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A B S T R A C T

In the recently introduced Variable-Shape heaving wave energy converters, the buoy changes its
shape actively in response to changing incident waves. In this study, a Lagrangian approach for
the dynamic modeling of a spherical Variable-Shape Wave Energy Converter is described. The
classical bending theory is used to write the stress-strain equations for the flexible body using
Love’s approximation. The elastic spherical shell is assumed to have an axisymmetric vibrational
behavior. The Rayleigh-Ritz discretization method is adopted to find an approximate solution for
the vibration model of the spherical shell. A novel equation of motion is presented that serves as
a substitute for Cummins equation for flexible buoys. Also, novel hydrodynamic coefficients that
account for the buoy mode shapes are proposed. The developed dynamic model is coupled with
the open-source boundary element method software NEMOH. Two-way and one-way Fluid-
Structure Interaction simulations are performed using MATLAB to study the effect of using a
flexible shape buoy in the wave energy converter on its trajectory and power production. Finally,
the variable shape buoy was able to harvest more energy for all the tested wave conditions.

Nomenclature

𝑐 = Damping Coefficient (Ns/m)
𝐸 = Young Modulus of Elasticity (MPa)
ℎ = Sphere thickness (m)
𝑉 = Volume (m3)
𝑡 = Time (sec)
𝑟 = Sphere Radius (m)
𝜌 = Material Destiny (kg/m3)
𝜈 = Poisson’s Ratio
𝜂 = Rayleigh-Ritz Coefficient
𝜔 = Frequency (rad/sec)
𝟏 = Identity matrix = [𝟏1 𝟏2 𝟏3]
Subscripts and Superscripts
hydro = hydrodynamic
𝑏 = buoyancy
hst = hydrostatic
𝑝𝑡𝑜 = Power Take-off Unit
𝑤 = Water
ref = reference
rad = radiation
† = Pseudo Inverse
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1. Introduction
Oceans are colossal reservoirs of energy of particularly high density energy [1]. The total theoretical ocean energy

potential is estimated to be 29.5 PWh/yr [2], which is more than the US electric power needs in 2020. Despite its
significant potential, ocean energy is still a very small portion of the overall renewable energy production [3].

One widely used concept for harvesting wave power is the heaving Wave Energy Converter (WEC). In its simplest
form, this point absorber device may consist of a floating buoy connected to a vertical hydraulic cylinder (spar) attached
at the bottom of the seabed. As the buoy moves due to the wave and control forces, the hydraulic cylinders drive
hydraulic motors, and the motors drive a generator [4]. The forces on the floating buoy are the excitation, radiation,
and hydrostatic forces [5]. The excitation force is due to the wave field and the buoy’s geometry. The motion of the
buoy itself creates waves which in turn create the radiation forces. The hydrostatic force accounts for the buoyancy
force and weight of the buoy. In most of the current wave harvesting devices, the WEC has a Fixed-Shape Buoy (FSB).
The equation of motion for a heave-only 1-DoF FSB WEC is [6]:

𝑚𝑧̈(𝑡) =

excitation force 𝑓𝑒
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

∞

−∞
ℎ𝑓 (𝜏)𝜂(𝑡 − 𝜏, 𝑧)𝑑𝜏 +𝑓𝑠

radiation force 𝑓𝑟
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−𝜇𝑧̈(𝑡) − ∫

𝑡

−∞
ℎ𝑟(𝜏)𝑧̇(𝑡 − 𝜏)𝑑𝜏 −𝑢 (1)

where 𝑚 is the buoy mass, 𝑢 is the control force, 𝑡 is the time, 𝑧 is the heave displacement of the buoy from the sea
surface, and 𝑓𝑠 is the hydrostatic force that reflects the spring-like effect of the fluid. The 𝜂 is the wave surface elevation
at buoy centroid, 𝑓𝑒 is the excitation force, and ℎ𝑓 is the impulse response function defining the excitation force in
heave. The radiation force is 𝑓𝑟, where 𝜇 is a frequency-dependent added mass, and ℎ𝑟 is the impulse response function
defining the radiation force in heave.

For a FSB, the convolution integral part of the radiation force 𝑓𝑟 in Eq. (1) can be approximated using a state space
model of 𝑁 states, 𝑥⃗𝑟 = [𝑥𝑟1,⋯ , 𝑥𝑟𝑁 ]𝑇 , which outputs the radiation force [7]:

̇⃗𝑥𝑟 = 𝐴𝑟𝑥⃗𝑟 + 𝐵𝑟𝑧̇ and 𝑓𝑟 = 𝐶𝑟𝑥⃗𝑟, (2)

where the constant radiation matrices 𝐴𝑟 and 𝐵𝑟 are obtained by approximating the impulse response function in the
Laplace domain, as detailed in several references such as [8].

Two important aspects impact the energy converted from oceans: the control force and the buoy’s shape. For an
FSB WEC, linear dynamic models are widely used in control design e.g. [4, 9–17]. Usually, the control is designed
to maximize the mechanical power of the WEC; many references adopt different approaches to achieve optimality.
Often, the resulting control forces have a spring-like component in addition to the resisting force [18, 19]. Hence, the
Power Take-Off (PTO) unit needs to have a bidirectional power flow capability, which is typically complex and more
expensive. In analyzing the shapes of FSB WECs, the use of any non-cylindrical shape requires the use of non-linear
hydro models [20, 21]. This is the reason that most studies assume cylindrical shape of the FSB WEC.

From an economic perspective, the cost of having the complex bidirectional power flow PTO to maximize harvested
energy is high. Moreover, the structure of a FSB WEC needs to be designed to withstand very high loads at peak times
despite operating at a much less load most of the time. This impacts the structural design and increases the cost. To
mitigate this peak load, geometry controlled OSWEC was recently proposed in references [22–25], where controllable
surfaces, along with a wave-to-wave control, are used to maximize power capture, increase capacity factor, and reduce
design loads. The latter controlled-geometry OSWEC changes shape only when the wave climate changes, and hence
it can be considered similar to the case of an FSB WEC when it is not in the transition from one geometry to another.
A geometry control of the overtopping WEC is proposed in reference [26]. The slope angle and crest freeboard of
the device is made adaptive to the sea conditions by geometry control. Reference [27] proposed a variable flap angle
pitching device. The resonance characteristics of the WEC can be altered by controlling the angle of the flap. Later,
reference [28] proposed a floating airbag WEC that has a longer resonance period without implementing phase control.

The concept of a variable-shape buoy (VSB) WEC was recently introduced to reduce the complexity of the
PTO. A VSB WEC changes its shape continuously. The wave/WEC interaction produced by the VSB WEC can be
leveraged to produce more power without adding complexity to the PTO unit. Specifically, Zou et al. [29] proposed the
Variable-Shape point absorber; their original design comprises a pressurized gas chamber attached to a set of multiple
controllable moving panels. This VSB WEC is controlled by a simple linear damping PTO unit [29]. A low-fidelity
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dynamic model is derived in [29] to demonstrate the superiority of the VSB WEC compared to the FSB WEC. The
average power harvested using the VSB WEC in [29] is about 18% more compared to the FSB WEC.

In another study, references [30, 31] present three-dimensional two-way Fluid-Structure Interaction (FSI) high
fidelity simulations, using the ANSYS software package, to simulate a spherical VSB WEC. The WEC in [30, 31] has
a hyper-elastic hollow shell of radius 2 m. The internal volume contains trapped gas that helps in creating a restoring
moment. The device is simulated in a numerical wave tank (NWT) with dimensions 80 × 60 × 60 m3, and damping
regions at the sides and at the outlet of the NWT. The free surface height was at 40 m. Their simulation captured the
highly non-linear behavior of the VSB WEC and showed an enhancement in the heave displacement and velocity for
the VSB WEC compared to a similar-size FSB WEC. Reference [32] presents a study that uses a similar approach but
applies a passive control force. The PTO force is dependent on the WEC heave velocity (𝐹𝑃𝑇𝑂 = −𝑐𝑥̇), where 𝑐 is
a constant damping coefficient. The results showed an increase in the heave displacement and velocity for the VSB
WEC over the similar-size FSB WEC. The results also show an increase in the harvested energy of about 8%.

As can be seen from the above discussion, studies on VSB WECs currently use either high fidelity numerical
software tools or rough approximate low fidelity tools [33] for simulations. The high fidelity tools are computationally
expensive, and the above low fidelity simulations cannot capture important features in this FSI phenomenon.

In this work, Lagrangian mechanics and Rayleigh-Ritz approximation are used to derive novel equation of motions
for variable shape wave energy converters (Eqs.(106), (126) and (128)). Novel expressions for the generalized added
mass, damping, hydrostatic, and excitation forces and coefficients are also derived analytically for two-way and one-way
FSI schemes (sections 4 and 6). The paper is organized as follows: In section 2, the kinematics of the flexible buoy
are presented, and then the kinetic and potential energies for the special case of spherical buoys are presented [34],
noting that the use of spherical buoys is only to demonstrate the utility of the model, and the derived aforementioned
generalized hydrodynamic/hydrostatic coefficients and forces can be used with any flexible buoy geometry. In section
3, the equations of motion for flexible shell buoys are derived using Lagrangian mechanics for the free unconstrained
vibration. In section 4, a generalized form for the hydrodynamic forces and coefficients are proposed, for regular and
irregular waves. Section 5 presents the most general form of the proposed equation of motion for VSB WECs and
discusses the two-way FSI scheme for the proposed model. To reduce the computational time associated with the
two-way FSI schemes, Reynolds averaging is applied to obtain novel hydrodynamic coefficients for the one-way FSI
in section 6. The model validation is discussed in section 7. Finally, the numerical simulation results for the one-way
and two-way FSI for regular and irregular waves are presented in section 8.

2. Kinetic and Potential Energies of Spherical Shell Buoys
The derivation of the equation of motion in the current study uses Lagrangian mechanics; hence, the calculation

of the kinetic and potential energies is required. This section starts with the layout of the used reference frames, then
a description of the domain discretization technique used in the current study. The system’s kinematics are derived
in subsection 2.2; the result is then used to calculate the kinetic and potential energies in subsections 2.3 and 2.4,
respectively.

Consider a flexible buoy for which the non-deformed shape is spherical. As shown in Fig. (1), the inertial frame is
denoted as 𝒂̂ and can be described as:

𝒂̂ =
[

𝒂̂1, 𝒂̂2, 𝒂̂3
]

(3)

The body-fixed frame 𝒔̂ is attached to the buoy’s center of mass. Any point on the buoy’s surface can be specified using
the two coordinates 𝜙 and 𝜃, as illustrated in Fig. (1). Consider an infinitesimal mass at the surface of the buoy; we
introduce the reference frame 𝒆̂ which is attached to that infinitesimal mass on the buoy’s surface before deformation,
and its third axis 𝒆̂3 is aligned with the radius of the non-deformed buoy shape.

Hence, the reference frame 𝒆̂ is obtained by rotating 𝒔̂ by an angle 𝜃 around the 𝒔̂3 then by an angle 𝜙 around the
second intermediate frame as follows.

𝐶𝑒𝑠(𝜙, 𝜃) = 𝐶2(𝜙)𝐶3(𝜃) (4)

where 𝐶𝑖(𝑥) represents a fundamental transformation matrix of a single rotation of angle 𝑥 about the coordinate 𝑖,
𝑖 = 2, 3. The reference frame 𝒄̂ is centered at the infinitesimal mass on the surface such that 𝒄̂3 is normal to the surface.
The angle 𝜓 is the angle between 𝒔̂3 and 𝒄̂3. In the analysis presented in this paper, it is assumed that the deformations



4

Figure 1: Deformed (Solid Black Line) and non-deformed Buoy (Dashed Blue Line)

are axisymmetric about the 𝒂̂3 axis; hence the axis 𝒄̂2 is always perpendicular to the page. The axes 𝒂̂2, 𝒔̂2, and 𝒆̂2
are also perpendicular to the page. If the shape is not deformed from its original spherical shape, then the frames 𝒆̂
and 𝒄̂ coincide. The frames 𝒆̂ and 𝒄̂ become different, in general, when the shape is deformed. For the FSB WEC the
reference frames 𝒆̂ and 𝒄̂ coincide; this applies to the VSB WEC at the initial time before deformation.

References [30, 32, 35] carried out high-fidelity FSI simulations using ANSYS for spherical VSB WECs, and they
found that the steady-state response for the VSB WECs is close to being axisymmetric; thus in this work the VSB
WEC response is assumed to be axisymmetric to simplify the analysis.

The coordinate transformation matrix from the 𝒂̂ frame to the 𝒔̂ frame is computed in this paper using the 3-2-1
Euler angle sequence as 𝐶𝑠𝑎(𝛼, 𝛽, 𝛾) = 𝐶1(𝛼)𝐶2(𝛽)𝐶3(𝛾).

Since the changes in the buoy shape are assumed axisymmetric, we can express the deformation vector (displace-
ment) as a function of only the angle 𝜙 and the time 𝑡. This deformation vector can be expressed in the 𝒆̂ frame as:

𝒓⃗𝑑𝑚𝑐(𝜙, 𝑡) =
[

𝑢(𝜙, 𝑡) 0 𝑣(𝜙, 𝑡)
] 𝑇 (5)

where the second component (normal to the page plane) is set to zero because of the axisymmetry of the deformation,
𝑢(𝜙, 𝑡) is the displacement component in the 𝒆̂1 direction, and 𝑣(𝜙, 𝑡) is the displacement component in the 𝒆̂3 direction.
In this paper, each of these displacement components is assumed a series of separable functions; that is, each term in
their series can be expressed as a product of two functions, one of them depends only on 𝜙 and the other depends only
on 𝑡. Moreover, the Rayleigh-Ritz approximation is used to obtain an approximate solution for the displacement vector
as discussed in the following section.

2.1. Rayleigh-Ritz Approximation
The approximation method used in this work is the Rayleigh-Ritz method. Each component of the displacement

vector 𝒓⃗𝑑𝑚𝑐 is assumed to have the following form [34, 36, 37]:

𝑢(𝜙, 𝑡) =
𝑁
∑

𝑛=1
Ψ𝜙
𝑛 (𝜙)𝜂𝑛(𝑡) = [Ψ𝜙

1 …Ψ𝜙
𝑁 ]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝚿𝜙
𝑒

⎡

⎢

⎢

⎣

𝜂1(𝑡)
⋮

𝜂𝑁 (𝑡)

⎤

⎥

⎥

⎦

⏟⏟⏟
𝜼(𝑡)

= 𝚿𝜙
𝑒 (𝜙)𝜼(𝑡) (6)
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𝑣(𝜙, 𝑡) =
𝑁
∑

𝑛=1
Ψ𝑟
𝑛(𝜙)𝜂𝑛(𝑡) = [Ψ𝑟

1…Ψ𝑟
𝑁 ]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝚿𝑟
𝑒

⎡

⎢

⎢

⎣

𝜂1(𝑡)
⋮

𝜂𝑁 (𝑡)

⎤

⎥

⎥

⎦

⏟⏟⏟
𝜼(𝑡)

= 𝚿𝑟
𝑒(𝜙)𝜼(𝑡) (7)

where the functions Ψ𝜙
𝑛 and Ψ𝑟

𝑛 are trial (admissible) functions of 𝜙 and the functions 𝜂𝑛 are functions of time 𝑡, ∀
𝑛 = 1,⋯ , 𝑁 . Therefore, the displacement vector can be expressed in the 𝒆̂ frame as follows:

𝒓⃗𝑑𝑚𝑐(𝜙, 𝑡) =
⎡

⎢

⎢

⎣

𝚿𝜙
𝑒 (𝜙)
𝟎

𝚿𝑟
𝑒(𝜙)

⎤

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝚽𝑒

𝜼(𝑡) = 𝚽𝑒(𝜙)𝜼(𝑡) (8)

For a spherical shape buoy, the Legendre functions of the first kind 𝑃𝑛 [34, 38] can serve as shape functions for the
Ritz-Rayleigh method to satisfy the essential geometrical (Dirichlet) boundary conditions [36, 39–42] as follows:

Ψ𝜙
𝑛 (𝜙) = 𝐴

𝑑𝑃𝑛(cos(𝜙))
𝑑𝜙

, and Ψ𝑟
𝑛(𝜙) = 𝐴

(1 + (1 + 𝜈))Ω2
𝑛

1 − Ω2
𝑛

𝑃𝑛(cos(𝜙)) (9)

where the coefficients of the equations above form an eigenvector for the Legendre differential equation, i.e. the constant
"A" can take any real value. Ω2

𝑛 is a dimensionless frequency parameter expressed as [34, 37, 40]:

Ω2
𝑛 =

1
2(1 − 𝜈2)

(𝐴̄ ±
√

𝐴̄2 − 4𝑚𝐵̄) (10)

where 𝜈 is the Poisson’s ratio, and

𝑚 = 𝑛(𝑛 + 1) − 2, 𝑛 ∈ ℤ+ (11)

𝐵̄ = 1 + 𝜈2 + 1
12

[(𝑚 + 1)2 − 𝜈2] (12)

𝐴̄ = 3(1 + 𝜈) + 𝑚 + 1
2

[ℎ
𝑟

]2
(𝑚 + 3)(𝑚 + 1 + 𝜈) (13)

From [37, 39, 40] the natural frequencies in radians per second for spherical shells are calculated using Eq. (14)

𝜔2
𝑛 =

𝐸
𝑟2𝜌Ω2

𝑛
(14)

where 𝐸 is Young’s Modulus, 𝑟 is the non-deformed radius of the shell, and 𝜌 is the density of the shell material.
When 𝑛 = 0, the vibration mode corresponds to the breathing mode (volumetric or pulsating modes) which is a pure
radial vibration mode [40, 42, 43]. For 𝑛 > 0, the ± sign in Eq. (10) yields the modes corresponding to the membrane
vibration modes and bending vibration modes. The bending vibration modes are obtained when using the negative
sign; these modes are sensitive to the ℎ∕𝑟 ratio. On the other hand, the membrane modes are insensitive to the change
in the ℎ∕𝑟 ratio. Due to the extensional motion of the buoy, only the membrane vibration modes are used in the current
work. To obtain the approximated equations of motion using the Rayleigh-Ritz method, the approximated displacement
vector needs to be substituted in the kinetic and strain energy equations as follows.

2.2. Kinematics of a Flexible Spherical Buoy - Free Vibration
This subsection is concerned with calculating the 𝑎 ̇⃗𝒓𝑑𝑚𝑎 vector as it is crucial for the calculation of the kinetic

energy of the spherical shell due to the translation and rotational motions as well as the deformation of the sphere
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external shell. As shown in Fig. (1), the position vector of a point on the surface of the deformed sphere in the inertial
frame "𝒂̂" is expressed as [34, 36]:

𝒓⃗𝑑𝑚𝑎 = 𝒓⃗𝑠𝑎 + 𝒓⃗𝑐𝑠 + 𝒓⃗𝑑𝑚𝑐 (15)

The velocity vector is expressed as

𝑎 ̇⃗𝒓𝑑𝑚𝑎 = 𝑎 ̇⃗𝒓𝑠𝑎 + 𝑎 ̇⃗𝒓𝑐𝑠 + 𝑎 ̇⃗𝒓𝑑𝑚𝑐 (16)

Note that the left superscript denotes the reference frame used to describe the vector. Accordingly, 𝑎 ̇⃗𝒓𝑑𝑚𝑎 for a buoy
constraint from rotations can be expressed as [34]:

𝑎 ̇⃗𝒓𝑑𝑚𝑎 =
[

𝐶𝑠𝑎 𝐶𝑠𝑒
]

[ 𝑎 ̇⃗𝒓𝑠𝑎
𝑒 ̇⃗𝒓𝑑𝑚𝑐

]

⏟⏟⏟
̇⃗𝐱

(17)

2.3. Kinetic Energy for a Flexible Spherical Buoy
The total kinetic energy of the buoy is expressed in Eq. (18).

 = 1
2 ∫𝑆

𝑎 ̇⃗𝒓𝑑𝑚𝑎 ⋅ 𝑎 ̇⃗𝒓𝑑𝑚𝑎𝑑𝑚 (18)

where 𝑆 denotes the surface of the buoy, Substituting Eq. (17) in Eq. (18) to get [34],

 = 1
2
𝑎 ̇⃗𝒓𝑇𝑠𝑎𝒎

𝑎 ̇⃗𝒓𝑠𝑎
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑥

+ 1
2 ∫𝑠

𝑒 ̇⃗𝒓𝑇𝑑𝑚𝑐
𝑒 ̇⃗𝒓𝑑𝑚𝑐𝑑𝑚

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒔

(19)

where 𝒎 = 𝟏𝑚 is the VSB mass matrix. The terms 𝑥 and 𝒔 are the kinetic energies associated with the transnational
motion and shell deformations, respectively.

The kinetic energy 𝒔 is approximated by substituting Eq.s (6) and (7) into Eq. (19); to get [34, 36]:

𝒔 =
1
2
𝜼̇𝑇

{

2𝜋𝜌ℎ∫

𝜋

0

(

𝚿𝜙𝑇
𝑒 𝚿𝜙

𝑒 +𝚿𝑟𝑇
𝑒 𝚿𝑟

𝑒

)

𝑟2 sin𝜙𝑑𝜙

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑴𝑒𝑒

𝜼̇ = 1
2
𝜼̇𝑇𝑴𝑒𝑒𝜼̇ (20)

2.4. Potential Energy for Flexible Spherical Buoys
The strain energy-displacement expressions (membrane strains) for axisymmetric shells can be written as [40, 44,

45]:

𝜀𝜙𝜙 = 1
𝑟

(

𝜕𝑢
𝜕𝜙

+ 𝑣
)

(21)

𝜀𝜃𝜃 =
1
𝑟
(𝑢 cot(𝜙) + 𝑣) (22)

The total strain energy can be found in References [34, 45]. Combining the sphere elastic strain and the gravitational
potential energies in Eqs. (27) and (31) yield the total potential energy of the spherical shell buoy [34, 36]:

𝜋 = 𝑠 +  = 1
2

𝐸ℎ
1 − 𝜈2 ∫

2𝜋

0 ∫

𝜋

0

{

𝜀𝜙𝜙𝑒
2 + 𝜀𝜃𝜃𝑒

2 + 2𝜈𝜀𝜙𝜙𝑒 𝜀𝜃𝜃𝑒
}

𝑟2 sin(𝜙)𝑑𝜃𝑑𝜙 + 𝑚𝑔𝟏𝑇3 𝒓⃗𝑠𝑎 (23)

The strain energy is approximated by first substituting Eqs. (6) and (7) in Eqs. (21) and (22) to get:

𝜀𝜙𝜙 = 1
𝑟

(

𝜕Ψ𝜙
𝑒

𝜕𝜙
+ Ψ𝑟

𝑒

)

𝜼 (24)
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𝜀𝜃𝜃 =
1
𝑟
(

Ψ𝜙
𝑒 cot(𝜙) + Ψ𝑟

𝑒
)

𝜼 (25)

Then the strain energy equation in Eq. (23) becomes [34, 36, 44]:

𝒔 =
1
2
𝜼𝑇

[

2𝜋𝐸ℎ
1 − 𝜈2 ∫

𝜋

0

{(

𝜕Ψ𝜙
𝑒

𝜕𝜙
+ Ψ𝑟

𝑒

)𝑇 (

𝜕Ψ𝜙
𝑒

𝜕𝜙
+ Ψ𝑟

𝑒

)

+
(

Ψ𝜙
𝑒 cot(𝜙) + Ψ𝑟

𝑒
)𝑇 (

Ψ𝜙
𝑒 cot(𝜙) + Ψ𝑟

𝑒
)

+ 𝜈
⎛

⎜

⎜

⎝

(

𝜕Ψ𝜙
𝑒

𝜕𝜙
+ Ψ𝑟

𝑒

)𝑇
(

Ψ𝜙
𝑒 cot(𝜙) + Ψ𝑟

𝑒
)

+
(

Ψ𝜙
𝑒 cot(𝜙) + Ψ𝑟

𝑒
)𝑇

(

𝜕Ψ𝜙
𝑒

𝜕𝜙
+ Ψ𝑟

𝑒

)

⎞

⎟

⎟

⎠

}

sin(𝜙)𝑑𝜙

]

𝜼 (26)

= 1
2
𝜼𝑇𝑲𝑒𝑒𝜼 (27)

where

𝑲𝑒𝑒 =
2𝜋𝐸ℎ
1 − 𝜈2 ∫

𝜋

0

{

𝜁𝑇𝜙𝜙𝜁𝜙𝜙 + 𝜁𝜃𝜃𝑇 𝜁𝜃𝜃 + 𝜈
(

𝜁𝑇𝜙𝜙𝜁𝜙𝜙 + 𝜁𝜃𝜃𝑇 𝜁𝜃𝜃
)}

sin(𝜙)𝑑𝜙 (28)

𝜁𝜙𝜙 =

(

𝜕Ψ𝜙
𝑒

𝜕𝜙
+ Ψ𝑟

𝑒

)

(29)

𝜁𝜃𝜃 =
(

Ψ𝜙
𝑒 cot(𝜙) + Ψ𝑟

𝑒
)

(30)

Considering the buoy as a spherical shell, the gravitational energy can be expressed as [34, 36]:

 = ∫𝑠
−𝒈⃗ ⋅ 𝒓⃗𝑠𝑎𝑑𝑚 = 𝑚𝑔𝒂̂3𝑇 𝒓⃗𝑠𝑎 (31)

where 𝒈⃗ = −𝑔𝒂̂3.

3. Unconstrained Equations of Motion For Flexible shell Buoys
The unconstrained equations of motion are here derived as a first step towards writing the constrained equations of

motion. The Lagrangian for this buoy system can be written as the summation of three quantities [46]:

 = 𝐷 + 𝐵 + ∫𝑠
̂𝑑𝜙 (32)

where 𝐷(𝑡, 𝐱⃗, ̇⃗𝐱) is associated with the discrete coordinates, ̂ is the Lagrangian density function and it is a function
of the discrete and distributed parameter coordinates. Using the Rayleigh-Ritz approximations transfers the distributed
parameter terms to discrete parameter terms, i.e., in this case ̂ = 𝟎, 𝐵 is associated with the boundaries. In this work
there are no boundary terms in the Lagrangian equation, i.e., 𝐵 = 𝟎. Now, we will derive the equations of motion
related to the discrete coordinates.

The Lagrangian for the discrete coordinates is expressed as:

𝐷 = 𝐷 − 𝜋𝐷 = 1
2
𝑎 ̇⃗𝒓𝑇𝑠𝑎𝒎

𝑎 ̇⃗𝒓𝑠𝑎 +
1
2
𝜼̇𝑇𝑴𝑒𝑒𝜼̇ −

1
2
𝜼𝑇𝑲𝑒𝑒𝜼 − 𝑚𝑔𝟏𝑇3 𝒓⃗𝑠𝑎 (33)

The Lagrange Equation for the discrete coordinates is expressed as:

𝑑
𝑑𝑡

(

𝜕𝐷
𝜕 ̇⃗𝐱

)

−
𝜕𝐷
𝜕𝐱⃗

= 𝟎 (34)

To write the equations of motion of the discrete coordinates, we first write:

𝜕𝐷
𝜕𝒓⃗𝑠𝑎

= −𝑚𝑔𝟏3, and 𝑑
𝑑𝑡

(

𝜕𝐷
𝜕 ̇⃗𝒓𝑠𝑎

)

= 𝒎𝑎 ̈⃗𝒓𝑠𝑎 (35)
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𝜕𝑠
𝜕𝜼

= −𝑲𝑒𝑒𝜼 (36)

𝜕𝑠
𝜕𝜼̇

= 𝑴𝑒𝑒𝜼̇, and 𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝜼̇

)

= 𝑴𝑒𝑒𝜼̈ (37)

Noting that, unlike [34], the generalized mass matrix is constant due to the no C.G rotations assumption. The equations
of motion for the translational motion and the buoy deformations are:

𝒎𝑎 ̈⃗𝒓𝑠𝑎 + 𝑚𝑔𝟏3 = 𝟎 (38)
𝑴𝑒𝑒𝜼̈ +𝑲𝑒𝑒𝜼 = 𝟎 (39)

The equations of motion described by Eq. (38) and (39) can be extended to include damping coefficient matrices as
follows:

𝒎𝑎 ̈⃗𝒓𝑠𝑎 +𝑫𝑥
𝑎 ̇⃗𝒓𝑠𝑎 + 𝑚𝑔𝟏3 = 𝟎 (40)

𝑴𝑒𝑒𝜼̈ +𝑫𝑒𝑒𝜼̇ +𝑲𝑒𝑒𝜼 = 𝟎 (41)

where 𝑫𝑥 is the damping metric for the translation motions and 𝑫𝑒𝑒 is a proportional damping matrix that is
assumed to be a function of the mass and stiffness matrices as follows:

𝑫𝑒𝑒 = 𝛼𝑑𝑴𝑒𝑒 + 𝛽𝑑𝑲𝑒𝑒

where the 𝛼𝑑 and 𝛽𝑑 are real scalars called the mass and stiffness matrix multipliers with units 1/sec and sec, respectively
[47–49]. Noting that the modal damping, in that case, is dependant only on the rate of change of flexibility states, the
addition of damping terms here is important to damp out the transient vibration response and obtain the steady state
response within a finite settling time.

Combining the equations of motion from Eqs. (40) and (41) yields the unforced equation of motion of a flexible
buoy constraint from rotations [34, 36]:

𝑴 ̈⃗𝐱 +𝑫 ̇⃗𝐱 +
[

𝑚𝑔𝟏𝑇3 (𝑲𝑒𝑒𝜼)𝑇
]𝑇 = 𝟎 (42)

where
̇⃗𝐱 =

[

𝑎 ̇⃗𝒓𝑇𝑠𝑎 𝜼̇𝑇
]𝑇
(3+𝑁)×1 (43)

𝑴 = diag{𝒎 𝑴𝑒𝑒}(3+𝑁)×(3+𝑁) (44)
𝑫 = diag{𝑫𝑥 𝑫𝑒𝑒}(3+𝑁)×(3+𝑁) (45)

4. Forced Constrained Equations of Motion
In this section, a Lagrangian mechanics approach is used to derive a new generalized form for the hydrodynamic

forces. Then, novel expressions for the generalized hydrodynamic coefficients are derived. The Lagrange equations for
the forced motion of discrete coordinates are expressed as [46]:

𝑑
𝑑𝑡

(𝜕
𝜕𝐱̇

)

− 𝜕
𝜕𝐱

= 𝑸

= 𝑸𝑐 +𝑸𝑝𝑡𝑜 +𝑸𝑒𝑥𝑡 +𝑸𝑟𝑎𝑑 +𝑸∞ +𝑸ℎ𝑠𝑡 (46)

where, 𝑸 is a column vector of generalized forces and can be expressed as the summation of the generalized
constraint force “𝑸𝑐" [34], generalized PTO force “𝑸𝑝𝑡𝑜", generalized excitation force “𝑸𝑒𝑥𝑡", generalized interia
“𝑸∞", generalized radiation force 𝑸𝑟𝑎𝑑 , and generalized hydrostatic force “𝑸ℎ𝑠𝑡". Noting that the application of the
constraint forces on the VSB WEC was demonstrated in Ref. [34].

To compute the generalized force, the general transformation takes the form [46]:

Q𝑗 =
3+𝑁
∑

𝑖=1
𝑓𝑖 ⋅

𝜕𝑟𝑖
𝜕𝑞𝑗

(47)

The next subsections assumes that the buoy is constrained from surging and swaying and only heave motion is
allowed.
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4.1. Power Take-off Unit Force
The PTO can be either active or passive [50]. In this paper, the PTO is assumed to be passive damping. To apply

the PTO effect for that case, one can either include its effect in the 𝑫𝑥 matrix in Eq. (42) or as an external force in Eq.
(48) [34].

f⃗ 𝑝𝑡𝑜 = −𝑐 𝑎 ̇⃗𝒓𝑠𝑎,3 𝒂3 (48)

where f⃗ 𝑝𝑡𝑜 is the damping force and 𝑐 is the damping coefficient.
Hence, the generalized force corresponding to the PTO force takes the form:

Q𝑝𝑡𝑜
𝑗 = 𝒇⃗ 𝑝𝑡𝑜 ⋅

𝜕𝑟𝑠𝑎
𝜕𝑞𝑗

, ∀𝑗 = 1, 2,⋯ 1 +𝑁 (49)

We can then write the PTO generalized forces using Eq. (49) and Eq. (48) as follows:

Q𝑝𝑡𝑜
1 = 𝒇⃗ 𝑝𝑡𝑜 ⋅

𝜕𝒓⃗𝑠𝑎
𝜕𝒓⃗𝑠𝑎,3

= −𝑐𝑎 ̇⃗𝒓𝑠𝑎,3𝒂3 ⋅ 𝟏3 = −𝑐𝑎 ̇⃗𝒓𝑠𝑎,3 (50)

Q𝑝𝑡𝑜
2 = 𝒇⃗ 𝑝𝑡𝑜 ⋅

𝜕𝒓⃗𝑠𝑎
𝜕𝜂1

= 0, …… Q𝑝𝑡𝑜
1+𝑁 = 𝒇⃗ 𝑝𝑡𝑜 ⋅

𝜕𝒓⃗𝑠𝑎
𝜕𝜂𝑁

= 0 (51)

In a compact form,

Q𝑝𝑡𝑜 = −
[

𝑐 𝑎 ̇⃗𝒓𝑠𝑎,3
𝟎

]

(52)

Note that the equation above accounts for the heave-only motion (the rows related to surging and swaying were omitted).

4.2. Generalized hydrodynamic Forces For Regular Waves
In this section, the hydrodynamic forces for the VSB WEC are derived in the generalized coordinates, including

the generalized added mass, the generalized damping coefficients, the generalized hydrostatic coefficient, and the
generalized excitation force. The frequency domain excitation, radiation, and hydrostatic pressures are assumed to be
known or calculated using BEM solvers (ex, NEMOH, WAMIT, AQWA, Capytaine). These BEM solvers discretize
the buoy shell into several mesh elements/panels, and the hydro pressures on each can be extracted from the solver.

4.2.1. Derivation of the Generalized Excitation Force 𝑸𝑒𝑥𝑡:
The generalized hydrodynamic excitation force "Q𝑒𝑥𝑡" is computed by considering the submerged volume of a

buoy, and the hydro excitation force acting on the 𝑖𝑡ℎ mesh element is expressed as

𝑓 𝑒𝑥𝑡𝑖 = −𝐹𝑒𝑥𝑡𝑖𝒄̂3𝑖 (53)
𝐹𝑒𝑥𝑡,𝑖 = 𝑝𝑒𝑥𝑡,𝑖𝐴𝑖 (54)

where 𝐴𝑖 and 𝒄̂3,𝑖 are the 𝑖𝑡ℎ element surface area and mesh element normal, respectively, and 𝑝𝑒𝑥𝑡,𝑖 is the time domian
excitation pressure generated by the waves on the 𝑖𝑡ℎ mesh element. Note that the 𝑡 subscript denotes that these variables
are in the time domain.

The time domain excitation pressure 𝑝𝑒𝑥𝑡,𝑖 is calculated using Eq. (55) [29]

𝑝𝑒𝑥𝑡,𝑖 = ℜ
(

𝑝𝑒𝑥,𝑖𝜂𝑒
𝑖𝜔𝑡

)

(55)

where 𝜂 is the wave amplitude (𝜂 = 𝐻∕2) [51],𝐻 is the wave height,𝜔 is the wave frequency, 𝑝𝑒𝑥,𝑖 is the frequency
domain excitation pressure coefficient, and 𝑖 equals

√

−1.
The frequency domain excitation pressure coefficient is the summation of the Froude-Krylov (KF) 𝑝kf,𝑖 and the

diffraction 𝑝df,𝑖 pressure coefficients. The Froude-Krylov (KF) pressure is generated by the unsteady pressure field due
to the undisturbed incident wave, while the diffraction pressure is caused due to the WEC disturbing the waves [29].

𝑝𝑒𝑥,𝑖 = 𝑝kf,𝑖 + 𝑝df,𝑖 ∈ ℂ (56)



10

The 𝑝df,𝑖 is obtained numerically using the BEM open source tools, while the value for Froude-Krylov (KF) is
calculated analytically depending on the sea depth [52]. For deep sea conditions the KF pressure can be expressed in
the following notation:

𝑝kf,𝑖 = 𝜌𝑤𝑔𝑒
𝑘[(𝒓⃗𝑑𝑚𝑠3(𝜙𝑤)−𝒓⃗𝑑𝑚𝑠3)+𝑖𝒓⃗𝑑𝑚𝑠1𝑖] (57)

where 𝑘 = 𝜔2∕𝑔 is the wave number [29], and 𝒓⃗𝑑𝑚𝑠3(𝜙𝑤) is the vertical component of the position vector of the
mesh element coinciding with the free surface.

From Eq. (47), the generalized hydro force can be written in the following form:

Q𝑒𝑥𝑡
𝑗 = 𝒇⃗ 𝑒𝑥𝑡 ⋅

𝜕𝑟𝑑𝑚𝑎
𝜕𝑞𝑗

, 𝑗 = 1, 2, ..., 1 +𝑁 (58)

Substituting Eq. (53) into Eq. (58) to get:

Q𝑒𝑥𝑡
1,𝑖 = 𝒇⃗ 𝑒𝑥𝑡𝑖 ⋅

𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝒓⃗𝑠𝑎3

= −𝐹𝑒𝑥ℎ𝑖𝒄̂3𝑖 ⋅ 𝟏3 = −𝐹𝑒𝑥𝑡𝑖𝟏
𝑇
3 𝒄̂3𝑖 = −𝐹𝑒𝑥𝑡𝑖 cos𝜓𝑖 (59)

Q𝑒𝑥𝑡
2,𝑖 = 𝒇⃗ 𝑒𝑥𝑡𝑖 ⋅

𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝜂1

= −𝐹𝑒𝑥𝑡𝑖𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1), … , Q𝑒𝑥𝑡
1+𝑁,𝑖 = 𝒇⃗ 𝑒𝑥𝑡𝑖 ⋅

𝜕𝒓⃗𝑠𝑎
𝜕𝜂𝑁

= −𝐹𝑒𝑥𝑡𝑖𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁) (60)

Therefore the generalized excitation force for heave only motion is as follows:,

Q𝑒𝑥𝑡 = −
𝑚
∑

𝑖=1
𝐹𝑒𝑥𝑡,𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

= −
𝑚
∑

𝑖=1
𝑝𝑒𝑥𝑡,𝑖𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

(61)

where𝑚 is the total number of mesh panels. Accordingly, the proposed generalized excitation force coefficient for VSB
WEC is expressed as:

𝑬𝒙(𝜔, 𝑡) = −
𝑚
∑

𝑖=1
𝑝𝑒𝑥,𝑖(𝜔, 𝑡)𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

∈ ℂ (62)

where 𝑬𝒙 is a column vector. Note that for the two-way FSI simulations, each time step requires calculating a new 𝑬𝒙
due to its dependence of the buoy’s geometry. Finally, Eq. (61) can be reformulated as:

𝑸𝑒𝑥𝑡(𝑡) = ℜ
(

𝑬𝒙(𝜔, 𝑡)𝜂𝑒𝑖𝜔𝑡
)

(63)

4.2.2. Derivation of the generalized hydrostatic Force 𝑸ℎ𝑠𝑡:
The derivation of the generalized hydrostatic force 𝑸ℎ𝑠𝑡 will yield an expression for the generalized hydrostatic

matrix as demonstrated in this subsection. The hydrostatic pressure on the 𝑖𝑡ℎ mesh element is computed as [52]:

𝑝ℎ𝑠𝑡,𝑖 = −𝜌𝑤𝑔(ℎref − 𝒓⃗𝑑𝑚𝑎3,𝑖) = −𝜌𝑤𝑔𝑧𝑖 (64)

ℎref is the water free-water level, and 𝒓⃗𝑑𝑚𝑎3 is expressed as:

𝒓⃗𝑑𝑚𝑎 = 𝒓⃗𝑠𝑎 + 𝑟𝒆̂3 +𝚽𝑒𝜼 (65)
𝒓⃗𝑑𝑚𝑎3,𝑖 =

[

𝐶𝑠𝑎(3, 3) [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
]

𝐱⃗ (66)

The hydrostatic resorting force is the difference between the buoy weight and the hydrostatic forces and can be
calculated as follows:

𝐹ℎ𝑠𝑡,𝑖 = 𝑝ℎ𝑠𝑡,𝑖𝐴𝑖 = 𝜌𝑤𝑔𝐴𝑖(ℎref − 𝒓⃗𝑑𝑚𝑎3𝑖) = 𝜌𝑤𝑔𝐴𝑖𝑧𝑖 (67)
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𝑓ℎ𝑠𝑡𝑡𝑜𝑡 = −
𝑁
∑

𝑖=1

(

𝐹ℎ𝑠𝑡𝑖𝒄̂3𝑖 − 𝛿𝑚𝑖 𝑔𝒂̂3
)

= −
𝑁
∑

𝑖=1

(

𝐹ℎ𝑠𝑡𝑖𝐶𝑎𝑐 𝑖 − 𝛿𝑚𝑖 𝑔
)

𝒂̂3 (68)

= −𝜌𝑤𝑔
𝑁
∑

𝑖=1

(

𝐴𝑖𝑧𝑖𝐶𝑎𝑐 𝑖𝒂̂3 − 𝛿𝑚𝑖 𝒂̂3
)

(69)

where 𝛿𝑚𝑖 is the mass of the 𝑖𝑡ℎ mesh element, at equilibrium, the buoy is half submerged, and the weight forces
balances out the hydrostatic forces; therefore, Eq. (67) can be expressed as:

𝒇⃗ℎ𝑠𝑡 = −𝜌𝑤𝑔
𝑁
∑

𝑖=1

(

𝐴𝑖Δ𝑧𝑖𝒄̂3,𝑖
)

= −𝜌𝑤𝑔
𝑁
∑

𝑖=1

(

𝐴𝑖(𝑧1,𝑖 − 𝑧𝑖)𝒄̂3,𝑖
)

(70)

= −𝜌𝑤𝑔
𝑁
∑

𝑖=1

(

𝐴𝑖(ℎref − 𝒓⃗𝑑𝑚𝑎3𝑖,0 − ℎref + 𝒓⃗𝑑𝑚𝑎3𝑖)𝒄̂3,𝑖
)

(71)

= −𝜌𝑤𝑔
𝑁
∑

𝑖=1

(

𝐴𝑖(𝒓⃗𝑑𝑚𝑎3𝑖,0 − 𝒓⃗𝑑𝑚𝑎3𝑖)𝒄̂3,𝑖
)

(72)

Note that at the initial time the VSB WEC is not deformed 𝒓⃗𝑑𝑚𝑐(𝑡 = 0) = 𝒓⃗𝑑𝑚𝑐0 = 𝟎. Assuming that the inertial frame
is on the free-water surface 𝒓⃗𝑠𝑎0 = 𝟎, we can write:

𝒓⃗𝑑𝑚𝑎3𝑖,0 − 𝒓⃗𝑑𝑚𝑎3𝑖 = 𝒓⃗𝑠𝑎30 + 𝒓⃗𝑐𝑠3𝑖,0 + 𝒓⃗𝑑𝑚𝑐3𝑖,0 − 𝒓⃗𝑠𝑎3𝑖 − 𝒓⃗𝑐𝑠3𝑖 − 𝒓⃗𝑑𝑚𝑐3𝑖
= −

(

𝒓⃗𝑠𝑎3 + 𝒓⃗𝑑𝑚𝑐3𝑖
)

(73)

Accordingly, Eq (72) can be expressed as:

𝒇⃗ℎ𝑠𝑡 = 𝜌𝑤𝑔
𝑁
∑

𝑖=1

(

𝐴𝑖
(

𝒓⃗𝑠𝑎3 + 𝒓⃗𝑑𝑚𝑐3𝑖
)

𝒄̂3,𝑖
)

(74)

From Eq. (47), the generalized hydrodynamic stiffness can be expressed as:

Qℎ𝑠𝑡
𝑗 = 𝒇⃗ℎ𝑠𝑡 ⋅

𝜕𝑟𝑑𝑚𝑎
𝜕𝑞𝑗

, 𝑗 = 1, 2, ..., 1 +𝑁 (75)

Substituting Eq. (74) into Eq. (75) to get:

Qℎ𝑠𝑡
1,𝑖 = 𝒇⃗ℎ𝑠𝑡 ⋅

𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝒓⃗𝑠𝑎3

= 𝜌𝑤𝑔𝐴𝑖
(

𝒓⃗𝑠𝑎3 + 𝒓⃗𝑑𝑚𝑐3𝑖
)

𝒄̂3𝑖 ⋅ 𝟏3 = 𝜌𝑤𝑔𝐴𝑖
(

𝒓⃗𝑠𝑎3 + 𝒓⃗𝑑𝑚𝑐3𝑖
)

cos𝜓𝑖 (76)

Qℎ𝑠𝑡
2,𝑖 = 𝒇⃗ℎ𝑠𝑡𝑖 ⋅

𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝜂1

= 𝜌𝑤𝑔𝐴𝑖
(

𝒓⃗𝑠𝑎3 + 𝒓⃗𝑑𝑚𝑐3𝑖
)

𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1) (77)

Qℎ𝑠𝑡
1+𝑁,𝑖 = 𝒇⃗ℎ𝑠𝑡𝑖 ⋅

𝜕𝒓⃗𝑠𝑎
𝜕𝜂𝑁

= 𝜌𝑤𝑔𝐴𝑖
(

𝒓⃗𝑠𝑎3 + 𝒓⃗𝑑𝑚𝑐3𝑖
)

𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁) (78)

Therefore,

Qℎ𝑠𝑡 =
𝑚
∑

𝑖=1
𝜌𝑤𝑔𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

(

𝒓⃗𝑠𝑎3 + 𝒓⃗𝑑𝑚𝑐3𝑖
)

(79)

Subsitute Eq. (79) into Eq. (66) to get:

Qℎ𝑠𝑡 =
𝑚
∑

𝑖=1
𝜌𝑤𝑔𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

[

𝐶𝑠𝑎(3, 3) [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
−𝑲ℎ

𝐱⃗ (80)
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Accordingly, the generalized hydrostatic stiffness coeffcient matrix for heave-only motion is expressed as:

𝑲ℎ = −
𝑚
∑

𝑖=1
𝜌𝑤𝑔𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

[

1 [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
]

(81)

noting that 𝑲ℎ is a full matrix which makes the equation of motion statically coupled. The derived matrix is also
non-symmetric.

4.2.3. Derivation of the Generalized Radiation Force 𝑸𝑟𝑎𝑑:
The derivation of the generalized radiation force𝑸𝑟𝑎𝑑 will yield an expression for the generalized radiation damping

matrix, and this will be demonstrated in this subsection. The portion of the radiation force that is dependent on the
buoy velocity for regular waves is expressed as:

𝑓 𝑟𝑎𝑑𝑖 = −𝐹𝑟𝑎𝑑 𝑖𝒄̂3𝑖 (82)
𝐹𝑟𝑎𝑑,𝑖 = 𝑝𝑟𝑑𝑡,𝑖𝐴𝑖 (83)

where 𝐴𝑖 and 𝒄̂3,𝑖 are the 𝑖𝑡ℎ element surface area and it’s normal, respectively.
Time domain radiation pressure for only heave motion is calculated as follows [29]:

𝑝𝑟𝑑𝑡,𝑖 = 𝑝𝑟𝑑𝑐,𝑖 ̇⃗𝒓𝑑𝑚𝑎3 (84)

where 𝑝𝑟𝑑𝑐,𝑖 is the real part of the radiation damping pressure coefficient [29], and it is calculated using Eq. (85); also,
𝒓̇𝑑𝑚𝑎 for motion can be calculated as using Eq. (86):

𝑝𝑟𝑑𝑐,𝑖 = ℜ
(

𝑝𝑟𝑑,𝑖
)

(85)
𝑎 ̇⃗𝒓𝑑𝑚𝑎 =

[

𝐶𝑠𝑎 𝐶𝑠𝑒𝚽𝑒
] ̇⃗𝐱 (86)

where 𝑝𝑟𝑑,𝑖 ∈ ℂ is the radiation pressure coefficient [29] obtained from the BEM solver, and the superscript 𝑎 denotes
that the vector is expressed in the 𝑎 frame.

Substituting Eq. (82) into Eq. (58) to get:

Q𝑟𝑎𝑑
1,𝑖 = 𝒇⃗ 𝑟𝑎𝑑𝑖 ⋅

𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝒓⃗𝑠𝑎,3

= −𝐹𝑟𝑎𝑑 𝑖𝒄̂3𝑖 ⋅ 𝟏3 = −𝐹𝑟𝑎𝑑 𝑖𝟏
𝑇
3 𝒄̂3𝑖 = −𝑝𝑟𝑑𝑐,𝑖𝐴𝑖𝒓̇𝑑𝑚𝑎3 cos𝜓𝑖 (87)

Q𝑟𝑎𝑑
2,𝑖 = 𝒇⃗ 𝑟𝑎𝑑𝑖 ⋅

𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝜂1

= −𝐹𝑟𝑎𝑑 𝑖𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1) = −𝑝𝑟𝑑𝑐,𝑖𝐴𝑖𝒓̇𝑑𝑚𝑎3𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1) (88)

Q𝑟𝑎𝑑
1+𝑁,𝑖 = 𝒇⃗ 𝑟𝑎𝑑𝑖 ⋅

𝜕𝒓⃗𝑠𝑎
𝜕𝜂𝑁

= −𝐹𝑟𝑎𝑑 𝑖𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁) = −𝑝𝑟𝑑𝑐,𝑖𝐴𝑖𝒓̇𝑑𝑚𝑎3𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁) (89)

Therefore,

Q𝑟𝑎𝑑 = −
𝑚
∑

𝑖=1
𝐹𝑟𝑎𝑑 𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

= −
𝑚
∑

𝑖=1
𝑝𝑟𝑑𝑐,𝑖𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

𝒓̇𝑑𝑚𝑎3,𝑖 (90)

= −
𝑚
∑

𝑖=1
𝑝𝑟𝑑𝑐,𝑖𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

[

𝐶𝑠𝑎(3, 3) [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑫𝑟

̇⃗𝐱 (91)
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Accordingly, the radiation damping matrix, 𝑪 , is expressed as:

𝑫𝑟 =
𝑚
∑

𝑖=1
𝑝𝑟𝑑𝑐,𝑖𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

[

1 [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
]

(92)

where the proposed 𝑫𝑟 is a full, non symmetric matrix.

4.2.4. Derivation of the Generalized Added Inertia Force 𝑸∞:
The derivation of the generalized added inertia will yield an expression for the generalized added mass matrix. The

added mass pressure is calculated using the complex part of the radiation pressure coefficient as shown in Eq. (93)
[29]:

𝑝𝑎𝑚𝑐,𝑖 =
ℑ
(

𝑝𝑟𝑑,𝑖
)

𝜔
(93)

such that the added inertia for the VSB WEC is calculated for each mesh element as follows:

𝐹∞,𝑖 = 𝑝𝑎𝑚𝑐,𝑖𝐴𝑖 (94)

And its corresponding normal vector to the mesh element is expressed as:

𝑓∞
𝑖 = −𝐹∞,𝑖𝒄̂3,𝑖 (95)

= −𝑝𝑎𝑚𝑐,𝑖𝐴𝑖𝒄̂3,𝑖𝑎 ̈⃗𝒓𝑑𝑚𝑎3,𝑖 = −𝑝𝑎𝑚𝑐,𝑖𝐴𝑖𝒄̂3,𝑖
[

𝐶𝑠𝑎(3, 3) [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
] ̈⃗𝐱 (96)

From Eq. (86) one can write 𝑎𝒓̈𝑑𝑚𝑎 as:

𝑎 ̈⃗𝒓𝑑𝑚𝑎,𝑖 =
[

𝐶𝑠𝑎 𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)
] ̈⃗𝐱 (97)

𝑎 ̈⃗𝒓𝑑𝑚𝑎3,𝑖 =
[

𝐶𝑠𝑎(3, 3) [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
] ̈⃗𝐱 (98)

The generalized added inertia is the calculated by applying Eq. (47) to get:

𝑸∞
𝑗 = 𝒇⃗∞ ⋅

𝜕𝑟𝑑𝑚𝑎
𝜕𝑞𝑗

, 𝑗 = 1, 2, ..., 1 +𝑁 (99)

We can then write the added mass generalized force using Eqs. (95), (96), and (99) as follows:

𝑸∞
1,𝑖 = 𝒇⃗∞

𝑖 ⋅
𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝒓⃗𝑠𝑎,3

= −𝑝𝑎𝑚𝑐,𝑖𝐴𝑖𝑎 ̈⃗𝒓𝑑𝑚𝑎3,𝑖𝒄̂3,𝑖 ⋅ 𝟏3 = −𝑝𝑎𝑚𝑐,𝑖𝐴𝑖𝟏𝑇3
𝑎 ̈⃗𝒓𝑑𝑚𝑎3,𝑖𝒄̂3,𝑖 (100)

𝑸∞
2,𝑖 = 𝒇⃗∞

𝑖 ⋅
𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝜂1

= −𝑝𝑎𝑚𝑐,𝑖𝐴𝑖𝒄̂3,𝑖𝑎 ̈⃗𝒓𝑑𝑚𝑎3,𝑖 ⋅𝚽𝑒,𝑖(∶, 1) (101)

𝑸∞
1+𝑁,𝑖 = 𝒇⃗∞

𝑖 ⋅
𝜕𝒓⃗𝑠𝑎
𝜕𝜂𝑁

= −𝑝𝑎𝑚𝑐,𝑖𝐴𝑖𝑎 ̈⃗𝒓𝑑𝑚𝑎3,𝑖𝒄̂3,𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁) (102)

Therefore,

Q∞ = −
𝑚
∑

𝑖=1
𝑝𝑎𝑚𝑐,𝑖𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝑎 ̈⃗𝒓𝑑𝑚𝑎3,𝑖𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

𝑎 ̈⃗𝒓𝑑𝑚𝑎3,𝑖 (103)

= −
𝑚
∑

𝑖=1
𝑝𝑎𝑚𝑐,𝑖𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

[

𝐶𝑠𝑎(3, 3) [𝐶𝑠𝑎𝚽𝑒(𝜙𝑖)](3, ∶)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑴∞

̈⃗𝐱 (104)
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From Eq. (104) we can conclude that the generalized added mass for heave-only motion equals:

𝑴∞ =
𝑚
∑

𝑖=1
𝑝𝑎𝑚𝑐,𝑖𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

[

1 [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
]

(105)

The proposed generalized added mass derived in Eq. (105) is a full non-symmetric matrix, i.e, the equation of
motion becomes dynamically coupled when adding the added mass to the system mass matrix 𝑴 .

Finally, the proposed equation of motion for regular waves can be expressed as:

(𝑴 +𝑴∞)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑴̃(𝑡)

𝐱̈ + (𝑫 +𝑫𝑟)
⏟⏞⏞⏟⏞⏞⏟

𝑫̃(𝑡)

𝐱̇ +
(

𝑲 +𝑲ℎ
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑲̃(𝑡)

𝐱 = 𝑸𝑐(𝑡) +𝑸𝑒𝑥𝑡(𝑡) +𝑸𝑝𝑡𝑜(𝑡) (106)

which can be written in the following form:

𝑴̃(𝑡)𝐱̈ + 𝑫̃(𝑡)𝐱̇ + 𝑲̃(𝑡)𝐱 = 𝑸𝑐(𝑡) +𝑸𝑒𝑥𝑡(𝑡) +𝑸𝑝𝑡𝑜(𝑡) (107)

Noting that the expression of the constraint force 𝑸𝑐 on VSB WEC shell is derived and demonstrated in Ref. [34].

4.3. Generalized Hydrodynamic Forces For Irregular Waves
An irregular wave is considered as a set of superimposed regular waves with phase shifts "𝜙̂", and these regular

waves have different frequencies and amplitudes. The amplitude of each of these regular waves is calculated using the
Wave Spectrum (short for Wave Energy Density Spectrum). The Wave Spectrum is a function that specifies the amount
of energy contained in each wave frequency [51]. In this paper, the Bretchsneider Spectrum [53] shown in Eq. (108)
is used

𝑆(𝑓 ) = 5
16

𝑓 4
𝑝

𝑓 5
𝐻2
𝑠 𝑒

− 5
4
𝑓4𝑝
𝑓4 (108)

where𝐻𝑠 is the significant wave height and 𝑓𝑝 = 1∕𝑇𝑝 = 𝜔𝑝∕(2𝜋) is the frequency of a particular wave component.
The simulated wave spectrum consisted of an array of 𝑛 equidistant frequencies with step Δ𝑓 , such that the 𝑖𝑡ℎ

frequency is calculated using Eq. (109) [51]

𝑓𝑖 = 𝑓1 + (𝑖 − 1)Δ𝑓 (109)

The wave height 𝜂 is then calculated as 𝜂 =
√

2𝑆(𝑓 )Δ𝑓 [51].

4.3.1. Derivation of the 𝑸ℎ𝑠𝑡 and 𝑸∞ Forces for Irregular Waves:
The derivation of the expressions for the generalized hydrostatic force 𝑸ℎ𝑠𝑡 and stiffness 𝑲ℎ does not change from

regular to irregular waves, i.e., the exact derivation in subsection 4.2.2 applies.
Similarly, the derivation of the expressions for the generalized inertia𝑸∞ and the added mass matrix𝑴∞ presented

in section 4.2.4 does not change from regular to irregular waves, except that for the irregular waves, the calculations
are based on the largest wave frequency present in the wave spectrum (𝜔max).

4.3.2. Derivation of the 𝑸𝑒𝑥𝑡 Force:
The time domain excitation force on the 𝑖𝑡ℎ panel on the buoy surface can be expressed as [29]:

𝑝𝑒𝑥𝑡,𝑖 =
𝑁𝑤
∑

𝑗=1
ℜ

(

𝑝𝑒𝑥,𝑖(𝜔𝑗)𝜂(𝜔𝑗)𝑒
𝑖
(

𝜔𝑗 𝑡+𝜙̂𝑗
)
)

(110)

where 𝑁𝑤 is the number of superimposed frequencies in the wave, 𝜙̂ is a random phase shift, and 𝑖 =
√

−1, following
the same procedure as for the regular wave derivation in subsection 4.2.1 but with replacing Eq. (55) with Eq. (110)
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in the derivation. This yields a similar expression for the generalized hydro force related to the excitation and the
hydrostatic forces "𝑸𝑒𝑥𝑡" as in Eq. (61). Accordingly, the excitation force coefficient for VSB WEC for the 𝑗𝑡ℎ frequency
is expressed as:

𝑬𝒙(𝜔𝑗 , 𝑡) =
𝑚
∑

𝑖=1
𝑝𝑒𝑥,𝑖(𝜔𝑗)𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

(111)

Note that for the two-way FSI simulations, "𝑬𝒙(𝜔, 𝑡)" is time and frequency dependent as it’s a function of the buoy’s
shape. Finally, the generalized excitation force for VSB WECs in irregular waves is calculated as:

𝑸𝑒𝑥𝑡(𝑡) =
𝑁𝜔
∑

𝑗=1
ℜ

(

𝑬𝒙𝑗 𝜂𝑗 𝑒𝑖(𝜔𝑗 𝑡+𝜙̂𝑗 )
)

(112)

4.3.3. Derivation of the 𝑸𝑟𝑎𝑑 Force:
The radiation damping force on the 𝑖𝑡ℎ mesh element acting on the normal direction is computed as:

𝑓 𝑟𝑎𝑑𝑖 = −𝐹𝑟𝑎𝑑,𝑖𝒄̂3,𝑖 (113)
𝐹𝑟𝑎𝑑,𝑖 = 𝑝𝑟𝑑𝑡,𝑖𝐴𝑖 (114)

where 𝑝𝑟𝑑𝑡,𝑖 is the time domain radiation pressure, and it is derived in Ref. [29] as:

𝑝𝑟𝑑𝑡.𝑖 =
2
𝜋 ∫

𝑡

0

𝜔𝑚𝑎𝑥
∑

𝜔𝑚𝑖𝑛

(

𝑝𝑟𝑑𝑐,𝑖 cos𝜔(𝑡 − 𝜏) Δ𝜔𝑎 ̇⃗𝒓𝑑𝑚𝑎3,𝑖(𝜏)
)

𝑑𝜏 (115)

≈ 2
𝜋

𝑡
∑

0

𝜔𝑚𝑎𝑥
∑

𝜔𝑚𝑖𝑛

(

𝑝𝑟𝑑𝑐,𝑖 cos𝜔(𝑡 − 𝜏) Δ𝜔𝑎 ̇⃗𝒓𝑑𝑚𝑎3,𝑖(𝜏)
)

Δ𝜏 (116)

From Eq. (47) the generalized hydro force can be written in the following form:

Q𝑟𝑎𝑑
𝑗 = 𝒇⃗ 𝑟𝑎𝑑 ⋅

𝜕𝑟𝑑𝑚𝑎
𝜕𝑞𝑗

, 𝑗 = 1, 2, ..., 1 +𝑁 (117)

And accordingly we can then write the generalized radiation force using Eqs. (117) and (113) as follows:

Q𝑟𝑎𝑑
1,𝑖 = 𝒇⃗ 𝑟𝑎𝑑𝑖 ⋅

𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝒓⃗𝑠𝑎,3

= −𝐹𝑟𝑎𝑑,𝑖𝒄̂3,𝑖 ⋅ 𝟏3 = −𝐹𝑟𝑎𝑑,𝑖𝟏𝑇3 𝒄̂3,𝑖 (118)

Q𝑟𝑎𝑑
2,𝑖 = 𝒇⃗ 𝑟𝑎𝑑𝑖 ⋅

𝜕𝒓⃗𝑑𝑚𝑎
𝜕𝜂1

= −𝐹𝑟𝑎𝑑,𝑖𝒄̂3,𝑖 ⋅𝚽𝑒,𝑖(∶, 1) (119)

Q𝑟𝑎𝑑
1+𝑁,𝑖 = 𝒇⃗ 𝑟𝑎𝑑𝑖 ⋅

𝜕𝒓⃗𝑠𝑎
𝜕𝜂𝑁

= −𝐹𝑟𝑎𝑑,𝑖𝒄̂3,𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁) (120)

Finally, the generalized radiation force is expressed as:

Q𝑟𝑎𝑑 = −
𝑚
∑

𝑖=1
𝐹𝑟𝑎𝑑,𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

(121)

When substituting Eqs (116) and (114) in the expression above, one can notice that the generalized radiation
damping force is computed using the convolution of the multiplication of the retardation function and the velocity
states as shown in Eq. (122)

𝑸𝑟𝑎𝑑 = −
𝑚
∑

𝑖=1
∫

𝑡

0

(

𝑲 𝑖(𝑡 − 𝜏)𝐱̇(𝜏)
)

𝑑𝜏 (122)
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≈ −
𝑚
∑

𝑖=1

𝑡
∑

0

(

𝑲 𝑖(𝑡 − 𝜏)𝐱̇(𝜏)
)

Δ𝜏 (123)

where the retardation function (memory function) 𝑲 ∈ ℝ(𝑁+1)×(𝑁+1) for the 𝑖𝑡ℎ mesh element for heave-only motion
can be calculated as:

𝑲 𝑖(𝑡) =
2
𝜋 ∫

∞

0
𝑫𝑖(𝜔) cos (𝜔𝑡)𝑑𝜔 = 2

𝜋

𝜔𝑚𝑎𝑥
∑

𝜔𝑚𝑖𝑛

𝑫𝑖(𝜔) cos (𝜔𝑡)Δ𝜔 (124)

Accordingly, the generalized radiation damping coefficient 𝑫𝑖(𝜔) ∈ ℝ(𝑁+1)×(𝑁+1) for the 𝑖𝑡ℎ mesh element is
expressed as:

𝑫𝑖(𝜔) = 𝑝𝑟𝑑𝑐,𝑖(𝜔)𝐴𝑖

⎡

⎢

⎢

⎢

⎣

cos𝜓𝑖
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 1)

⋮
𝒄̂3𝑖 ⋅𝚽𝑒,𝑖(∶, 𝑁)

⎤

⎥

⎥

⎥

⎦

[

1 [𝐶𝑠𝑒𝚽𝑒(𝜙𝑖)](3, ∶)
]

(125)

To calculate the generalized radiation force apply Eq. (121), which requires a convolution calculation that can be
computationally expensive. Another way is to compute the generalized radiation damping coefficients vector 𝑫 for
each frequency, then interpolate the result arrays with respect to the particular wave frequency using the MATLAB
function interp1 to get an averaged generalized radiation damping coefficient 𝑫𝑟(𝑡). The generalized radiation damping
force is then calculated as 𝑸𝑟𝑎𝑑 = 𝑫𝑟(𝑡)𝐱̇.

An alternative method is to use the state space representation similar to the model described in Eq. (2), noting that
each state in the 𝐱 vector will have its corresponding linear time variant (LTV) radiation state space model. Finally,
Eq. (121) is used in this work as the convolution provides the more accurate solution.

Finally, the proposed equation of motion for VSB WEC in irregular waves can be expressed as:

(𝑴 +𝑴∞)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑴̃(𝑡)

𝐱̈ +𝑫𝐱̇ +
(

𝑲 +𝑲ℎ
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑲̃(𝑡)

𝐱 = 𝑸𝑐(𝑡) +𝑸𝑒𝑥𝑡(𝑡) +𝑸𝑟𝑎𝑑(𝑡) +𝑸𝑝𝑡𝑜(𝑡) (126)

which can be written in the following form:

𝑴̃(𝑡)𝐱̈ +𝑫𝐱̇ + 𝑲̃(𝑡)𝐱 = 𝑸𝑐(𝑡) +𝑸𝑒𝑥𝑡(𝑡) +𝑸𝑟𝑎𝑑(𝑡) +𝑸𝑝𝑡𝑜(𝑡) (127)

5. The Equation of Motion of VSB WECs:
The proposed equation of motion for the VSB WEC in this work can be expressed in a more general form similar

to Eq. (1) as:

𝑴 𝐱̈(𝑡)+𝑫𝐱̇(𝑡)+𝑲𝐱(𝑡) =

Generalized excitation force 𝑸𝑒𝑥𝑡

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

∞

−∞
𝑯𝑒𝑥𝑡(𝜏)𝜂(𝑡−𝜏, 𝐱)𝑑𝜏 +𝑸𝑐+𝑸ℎ𝑠𝑡(𝑡)

Generalized radiation force 𝑸′𝑟𝑎𝑑

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−𝑴∞(𝑡)𝐱̈(𝑡) − ∫

𝑡

−∞
𝑲(𝜏)𝐱̇(𝑡 − 𝜏)𝑑𝜏 −𝑸𝑝𝑡𝑜 (128)

where 𝑯𝑒𝑥𝑡 is the impulse response function defining the generalized excitation force for heave. It is possible to show
that this equation reduces to Eq. (106) for regular waves, and to Eq. (126) for irregular waves. Fig. 2 shows a schematic
of the proposed FSI model in which the BEM code solves for the hydrodynamic and hydrostatic pressures. Then the
pressures and mesh details are passed to a function that calculated the hydodynamic coefficients based on the proposed
equations in section 4. Then the structure solver takes these hydrodynamic coefficients as an input and calculates their
corresponding generalized forces based on the proposed expressions in section 4; the structure solver then calculates
the system’s response using Eq. (128) to get 𝐱, and 𝐱̇. This process can be done in a two-way, or a one-way FSI scheme.

Next section proposes a rigorous method to calculate averaged hydro coefficients for the one-way FSI model based
on Reynolds averaging method.
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Figure 2: The proposed FSI model for VSB WECs

6. One Way FSI Equation of Motion Derivation
The two-way FSI simulations are computationally expensive even when running simulations for regular waves. A

one-way FSI model that can replace the two-way FSI simulations without compromising the accuracy of the solution is
highly desirable. To get the required averaged quantities, we propose using the Reynolds averaging method, this method
is used in CFD turbulence modeling to obtain the Reynolds-averaged Navier–Stokes equations (RANS equations) [54–
56].

The time-dependent coefficients 𝑴̃ , 𝑫̃, 𝑲̃ , in Eqs. (107) and (127) can be expressed as a summation of an averaged
value (statistical mean) and a fluctuating value (from the mean); this is called Reynolds decomposition [56], such that:

𝑴̃(𝑡) = 𝑴 +𝑴 ′(𝑡) ⟶ 𝑴̃ = 𝑴 +𝑴 ′ = 𝑴 = 𝑴 = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑴̃(𝑡) 𝑑𝑡 (129)

𝑫̃(𝑡) = 𝑫 +𝑫′(𝑡) ⟶ 𝑫̃ = 𝑫 = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑫̃(𝑡) 𝑑𝑡 (130)

𝑲̃(𝑡) = 𝑲 +𝑲 ′(𝑡) ⟶ 𝑲̃ = 𝑲 = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑲̃(𝑡) 𝑑𝑡 (131)

A similar approach can be followed to obtain averaged values for the generalized excitation force coefficients for regular
and irregular waves expressed in Eqs. (62) and (111). The resulted generalized averaged excitation force for irregular
waves can be expressed as:

𝑸𝑒𝑥𝑡(𝑡) =
𝑁𝜔
∑

𝑗=1
ℜ

(

𝑬𝒙(𝜔𝑗)𝜂𝑗𝑒𝑖
(

𝜔𝑗 𝑡+𝜙̂𝑗
)
)

(132)

and the generalized averaged radiation force 𝑸𝑟𝑎𝑑 is calculated as:

𝑸𝑟𝑎𝑑(𝑡) ≈ −
𝑚
∑

𝑖=1

𝑡
∑

0

(

𝑲 𝑖(𝑡 − 𝜏)𝐱̇(𝜏)
)

Δ𝑡 (133)

where 𝑲 𝑖 is the average generalized retardation function calculated based on the averaged generalized radiation
damping coefficient 𝑩𝑖(𝜔).

A proper one-way FSI simulation should use a proper average value, and the Equations of Motion (107) and (127)
can be expressed as:

𝑴 𝐱̈ +𝑫𝐱̇ +𝑲𝐱 = 𝑸𝑐(𝑡) +𝑸𝑒𝑥𝑡(𝑡) +𝑸𝑝𝑡𝑜(𝑡) (134)
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(a) Heave Displacement (b) Velocity Displacement

Figure 3: Trajectories resulted from Cummins equation and the two-way FSI model for regular waves

𝑴 𝐱̈ +𝑫𝐱̇ +𝑲𝐱 = 𝑸𝑐(𝑡) +𝑸𝑒𝑥𝑡(𝑡) +𝑸𝑟𝑎𝑑(𝑡) +𝑸𝑝𝑡𝑜(𝑡) (135)

respectively, where

𝑴 = 𝑴 +𝑴∞ (136)

𝑫 = 𝑫 +𝑫𝑟 (137)

𝑲 = 𝑲 +𝑲ℎ (138)

and generalized averaged constraint force 𝑸𝑐 is calculated based on the generalized averaged non-conservative forces
acting on the WEC system [34].

To solve the equations above, average values for generalized added mass, hydrodynamic damping, hydrostatic and
excitation force coefficient matrices are needed. For both regular and irregular waves, the VSB oscillates about its
initial non-deformed shape. i.e., the frequency domain pressure coefficients obtained at the initial time step (from the
non-deformed shape) are be used to calculate the averaged generalized values for required averaged quantities, this
will be justified in section 8.

7. Model Validation
The validation of generalized structural coefficients in Eq. (42), Rayleigh-Ritz approximation in Eq. (8), and the

Legendre polynomials for the mode-shapes in Eq. (9) are validated in [34]. This section presents the validation for the
derived hydrodynamic coefficients and forces for both regular and irregular waves. Also, the two-way FSI time interval
decency test is presented.

7.1. Hydrodynamic Model Validation
The result of the derived FSI model is compared to the results obtained using Cummins equation (1) for regular and

irregular waves. Cummins equation treats the WEC as a rigid undeformable body; on the other hand, the developed FSI
model does not have the rigidity assumption. To compare the developed model with the result derived by Cummins
equation, the material properties of the VSB WEC are changed to simulate a rigid shell buoy. Accordingly, the Poisson’s
ratio is set to zero "𝜈 = 0", and the young’s modulus is set to 10 GPa. Also, the shell radius is set to 𝑟 = 2𝑚.

Fig. 3 shows the trajectories resulting from both the derived equation of motion vs Cummins equation in a generic
regular wave. It can be seen that the trajectories are almost identical and resulted in the harvested energy by the FSI
model to produced slightly less energy compared to Cummins Equation by a factor of 0.5%.

Similarly, Fig.4 shows the waveform obtained from Cummins equation and the developed two-way FSI model in
irregular waves. The calculation of the radiation force in both models was done using the convolution technique. It can
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(a) Heave Displacement (b) Velocity Displacement

Figure 4: Responses resulted From Cummins equation and the two-way FSI model for irregular waves

Table 1
Dependency of heave displacement on time intervals for regular waves

Time Interval displacement (m pk-pk)
0.05 0.4936
0.1 0.4915
0.2 0.4873
0.3 0.4832

be noticed that the error between the displacement and velocity responses is negligible. Also, the error in the harvested
energy was bounded by ±0.5%.

7.2. FSI intervals Validation
A multiple-step time integration method is used, namely the six-stage, fifth-order, Runge-Kutta method. To

reduce the computation time, the developed FSI model calls NEMOH every preset time internal to update the
hydrodynamic/static pressures based on the instantaneous shape of the buoy; multiple time interval sizes were tested
ranging from 0.05 to 0.3 seconds. Table 1 shows the peak-to-peak heave displacement results for various time intervals.
It can be seen that the change in the pk-pk displacement for time steps 0.1 and 0.05 is negligible. Accordingly, the time
step 0.05 seconds was used in the two-way FSI simulations.

It is worth noting that using a large FSI time interval (eg: 0.3 seconds) for irregular waves would yield a divergence
in the convolution integral of the generalized radiation damping force "Eq. (133)".

8. Results and Discussion
The tested sea conditions and simulation times use the recommended values listed in Table 2. These values were

recommended in Ref. [57]. Both regular and irregular waves were tested; the irregular waves have a frequency range
between 0.1 and 6 rad/s with a number of frequencies 𝑁𝜔 = 256. The power take-off unit in this work uses a passive
loading control with a damping coefficient 𝑐 = 8000 Ns/m, where the damping coefficient is the ratio between the
excitation force and the heave velocity of the WEC.

This section is divided into three subsections, subsection 8.1 discusses the performance of the VSB WEC in regular
waves in two-way FSI environment, and the second subsection is a comparison between the one-way and two-way FSI
results for VSB WEC in regular waves where it was proven that the one-way FSI model can replace the two-way FSI
model without compromising the results’ accuracy. The third subsection discusses the simulations of the VSB WEC
in irregular waves.
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Table 2
Tested Wave Conditions [57]

ID 𝑇𝑃 (s) 𝐻𝑠 (m) Duration (s)

RS06 2.5 0.194 300
RS07 3 0.278 300
RS08 3.5 0.37 300
RS09 4 0.464 300
RS10 4.5 0.556 300
RS11 5 0.646 300
RS12 6 0.8222 300
RS13 7 0.992 360
RS14 8 1.158 360

8.1. Regular Waves
Figure 5 shows a 30-second interval of the displacement response of the VSB WEC and the FSB WEC for the

regular wave condition RS14. The results show an increase of 6.89 % in the heave response for the VSB WEC compared
to the FSB WEC.

Figure 5: Heave Displacement Response for Regular Wave (ID: RS14)

The increase in heave response is accompanied by an increase of 5.58 % in the velocity response for the VSB WEC,
as shown in Fig. 6-a. A similar increase in the PTO force is obtained but with 180𝑜 phase shift between the velocity
and force responses (Fig. 6-b). Also, the power output increased by 12.7 %, and the harvested energy increased by 11
% as shown in Fig. 7.

Table 3 shows a comprehensive comparison between the performance of the FSB WEC vs. the VSB WEC for the
tested sea conditions; it can be seen that the VSB WEC harvested more energy in all the tested wave conditions with
an increase in harvested energy ranging from 7.6 % to 15.84 %. It can be observed that the heave displacement and
velocity pk-pk response increased for the VSB WECs over the FSB WEC for similar incident waves and PTO unit.
This derives the conclusion that the VSB experiences more excited than the FSB for identical operating conditions.
Also, larger passive controlled PTO units can be used for the same VSB WEC dimension.

8.2. One-way vs. Two-way FSI results Comparison:
The water free-surface location does not change during the simulation, which is also the mean value of the incident

waves as the time approaches infinity, i.e., the buoy C.G location oscillates about the free surface. The VSB in the
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(a) The Heave Velocity (b) The PTO Force

Figure 6: Heaving Velocity and PTO Force for ID: RS14

(a) The Generated Power (b) The Harvested Energy

Figure 7: Generated Power and Harvested Energy for ID: RS14

simulations has a perfectly spherical shape at 𝑡 = 0 (similar to the FSB). When the waves excite the vibration modes
of the sphere, it can be noticed that each one of the mode shapes vibrates around the initial shape of the VSB.

It can also be noticed when plotting the variation of each element in the generalized added mass, generalized
hydrodynamic damping, and the generalized hydrostatic matrices that they all oscillate around their initial values at
the beginning of the simulations. Similar observations can be made when plotting the flexibility states (𝜼). Accordingly,
the mean values of these matrices are equal to their corresponding matrices for the FSB.

Table. 4 shows the results obtained for regular waves from one-way and two-way FSI models. The one-way FSI
model used in this work uses averaged hydrodynamic coefficients for the VSB WEC discussed in subsection 6. Running
one-way FSI reduced the computation time from days to a few minutes for regular waves, and from weeks to a couple of
days for irregular waves. Table 4 shows a comparison between the energies and the errors between the two models for
the case of regular waves. It can be seen that the reduction in simulation time is significant, and the error in harvested
energy is bounded between ±1.98.

The simulation of two-way FSI for irregular waves is computationally expensive as it requires weeks to get one
simulation done. On the other hand, the one-way FSI simulation for irregular waves took a couple of days to get an
approximately similar result. For this reason, all the irregular waves simulations in the next subsection were done using
the one-way FSI model.
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Table 3
Regular Waves Results for the Wave Conditions and simulation time in Table 2

ID ℎ (m) Displacement (pk-pk m) Velocity (pk-pk m/s) Energy (J) Energy IncreaseFSB WEC VSB WEC FSB WEC VSB WEC FSB WEC VSB WEC
RS06 0.1 0.12548 0.13498 0.3168 0.3398 29920 33960 13.5 %
RS07 0.1 0.3054 0.3178 0.6422 0.6636 122300 131600 7.6 %
RS08 0.1 0.3986 0.4168 0.7142 0.7438 153000 166600 8.9 %
RS09 0.15 0.4814 0.5194 0.755 0.81 172400 199700 15.84 %
RS10 0.2 0.5672 0.6002 0.7892 0.8318 189200 210900 11.47 %
RS11 0.2 0.6532 0.693 0.819 0.8636 204600 229200 12.02 %
RS12 0.2 0.8246 0.8874 0.8614 0.8952 229500 261100 13.77 %
RS13 0.25 0.9938 1.06 0.889 0.9254 295500 327000 10.66 %
RS14 0.25 1.1588 1.2386 0.9108 0.9616 312100 3412100 10.99 %

Table 4
Comparison between the simulation time and errors for one-way and two-way FSI for the VSB WEC models

ID One-Way FSI Two-Way FSI FSI Simulation Time Energy Harvesting Error
Computational Time (hour) (sec) (%)

RS06 17 (sec) 39.42 (hour) 300 -1.98
RS07 0.19 39.72 (hour) 300 0.3
RS08 0.18 40.69 (hour) 300 -0.17
RS09 0.28 38.64 (hour) 300 1.49
RS10 0.34 37.85 (hour) 300 -0.23
RS11 0.20 36.64 (hour) 300 -0.15
RS12 0.21 37.71 (hour) 300 0.94
RS13 0.2 41.6 (hour) 360 0.77
RS14 0.21 50 (hour) 360 0.95

8.3. Irregular Waves
The Bretchsneider wave spectrum was used to generate irregular waves with 𝑁𝜔 = 256 equidistant frequencies

ranging between 0.1 to 3.5 rad/sec. The one-way FSI Eq. (135) was applied. The shell thickness was tuned so that
the shell deformation remained within a certain bound: A large thickness makes the shell rigid, and a small thickness
would yield unrealistic deformations. This is because the shell strain expressions in Eq. (21) and (22) are based on a
small deformations assumption [32].

The harmonic response of the VSB WEC decays within the first 10 seconds of the simulation. Fig. 8 shows an
interval of 70 seconds of the heave response of both FSB and VSB WECs in response to the RS06 irregular wave. The
pk-pk heave displacement increased by a factor of 18% for the VSB WEC. Similarly, the pk-pk heave velocity and PTO
responses increased by a factor of 18%, as shown in Fig. 9.

Figure 10 shows a plot of the first component of the generalized radiation force (acting on the buoy’s C.G) 𝑸𝑟𝑎𝑑
1 ,

which is calculated using Eq. (123). It can be noticed that the pk-pk radiation force increased when using VSB. Fig. 11-a
shows the full simulation interval for the generated powers; it can be noticed that the largest power peaks are generated
in the transient response region (first 10 seconds). This is also demonstrated in harvested energy presented in Fig. 11-b.
This agrees with the results obtained from high-fidelity simulations (FEA and CFD) in [32].

Table 5 shows the results between the FSB and VSB WECs for the tested wave conditions. It can be noticed that
there is an increase of almost 40% in the harvested energy harvested by the VSB WEC for the RS06 wave condition.
The other wave conditions showed an increase in harvested energy with different degrees. The main RS06 model used
𝐸 = 1𝑒5Pa compared to 2𝑒5Pa for the other tested wave conditions. Also, smaller thicknesses result in more energy
harvesting as it is translated to more flexibility for the shell, which results in more excitation of the shell.

The simulation time for irregular waves in a one-way FSI environment ranged from 30-40 hours which is a
significant simulation time improvement over both two-way FSI models (low fidelity and the high fidelity [32]).
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Figure 8: Steady State Heave Displacement Response for Irregular Wave (ID: RS06)

Table 5
Irregular Waves Results for the Wave Conditions and simulation time in Table 2

ID ℎ (m) Displacement (pk-pk m) Velocity (pk-pk m/s) Energy (J) Energy IncreaseFSB WEC VSB WEC FSB WEC VSB WEC FSB WEC VSB WEC
RS06 0.11 0.16 0.19 0.3825 0.4521 9005 12550 39.37%
RS07 0.1 0.287 0.3012 0.6443 0.6761 27340 30090 10%
RS08 0.1 0.409 0.4302 0.8623 0.9064 55580 61390 10.45 %
RS09 0.15 0.5059 0.5188 1.009 1.0332 91330 95800 4.8%
RS10 0.2 0.5557 0.562 1.0727 1.0737 131200 133362 1.8%
RS11 0.2 0.6259 0.6355 1.05 1.064 168100 172500 2.62%
RS13 0.22 0.9879 1.002 1.196 1.2131 284200 290200 2.2%

8.4. Spherical VSB Physics:
The first four vibration modes of the spherical buoy are shown in Fig. 12. The first mode shape corresponds to the

flexibly state 𝜂1 and the breathing mode 𝑛 = 0 where the shell is deformed uniformly in the radial direction. The second
mode shape corresponds to the flexibility state 𝜂2 and 𝑛 = 1, where the shell encounters the rigid-body motion, and the
buoy C.G encounters pure translational motion without any shell deformations. The third mode shape corresponding
to 𝑛 = 1 and 𝜂3 deform the shell to become either prolate spheroid when 𝜂3 is positive, or oblate spheroid when 𝜂3
is negative. Noting that, the second and third mode shapes both corresponds to 𝑛 = 1 but with the change in sign in
Eq. (10). Finally, the fourth mode shape corresponds to 𝜂4, resulting in a deformed shape that switches from pointy to
plat shapes. The dominant mode shapes throughout the simulations were two of the first three mode shapes, and their
activation contributed to the increase in vibration responses and harvested energy for the VSB WECs over the FSB
WECs.

Figure 13 shows the 3D plot for the VSB WEC at different time instances for wave condition RS06. At 𝑡 = 0 the
shell has a pure spherical shape (initially non-deformed). At 𝑡 = 238.73 the buoy is encountering a beginning of a
wave trough, and at 𝑡 = 274.98 is encountering a wave crest. The first and the third mode shapes are dominant for the
RS06 wave condition. The beginning of the wave crest coincides with the shell expansion related to the first mode and
the oblate spheroid shape related to the third mode shape; this increases the vertical component of the excitation force
on the C.G and the heave excitation in the positive vertical direction. On the other hand, the contraction deformation
and the prolate spheroid shapes decrease the vertical component of the excitation force of the buoy C.G; this causes
the buoy to plunge deeper into the waves when it encounters a trough compared to the FSB WEC. The excitation of
these mode shapes causes an increase in the harvested energy.
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(a) Heave velocity response

(b) Power take-off Unit Force Energy

Figure 9: Heave velocity response and PTO force waveform for irregular waves (ID: RS06)

Figure 10: Generalized radiation force 𝑸𝑟𝑎𝑑
1 on buoys’ CG (ID: RS06)
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(a) The Generated Power

(b) The Harvested Energy

Figure 11: Generated Power and Harvested Energy for Irregular Waves ID: RS06
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(a) Breathing Mode 𝑛 = 0 associated with 𝜂1 (b) 𝜂2

(c) 𝜂3 (d) 𝜂4
Figure 12: Axisymmetrical vibration modes of a spherical shell, the black dotted line is the non-deformed shape and the
colored lines are for the deformed shape

Figure 13: 3D plot for VSB WEC at different time instances (Deformation vector scale 5:1) (ID: RS06)
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9. Conclusion and Future Work
This paper derives a novel equation of motion for variable shape wave energy converters; this equation of motion

can be viewed as a modified Cummins equation for flexible buoys. The proposed equation is derived in the context of
Lagrangian mechanics. Novel expressions were derived for the generalized hydrodynamic forces/coefficients (added
mass, damping, hydrostatic and excitation) that account for the buoy flexibility in regular and irregular waves. To reduce
the computational cost accompanied with the proposed two-way Fluid-Structure Interaction scheme, the Reynolds
averaging technique was used to derive average hydrodynamic coefficients. These average hydrodynamic coefficients
enable one-way FSI model. The model was tested using spherical flexible shape WECs. The numerical results support
this work’s hypothesis that a VSB WEC would harvest energy at a higher rate than that of an FSB WEC when both
WECs use no reactive power.

For future work, optimal control methods have to be developed to control the power take-off unit, and the shape of
the buoy as a function of the incident wave conditions. Also, the analytical model can be extended to model hyperelastic
materials, smart materials, power take-off unit dynamics, and other WEC geometries.
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