE[Xr].

Cu
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Solving this system leads to
E[Yi] = 7()E[Xi],

where
_C(e(fr—éf)(T—t) _ 1) _ Cg((s—l—e(fr—éf)(T—t) _ (5—)

M= ((5—6(5+75*)(T7t) —ot) — ch(e(‘”*‘H(T*f) —1)

135

fort € [0,T], B=1/cs, C =cx,6% = =D + /R, with D = —c},/(2¢,) and R = D? + BC.

Subsequently,
£ 7(s)
E[X{] = xpe” 0 s,

From the FBSDE system for (X}, Y;, Z;) and centering X; and Y}, one gets

Yr = ()X + 9(t),

H=— %%
1(t) Ca+Cg(T— 1)

Z =on(t),
p() = (7(t) —n () EXd].
Finally, we recall that the optimal control is given by

e = =Yy = = ()X, + (1)),

Ca o

Assuming that Xy is NV (xo, (73)—distributed and independent of W, X; is normally-distri-

buted with mean given above by

t 7(s)
E[X;] = xpe” Jo T s

and variance easily computed from

dX; = —Cl (n(H)X¢ + ¢(t))dt + ocdW;

4
to obtain

t ! /!
Var(X;) = (7567% Jon(s)ds 4 ;2 / o S (A g
0
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