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Abstract

This paper concerns the convergence of empirical measures in high dimensions. We propose a new
class of probability metrics and show that under such metrics, the convergence is free of the curse of
dimensionality (CoD). Such a feature is critical for high-dimensional analysis and stands in contrast to
classical metrics (e.g., the Wasserstein metric). The proposed metrics fall into the category of integral
probability metrics, for which we specify criteria of test function spaces to guarantee the property
of being free of CoD. Examples of the selected test function spaces include the reproducing kernel
Hilbert spaces, Barron space, and flow-induced function spaces. Three applications of the proposed
metrics are presented: 1. The convergence of empirical measure in the case of random variables; 2. The
convergence of n-particle system to the solution to McKean—Vlasov stochastic differential equation; 3.
The construction of an ¢-Nash equilibrium for a homogeneous n-player game by its mean-field limit. As
a byproduct, we prove that, given a distribution close to the target distribution measured by our metric
and a certain representation of the target distribution, we can generate a distribution close to the target
one in terms of the Wasserstein metric and relative entropy. Overall, we show that the proposed class of
metrics is a powerful tool to analyze the convergence of empirical measures in high dimensions without
CoD.
©2023 Elsevier B.V. All rights reserved.
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1. Introduction

The convergence of empirical measures plays a crucial role in analyzing the efficiency of
mean-field theory or mean-field games (MFGs), which are fundamental tools to approximate
finite-particle or finite-agent systems in the asymptotic of a very large population. Specifically,
mean-field theory studies the behavior of a high-dimensional stochastic particle system by
considering the effect of all other particles approximated by an average single effect. It plays
a significant role in many fields, for instance, statistical physics [8,14]. MFGs were introduced
independently by Lasry—Lions [42—44] and Huang—-Malhamé—Caines [35,36]. MFGs study the
decision-making problem of a continuum of agents, and are able to provide approximations to
Nash equilibria of n-player games in which players interact through their empirical measure.
For further background on MFGs, we refer to the books [12,13] and the references therein.

In stochastic analysis, there is a rich literature on the convergence analysis of 7 interacting-
bodies/particle system to the corresponding limit (also known as the McKean—Vlasov sys-
tem [46,47]). Recent developments in this field can be found in [37,40,41]. In general, the
distance between an n-body empirical measure and its limit is of order n=</¢, where d is
the dimension of one body and c is a constant independent of d. Such results have been
established in various settings, from the simple case of n-independent samples drawn from
a given distribution [21,27,61], to complicated cases of the McKean—Vlasov system [20] and
MGFs [11]. In many interesting applications (e.g., the construction of ¢-Nash equilibria [11]),
d can be so large that the resulting convergence rate is extremely slow. This phenomenon
is referred to as the curse of dimensionality (CoD), the main challenge in high-dimensional
analysis and algorithms.

The analysis in [11,20,21,27,61] suggests that the CoD phenomenon is related to the
usage of the Wasserstein metric and the type of interaction kernels that drive the interaction
between bodies. In fact, it is well-known that the convergence of empirical measures under
the Wasserstein metric presents the CoD [21] for any distribution that is absolutely continuous
with respect to the Lebesgue measure on RY.

In this paper, we propose a new class of dimension-free metrics for the convergence analysis
of mean-field problems. Specifically, we take the form of integral probability metrics (IPMs),

; ey

Dg(u, ') = sup ‘/ fdp — fdw
fed

and impose a set of criteria for selecting the test function class & to guarantee that the
convergence rate under various settings is dimension-free. Our criteria mainly build on the
function class’s empirical Rademacher complexity, allowing the test functions to be the
reproducing kernel Hilbert spaces (RKHSs), the Barron function space, and flow-induced
function spaces, just to name a few. The choice of RKHSs is closely related to the maximum
mean discrepancy (MMD) [7] as a tool for statistical tests to check if two sets of observations
are generated by the same distribution. Therein, for computational efficiency, the test function
space is chosen as the unit ball of RKHSs.

Beating the CoD is also a central topic in the machine learning community. One of the
core problems in the high-dimensional analysis of machine learning models is identifying an
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appropriate function space equipped with an appropriate norm that can control the approxima-
tion and estimation errors of a particular machine learning model. This perspective is closely
related to the proposed probability metrics, and we should already point out to the readers that
all proposed test function classes originate from machine learning models. Reproducing kernel
Hilbert spaces are particularly important in statistical learning theory due to the representer
theorem established in [38]. The Barron space [23] was introduced for analyzing two-layer
neural network models where optimal direct and inverse approximation theorems hold, as
well as the a priori estimate [22]. The flow-induced function spaces [23] were introduced for
analyzing residual neural networks [32], which have wide applications in computer vision and
scientific machine learning.
Our main results are summarized as follows:

1. We propose a novel metric to measure the distance of probability measures by imposing
selection criteria (Assumption 2.2) for test functions @ in (1), yielding a dimension-free
metric for the convergence of empirical measures associated with independent samples
drawn from a given distribution (Theorem 2.7);

2. We generalize the results in [63]: given a target distribution being a bias potential model
and a distribution close to the target measured by our proposed probability metric, we
can generate a distribution close to the target in terms of the Wasserstein metric and
relative entropy (Theorem 2.8). In this sense, we can transform the empirical measure
into a new distribution close to the target in the Wasserstein metric without CoD;

3. The convergence result (Theorem 2.7) is extended to independent identically distributed
(i.i.d.) stochastic processes by imposing assumptions (Assumption 2.9) on their modulus
of continuity (Theorem 2.11);

4. We give three classes of test functions (reproducing kernel Hilbert spaces, Barron space,
and flow-induced function spaces) for which the criteria in Assumption 2.2 are satisfied
(Theorems 3.1, 3.3 and 3.6);

5. The convergence of the empirical measure associated with an n-particle system to the
distribution of the McKean—Vlasov stochastic differential equation is shown to be free
of CoD (Theorem 4.3);

6. We show that the construction of an e-Nash equilibrium for a homogeneous n-player
game by its mean-field limit has no CoD (Theorem 5.4), i.e. ¢ is independent of d.

Notations. We use P(R?) to denote the space of probability measures on R?. PP(R?) with
p > 1 denotes the subspace of P(RY) of probability measures with finite pth-moment, i.e.,
n € PP(RY) if

1/p
A@ww=<éﬂmwwuﬁ < +o0.

We will primarily work with probability measures with finite first and second moments,
i.e., P'(RY) and P*(R?). We use || - || to denote the Euclidean norm and define the Lipschitz
constant with respect to the Euclidean norm:

. Lf () = fI
Lip(f) = sup —————.
X,y,X#EYy ||X - y”
We denote by d,, the delta distribution at x.
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2. A class of integral probability metrics

To define a metric on the space of probability measures, one natural approach is to choose
a suitable class @ of test functions on R and compare the difference of integrals.

Definition 2.1 (Integral Probability Metrics [49]). Let @ be a class of measurable functions
on R? such that

sup | f(x)] = C(1 + [Ix]D),

fed
for a constant C > 0 depending on @. Then for any u, i’ € P'(RY), the integral probability
metric (IPM) D4 associated to @ is defined as:

Do(u, ) =sup| [ fdu—pu)
fed JRd

In [66], these metrics are called probability metrics with a {-structure. In this paper,
following [49], we will stick to the more intuitive terminology IPM. Many probability metrics
are based on the comparison of integrals of certain functions, for instance,

e the class of 1-Lipschitz functions, which leads to 1-Wasserstein metric W;

e all functions 1j; ), ¢ € R, which gives the Kolmogorov metric on P(R);

e all functions 15 with B being a Borel set on R4, which leads to the total variation metric
(in fact the set of continuous functions is sufficient);

e the unit ball of a reproducing kernel Hilbert space (RKHS), which yields the maximum
mean discrepancy (MMD) defined in [7].

We are interested in the metrics with “dimension-free” properties, for instance, that the
empirical measure obtained from »n independent samples from a given measure @ approaches
w with a convergence speed not depending on d explicitly (for a precise statement, see
Theorem 2.7(c)). In contrast to working with a particular class of functions (as in W, or
MMD), we pose conditions on @, presented in Assumption 2.2, to fulfill our goal. Later in
Section 3, we shall discuss several classes of test functions, including RKHS, Barron space,
and flow-induced function spaces, where Assumption 2.2 is satisfied.

Assumption 2.2 (Function Class). The set @ satisfies the following properties:

(a) If p is a signed measure on R,
/ fdu=0,Vfed=u=0;
R4

(b) There exist two constants A; = SUP fe g Lip(f) < 400 and A, := SUP /¢ | f(0)] <
+00;

(c) There exists a constant A3 > 0, such that for any X = {x!,...,x"} C R, the empirical
Rademacher complexity satisfies

1 - , Az |
Rad, (9, X) = ;]E sug | Zfif(xlﬂ < 73 2:(”36’”2 + D),
fed i i=1

where &, ..., &, are i.i.d. random variables drawn from the Rademacher distribution,
e, PE =1)=P¢E =—-1)=

1
3.
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Remark 2.3. Given any @ satisfying Assumption 2.2, we can define another function class:
O ={f—-fO):fe o}
Then it is obvious that Dg(u, ') = Dg/(u, ') for any pu, ' € P'(RY) and ¢’ satisfies that
(a’) If u is a signed measure on R,

M(Rd)=0,/dfd,u=0, Vie d = u=0;
R

®) SUP re g Lip(f) = A; < 400 and SUP re g | f(0)] =0;
(¢’) For any X = {x!,..., x"} C R", the empirical Rademacher complexity satisfies

D A1+ 1,
i=1

where &, ..., &, are i.i.d. random variables drawn from the Rademacher distribution,
and A} satisfies A} = A, + A3z with A,, Az defined from the original class &.

!’

1 . , A
Rad, (@', X) = -Esup | Y &f(x')] < =
n fed n

i=1

We can replace Assumption 2.2 by (a’), (b’), and (c’), and all properties of the IPM in this
work still hold. We choose to use Assumption 2.2 which allows f(0) # 0, and introduce
Az = supscq | f(0)], mainly because this is the case for most examples we discussed in
Section 3.

Remark 2.4. Assumption 2.2(c) is crucial for overcoming the CoD in our case. It is stronger
than the usual estimation of the Rademacher complexity that depends on n~!/?[max;<; <, [|x" ||+

1] rather than n~"/ 2\/ % i (x> 4+ 1). Rademacher complexity measures the richness of
a function class with respect to a specific probability distribution. It is a powerful tool to
bound the generalization error when learning the function in the class through empirical risk
minimization. It is also closely related to other concepts for measuring the richness of a function
class, such as the covering number and fat-shattering dimension, which will be discussed
below. In addition, by comparing Theorem 2.7(b) and [24, Corollaries 3.2 and 3.4], we know
that in high dimensions, the richness of any class of functions satisfying Assumption 2.2 is
relatively small compared to the class of all A;-Lipschitz functions. We refer to [4,56] for
further information about the Rademacher complexity.

We recall below the definitions of the covering number and fat-shattering dimension and
show how to estimate the Rademacher complexity by them. These estimations provide more
criteria for checking if a function class satisfies Assumption 2.2(c).

Definition 2.5 (Covering Number). Given a function class ¢ on RY, X = {x!,.. LX) C R4
and € > 0, a subset @ C & is a e-covering of @ if for any f € P, there exists f € & such
that

. 1 « P
If = Pl = | = 216G = FaHP <e.
i=1

The covering number of @ is the cardinality of the smallest e-covering of ®:
C(P, e, Lz(X)) = min({| Q'>| :disa e-covering of &}.
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Definition 2.6 (Fat-Shattering Dimension). Given a function class ® on R, I ¢ R¢ and € > 0.
We say [ is e-shattered by @ if there exists # : [ — R such that for any J C I, there exists
f € @ such that

fx) <hXx),Vx el, f(x) > h(x)+e€,Vx e \J.
The fat-shattering dimension of @ is the largest cardinality of e-shattering:
ve( P, €) = max{|[| : [ is e-shattered by ¢}.

If & is a {0, 1}-value function class, the fat-shattering dimension coincides with the
classic Vapnik—Chernoveniks (VC) dimension; see [45] for a detailed introduction of the VC
dimension. We refer to [59] for a detailed introduction of the covering number, VC dimension,
and fat-shattering dimension.

The following famous inequality by Dudley [52] gives an upper bound of the Rademacher
complexity by the covering number:

12 [€
Rad,(®, X) < inf{de + —/ \/logC(@, t, L2(X))dt},
e>0 ﬁ €

where ¢ = sup . i fA(xi)/n. Let p > 0. We will use the O(-) notation to ignore the

constant term which depends only on p. Now assume that the function class @ satisfies
logC(®, 1, L*(X)) < O(f—,f),

then one has that when p > 2,
Rad, (&, X) < O(infle + Ente =8 —en5)) < O(en )

when p =2,
Rad,(®, X) < O(inf{e + en2[loge — logel}) < O(cn™% +cn~2[logc — logen™21)

= 0(cn’% log n);
and when 0 < p < 2,

Rad, (2, X) < O(ing{e + cnf% —c
>

S

In summary,

0(cn_%), when p > 2
Rad, (0, X) < { O(cn™2 logn), when p=2 2)
O(cn™1), when 0 < p < 2.

Noticing that if @ satisfies Assumption 2.2(b), we have that

Therefore, when p < 2, the function class @ satisfies Assumption 2.2(c). When p > 2,
1

the convergence rate of the Rademacher complexity in (2) is slower than the rate n~2 in
Assumption 2.2(c), but most results in this work still hold if we change the convergence rate
1

1 1 .
ton 7 or n”2logn in these results.
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The fat-shattering dimension can be used to bound the covering number and hence bound
the Rademacher complexity. Assume that there exists £ : RT — R* and o > 1 such that

ve(B,€) < EE),  Eae) < %

then for any X = {x!, ..., x"} C RY, there exists C > 0 depending only on « such that
logC(®, €, L*(X)) < CE(Cé).

For further details, see [53, Theorem 1.3] and [59, Corollary 7.48].

In our case, if £(¢) = € ", one can obtain that log C(®, €, L?(X)) = O(¢~?) and then use
inequality (2) to bound the Rademacher complexity.

The subsection below highlights properties of the metric D¢ for random variables when the
function class @ satisfies Assumption 2.2. For comparison purpose, we recall the p-Wasserstein
metric W, defined as follows

’ . 1/p
Wy =( ot [ yirare) 3)
vel'(n, 1) JRd xRd

where w, ' € PP(R?) and I'(u, i1') denotes the collection of all probability distributions on
R? x R? with marginals 1 and 1’ on the first and second arguments, respectively. Note that
Definition 2.1 with @ = {all continuous 1-Lipschitz functions from R¢ to R} admits the dual
representation of (3) with p = 1 (c¢f. [5, Theorem 1.3]). We also introduce the relative entropy
or Kullback-Leibler divergence

, du
H(plu') =E* <10g(F)> :
w
and the total variation distance

lw =il = sup l1(A) — W' (A).

ACR:Borel measurable set

2.1. Convergence analysis for random variables

Theorem 2.7. Under Assumption 2.2, we have:
(a) Dg is a metric on P'(RY). In addition, if u, i’ € P*(RY),
Do(u, 1) = AW (i, 1) < AWa(, ).
(b) Let K be a compact set in RY, (i}, u € PRY) such that ui(K) = w(K) = 1 for

i=1°
i > 1. Then the following statements are equivalent:

1. w; converges to |4 in the weak sense;
2. 1lim; 00 Do (i, ) = 0.

In other words, D ¢ metrizes the weak convergence of measures on compact sets.
(c) Given i € P2(RY), let X', ..., X" be i.i.d. random variables drawn from the distribution
W and

1 n
it = - > b
i=1
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be the empirical measure of X', ..., X". Then,

EDg( '”)<% /[II 2 + 11du(x)
ol 1 = =5 U (x),

2

2 —n Al 2 4A% 2
E[Dg(n, )] = —/ llx]] dM(X)+—/ [l 4+ 11 dp(x).
n R4 n R4

(d) If u satisfies the T, inequality (cf. [29]),
Wi, ) < 2 H(filpw) Vi < p.

(an equivalent condition of the Ty inequality is that, there exists a constant § > 0 such
that [ga [pa exp@llx — y[1?) du(x) du(y) < 400; see [18, Theorem 2.3]), then,

-, 24, R na?
P{Dos(u, it T /Rd[IIXII + 1]du(x) =z a | <exp _W .

Proof. For claim (a), by definition D4 is symmetric and satisfies the triangle inequality. We
only need to show that for any u, ' € P'(R?), Dg(u, ') = 0 leads to u = w/, which is
ensured directly by Assumption 2.2(a). In addition, from Assumption 2.2(b), we deduce that
Da(ur, o) < AyWi (1, 1) by using the definition of W,. The relation between W, and W,
is a classical result following from Jensen’s inequality.

For claim (b), we first prove 1 = 2. By Theorem 8.3.2 in [6], we know that

Lim Wi (ui, ) = 0.
1—>00

Then noticing that Dg(u;, ) < AiWi(ui, i), we obtain the result. For the claim 2 = 1, we
first notice that {u;}72, is tight. Then by Theorem 8.6.2 in [6], every subsequence of {i;}2,
has a weakly convergent subsequence, denoted by {iu;, }72,. Let u' be the limit of {u;, )72,

Then for any f € &,

lim/ fd,uik=/ fdu'.
k—o00 Jpd Rd

Meanwhile, since limy_, oo Dg(u;, , ) = 0, we have

limf fd,uik=/- fdu.
k—o00 Jpd Rd

Hence, for any f € @, [pu fdu = [pa fdu', which means that 4 = /. In other words,
every subsequence of {1;}72, has a weakly convergent subsequence to p. Since the weakly
convergence can be metrized [6, Theorem 8.3.2], we know that {y;}7°, weakly converge to .

For claim (c), we first notice that

BID (1, i) = - [;“g > - Ef(xfnﬂ < E [;“1;; | Zs,»f(xf)ﬂ ,
€2 o P i=1

where in the last step we use the Rademacher complexity to bound the largest gap between
the expectation of a function and its empirical version (see, e.g., [56, Lemma 26.2]). Using
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Assumption 2.2(c), one deduces

ED (i, fi ><—E Z<||Xl||2+1><— [Z(IIX’II%LI)}

i=1 i=1

2A
s} / (2 4+ 17 o). @)

Now let Y1, ..., Y" be i.i.d. random variables drawn from the distribution 1 and be independent
of X!, ..., X". By the Efron-Stein-Steele inequality (cf. [9, Theorem 5]) that reads

1 n
Var(Z) < = Y E[Z — Z]]%,
2) < 5 ; (Z - Z]]
for some measurable function g of n variables, Z = g(Xl, ..., X" and Z] = g(Xl, S 4
., X™), and the uniform Lipschitz property of f € &, one has

Var(D (i, 1))

= Var<— sup’Z f(XH —Ef(X )]‘)

n feo

IA

%ZE —sup\Zf(Xf)—Ef(Xf)] ——sup > LX)
i=1

fed n feo =1, j#i

“Ef(XD]+ ()~ Ef(X)|

< ALy mx -y = Ai/ I dpa (o)
T’ n Jr '
Therefore, we have
E[D% (i, )] = Var(Da (i, ")) + [ED g (i, i™)]?
A} 4A%
< —1/ ||x||2du(x)+—3/ [lxl? + 1] du(x).
n Rzr’ n Rd

For claim (d), we need some established concentration inequalities. Let u®" € P(R¢*") be
the nth times product of x and the distance between x = (x',...,x"),y = (y',...,y") €
Rdxn be

e =yl =D llx" = 'll.
i=1

By Theorem 5.2 in [17], for any i < u®", we have

Wi, 1) < 2niH (| "),
Define

1 n
G = sup 13" )~ [ faul
feo N e R4
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Combining the fact that
Ay
1G(x) = Gyl = —=lx =yl
for any x and y € R?*" with Theorem 5.1 in [17], we have

P (Dt i)~ ED (. i) = @) = 1 (60— [ 6)aux) = a)

na®
< exp _—ZA%KZ .

Finally, we conclude our proof by the observation

EDo(u, i") < 22 f[u 1P+ 11dpux)
a1 = = [ Tl (x),

from inequality (4). O

The above theorem focuses on the convergence of 1" to w in the sense of IPM satisfying
Assumption 2.2. It is well-known that the convergence of empirical measures under the
Wasserstein metric faces the CoD [21] for any distribution that is absolutely continuous with
respect to the Lebesgue measure on R<. However, as shown in [63,64], if the target distribution
admits a specific representation, the bias potential model or the density model, we can use
the empirical measure and the representation form to generate a new distribution that is close
to the target distribution in the sense of the Wasserstein metric, total variation distance, or
relative entropy. The following theorem, generalizing results in [63,64], shows that given a
bias potential model or a density model as the target distribution and a distribution close to the
target measured by our proposed IPM, we can generate a distribution close to the target one
in terms of the Wasserstein metric, total variation distance or relative entropy.

Theorem 2.8. Suppose P € P(R?) is a known base distribution and ® is a function class
satisfying Assumption 2.2.

(a) Assume the target distribution | € PHRY) satisfies the bias potential model — that is,
there exists V* € @ such that

du eV

AP~ [re VO dP(x)’

Let v e PY(RY) be an accessible probability measure, define
Loss; (V) = / V(x)dv(x) + log (/ e V™ dP(x)) ,
R4 R4

for Ve & Let V' € & and i/ € P(RY) satisfy

/ e V"M AP(x) < +oo,
Rd

dp’ eV
dP  [pae V' dP(x)
Then infycg Loss (V) > —oo and

H(plp') < 2Dg(, v) + Loss (V') — ‘}Ielg Loss (V).

/ e_V/(")dP(x) < 400,
R4

Assume additionally that P has a compact support
K = max{|lx — yll, x, y € supp(P)} < +00,
251
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then
KZ
Wi, 1) = —-[2Do(, v) + Loss (V') — inf Loss; (V)]
€

(b) Assume the target distribution u € P'(R?) satisfies the density model — that is, there
exists g* € @ such that ¢* = %. Let v € PY(R?) be an accessible probability measure,
define

Lossz(g) = sup | fdv—/ fqdP|,
feF JRrd R4

d . _ Ay
forq e @. Let g’ € ¢ and ' € P(R?) satisfy q' = 5. Then
inf Lossz(q) < Dg(u, v),
qed
and
lle = 117y < 2[D (s, v) + Lossa(g)]-
Assume additionally that P has a compact support
K = max{|lx — y||, x, y € supp(P)} < +o0,
then

Wi, 1) < 2K*[D (i, v) + Lossa(g)].

Proof. For the claim (a), first noticing that Loss;(V) is lower bounded for V € & using
|[V(x)| < Ayllx|| + A2, one know that

inf Loss (V) > —/ [Ay]lx] + Ag]dv(x)—i-log(/ e MAIxI+A21 g p(xy)
Ved Rd R4

v

- / [Aqllx]| 4+ A2]dv(x) + log( e~ IAxIFA2T 4 p(yy)
R4 |

[xll<M

v

- f ALl + A2l dv(o) + log(e MA1=%2p(||x| < M))
R

= —//[A1IIXI| + Az]dv(x) — (MA; + Az) +log(P([lx]| = M)) > —o0,
R4

where M is large enough such that P(||x|| < M) > 0. It is then easy to compute
Hpulp) = / (V' = V*)(x) du(x) — log ( / e‘V*“)dP(x))
R4 R4
+ log ( / e V' dP(x))
Rd
< 2D, v) + Loss(V’) — Loss(V*) < 2D (i, v) + Loss(V') — ‘jng Loss(V).
€

To estimate the Wasserstein metric between p and ', first notice the Pinsker’s inequality
[16,51]:

1
i — w7y < E”H(/xlu/).
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Recalling the definition of the 1-Wasserstein metric (3) and supp(u), supp(i’) € supp(P), we
have

Wi i) = inf / Ix — ylldy(x. y)
R4 xRd

yel'(u,pn)

<K inf / Losy dy(x.y) = Kl — ill7v. 5)
yel(u, 1) Jrd xRd

which concludes the proof. For the claim (b), first noticing that

Dg(u, v) = Lossy(g*) > inf Lossa(q)-
qe

By the triangular inequality,

Dg(u, ') < Dg(pt, v) + Do(v, ') = Dg(i, v) + Lossy(g").
Noticing that

/ ES 1 * 2
Do(u ) =sup| | fiq —q’)dPlz—/ " — ¢/ dP
fed d 2 R4

R
1 * 2 1 m2
=Sl lg" —qldP]" = Sllw— wllzy,
R4 2
as %(q* —¢q') € ®. The rest of claim (b) follows (5). O

Theorem 2.8 shows that if one knows that the target distribution satisfies a bias potential
model or density model and can access to a distribution which is close to the target distribution
with respect to a [IPM (usually the empirical distribution by Theorem 2.7), one can then solve
the optimization problem

\}relg)Lossl(V) or qlggLossz(q),

and the resulting distribution is close to the target distribution with respect to the Wasserstein
metric, total variation distance or relative entropy. Besides the bias potential model and density
model we study here, another important form of distribution representation is the generative
adversarial network (GAN) [1,28], which assumes @ = ¢ o P (this notation stands for the mea-
sure P push-forwarded by ¢) with a known base distribution P € P(R?) and ¢ lies in certain
function classes. In practice, GAN has shown astonishing power in learning distribution [10,19].
However, how to establish similar theoretical results with respect to GAN is far from clear.

2.2. Convergence analysis for stochastic processes

Theorems in the previous subsection focus on the measure © on R?. When dealing with em-
pirical measures of a stochastic process such as discussing the convergence of the n-particle dy-
namics to the McKean—Vlasov system (see Section 4 for details), i.e., u € P(C([0, T]; R%)Y), we
need to extend Theorems 2.7 to 2.11. The results are similar, except for an additional term ¢(n)
coming from the regularity of the process. To this end, we introduce the following assumption.

Assumption 2.9 (Modulus of Continuity). Given a probability measure p on C([0, T]; RY),
there exist constants Q, o, § > 0, such that for any 4 > 0,

2T
/ Alx, hydu(x) < Qh* log? (—) , ©)
C([0.T};RY) h
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where A(f, h) denotes the modulus of continuity of f € C([0, T]; R%):
A(f, h) = sup £ (@) — f(l.

1,s€[0,T1,|t—s|<h

Remark 2.10. The condition (6) is satisfied by many kinds of processes. For instance, see

[26, Theorem 1] for results for Brownian motion and It6 diffusion processes with o = 8 = %

under quite generic conditions on the drift and diffusion coefficients. Note that the constant O
derived therein may depend on the dimension d, while the result in our Theorem 2.13 does
not.

Theorem 2.11. Under Assumptions 2.2 and 2.9,
(a) Let u be a probability distribution on C([0, T1; RY) such that

2
f sup x> dp(x) < +00.
C([0,T];R9) 0<t<T

Denote by X', ..., X" i.i.d. random processes drawn from u, and
1 n
— 4
A== 8y
i=1

as the empirical measure of X,l, ..., X}. Define p; = /.Z(th), then
E[ sup Do (1, ﬁf)} < ¢(n), (7N
0<t<T

where

A 8 A A log(22«
S = 2|: 3+ mj};{ 1 2}+8maX{A1,A2} /%}

1
2
X (/ sup ||x,||2du(x)+1>
C([0,T;RY) 0<t<T
A QT? (log(2*n)\”
+2
Jn 20

= O(n 2 (logn)™#3).

In addition,

_ A?
E[ sup D%pw,,u;’)} <=L f sup Jlx;|I* du(x) + ¢*(n).
C

0<t<T n ([0, T;RY) 0<t<T
(b) If u satisfies the T, inequality, that is,
Wi, i) < 2 H (i) Vi <

where H is the relative entropy defined in Theorem 2.7(d), then

_ na*
IP’( sup Do(u, 1)) — ¢(n) > a) < exp (— ) .

0<t<T 2A%K2
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Remark 2.12. The logarithmic term in ¢(n) can be removed for many kinds of function
classes @, in particular for the function classes discussed in Section 3. We defer the proof of
this claim to Appendix B.

Proof. The proof can be reduced to establishing (7). The estimate of E [supogtg DZQS(/,L,, ﬁ;’)]
and (b) can be indeed derived from (7), and by following the proof arguments of Theorem 2.7.
The class @ in Assumption 2.2 is invariant up to an additive constant and so without loss of
generality, E [supy_, .7 Do(u, 27)] can be reduced to

—IE sup sup ‘ &
n - te0,T] fed Z
where &, ..., &, are i.i. d random variables drawn from the Rademacher distribution and are
independent of the processes X', ..., X"
To this end, given any yl, ...,y € R?, we define F(§) for £ = (&,...,&,) € {—1,1}®"
by

1 - :
F© = —sup| Y6700
nree i
By Assumption 2.2(c), we immediately have

3

Az | .
EFE) < — | 3 (yIP+D. ®)

By definition, for any £ and € > 0, there exists a function f § ¢ @ such that
1 n )
F < —‘ i Sy ) .
= ;w O] +e

Note that, for any 1 < j < n, one has

D;F(&) = F(§)— min F(§1,~--,$j71729 Eivlr--er8n)

<e+- (Zafé

N S S P A% S TS P 5|

<et- (Zs,fs \Zs,f%y )+ 20

<e+ —Ifé(yj)l.
n

Taking the square and summing the above inequality over j and next taking the supremum
over all £ gives,

n 2 ) 2
supZ ID;FE)|* < supZ (e + —Ifs(y’)l) <sup Y (e + —If(y’)|> :
j=1 =1 fed i n
holding true for arbitrary €, which implies

supDD FE)|* < —sup2|f(yf>| (A2||y I” + A3).
§ Jj=1 j 1
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Therefore, by the bounded difference inequality ([59, Theorem 3.18]), we obtain

64371 (AT |12 + AD)

Given n’ e Nt, x!, ..., x" e C([0, T]; RY) and ¢4, ..., ty € [0, T], we define the constant

2 2
P(F(S)—EF(E)za)SeXP< ) ©))

n
M = | max x12+1
1Sm,;m IR+ 1)
i=
based on the deterministic values {x }

[— sup | Zaﬂxt,,)

nfep

ja ,» fori=1,...,n. By (8), we have

]<_Mv T (10)

Using the Boole s inequality and (9)—(10), we have the following estimation of the tail
probability, for any a > 0,

8 ! ! A, A
]P’(— max Sup‘Z&f(xtp) 3 Vlogn rr;ax{ | 2}M+a>

ni<p=<n’ fco

IA

n’ max IP’(— sup)ZS,f(x )‘

l<p<n’ n feo

8 logn’ max{A|, A
_ syTogrmax(A, 2}M+a>
n

|

IA

/ ]P — i t[
n' max (”;EE)Z;SJC(]C")

I<p<n’

8/logn’ AL A
> ogn’ max{A, 2}M n a)
n

- E[; sup | i;&f(x;,,)

- /e 2[ logn max Al A2 M—I—a]2
nexp | —
- P 64 max{AZ, AZIM?
2.2
n*a
< n'exp(—log(n'))exp | —
< p(—log(n")) p( 64maX{A2’A%}M2>

n2a2
< ex — .
= p( 64 max[AZ, A%}M2>
Therefore,

—]E max sup‘Zé,f(x )‘

n 1<p=n feo

8./1 Al A +o0 2.2
< _3M+ ogn’ max{A, 2}M—I-/ exp | — n ‘21 5 da
n n 0 64 max{A7, A5}M?
- Az + 8(/logn’ + l)maX{A],Az}M

n

Az 4 8(y/logn’ +1 Al A - .
_ As 4 8(/logn’ 4 D) max{A,, As} max Z(sz' 4 1),
I<p<n’ P P

n
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The above estimate is for deterministic functions in C([0, T]; R?) evaluated at time points

f1, ..., ty. Applying it to i.i.d. continuous stochastic processes {X’ }7_, with the law u and
independent of &, ..., &,, we obtain

_IE max sup ‘ Zf;‘,f(ti

I<p=n’ feo

:;EHE[ max sup‘z&f(xl )“Xl n]}

l<p=n’ feo

Az + 8(/logn’ + 1)max{A;, A " 4
< Aot 8 logn' & DmaxiAn Abg | SYIXE 12+ 1)
n I<p<n’ =

B As +8(y/logn’ + 1) max{A;, Az} (f
= ﬁ C

Using the above estimate and letting £y, #1,

sup. [lx; % dja(x) + 1)
([0,T];R4) 0<t<T

, t, define a partition of [0, T'], that is, 1, = ﬂ
for p=1,...,n', by Assumption 2.9, and w1th the notation I1(t) = L”’

1
—E sup sup ‘ ZE,

N t€[0,T] fed

, one can deduce

(X

1<p=<n’ fe®

< Ik sup sup‘z& XD = f(X] (t)))‘

n . 1€[0,T) fed

< AE sup [|1X] — XJl SAlQ(—/)“ log? (2n").
t€[0,T] n

Choosing n’ = Lnij + 1 gives

1
—E sup sup ‘ Zg,

n 1e€[0,T] fed

A 8 AL A log(22«
< 3 + 8max{Aj, Az} 4 8max({A,. As] [log(2**n)
Jn 2un

1
2
x ( f sup [lx||* dpe(x) + 1)
C([0,T];R9) 0<t<T

AL0T® [log(2%n)\’
()

Therefore we have proved (7). U

The next theorem shows that the law of the stochastic differential equation (SDE) satisfies
the condition of Theorem 2.11, i.e., Assumption 2.9.

Theorem 2.13. Given a constant T > 0, a complete filtered probability space (2, F,F =

{FiYo<i<r, P) supporting an m-dimensional Brownian motion W as well as an Fy-measurable
R?-valued random variable 1. We consider the following SDE

dX, = B(r, X,)dt + X(t, X,))dW,,  Xo =1,
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where B : [0, T] x R? - R? and X : [0, T] x R — R4*m satisfy: ¥t € [0, T], x,x" € RY,

1B, x) = B, x)I> + | 2@, x) = 2(t, X)) < K*[lx — x|,
B O+ 12¢ 0lF = K,
with K being a positive constant and || - || denoting the Frobenius norm on R¥™. It is well-

known that the above SDE admits a unique strong solution (cf. [65, Theorem 3.3.1]). We denote
by wo = L), u = L(X) the laws of n and X, respectively.

(a) Assume that E||n||> < K?, then there exists a positive constant C depending only on K
and T, such that

E sup |X.|I* <C,

0<t<T

and

) (2T>
f [AGe, WP dpx) < Chlog 2 ) .
C([0.T:Rd) h

(b) Assume that
Wi (o, 1) < 2K*H(jtl o), Vit <K po,
and

sup | X 0)lF < K.
t€[0,T],xeR4

Then, there exists a positive constant C depending on K and T, such that
Wi, i) < CH(RIp), Vit < p,

where H is the relative entropy defined in Theorem 2.7(d).

Proof. We defer the proof to Appendix A as it is less relevant to the main object of this paper.
As mentioned in Remark 2.10, the second part of claim (a) has been established in [26] for
more general Itd processes. However, our estimates show that the constant C does not depend
on the dimensions d and m. [

3. Examples of classes of functions satisfying Assumption 2.2

3.1. The Reproducing Kernel Hilbert spaces (RKHSs)

RKHS has developed into an essential tool in many areas, especially statistics and machine
learning [33]. We first recall its definition: a Hilbert space of functions f : R — R, is said to
be an RKHS if all evaluation functionals are bounded and linear. A more intuitive definition
is through the so-called reproducing kernel.

A symmetric function k : RY x R — R is called a positive kernel function on R?, if
ZZaiajk(xi,xj)EO (11
i=1 j=1
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holds for any n € N, x', ... x" € R4, and ay, ..., a, € R. We then define the inner product
space

m
(f@) =) aik(x.x;) :m e NT {a;}lL) CR", {x;}j, C R™)
i=1
with the inner product

m! m8

(f.gh, =Y > el alk(x] x5, Yf(x) = Zafk(x xl), gx) = Zozgk(x x5).

i=1 j=1 i=1 i=1

The reproducing kernel Hilbert space Hy is the completion of the inner product space with
respect to || - ||, = /(- ‘)%, . Moreover, Hy satisfies the reproducing property:

FO) = (fok(x, )y, Yx € RY, f € Hy

In particular, the function k, called the reproducing kernel of H;, satisfies

k(x’ )’) = (k(xs ')s k(y’ ))7—[

We refer the interested readers to [2] for more properties of RKHSs. Theorem 3.1 guarantees
that RKHSs associated with Gaussian kernels, Laplacian kernels and neural tangent kernels
satisfy Assumption 2.2. We remark that the choice in Theorem 3.1 reproduces the maximum
mean discrepancy in [7].

Theorem 3.1. Assume the reproducing kernel k(-, -) satisfies:

(a) There exist constants K, K, > 0, such that Vx,y € RY, k(x, x)+ k(y, y) —2k(x,y) <
Kllx — ylI* and Ky = /k(0,0);
(b) If 1 is a signed measure on R?,

/ k(x, y)du(y) =0, Vx e R = u =0.
R

Then for any u € P'(RY), & = {f € Hy, Il fll, < 1} satisfies Assumption 2.2 with A; = K,
A2 = K2 and A3 = «/fmax{Kl, Kz}

Proof. By definition, k(x,-) € H; for all x € R“. Hence, Assumption 2.2(a) is implied by
item (b) above. For Assumption 2.2(b), V f € H; such that || |3, < 1, we compute

|F(xX) = FON = [(fo k(x, ) — k(s Mg < /(kGe, ) — k(y, ), kGx, ) — k(s g
= Vk(x,x) + k(y, y) — 2k(x, y) < Killx — yll,

for any x, y € R?, which implies that the Lipschitz constant is K.
For Assumption 2.2(c), we first derive an estimate for k(x, x). To this end, letn = 2, x' = x,
x? = 0 in inequality (11), we have

atk(x, x) + a3k(0, 0) + 2a;azk(x, 0) > 0,
for any ay, ay, implying |k(x, 0)] < k(x, x)k(0, 0). Therefore,

(Vk(x, x) — Vk(0, 0))> = k(x, x) + k(0, 0) — 2\/k(x, x)k(0, 0)

< k(x, x) + k(0, 0) — 2k(x, 0) < K7|1x||,
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and k(x, x) < (W&, 0) + K ||x|)? = (K> + K1 ||Ix])* < 2([(22 + K12||x||2). Now we estimate
the Rademacher complexity of @ = {f € Hy, || fll, < 1}:

n

1
Rad,(®, X) = -E sup

N fllpg <1

- . 1
Eif(xl)) = ;E sup
1

1l <14

E(f k(X))
1

i=

1 ‘ , 1 SR o
=-E sup |<f,§sik<x',~>>yk|s,—lla DO &gk, xd)

) £l <1 i=1 j=I
1 S o 1 |< o

< < [EDDDEEKG LX) = | kG xT)
\ i=1 j=I i=1
1 n

<=2 K2Z||xi||2 + K2

< ; 2Ixi )2 + K2)
As A

< = N2+1). O

<= (; x| + 1)

3.2. The Barron space

Barron space was firstly introduced in [22,23], which is designed to analyze the approxi-
mation and generalization properties of two-layer neural networks. It can be considered as the
continuum analog of two-layer neural networks. See [23, Section 2.1] for a detailed discussion
on Barron space.

Definition 3.2. We say f : RY — R is a Barron function, if f admits the following
representation:

o) = / o x+h)do. b), (12)
S

where o(x) = max{x, 0} is the ReLU function, and p is a finite signed measure on S =
{(w, b) € R ||w||> 4 |b|* = 1} with | - || being the Euclidean norm. We will use the Barron
space B to denote the collection of all Barron functions and define a norm || - ||z on the Barron
space as follows:

If1ls =ir’}f||pllrv,

where the infimum is taken over all p for which (12) holds for all x € R?, and || - ||7v is the
total variation of p.

The following theorem reveals some useful properties of Barron space and shows that the
unit ball of Barron space, denoted by By := {f € B, || fllz < 1}, can serve as a good choice
of the test function class @. Although Theorem 3.3 is stated when the activation function o is
the ReLU function, all claims except (d) hold if o is any 1-Lipschitz, nonlinear function and
hence B, corresponding to such o is also a good choice of the test function class @. The proof
of claim (e) for general activation functions can be found in [50] while other claims (a), (b),
(c) and (f) follow the same proof presented below.
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Theorem 3.3.

(a) The Barron space is a Banach space.
(b) For any f € B, f is Lipschitz continuous with the Euclidean norm in R and Lip(f) <

I/ 1l
(c) Denote by P(S%) all probability measures on S%. For any m € P(SY), let ky(x,x’) :

RY x R?Y - R be
kp(x,x') = / o(w-x+bo(w-x" +b)dn(w,b),
sd
and H, be the RKHS associated with k.. Then,

B= U H,,
TeP(SY)

and
I flls="inf [Ifll3,,
TeP(S9)

with || - ||, being the norm in H,.
(d) Let f be a measurable function in L*(RY) and

y(f) = /Rd(l + ol f (@) do < 400,

where f(w) = Jga f(x)e™ ¥ dx is the Fourier transform of f. Then f € BB and

I flls <4y (f).

(e) For any compact set K C RY, the restriction of B on K is dense in C(K).
(f) Let X = {x',...,x"}, where x' € R? and ® = B,. Then the empirical Rademacher
complexity satisfies

2
Rad,(®, X) < —
n

> 2+ 1),
i=1
and ® = By satisfies Assumption 2.2 with Ay = A, = 1 and A3 = 2.

Remark 3.4. In [3, Section 9], examples of functions with bounded y(f) are provided
(e.g., Gaussian, positive definite functions, linear functions, radial functions and functions in
fractional Sobolev spaces H*(RY) with s > % +1). By claim (d), they all belong to the Barron
space.

Proof.

(a) Let M be the set of all signed measures on S?. With | p||a¢ := ||pll7v, M is a Banach
space. Let N = {p € M : [yo(w-x + b)dp(w,b) = 0, Vx € R}, then N is a
closed subspace of M. It is evident that B = M /A, thus we obtain the desired result
[55, Theorem 1.41].

(b) For any (w, b) € S, Lip(c(w-x+b)) < 1. Then our result follows from the subadditivity
of Lip.

(c) See [23, Theorem 3].
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(d) Our proof is similar to that in [39, Theorem 6]. By the property of Fourier transform,
one has

f&x)=x-VfO)+ f(0)+ /d(ei“"x —iw-x — l)f(a))da). (13)
R
For |z| < c, the following identity holds
—/ [0(z—u)e™ +o(—z —u)e ™]du =% —iz — 1.
0

The above two equations can be found in [39, Theorem 6]. Now let ¢ = ||w|, z = w - x,

a(w) = w/|wl| and u = ||w|t, we have:
1
a(w)-x —t\ —a(w)-x —t\ _;
_ ||w||2/ /1412 [G ( )ezuwuz g ( )e lwuz] dr
0 1+ 12 1+ 12
=" —jw.-x—1.
In other words,
Y —jw-x—1= / o(w - x + b)dp, (o, b),
sd
where
1
Pow = —||w||2f \% 1+ t2[einHla( a(w) t )+ e_i”w”ta(7 aw ot )] de.
0 Vit? V142 1427 V142
Hence, ¢/®* — jw - x — 1 is in the Barron space B with | o, |7y < 2\/§||a)||2. Recall

that Eq. (13) gives

F@) = IV O [g (W) to (_M

IV £ IV £
+f /U(a)’-x+b)dpw(a)/,b)f(a))dw,
R4 Jsd

and one concludes

>i| + f(0)o0-x+1)

£l < 20V LO) + | £O)] +2v2 g lwl?| f ()| do
< /Rz[l +2llw] + 2v2]l0l4| f(@)| do < 4y(f).

(e) For any f € CSO(R"), we know that f is a Schwartz function. Therefore, f is also a
Schwartz function and we have y(f) < +oo. Hence, f € B; see e.g. [58, Section 6].
Because the restriction of C(‘)’O(Rd ) on K is dense in C(K), we easily conclude.

(f) Our proof here is similar to the one in [23, Theorem 6].

1 " .
Rad,(¢, X) = ~Esup ) & f(x')
noreeio
1 " ‘
—-E sup / Y Eo(w-x' + by dp(o, b)‘
- plpy<t ' Js? i

lIE sup )ansia(w-xi—i-b)‘

n (wpest ' i
262



J. Han, R. Hu and J. Long Stochastic Processes and their Applications 164 (2023) 242-287

1 " )
< - Emax{ sup Zéio(w -x' +b), O}
n (,b)es? G
—HEmax{ sup —Zéia(a)w" —i—b),O}
(w,b)eS? i=1
2 " )
=-E sup Zfio(a) -x' +b),
n (wbest i

where the last equality holds due to sup,, ;)csd Y &o(w-x'+b) > 0 and the symmetry
of &, ...,&,. Then Lemma 26.9 in [56] gives

Rady(8, X) < 2E sup Xn:gia(w.x"+b)g EEHXn:gi((xi)T, 1)TH
N (wbest i n i=1
2 : A 2 2 &
== IEH;a«xl)T, D=2 2P+,

Finally, Assumption 2.2(a) is fulfilled by claim (e) above, and claims (b) and the above
estimate together imply that ¢ satisfies Assumption 2.2(b)—(c) with A} = A, = 1 and
Ay=2. O

Remark 3.5. As the Barron space serves as the continuum analog of two-layer neural
networks, the generalized Barron space or the Banach space associated with multi-layer
networks introduced in [25] serves as the continuum analog of multi-layer neural networks.
By the fact that the unit ball of the Barron space B, is a Polish space, one can define a signed
Radon measure p on the Borel o-algebra of 3;, and then define

fox) = /B o (5(x) dp(g),
1

1f 152 = inf{llpliry : f = f, on R},
B ={f € CR). | fllz < +o0},

where the integral is in the sense of Bochner integrals. B% can be interpreted as the Banach
space associated with three-layer neural networks. We can then repeat this process and define
BL for any L > 2, which is associated with (L + 1)-layer neural networks. Naturally we denote
by B! the Barron space B defined via (12). It can be proven that the unit ball of the generalized
Barron space is also a suitable test function class. For more technical issues and intuition about
BL, we refer to [25, Section 2.2].

3.3. Flow-induced Function Spaces’

Flow-induced function spaces introduced in [23] can serve as a continuum analog as
the residual neural networks (ResNet, [32]). Our definition here is slightly different from

2 1t is a class of function mimicking the limiting behavior of residual neural networks. And the name “flow-
induced function class” would be more appropriate as the terminology “space” implies linearity, which we currently
are not able to prove. Nevertheless, we keep the title as it is, following the terminology introduced in [23].
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the original definition in [23]. Such an alteration will enable us to bound the Rademacher
complexity by

> AP+ 1)
i=1
as requested by Assumption 2.2, while the choice in [23] yields a bound

\/1 + max; <j<p 117 ||

n

Given an integer D > d + 1, let p = {p;}o<:<1 be a class of vector signed measures from
SP1 = {w € R?, |w|| = 1} to R? such that the following ordinary differential equation
(ODE)

dz,
dr

with o being the ReLU function, is well-posed for any initial condition z, i.e., the solution
exists, is unique, and is continuous with respect to the initial condition zo. Let us denote by
¥ the collection of all admissible p satisfying this well-posedness condition. If the ODE (14)
is discretized by the Euler scheme in time and p, is discrete, then the system gives the same
structure as ResNet, a widely used deep neural network architecture.

For any x € RY, let Z,(t, x) be the solution of (14) with the initial condition zo =
T, 1, O(D,d,l))T, where 0p_,—1y denotes a vector of zeros of length D —d — 1. And for
any p = {pr}o<r<1 € ¥, we define

D
m

E oz ll7y s

i=1

where p! is the ith component of p,. To simplify the discussion, we in addition require that
A(p, T) is continuous with respect to t for any p € ¥. Then, we can define the flow-induced
function spaces as the space D given by the class of functions f admitting the representation
f = fp.« Where

foux) =a"Z,(1,x), V¥pe ¥, acR?,
1
1 fllp = inf{nan exp (f Alp, f>df) = fraon Rd} ,
0
D:={f e CRY, | flp < +o0}.

:/ o(w-Z)dp(w), VO=<t=<1, Zo=2 (14)
sD-1

A(,O, 'L") =

The following theorem gives some useful properties of the flow-induced function spaces and
indicates that the unit balls of the flow-induced function spaces are also appropriate test function
classes .

Theorem 3.6. Fix an integer D > d + 1.

(a) For any f € D, Lip(f) < | fllp and | f(O)| < [ fllD.
(b) If D > d+2, then forany f € B, f € Dand || fllp < el f| . Hence, by Theorem 3.3(e),
the restriction of D on any compact set K C R? is dense in C(K).
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(c) Let X = {x', ..., x"}, where x' e R and ® = {f € D, || flp < 1}. Then, the empirical
Rademacher complexity satisfies

D A1+ 1,
i=1

and & satisfies Assumption 2.2 with A} = Ay = 1 and Az = €.

62

Rad, (&, X) < —
n

Proof. For claim (a), given p € ¥, let Z;, Z. be the solutions to the ODE (14) with the initial
conditions zg, 16 e R?, respectively. Then,

i||Zr -Z = 2/ [o(w- Z:) = ol Z)1dIZ; — Z,]" pr(@)
dr sD-1

< 2/D o+ (Ze = ZDIAIZ: - ZT pe(o)
-
<2A(p, DI Z. — Z_II,

where | - | is obtained by taking element-wise absolute values of a vector. Integrating both sides
from v =0 to 1 gives

1
1Z1 = ZiIl < llzo — zoll exp </ Alp, T)df)~
0

Taking 20 = ()CT, 1, O(D,dfl)) and Z/O = (()C/)T, 1, O(D,dfl)), we deduce

1
le™Z,(1, x) — " Z,(1, x")| < [la]| exp (/ Alp, r)dr) lx — x|,
0

and by taking zo = (04, 1, 0cp_g—1))" and z{ = 07,, we have

1
la"Z,(1,0)| < ||| exp (/ Alp, r)dr).
0

Now by the definition of f in D and | f|p, we easily conclude.
For claim (b), without loss of generality, assume D = d + 2. For any f € B and € > 0, let

Fl) = / o x + D)@, b
N

with 0 < [|Ipllzv < I/ l8 + €. Define p:

pl=0, 1<i<d+1, and p? =

- , forO0 <t <1.
lollrv

Then it is easy to check that Z;(t, x) = (xT, 1, ”Tg”(;)v )T. and hence f(x) = [|pll7v 1}, Z5(1, x)

where 1545 = (0441, DT. Combining with the fact that

Ap,r)y=1, 0<t<1,
we know that

I fllp <elplirv < ell fllz + €l

for any € > 0, which concludes our proof.
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For claim (c), we first prove that for any f € & = {f € D, | f|lp < 1} and € > 0, there
exist p € ¥ and @ € R? such that f(x) = a"Z(1, x) with

1 T
lla]l exp </ A(p, f)dr> <l+e || sup A(p, )exp (/ A(p, r’)dr/> <l+e.

0 0<t<l 0
15)
First, we choose a € R? and p € ¥ satisfying that

€

1
f@x) = fralx)= aTZp(l, x), and || exp (/ Alp, 1) dt) <1+
0

[\

Given a strictly increasing and continuously differentiable function F(t) : [0, 1] — [0, 1]
satisfying that F(0) =0, F(1) = 1, we define

Py = F'(0)prq).
Then, from Eq. (14) one has
dZ,(F(7),x)

dr B

In addition, Z5(t, x) = Z,(F (1), x) and f54 = fyo = f On R?. Note that the wellposedness
of the above ODE can be deduced from the fact that F is an isomorphism on [0, 1]. Noticing
that

/SD_I o(w-Z,(F(r), x))dp,(w).

1

1 1
/ A(p, t)dt = / F'(1)A(p, F(1))dr = / A(p, t)dr,
0 0 0

1 _ 1 1
]l exp f/l(p,f)df = llellexp /A(p,f)df <1+ 3¢,
0 0

lleell sup A(p, T)exp (/ A(p, T')df/) = llell sup F'(x)A(p, F(1))
0

0<r<l 0<r<l

F(o)
X exp (/ Alp, ) dr’) .
0

Next, assume without loss of generality that exp( for A(p, t/)dt’) strictly increases in t. Then,
there exists a continuous and strictly increasing function F* : [0, 1] — [0, 1] with F*(0) = 0,
F*(1) =1 and

F*(7) |
exp (/ Alp, ) dr’) =1-—1t+7exp (/ A(p, ) d‘l,'/) , VYT elo,1],
0 0

which gives (by implicit function theorem), when A(p, F*(t)) # 0,

F*(1) 1
(F*Y(t)A(p, F*(1))exp (/ Alp, ) dr’) =exp (/ A(p, ') dr’) -1
0 0

Then Eq. (15) is obtained by approximating F* through a continuously differentiable isomor-
phism on [0, 1].

we have
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Return to the proof of claim (c), for any € > 0, we define

Pt :{(a,p)eRDxW:

1
ller]l exp (/ A(p,f)df> <1l+e, [laf sup A(p,7)
0

0o<r<l
1
X €Xp </ A(p,r’)dr’) <l4e€ },
0

1 n .
R =-E sup EiaTZp(r,x’).
TN @peype ;

and

With (15), we have Rad,(®, X) < R for any €. So it suffices to deduce an upper bound for
Ry.
A straightforward calculation gives

IRy — R;,| < sup max o [Zp(r,xi) — Z,(7', xH]
(@,p)epe 1=i=n

< sup max/ f lo(w - Z,(u, x ))|d|(x Pul(w) du
(a, p)e‘ﬁf 1<i<n sD-1
<|t—7| sup max sup [|Z,(z,x)llell sup A(p,7)
(@,p)epe 15i=no<r<1 0<r<l
<lt—7| sup el sup A(p, v)exp (/ A(p,r’>dr’> max (1 + [lx]))
(o, p)ePe 0<r<l 0 I<i=n
<(+e lmaX(l + [lx DT = 7'l
<i<n

where we use
1
sup [|Z,(z, x")|| < exp (/ Ap, r’)dr’) (4 11xi 1D,
0<r<l 0

which can be proved using the same argument in the proof of claim (a). Hence R is continuous.
Next we fix t € (0, 1) and compute

— K¢ R 1 __1
lim — % < —Elim—|: sup Z&a Z,(t+h, x')— sup Z&,a Z,(7, x):|

h—0 h (,p)ePe & (@.mePe i

IA

1
—Ehm— sup £a'Z o(T+h,x iy — £aZ o(T, x5
e [z >
n d
< —E sup éiaT—Z (t, x))
n (a,p)eﬁpsg dr ?

— B wp Mg / (@ Zy(z, x"))da’ pr()
sD-1

n (o, p)eB€ i=1
1 T

<— sup |lefA(p,t)exp (/ A(p, ) df’)
I (a,p)epe 0
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“ ‘ - Zy(t,x")
" [willlgew ‘ z:Ela(exp(for A(p, ') df/)> ﬂ

i=1

=<

2(1 4 ¢) " . o Z,(t, x")
]E SUP l(exp(for A(p’ ‘E’)dt’))‘

For any p € ¥, using a similar argument to the proof of Eq. (15), we can find another p € ¥
such that Z5(t, x) = Z,(7, x) and

exp (/T Ap, ") dr/) <(1+4+e€)exp (/T A(p, ) dr/) .
0 0

sup A(p, u)exp (/u A, ") dr/) <(I+e)exp (/T A(p, ©) dr/) .
O<u<rt 0 0

We can then find another p € ¥ such that p» = p,, for all 0 <t/ < t and

1 T
exp (/ AP, t’)dr’) < (1 +e€)’exp (/ A(p, ) dt’) ,
0 0
sup A(p, u)exp (/ AP, ) dr/> <(14+e)exp (/ A(p, ) dt’) .
0<u<1 0 0

Hence, Z;(t, x) = Z,(7, x), and for any o with [|o| <1,

n lol<t.pe ¥ ;27

w N €
((1 +orexp(fy Ap, thae) " ) =

Therefore,
—R:, —R: 2(1+4¢) - ‘
- T+h T T l — 3
111_r)r(1) Y < " E| sup E &a Zy(t,x")| =2(1 +€)R;,

(e, p)eP€ i=1

which means
r_exp{—2(1 + €’ (r + h}IRE,, — exp{—2(1 4+ €)*T}R¢
m
h—0 h

<0.

For any €’ > 0, let P, = exp{—2(1 + e)3t}R§ — €'t, then P; is continuous in 7 and satisfies

T PrJrh - Pr
Iim —
h—0 h

< —€ <0,
which means that P; is decreasing. Therefore,
exp{—2(1 + €)’}Rf — €' < R,

or RS < ¢219” R by letting € — 0. We can conclude our proof by computing

n n
Ry= B sip 3 &)1, 00 g o= —E] 3 &N 1,000
i=1

N al<lte o

1+e€ “ .
< D x>+ 1,
i=1

and letting € — 0 in Rad, (&, X) < RS < ¢+ Re.
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Finally, claims (a) and (c) together imply that ¢ satisfies Assumption 2.2(b)-(c) with
A = Ay = 1 and A; = ¢? and claim (b) implies @ satisfies Assumption 2.2(a) when
D>d+2 U

4. Application to the McKean-Vlasov SDE

This section presents an application of our proposed IPM to McKean—Vlasov Stochastic
Differential Equation (SDE). Throughout this section, we fix a complete filtered probability
space (2, F,F = {Fi}o<i<r,P), supporting n + 1 independent m-dimensional Brownian
motions {W"};?:l and W, as well as i.i.d. Fy-measurable R?-valued random variables {17"}:.’:1
with law  and E||5|> < 4+00. We are interested in the rate of convergence as n — oo of an
n-interacting particle system satisfying:

dX™ = B(r, XM, @hyde 4+ (e, XM, phdW!, Xp' =0t ieZ={l,...,n},

A= % ;axln,i. (16)
More precisely, let X, solve the McKean—Vlasov stochastic differential equation:
dX, = B(t, X;, u)dt + 28, Xy, ) AW, Xo =1,
W= L(X;), (17)

where £(X,) denotes the law of X;, we are interested in quantifying E [supog <7 D%p(ut, /1;’)].
To this end, we consider the following assumption.

Assumption 4.1. The functions B : [0, T] x R? x P?(RY) — R? and ¥ : [0, T] x R? x
P2(R?) — R¥™ are Lipschitz in (x, ) in the sense:

1B, x, ) = B, &', tHIP + 15, x, 1) = B, x, w7 < K2(llx =¥ + D, 1)),

(18)

forall t € [0,T], x,x’ € R? and p, u' € P*(R?). Here Dy denotes a integral probability
metric with the test function class @ satisfying Assumption 2.2, || - || denotes the Frobenius

norm on R?*™ and K is a positive constant.
Also, assume that

sup [|B(,0, 80l + 112, 0,80)llr < K.
te[0,T]

Remark 4.2. Inequality (18) is satisfied, for instance, when B and ) are of the form

(B, T) = (B, T) (r,x, f £ y) duty), / £ ) dp(y), - .,
R4 R4

/ e, y) du@)) ,
Rd

and are Lipschitz in their second and third arguments with f?(x, -) in the class of test functions
@ satisfying Assumption 2.2, for any 1 <i <k and x € R?.

Theorem 4.3.  Under Assumptions 2.2 and 4.1, and the assumption that E|n|*> < K2, we
have:
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(a) There exist unique adapted L>-solutions for the n-body SDE (16) and the McKean—
Viasov SDE (17).
(b) There exists a constant C > 0, depending only on K and T, such that
E sup |X]'|><C, E sup [X/>=<C.

0<t<T 0<t<T

(c) There exists a constant C > 0, depending only on K, T, Ay, A, and As, such that

. logn
E sup D%(u, ii}) < C f :

0<t<T

Remark 4.4. As will seen in the proof, Theorem 4.3(c) relies on the estimates in Theorem 2.11,
about which we have mentioned in Remark 2.12 that the logarithm term can be removed from
¢(n) for all the examples of ¢ mentioned in Section 3. Consequently, claim (c) in Theorem 4.3
can be further improved to be bounded by C/n when using test functions in Section 3.

Proof. Throughout the proof, we will use C as a generic positive constant depending only on
K, T, A, Ay and Az, which may vary from line to line.

By the relation between Dg and W, stated in Theorem 2.7(a), Claim (a) follows from
Lemma 3.2 and Theorem 3.3 in [40].

For claim (b), define x = [x', ..., x"]T, L,(x) = 1 Z?:l 8, and

n

B(t,x) = [B(@, x", L,(x)), ..., B(t,x", L,(x)]",

X(t, x', L(x))

X(t, x%, Ly(x))
S(x) == .. )

2(t,x", Ly(x))

where X' has zero entries except for the n blocks of size d x m on the main diagonal. Then
we can rewrite the n-body SDE (16) as

dX? = B(t, X)) dt + X(t, X)) dW,, (19)
where X" = [X/"!, ..., X" and W, = [W/, ..., W"]". Following Lemma 3.2 in [40], we
obtain that B and X' are 2L-Lipschitz. Standard SDE estimates (cf. [65, Theorem 3.2.2]) give

sup E> X! |* < Cn.

0=<t=T
. 1 .
Notice that X;"', ..., X;"" are symmetric, one has
sup E|X"'||* < C.
0<t<T

Then, using the Burkholder—Davis—Gundy inequality (c¢f. [65, Theorem 2.4.1]), we have

T
ol =nv2
E sup IIX?‘IIIZSC[Ellnllva]Ef |B(z, X', i) de
OStST 0
T

+E sup || | X', X, ﬂ?)szllz]
O<u<T 0

T T
n,l =ny 2 nl =n
sc[E||n||2+Ef B, XM i) dr+E/ IIE(t,X,’l,u,)II%dt]
0 0
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< C[1+ sup E[X"'|*+ sup D%(il', 80)] < C[1+ sup E[X/']*]

0<t<T 0=<t<T 0<t<T

<C.
By [40, Theorem 3.3], we know that, as n — oo,
X™! = X, in distribution in C([0, T]; RY).

We then obtain the second inequality in claim (b) through the Fatou’s Lemma.
For claim (c), let

dy™ = B(t, Y, w) de + S, YL ) dwE vt =g
Then, {Y" ’}” , are n i.i.d. copies of X,. Following [65, Theorem 3.2.4], we obtain, Vz € [0, T'1,

E[ sup X = ¥ ]

0<s<t
t
< CE/ IBGs, X3, 1) — B(s, YU, uo)llP 4+ 112G, X2, ) — 2(s, Y, )] ds.
0

Using the Lipschitz condition (18) in Assumption 4.1, we deduce

t
E[ sup ||X;?*"—Y;“'||2]SCE/ [ sup 1X2 = Y2 + DG ) | s,
0

0<s<t 0<u<s

Then Gronwall’s inequality gives

t
E[ sup 11X~ ¥{|"] < CE] / Dé(ﬁﬁ,unds].
0

0<s<t

Let i be the empirical measure of {Y

1
;= ; Zayln,i.
i=1
With supy_, .y De (s, 80) < A1 supy<,<7r El|X;]| < C, we obtain
sup [|B(t, 0, u)ll + 12, 0, u)lrl = C.

0<t<T

1y, e,

Viewing u; as a given function of ¢, the McKean—Vlasov SDE (17) satisfies the conditions in
Theorem 2.13. Thus, combining results in Theorems 2.11 and 2.13, we have

log n

E sup D(u. i) < C

0<t<T

By the definition of D, one has
2 ] 2 A% . i i 12
D% (fif, i) < [ Z X — Y;“n] = LY I R,
i=1

Therefore

B[ sup D%y, )] = 2B sup DG, i) + sup D3, )]

0<s<t 0<s<t O<s<t

log n

< CE[/ D (1, 1" )ds] e

With Gronwall’s inequality, we can obtain the desired result. [J
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We can furthermore establish a concentration inequality for supy_, .7 Do (1, f47).

Theorem 4.5. Under Assumptions 2.2 and 4.1, and assume that
Wiko, 1) < 2K*H(@ilmo) Vi < po, and Enll* < K°,
and
sup | X7, 0)lF = K.
0<r<T xeR4

Then, there exists a constant C > 0, depending only on T, K and A\, such that
a2

P( sup Dg(u;, it)) —E sup De(uy, iiy) = a) < GXP(——)
0<t<T 0<t<T

Combining with Theorem 4.3, we obtain that for any § € (0, 1), with probability at least 1 —
_ 1
sup Da(us, 1)) < C(y/logn +/—logdé)n"2,
0<t<T
where C may depend on K, T, Ay, Ay and As.

Proof. Throughout this proof, we will still use C as a positive constant depending only on

some constants clearly mentioned in the above theorem, which may vary from line to line.
Recall that the n-particle system can be rewritten as in (19), and the results from

[17, Theorem 5.5]: there exists a constant C > 0, depending only on K and T, such that

a2
Vel (20)

for any function F : C([0, T]; R**") — R being M-Lipschitz in the sense that

P(F(X") = EF(X") = a) < exp(—

|F(x) — F(p)] <MZ sup_|lx; — i,

i1 0<t<T
for any x :== (x',...,x"), y =0, ..., y") with xt, yt e C([0, T]; RY).
Now, for any x = (x', ..., x") with x' € C([0, T]; R?), we define

G(x)= sup sup Zf(x)—Ef(Xt

0<t<T fed

then G(X") = SUPo<;<T D(I)(Mz, uy), and

GG) ~ Gl =+ sup sup| Zf(x - Zf(y,

N 0<<T fed

n

. o
< — E sup flx; — y, |l
i=1 0<t<T

Then, our conclusion follows from the last equation and Eq. (20). O

5. Application to mean-field games

In this section, we shall show that, for a homogeneous n-player game, the strategy derived
by its mean-field counterpart produces an e-Nash equilibrium, where ¢ is free of the dimension
of the state processes.
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Following the setup in [11], we consider a homogeneous n-player stochastic differential
game

dX! = b(t, X!, 0", a)dt +o(t, X, 0", o )dW!, 0<t<T, ieZ={1,...,n},
(21
where each player i controls her private state X! € R through an R D A-valued action o/,
W,i = (Wti Jo<:<r are m-dimensional independent Brownian motions, » and o are deterministic
measurable functions, (b, 0): [0, T] x R? x P(RY) x A — (R?, R¥*™), and v is the empirical
measure of (X/, ..., X") defined by

n 1 «
() = Z5x;' (dx).
i=1

Each player aims to minimize the expected cost over the period [0, T'] by taking her action
ol € A

T
Ji(@)=E U f@, X, 0 a))dt + g(X¥, a;)} : (22)
0
where A denotes the set of all admissible strategies:

A = {A-Valued progressively measurable processes (o )o<¢<7 :

[ wta] ]

and f and g are deterministic measurable functions, f : [0, T] x R x P(RY) x A — R,
g : R?Y x P(RY) — R. Since the players interact through their empirical measure 1", which
depends on all players’ strategy & = (', ..., @") € A", so does the cost functional for player
i, Ji(or). Here A" is the product space of n copies of A.

To solve such games, we are interested in the concept of Nash equilibrium. That is a tuple
af = (a"*, ..., a™*) € A" such that

VieZ, anda' € A, Ji(a*) < J(", ..., o7 ol ot T L o).

For homogeneous games with large n, if the system lacks tractability and needs to rely on
numerical methods for Nash equilibrium, the conventional algorithms soon lose their efficiency,
and one may resort to recently developed machine learning tools [30,31,34]. On the other
hand, one could utilize its limiting mean-field strategy to approximate the Nash equilibrium.
More precisely, one can first obtain the optimal control « from the mean field games using the
following steps:

(i) Fixed a deterministic measure w, € P(R?), Vr € [0, T];
(i1) Solve the standard stochastic control problem:
T
inf E [/ f@, Xe, s o) dt + g(Xr, MT):|
aeA 0
subject to: dX, = b(t, X,, s, ) dt +o(t, Xy, g, ) dW,, X = xo;

(iii) Determine the flow of measures p, such that ¥Vt € [0, T], L(X"") = u,, where X"
denotes the state process associated to the optimal control given u, in step (ii).

273



J. Han, R. Hu and J. Long Stochastic Processes and their Applications 164 (2023) 242-287

Then one can construct an e-Nash equilibrium from it if the optimal control o given by the
fixed-point argument (step (iii)) is in a feedback form. We will make this statement rigorous
in Theorem 5.4.

Throughout this section, the following assumptions are in force.

Assumption 5.1.

(a) The drift b is an affine function of o and x:
b(t, x, w, o) = bo(t, ) + bi(t)x + ba(t)ex,

where by € R?, by € R™*? b, € R are measurable functions and bounded by K.
Moreover, for any 1, ' € P2(RY): |bo(t, ') — bo(t, w)| < KDa(u, ). The volatility
o(t, x, i, &) € R is a constant matrix.

(b) There exist two constants A and K, such that for any (z, u) € [0, T] x P*(R?), the
function f(z, -, i, ) € R is once continuously differentiable with Lipschitz-continuous
derivatives, with the Lipschitz constants being bounded by K. Moreover, it satisfies the
convexity assumption:

2
f@, x', w,a)— 7, x, M,a)—((x/ —x,0 —a), 0. f(2, X, ,u,ot)) > A |o/ — a| )

The functions f,d, f, and 9, f are locally bounded. The functions f(-,0, 8y, 0), 0
f(,0,80,0) and 9, (-, 0, 8y, 0) are bounded by K, and for all ¢ € [0, T], x,x’ € R4,
o, € R and w, ' € P2(RY), it holds:

|(f. ). x' ' ) = (f, o)t x, o, @)
< K (14| )| + [, @) + May(p) + Ma(u)]
x [|&" ) = (x )| + Do, )]

(c) The function g(-, -) is locally bounded, and for any u € P?(R¢), the function g(-, u) is
once continuously differentiable, convex, and has a K-Lipschitz-continuous first order
derivative.

(d) For all (¢, x, ) € [0, T] x R? x PXRY), |3, f(t, x, u, 0)| < K.

(e) For all (1,x) € [0,T] x RY, (x,8,f(1,0,8,,0) > —K(1 + |x]), (x,8,g(0,8,) >
=K + |x]).

In the sequel, a constant C will frequently appear in the theorems and proofs. It may depend
on the bounds that appear in the above assumption (A, K, by, by, A1, A,, A3, etc.) and possibly
vary from line to line. But it will be independent of the dimension d of the state process X!
and the number of players n in the game.

Remark 5.2. Let H be the Hamiltonian associated to the problem, with uncontrolled volatility,
it reads

H(t,x, u, p,a) ={(b(t, x, u,a), p) + f(t, x, u, a). (23)

Items (a)—(b) in Assumption 5.1 ensure the uniqueness of minimizer & of H, the measura-
bility, local boundedness, Lipschitz-continuity of &(z, x, 1, y) in (x, y) uniformly in (¢, u) €
[0, T] x P*(R?). Moreover, the Lipschitz constant is free of d. A repeatedly used estimate is
|&(t, X, W, y)| < )fl(laaf(t, x, i, 0)] + |b2(2)| |y]). For detailed proof, see [11, Lemma 1].
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The probabilistic approach of (i)—(iii) results in solving the following McKean—Vlasov
forward backward stochastic differential equations (FBSDE:s):
dXt = b(t7 Xl‘7 ‘C(X[)7 &(tv Xls ‘C(XI)? YZ)) dt + g dWls

24
dY, = =0 H(t, X;, L(X)), Yy, a(t, X, L(X,), Y))dt + Z, dW,, 9

with the initial condition Xy = xo € R? and the terminal condition Yr = 9, g(Xr, L(X7)).
More precisely, the following result holds.

Theorem 5.3. Under Assumption 5.1, the FBSDE system (24) has a solution (X;, Y;, Z;), and
there exists the FBSDE value function u : [0, T] x R? — R? such that it has linear growth
and Lipschitz in x:

lu(t, ) < CA+1xD),  |ut, x) —u@, x")| < (25)

for some constant C > 0, and such that Y, = u(t, X,;) P-a.s., Vt € [0,T] and x,x’ € RA.
Moreover, for any £ > 1, E[supy,r |X:|1 < oo, and the optimal cost J of the limiting
mean-field problem (i)—(ii1) is given by

T
J=E [g(Xr, L(XT)) +/ @ Xr, LX), a(t, X, LX), Yr))dt} ; (26)
0
where & is the minimizer of H defined in (23).

Proof. The existence of solution to (24) and related estimates follow from [11, Theorem 2],
because the assumptions therein are satisfied using Theorem 2.7(a) based on the Wasserstein
metric and our proposed IPM. The statement on J is a consequence of the stochastic maximum
principle when the frozen flow of measures is £(X,), for instance see [11, Theorem 1]. [

Theorem 5.4. Let (X;,Y;, Z;) be a solution of (24), u be the corresponding FBSDE value
Sfunction, and w, = L(X,) be the marginal probability measure, then
at =a, X, wout, X)), i€l 27)

where X! follows (21) with strategy al':
“n oA , o 1
X! = b(e, X, 00, G XL, oo u(e, X)) At + o dW] 5 =~ 8, %)
n “ ‘

is an &,-Nash equilibrium of the n-player problem (21)—(22) with €, = C//n, i.e., for any
progressively measurable strategy B such that E[fOT |,Bt"|2 dt] < oo, we have

Jn,i(&n,i’ o &n,[fl’ /3[7 C—(n,i+1’ . &n,n) > Jn,i(&n,l’ o &n,n) —&,. (29)

Proof. We first claim that the SDE (28) is well defined, by the Lipschitz property and linear
growth of @ in (x, y) and u in x (¢f. Remark 5.2 and (25)). With Assumption 5.1(a), we also
have

T

sup max [E[ sup |X’| ]—HE/ |a ’“| dti| (30)
n>11=i=n 0<1<T

The proof of (29) consists of two steps, and by symmetry we only need to prove it for i = 1.
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Step 1: MFG vs. N-player game using (&"',...,&""). To this end, we introduce n
independent copies of the mean-field states X, in (24):

dX! = b(t, X!, g, &(t, XE, g, u(t, XH)dt +0dW/, t€[0,T], andi € Z.

Note that £(X!) = u,, and we have similar estimates for (X!, &') as in (30). Let " be the
empirical measure of X! and define,

&; = &(ty )_(;7 Mty u(t7 )_(;))7

we then compute, by the regularity of b, u and &, that for z € [0, T]:

E[sup | X! — X!| }<E[/ |b(s, XL, 07, @'y — b(s, X, ps, & )| ds]

0<s<t

<CE / X! — X' + D} (ux,us)+|a'”—a’|2ds}

<CE f X — X + D} (vv,u)ds]

Then Gronwall’s inequality gives

EP@|&—Xﬁ}§aE

0<s<t

t
/ D% (0", us)ds} ,VieZandte[0,T].
0

A similar proof as in Theorem 2.7 gives
2 —n c
EDg (e, pty) = —. V1 €10, T1, €1y

and by the definition of Dy we have

A .y
Dé(u{‘,ﬂf)<72|xl Xi[?, vielo, T
i=I

Thus one deduces

E[D%(u:, ¥")] < 2E[D%(u;, it n+mmymwn
i i E ! 2 /=n
<—+C]E[ Z|x — X! ]§n+CE[/0 Dq}(vx,us)ds].

Applying Gronwall’s inequality again yields

C
E[D% (i, V)1 < =, Vi €0, T, (32)
n
and consequently
- C .
E|sup [X!—X||"|<=, VieI, Vtel0,Tl. (33)
0<s<rt n
We are now ready to compare J™(a™! ,a™™) with the mean-field problem value J

defined in (26), which coincide with ]E[fO f(t Xi, e, @by de + g(Xk, ur)l, as )_('i 2 x,. By

—I’ll

Assumption 5.1(b), the Cauchy—Schwarz inequality, the boundedness of (X!, X!, @;"', &) in
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expectation (cf. Theorem 5.3 and estimate (30)), the Lipschitz property of & and u, we have

. /2
7= ami@t, @) < CE[[X) - Xp [+ D7 (/,LT,UT)]

T 12
= ") _
e (/ E [|X; — Xi[ + D%, v,”)dt]) ,
0
and then conclude

Jri@m @™y =T+ CJ/n, (34)

by the estimates (32) and (33). This suggest that, in order to prove (29), we only need to
compare J™ (B a™?, ..., am") with J.

Step 2: MFG vs. N-player game using (8!, &"2, ..., @""). Denote by (U], ..., U") the so-
lution to (21) using strategy (,81 @™z, att), and f)t” the empirical measure of ', Utz, e,
U, and D/~ ! the empirical measure of (Ulz, ..., U"). By the boundedness of by, by and
by, the adm1351b111ty of (B!, @™2,...,a™"), and Gronwall’s inequality, we have the following
estimates:

T
E[ sup IU,1|2]§C(1+IE/ B! dr), Elsup [U/1<C., jeZ\{l}, (35)

0<t<T 0<t<T

J 1 1,2
—ZIE[ sup (U711 < €l + E/ 1811 dn).

j=1 0<t<T

Step 2.1: Controlling D4 (D", u,). By triangle inequality of the IPM, one has
E[D% (0, u)l < C {EDHO7, 07~ H] + EDS0; ", a7~ O]+ EDG (', u)l},  (36)
and the last term is O(1/n) by (31). For the first term, we have
C - P2
ED "I’L ’\n 1 < ]E UI_U./ ,
[D%(7, 0771 < (n_l)jz_;nt N

and is O(1/n) using the estimate (35). By definition, the second term in (36) is bounded by
C n ) .5
an—1 =—n— ] J J

E[D% (0", i stzEuU, - X/l

For 2 < j < n, we deduce that
i i i yip? i_ it €

EHUt - Xf | ] =< 2E[|Ur - Xr | ]+2E[|Xt - Xt| ] = ;,

by (33), the estimates (following the derivation of (58) in [11]):
. A C T A
sup E[|U} — Xi["] < —Ef B —ari’dr, 2<i<n,

0<t<T n 0

and boundedness of moments of 8! and a”'.

Step 2.2: MFG using ' vs. N-player game using (8',a"?,...,a""). To compare J"'

(B',a@™?,...,a™") with the mean field cost J given in (26), we define the process U/
associated with the mean-field flow u, = £(X,) and strategy 8':

dU! = b@t, U, p,, BYdt +odW!, 0<t<T.
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Comparing it with U,l, and using the boundedness of b;, Assumption 5.1(a), the estimate of
ED%(?)I", ;) and Gronwall’s inequality, we deduce

- 1.2 C
sup E[|U/ = U/|'] < —.
0<t<T n

Therefore, a similar derivation as in Step 1 gives (replacing X by U and v by »)

C
Iy _ gnl 1 =2.n —n,n
|78 — I B &, @ )]S—ﬁ,

where J(B') is the mean-field cost using B':
T
J(ﬁ‘)=E[g(U;,w>+/ f(r,uf,u,,ﬂ,‘)dt]
0

As J is the optimal cost of the mean-field game, any strategy ,31 other than a(z, X;, u:, u(t, X;))
will produce a higher cost, i.e., J (,31) > J. Therefore, one has

n,i 1 =2.n -n,n 1 _£ _£
JUB e, L ) > J(BY) ﬁzl T 37

Combining (34) and (37) gives the desired result (27). [

6. Conclusion

A new class of metrics, in the form of integral probability metrics, is proposed in this paper
to study the convergence of empirical measures in high-dimensional spaces. We generalize the
standard definition of maximum mean discrepancy by imposing specific criteria for selecting
the test function space to guarantee the property of being free of the CoD. Examples of test
function spaces include reproducing kernel Hilbert spaces, Barron function space, and flow-
induced function spaces. Under the proposed metrics, we can show the following three cases
of convergence are dimension-free: 1. The convergence of empirical measure drawn from a
given distribution; 2. The convergence of n-particle system to the solution to McKean—Vlasov
stochastic equation; 3. The construction of an e-Nash equilibrium for a homogeneous n-player
game by its mean-field limit. We also generalize the results in [63,64] and show that, given a
distribution close to the target distribution measured by the newly proposed metric and a certain
representation of the target distribution, we can generate a distribution close to the target one
in terms of the Wasserstein metric and relative entropy.

As future work, we shall deepen the study of our metric by investigating the mean-field limit
of the n-player stochastic differential games in high dimensions, whose Nash equilibria can be
given by the deep fictitious theory and algorithms [30,31,34,62]. Besides, we are interested
in developing a similar theory (cf. Theorem 2.8) for models other than the bias potential type
and density type, for instance, the generative adversarial network models, which are useful
and important in the machine learning community. We also plan to apply Theorem 2.8 to the
solution of the McKean—Vlasov SDE (17) to study whether one can construct a distribution
based on the solution of the n-particle system (16), which is close to the distribution of the
solution of McKean—Vlasov SDE (17) in the sense of the Wasserstein metric, total variation
distance, or relative entropy. The technical difficulty therein is to analyze when the distribution
of (17) satisfies a bias potential model or density model. Finally, it is of interest to apply this
class of metrics to analyze the convergence rates in other problems, for example, McKean—
Vlasov models, MFGs, and stochastic gradient descent for two-layer neural networks or
multi-layer neural networks [15,48,57].
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Appendix A. Proof of Theorem 2.13

The first part of claim (a) is from Theorem 3.2.2 in [65]. Claim (b) follows from Theorem
5.1 and 5.5 in [17].

Below we prove the second part of claim (a). We denote by C a generic constant that only
depends on K and T, whose value may change from line to line when there is no need to
distinguish. We first observe

f [AGe, )P dpu(x)
C([0,T;RY)

t t
‘/ B(u,Xu)du+[ S(u, X,)dW,

|

‘ft S, Xu)dWL,)

=E sup
5,t€[0,T],|s—t|<h

§Ch2]E[l+ sup ||X,||2}+CE sup
0<t<T s,t€[0,T],|s—t|<h

2

2
< Ch*+CE sup .

s,t€[0,T],|s—t|<h

(A1)

‘ft S, Xu)qu‘

Thus, it suffices to estimate the second term in (A.1). In the sequel, we will use short notations
Y, =Xt ,X,)and Y, = fot X, dw,.
We first work on the case n = d,, for a fixed xp € RA. Fixing s € [0, T'], one has

dlY, — YslI? = 2(Y, — Y)' S, dW, + | 2|17 dz.

Hence, for any A > 0, exp (x[nY, — Yol = [ du] — 222 [T 1Y, — Ys)TEuHZdu) is a
nonnegative local martingale for ¢ € [s, T'], thus a supermartingale. Fix a > 0 and let T be a
stopping time defined by

T =inf{u € [s,t] : ||Y, — Y5 = a} At, inf{} = +o0.

Then E [exp (A[I|Y: — Y,II> — [ 1 Z,11% du] — 227 [ [|(Y, — ¥,)T X, |1 du)] < 1. Noticing that
for any u € [s, t], we have ||Y, — Y;|| < a, and

T T
/ (Y, — YT 5,1 du < a* / | 5 01% du < Ca*(1+ sup || X, 17)(t — ).
K K 0<u<T

Consequently,

ElexpA[|Y: = Y, |I* = C(1+ sup || X, )t —$)]—CA*a*(1+ sup [|X, )t —s)] < 1.

0<u<T 0<u<T

Now, let Sy be the maximum of X, on [0, T], i.e., Sx := supy_, <7 | X.||. For a fixed constant
M > 0, one deduces

Elexp(A ]| Yz — YylI*)Lsy<m] < exp(CA(L + M?)(t — 5) + CA%a*(1 + M?)(t — s)).
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Hence,
P(|Y; — Y|l > a, Sx < M) < P(||Y; = Y,|| > a, Sx < M)
< exp(—ra’® + Cr(1 + M)t —s)
+ CA%a*(1 + M%)t — ).
Picking A = [2C(1 + M?)(t — 5)]~", we know that

a?

C+ M@ —s)

Therefore, for any (¢, s1), ..., (tm, Sm) € [0, T]x [0, T], using Exercise 2.5.10 and Proposition
2.5.2 in [60], we obtain

(Y, - Y|l = a, SXSM)SCeXp<— ) Vs.1€[0.T].

E []max 1Y, =Y, ||41sX§M] < Clog’(m)(1 + M*) max |f; —s; ", (A2)
For any ¢ € [0, T] and any integer k, define
2kt
(1) = h2™* [ == .

The continuity of Y, together with inequality (A.2) gives

1
(E[ sup ||Yf—Ys||41sX<M])
5,1€[0,T],|s—t|<h

1
I
<C (E[ sup ||Y, - YHO(z)||415x§M]>

t€l0,T]
1
1

o0
<C Z (E[ sup 1Y, o) — YHk(t)||41SX<M])
k=0 ]

te[0,T

o 1
<C(1+ M)Z (Z—i logz(Zk::T))4
k=0

<C(+ M), [hlog (2%)

Then by the Cauchy—Schwarz inequality, one has

1

2
(E[ sup |, - stz])
s,t€[0,T],|s—t|<h
<E[ sup NY; — Ys||21k15sxgk]>
5,110, T |s—t|<h

=S (B[ s -yt P(syz k- 1)
pa 5,1€[0,T1,|s—t|<h

27\ X% 1
< C.|hlog <7> > e+ DPF(Sy = k= 1).
k=1
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Using claim (b) and Theorem 5.1 in [17], we know that

n2
P( sup [[X,] > n) <2ex (——)
ooury P\Tca+ 1P
Therefore,
+00 . +00 k2
h+DP Sy = k-1 <C+C (k+2)exp<——>
; X ; C(1 + [Ixol?)
+00 a2
<C 1+f (a +2)ex <——) da
[ A P\Tca+ 1l |
< €1+ IxolD),

which means

1
1\ 2T
B[ s v -n]) < e+l aos (- ).
5,1€[0,T],|s—t|<h h

For general 1, we use the above inequality to deduce

s,t€[0,T],|s—t|<h s,t€[0,T],|s—t|<h

E[ sup Y — YSIIZ] <E (E[ sup 1Y, — Y2 ‘ Xo = xo])

) 2T 2T
= CA+ElnlHhlog| —=) = Chlog{ —- ).

With inequality (A.1), we obtain the desired result.

Appendix B. Discussion on Theorem 2.11

We show in this section that, under a slightly stronger condition (B.1) compared to (6), the
logarithm term in ¢(n) defined in Theorem 2.11 can be removed, for all the examples of the
test function classes discussed in Section 3.

Throughout this Appendix, we assume w to be a distribution on C([0, T]; R?) such that

f sup lx[I> du(x) < +o0,
C([0,T];RY) 0<t<T

and
2 o B (2T)
/ [AGe, W dpa(x) < QB log (22 ). (B.1)
C([0.T};RY) h

for any A > 0, where Q,«, B > 0 are positive constants. Still, we will use C to denote a
positive constant depending only on « and B, which may vary from line to line.
The first result is established for the reproducing kernel Hilbert spaces (RKHSs).

Proposition B.1. Assume the kernel k satisfies the condition (a) in Theorem 3.1 and P is the
unit ball of Hy, then

QT

—n 2
E sup Dg(u, p1f) < 2\/—[1(,2/ sup ||x; |2 du(x) + Kzz] + CK, .
c

t€[0,7] n ([0,T];R9) 0<t<T
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Proof. Let X' ..., X" be iid. processes drawn from the distribution w. Following
[56, Lemma 26.2], we immediately have

Y&

i=1

2
E sup Dg(u,, i) < —E sup  sup
te[0,T] o 1el0,T1 1 fllag, <1

For a fixed integer n’ > 2 and any #,,s5, € [0, T], p = 1,...,n’, we first compute

1
—FE max sup
N d=p=nfa, <1

Zs, LFXE) = £

1
=—FE max sup
N 1=psn' | flay, <1

(k(X] L) = k(XL D)3y

1 b e . , ;
§;Elmax/ §§gisj[k(xgp,x,fp)+k(xg bp)—k(X W)—k(X’ X/l
=p=n X -
i=1 j=1

(B.2)

Let S be a nonnegative-definite matrix, then there exists a nonnegative-definite n x n matrix
F such that S = FTF. Let E=(¢,..., E,l)T, then there exists a universal constant C > 0
(cf. [54, Theorem 2.1] and [60, Example 2.5.8]), such that for any a > 0,

2

P(VETSE — /Trace(S) > a) = P(| FE|| — || Fllus > a) < 2exp<—CT+ce(S)>, (B.3)

where ||F|lgs = +/ Trace(FTF). Therefore, for any positive definite matrices Sy, ..., Sy,
[60, Exercise 2.5.10] gives

E sup /&7S,& < C max ,/Trace(S,)logn’.
I<p<n’

I<p=n’

Since for any ay, az, ..., a, € R,

YD aialk(X] X))+ k(XD XT ) — k(X X] ) = k(XS X))
i=1 j=1

=D ailk(X] ) = kXL I D alk(X] ) = kXL, Iy =0,

using (B.2) and (B.3) with (K,); ; = k(X! , X)) + k(X! X)) - k(X] , X)) - k(xt x7).
we deduce

1
—E max sup
n1=psn' | flipy, <1

Zs,mx )= fX0))|

< —\/10gnIE max Zk(X )T X XE) = 2k(X] X))

I<p<n’
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1
< c\/ "l max [k(X, X0)+ k(XL XD ) = 2k(x} X )]

I<p<n’

o
501{1\/ ogn' y max |X]

n 1<p=<r

- X, 1%, (B.4)

tp

where K is the constant defined in Theorem 3.1.
We now use the chaining method to estimate the Rademacher complexity. For any ¢ € [0, T']
and integer k, we define

Zk
() = T2”‘LTtJ.

We first compute

1
—E sup sup

- 1el0. T f g <1

 f(X])

sup
N el0.T] 1l <1

(X))

1
<-E sup sup
I tel0,T1 ) fllag, <1

Za FOXD = f X))

T a2
<K\E sup X, — Xyl SCK1Q<2—k> k + 1P =0,
1e[0.7]

as k — +o00. We have also derived in Theorem 3.1 that

1
-E i f(X K3 / 2d K3 |.
~E sup e 0)|<\/ (KT [ B0l 0+ K

Il =t 5o

Together with (B.4), we finally achieve

Y&
i=1

1
—E sup sup

I 1el0,TT 1 fllag, <1

1
<-E sup

n ) fligg <1

Zaﬂxo)) Z “E sup  sup Zamx o) = F X))

t€l0, T g1 | i

2
5\/ &t [ Ixoll> dux) + K3
n C(10.T);RY)

10g(2’< 1)
+CK,y Z sup X gy i = X lI?
tE[O T]

2 k+1 T
5\/— [K%f sup [l,[12du(x) + K3 | + CK,y Z —0 ( ) (k+1)
n C([0,T];RY) 0<t<T n

k=0

2 -
5/2 [KIZ/ sup [l [|> dpe(x) + Kg] + ok 28
C

([0, T;RY) 0<t<T n

B+l
where we have used Y ;% \/$50— < 400, O
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To establish results for the Barron space and flow-induced function spaces, we first present
the following lemma.

Lemma B.2. Let X', ..., X" be i.id. processes drawn from pu € P*C([0, T1; R?Y) and
&1, ..., &, be ii.d. Rademacher variables which are independent of X', ..., X". Then,

) sup ZZ@,&, [(XHTX! + 1]

n - o<t<r im1 =1

2 oT®
< \/—/ sup [llx [l + 11> du(x) + C .
nJc n

([0.T};RY) 0<r<T

Proof. Taking k(x, x") = xTx’ + 1 for any x, x’ € R?, this lemma can be derived using the
proof of Proposition B.1. [

Proposition B.3.
1. Let ® = B, be the unit ball of Barron space B, then

—n QT“
E sup Do(u;, 1)) <4 sup [|lx]12 + 11du(x) + C
0<t<T C([O T1;R9) 0<t<T

2. Let ={f €D, | fllp <1} be the unit ball of flow-induced function spaces D, then
QT
ot

E sup Dg(ur, if) < 26 sup [llx 1> + 11du(x) 4+ C
0<t<T C([O T);R4) 0<t<T

Proof. The proof of these arguments is quite similar with the proof of claim (f) in Theorem 3.3
and claim (c) in Theorem 3.6 with Lemma B.2.

With [56, Lemma 26.2], and following the proofs of claim (f) in Theorem 3.3 and claim (c)
in Theorem 3.6, we obtain

L, 1 n n i )

E sup Do, i) < Ko—E sup | > > &&1(XDTX] + 11,

0<t<T o=ty 5 o

where K¢ = 4 in case 1, and K 4 = 2¢? in case 2. Then we conclude our results by applying
Lemma B.2. [J
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