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Abstract

This paper concerns the convergence of empirical measures in high dimensions. We propose a new

class of probability metrics and show that under such metrics, the convergence is free of the curse of

dimensionality (CoD). Such a feature is critical for high-dimensional analysis and stands in contrast to

classical metrics (e.g., the Wasserstein metric). The proposed metrics fall into the category of integral

probability metrics, for which we specify criteria of test function spaces to guarantee the property

of being free of CoD. Examples of the selected test function spaces include the reproducing kernel

Hilbert spaces, Barron space, and flow-induced function spaces. Three applications of the proposed

metrics are presented: 1. The convergence of empirical measure in the case of random variables; 2. The

convergence of n-particle system to the solution to McKean±Vlasov stochastic differential equation; 3.

The construction of an ε-Nash equilibrium for a homogeneous n-player game by its mean-field limit. As

a byproduct, we prove that, given a distribution close to the target distribution measured by our metric

and a certain representation of the target distribution, we can generate a distribution close to the target

one in terms of the Wasserstein metric and relative entropy. Overall, we show that the proposed class of

metrics is a powerful tool to analyze the convergence of empirical measures in high dimensions without

CoD.
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1. Introduction

The convergence of empirical measures plays a crucial role in analyzing the efficiency of

mean-field theory or mean-field games (MFGs), which are fundamental tools to approximate

finite-particle or finite-agent systems in the asymptotic of a very large population. Specifically,

mean-field theory studies the behavior of a high-dimensional stochastic particle system by

considering the effect of all other particles approximated by an average single effect. It plays

a significant role in many fields, for instance, statistical physics [8,14]. MFGs were introduced

independently by Lasry±Lions [42±44] and Huang±MalhamÂe±Caines [35,36]. MFGs study the

decision-making problem of a continuum of agents, and are able to provide approximations to

Nash equilibria of n-player games in which players interact through their empirical measure.

For further background on MFGs, we refer to the books [12,13] and the references therein.

In stochastic analysis, there is a rich literature on the convergence analysis of n interacting-

bodies/particle system to the corresponding limit (also known as the McKean±Vlasov sys-

tem [46,47]). Recent developments in this field can be found in [37,40,41]. In general, the

distance between an n-body empirical measure and its limit is of order n−c/d , where d is

the dimension of one body and c is a constant independent of d . Such results have been

established in various settings, from the simple case of n-independent samples drawn from

a given distribution [21,27,61], to complicated cases of the McKean±Vlasov system [20] and

MGFs [11]. In many interesting applications (e.g., the construction of ε-Nash equilibria [11]),

d can be so large that the resulting convergence rate is extremely slow. This phenomenon

is referred to as the curse of dimensionality (CoD), the main challenge in high-dimensional

analysis and algorithms.

The analysis in [11,20,21,27,61] suggests that the CoD phenomenon is related to the

usage of the Wasserstein metric and the type of interaction kernels that drive the interaction

between bodies. In fact, it is well-known that the convergence of empirical measures under

the Wasserstein metric presents the CoD [21] for any distribution that is absolutely continuous

with respect to the Lebesgue measure on Rd .

In this paper, we propose a new class of dimension-free metrics for the convergence analysis

of mean-field problems. Specifically, we take the form of integral probability metrics (IPMs),

DΦ(µ, µ′) = sup
f ∈Φ

⏐

⏐

⏐

⏐

∫

f dµ − f dµ′
⏐

⏐

⏐

⏐

, (1)

and impose a set of criteria for selecting the test function class Φ to guarantee that the

convergence rate under various settings is dimension-free. Our criteria mainly build on the

function class’s empirical Rademacher complexity, allowing the test functions to be the

reproducing kernel Hilbert spaces (RKHSs), the Barron function space, and flow-induced

function spaces, just to name a few. The choice of RKHSs is closely related to the maximum

mean discrepancy (MMD) [7] as a tool for statistical tests to check if two sets of observations

are generated by the same distribution. Therein, for computational efficiency, the test function

space is chosen as the unit ball of RKHSs.

Beating the CoD is also a central topic in the machine learning community. One of the

core problems in the high-dimensional analysis of machine learning models is identifying an
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appropriate function space equipped with an appropriate norm that can control the approxima-

tion and estimation errors of a particular machine learning model. This perspective is closely

related to the proposed probability metrics, and we should already point out to the readers that

all proposed test function classes originate from machine learning models. Reproducing kernel

Hilbert spaces are particularly important in statistical learning theory due to the representer

theorem established in [38]. The Barron space [23] was introduced for analyzing two-layer

neural network models where optimal direct and inverse approximation theorems hold, as

well as the a priori estimate [22]. The flow-induced function spaces [23] were introduced for

analyzing residual neural networks [32], which have wide applications in computer vision and

scientific machine learning.

Our main results are summarized as follows:

1. We propose a novel metric to measure the distance of probability measures by imposing

selection criteria (Assumption 2.2) for test functions Φ in (1), yielding a dimension-free

metric for the convergence of empirical measures associated with independent samples

drawn from a given distribution (Theorem 2.7);

2. We generalize the results in [63]: given a target distribution being a bias potential model

and a distribution close to the target measured by our proposed probability metric, we

can generate a distribution close to the target in terms of the Wasserstein metric and

relative entropy (Theorem 2.8). In this sense, we can transform the empirical measure

into a new distribution close to the target in the Wasserstein metric without CoD;

3. The convergence result (Theorem 2.7) is extended to independent identically distributed

(i.i.d.) stochastic processes by imposing assumptions (Assumption 2.9) on their modulus

of continuity (Theorem 2.11);

4. We give three classes of test functions (reproducing kernel Hilbert spaces, Barron space,

and flow-induced function spaces) for which the criteria in Assumption 2.2 are satisfied

(Theorems 3.1, 3.3 and 3.6);

5. The convergence of the empirical measure associated with an n-particle system to the

distribution of the McKean±Vlasov stochastic differential equation is shown to be free

of CoD (Theorem 4.3);

6. We show that the construction of an ε-Nash equilibrium for a homogeneous n-player

game by its mean-field limit has no CoD (Theorem 5.4), i.e. ε is independent of d .

Notations. We use P(Rd ) to denote the space of probability measures on Rd . P p(Rd ) with

p ≥ 1 denotes the subspace of P(Rd ) of probability measures with finite pth-moment, i.e.,

µ ∈ P p(Rd ) if

Mp(µ) :=
(∫

Rd

∥x∥p dµ(x)

)1/p

< +∞.

We will primarily work with probability measures with finite first and second moments,

i.e., P1(Rd ) and P2(Rd ). We use ∥ · ∥ to denote the Euclidean norm and define the Lipschitz

constant with respect to the Euclidean norm:

Lip( f ) = sup
x,y,x ̸=y

| f (x) − f (y)|
∥x − y∥ .

We denote by δx0
the delta distribution at x0.
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2. A class of integral probability metrics

To define a metric on the space of probability measures, one natural approach is to choose

a suitable class Φ of test functions on Rd and compare the difference of integrals.

Definition 2.1 (Integral Probability Metrics [49]). Let Φ be a class of measurable functions

on Rd such that

sup
f ∈Φ

| f (x)| ≤ C(1 + ∥x∥),

for a constant C > 0 depending on Φ. Then for any µ, µ′ ∈ P1(Rd ), the integral probability

metric (IPM) DΦ associated to Φ is defined as:

DΦ(µ, µ′) = sup
f ∈Φ

|
∫

Rd

f d(µ − µ′)|.

In [66], these metrics are called probability metrics with a ζ -structure. In this paper,

following [49], we will stick to the more intuitive terminology IPM. Many probability metrics

are based on the comparison of integrals of certain functions, for instance,

• the class of 1-Lipschitz functions, which leads to 1-Wasserstein metric W1;

• all functions 1[t,∞), t ∈ R, which gives the Kolmogorov metric on P(R);

• all functions 1B with B being a Borel set on Rd , which leads to the total variation metric

(in fact the set of continuous functions is sufficient);

• the unit ball of a reproducing kernel Hilbert space (RKHS), which yields the maximum

mean discrepancy (MMD) defined in [7].

We are interested in the metrics with ªdimension-freeº properties, for instance, that the

empirical measure obtained from n independent samples from a given measure µ approaches

µ with a convergence speed not depending on d explicitly (for a precise statement, see

Theorem 2.7(c)). In contrast to working with a particular class of functions (as in W1 or

MMD), we pose conditions on Φ, presented in Assumption 2.2, to fulfill our goal. Later in

Section 3, we shall discuss several classes of test functions, including RKHS, Barron space,

and flow-induced function spaces, where Assumption 2.2 is satisfied.

Assumption 2.2 (Function Class). The set Φ satisfies the following properties:

(a) If µ is a signed measure on Rd ,
∫

Rd

f dµ = 0, ∀ f ∈ Φ ⇒ µ ≡ 0;

(b) There exist two constants A1 := sup f ∈Φ Lip( f ) < +∞ and A2 := sup f ∈Φ | f (0)| <

+∞;

(c) There exists a constant A3 > 0, such that for any X = {x1, . . . , xn} ⊂ Rd , the empirical

Rademacher complexity satisfies

Radn(Φ,X ) := 1

n
E sup

f ∈Φ
|

n
∑

i=1

ξi f (x i )| ≤ A3

n







√

n
∑

i=1

(∥x i∥2 + 1),

where ξ1, . . . , ξn are i.i.d. random variables drawn from the Rademacher distribution,

i.e., P(ξi = 1) = P(ξi = −1) = 1
2
.
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Remark 2.3. Given any Φ satisfying Assumption 2.2, we can define another function class:

Φ
′ = { f − f (0) : f ∈ Φ}.

Then it is obvious that DΦ(µ, µ′) = DΦ′ (µ, µ′) for any µ, µ′ ∈ P1(Rd ) and Φ
′ satisfies that

(a’) If µ is a signed measure on Rd ,

µ(Rd ) = 0,

∫

Rd

f dµ = 0, ∀ f ∈ Φ
′ ⇒ µ ≡ 0;

(b’) sup f ∈Φ′ Lip( f ) = A1 < +∞ and sup f ∈Φ′ | f (0)| = 0;

(c’) For any X = {x1, . . . , xn} ⊂ Rnd , the empirical Rademacher complexity satisfies

Radn(Φ ′,X ) := 1

n
E sup

f ∈Φ′
|

n
∑

i=1

ξi f (x i )| ≤ A′
3

n







√

n
∑

i=1

(∥x i∥2 + 1),

where ξ1, . . . , ξn are i.i.d. random variables drawn from the Rademacher distribution,

and A′
3 satisfies A′

3 = A2 + A3 with A2, A3 defined from the original class Φ.

We can replace Assumption 2.2 by (a’), (b’), and (c’), and all properties of the IPM in this

work still hold. We choose to use Assumption 2.2 which allows f (0) ̸= 0, and introduce

A2 = sup f ∈Φ | f (0)|, mainly because this is the case for most examples we discussed in

Section 3.

Remark 2.4. Assumption 2.2(c) is crucial for overcoming the CoD in our case. It is stronger

than the usual estimation of the Rademacher complexity that depends on n−1/2[max1≤i≤n ∥x i∥+
1] rather than n−1/2

√

1
n

∑n
i=1(∥x i∥2 + 1). Rademacher complexity measures the richness of

a function class with respect to a specific probability distribution. It is a powerful tool to

bound the generalization error when learning the function in the class through empirical risk

minimization. It is also closely related to other concepts for measuring the richness of a function

class, such as the covering number and fat-shattering dimension, which will be discussed

below. In addition, by comparing Theorem 2.7(b) and [24, Corollaries 3.2 and 3.4], we know

that in high dimensions, the richness of any class of functions satisfying Assumption 2.2 is

relatively small compared to the class of all A1-Lipschitz functions. We refer to [4,56] for

further information about the Rademacher complexity.

We recall below the definitions of the covering number and fat-shattering dimension and

show how to estimate the Rademacher complexity by them. These estimations provide more

criteria for checking if a function class satisfies Assumption 2.2(c).

Definition 2.5 (Covering Number). Given a function class Φ on Rd , X = {x1, . . . , xn} ⊂ Rd

and ϵ > 0, a subset Φ̂ ⊂ Φ is a ϵ-covering of Φ if for any f ∈ Φ, there exists f̂ ∈ Φ̂ such

that

∥ f − f̂ ∥L2(X ) :=







√

1

n

n
∑

i=1

[ f (x i ) − f̂ (x i )]2 ≤ ϵ.

The covering number of Φ is the cardinality of the smallest ϵ-covering of Φ:

C(Φ, ϵ, L2(X )) = min{|Φ̂| : Φ̂ is a ϵ-covering of Φ}.
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Definition 2.6 (Fat-Shattering Dimension). Given a function class Φ on Rd , I ⊂ Rd and ϵ > 0.

We say I is ϵ-shattered by Φ if there exists h : I → R such that for any J ⊂ I, there exists

f ∈ Φ such that

f (x) ≤ h(x), ∀x ∈ J, f (x) > h(x) + ϵ, ∀x ∈ I\J.
The fat-shattering dimension of Φ is the largest cardinality of ϵ-shattering:

vc(Φ, ϵ) = max{|I| : I is ϵ-shattered by Φ}.
If Φ is a {0, 1}-value function class, the fat-shattering dimension coincides with the

classic Vapnik±Chernoveniks (VC) dimension; see [45] for a detailed introduction of the VC

dimension. We refer to [59] for a detailed introduction of the covering number, VC dimension,

and fat-shattering dimension.

The following famous inequality by Dudley [52] gives an upper bound of the Rademacher

complexity by the covering number:

Radn(Φ,X ) ≤ inf
ϵ>0

{4ϵ + 12√
n

∫ c

ϵ

√

log C(Φ, t, L2(X )) dt},

where c = sup f ∈Φ

√

∑n
i=1 f 2(xi )/n. Let p > 0. We will use the O(·) notation to ignore the

constant term which depends only on p. Now assume that the function class Φ satisfies

log C(Φ, t, L2(X )) ≤ O(
cp

t p
),

then one has that when p > 2,

Radn(Φ,X ) ≤ O(inf
ϵ>0

{ϵ + c
p
2 n− 1

2 ϵ1− p
2 − cn− 1

2 }) ≤ O(cn
− 1

p );

when p = 2,

Radn(Φ,X ) ≤ O(inf
ϵ>0

{ϵ + cn− 1
2 [log c − log ϵ]}) ≤ O(cn− 1

2 + cn− 1
2 [log c − log cn− 1

2 ])

= O(cn− 1
2 log n);

and when 0 < p < 2,

Radn(Φ,X ) ≤ O(inf
ϵ>0

{ϵ + cn− 1
2 − c

p
2 n− 1

2 ϵ1− p
2 }) = O(cn− 1

2 ).

In summary,

Radn(Φ,X ) ≤

⎧

⎪

⎨

⎪

⎩

O(cn
− 1

p ), when p > 2

O(cn− 1
2 log n), when p = 2

O(cn− 1
2 ), when 0 < p < 2.

(2)

Noticing that if Φ satisfies Assumption 2.2(b), we have that

c = sup
f ∈Φ







√

n
∑

i=1

f 2(xi )

n
≤

√
2 max{A1, A2}√

n







√

n
∑

i=1

[∥x i∥2 + 1].

Therefore, when p < 2, the function class Φ satisfies Assumption 2.2(c). When p ≥ 2,

the convergence rate of the Rademacher complexity in (2) is slower than the rate n− 1
2 in

Assumption 2.2(c), but most results in this work still hold if we change the convergence rate

to n
− 1

p or n− 1
2 log n in these results.

247



J. Han, R. Hu and J. Long Stochastic Processes and their Applications 164 (2023) 242±287

The fat-shattering dimension can be used to bound the covering number and hence bound

the Rademacher complexity. Assume that there exists ξ : R+ → R+ and α > 1 such that

vc(Φ, ϵ) ≤ ξ (ϵ), ξ (αϵ) ≤ ξ (ϵ)

8
,

then for any X = {x1, . . . , xn} ⊂ Rd , there exists C > 0 depending only on α such that

log C(Φ, ϵ, L2(X )) ≤ Cξ (Cϵ).

For further details, see [53, Theorem 1.3] and [59, Corollary 7.48].

In our case, if ξ (ϵ) = ϵ−p, one can obtain that log C(Φ, ϵ, L2(X )) = O(ϵ−p) and then use

inequality (2) to bound the Rademacher complexity.

The subsection below highlights properties of the metric DΦ for random variables when the

function class Φ satisfies Assumption 2.2. For comparison purpose, we recall the p-Wasserstein

metric Wp defined as follows

Wp(µ, µ′) =
(

inf
γ∈Γ (µ,µ′)

∫

Rd×Rd

∥x − y∥p dγ (x, y)
)1/p

, (3)

where µ, µ′ ∈ P p(Rd ) and Γ (µ, µ′) denotes the collection of all probability distributions on

Rd × Rd with marginals µ and µ′ on the first and second arguments, respectively. Note that

Definition 2.1 with Φ = {all continuous 1-Lipschitz functions from Rd to R} admits the dual

representation of (3) with p = 1 (cf. [5, Theorem 1.3]). We also introduce the relative entropy

or Kullback±Leibler divergence

H(µ|µ′) := E
µ

(

log(
dµ

dµ′ )

)

,

and the total variation distance

∥µ − µ′∥ = sup
A⊂Rd :Borel measurable set

|µ(A) − µ′(A)|.

2.1. Convergence analysis for random variables

Theorem 2.7. Under Assumption 2.2, we have:

(a) DΦ is a metric on P1(Rd ). In addition, if µ, µ′ ∈ P2(Rd ),

DΦ(µ, µ′) ≤ A1W1(µ, µ′) ≤ A1W2(µ, µ′).

(b) Let K be a compact set in Rd , {µi }∞i=1, µ ∈ P(Rd ) such that µi (K ) = µ(K ) = 1 for

i ≥ 1. Then the following statements are equivalent:

1. µi converges to µ in the weak sense;

2. limi→∞ DΦ(µi , µ) = 0.

In other words, DΦ metrizes the weak convergence of measures on compact sets.

(c) Given µ ∈ P2(Rd ), let X1, . . . , Xn be i.i.d. random variables drawn from the distribution

µ and

µ̄n = 1

n

n
∑

i=1

δX i
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be the empirical measure of X1, . . . , Xn . Then,

EDΦ(µ, µ̄n) ≤ 2A3√
n

√

∫

Rd

[∥x∥2 + 1] dµ(x),

E[D2
Φ

(µ, µ̄n)] ≤ A2
1

n

∫

Rd

∥x∥2 dµ(x) + 4A2
3

n

∫

Rd

[∥x∥2 + 1] dµ(x).

(d) If µ satisfies the T1 inequality (cf. [29]),

W
2
1 (µ, µ̃) ≤ 2κ2

H(µ̃|µ) ∀µ̃ ≪ µ,

(an equivalent condition of the T1 inequality is that, there exists a constant δ > 0 such

that
∫

Rd

∫

Rd exp(δ∥x − y∥2) dµ(x) dµ(y) < +∞; see [18, Theorem 2.3]), then,

P

(

DΦ(µ, µ̄n) − 2A3√
n

√

∫

Rd

[∥x∥2 + 1] dµ(x) ≥ a

)

≤ exp

(

− na2

2A2
1κ

2

)

.

Proof. For claim (a), by definition DΦ is symmetric and satisfies the triangle inequality. We

only need to show that for any µ, µ′ ∈ P1(Rd ), DΦ(µ, µ′) = 0 leads to µ = µ′, which is

ensured directly by Assumption 2.2(a). In addition, from Assumption 2.2(b), we deduce that

DΦ(µ1, µ2) ≤ A1W1(µ1, µ2) by using the definition of W1. The relation between W1 and W2

is a classical result following from Jensen’s inequality.

For claim (b), we first prove 1 ⇒ 2. By Theorem 8.3.2 in [6], we know that

lim
i→∞

W1(µi , µ) = 0.

Then noticing that DΦ(µi , µ) ≤ A1W1(µi , µ), we obtain the result. For the claim 2 ⇒ 1, we

first notice that {µi }∞i=1 is tight. Then by Theorem 8.6.2 in [6], every subsequence of {µi }∞i=1

has a weakly convergent subsequence, denoted by {µik }∞k=1. Let µ′ be the limit of {µik }∞k=1.

Then for any f ∈ Φ,

lim
k→∞

∫

Rd

f dµik =
∫

Rd

f dµ′.

Meanwhile, since limk→∞ DΦ(µik , µ) = 0, we have

lim
k→∞

∫

Rd

f dµik =
∫

Rd

f dµ.

Hence, for any f ∈ Φ,
∫

Rd f dµ =
∫

Rd f dµ′, which means that µ ≡ µ′. In other words,

every subsequence of {µi }∞i=1 has a weakly convergent subsequence to µ. Since the weakly

convergence can be metrized [6, Theorem 8.3.2], we know that {µi }∞i=1 weakly converge to µ.

For claim (c), we first notice that

E[DΦ(µ, µ̄n)] = 1

n
E

[

sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

[ f (X i ) − E f (X i )]

⏐

⏐

⏐

]

≤ 2

n
E

[

sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (X i )

⏐

⏐

⏐

]

,

where in the last step we use the Rademacher complexity to bound the largest gap between

the expectation of a function and its empirical version (see, e.g., [56, Lemma 26.2]). Using
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Assumption 2.2(c), one deduces

EDΦ(µ, µ̄n) ≤ 2A3

n
E







√

n
∑

i=1

(∥X i∥2 + 1) ≤ 2A3

n







√E

[

n
∑

i=1

(∥X i∥2 + 1)

]

= 2A3√
n

√

∫

Rd

[∥x∥2 + 1] dµ(x). (4)

Now let Y 1, . . . , Y n be i.i.d. random variables drawn from the distribution µ and be independent

of X1, . . . , Xn . By the Efron±Stein±Steele inequality (cf. [9, Theorem 5]) that reads

Var(Z ) ≤ 1

2

n
∑

i=1

E[Z − Z ′
i ]

2,

for some measurable function g of n variables, Z = g(X1, . . . , Xn) and Z ′
i = g(X1, . . . , Y i ,

. . . , Xn), and the uniform Lipschitz property of f ∈ Φ, one has

Var(DΦ(µ, µ̄n))

= Var

(

1

n
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

[ f (X i ) − E f (X i )]

⏐

⏐

⏐

)

≤ 1

2

n
∑

i=1

E

⎡

⎣

⎛

⎝

1

n
sup
f ∈Φ

⏐

⏐

⏐

n
∑

j=1

[ f (X j ) − E f (X j )]

⏐

⏐

⏐
− 1

n
sup
f ∈Φ

⏐

⏐

⏐

n
∑

j=1, j ̸=i

[ f (X j )

−E f (X j )] + f (Y i ) − E f (X i )

⏐

⏐

⏐

⎞

⎠

2
⎤

⎥

⎦

≤ A2
1

2n2

n
∑

i=1

E∥X i − Y i∥2 = A2
1

n

∫

Rd

∥x∥2 dµ(x).

Therefore, we have

E[D2
Φ

(µ, µ̄n)] = Var(DΦ(µ, µ̄n)) + [EDΦ(µ, µ̄n)]2

≤ A2
1

n

∫

Rd

∥x∥2 dµ(x) + 4A2
3

n

∫

Rd

[∥x∥2 + 1] dµ(x).

For claim (d), we need some established concentration inequalities. Let µ⊗n ∈ P(Rd×n) be

the nth times product of µ and the distance between x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Rd×n be

∥x − y∥ =
n
∑

i=1

∥x i − yi∥.

By Theorem 5.2 in [17], for any µ̃ ≪ µ⊗n , we have

W
2
1 (µ⊗n, µ̃) ≤ 2nκ2

H(µ̃|µ⊗n).

Define

G(x) = sup
f ∈Φ

|1

n

n
∑

i=1

f (x i ) −
∫

Rd

f dµ|.
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Combining the fact that

|G(x) − G( y)| ≤ A1

n
∥x − y∥,

for any x and y ∈ Rd×n with Theorem 5.1 in [17], we have

P
(

DΦ(µ, µ̄n) − EDΦ(µ, µ̄n) ≥ a
)

= µ⊗n
(

G(x) −
∫

Rd×n

G(x) dµ⊗n(x) ≥ a
)

≤ exp

(

− na2

2A2
1κ

2

)

.

Finally, we conclude our proof by the observation

EDΦ(µ, µ̄n) ≤ 2A3√
n

√

∫

Rd

[∥x∥2 + 1] dµ(x),

from inequality (4). □

The above theorem focuses on the convergence of µ̄n to µ in the sense of IPM satisfying

Assumption 2.2. It is well-known that the convergence of empirical measures under the

Wasserstein metric faces the CoD [21] for any distribution that is absolutely continuous with

respect to the Lebesgue measure on Rd . However, as shown in [63,64], if the target distribution

admits a specific representation, the bias potential model or the density model, we can use

the empirical measure and the representation form to generate a new distribution that is close

to the target distribution in the sense of the Wasserstein metric, total variation distance, or

relative entropy. The following theorem, generalizing results in [63,64], shows that given a

bias potential model or a density model as the target distribution and a distribution close to the

target measured by our proposed IPM, we can generate a distribution close to the target one

in terms of the Wasserstein metric, total variation distance or relative entropy.

Theorem 2.8. Suppose P ∈ P(Rd ) is a known base distribution and Φ is a function class

satisfying Assumption 2.2.

(a) Assume the target distribution µ ∈ P1(Rd ) satisfies the bias potential model Ð that is,

there exists V ∗ ∈ Φ such that
∫

Rd

e−V ∗(x) dP(x) < +∞,
dµ

dP
= e−V ∗

∫

Rd e−V ∗(x) dP(x)
.

Let ν ∈ P1(Rd ) be an accessible probability measure, define

Loss1(V ) =
∫

Rd

V (x) dν(x) + log

(∫

Rd

e−V (x) dP(x)

)

,

for V ∈ Φ. Let V ′ ∈ Φ and µ′ ∈ P(Rd ) satisfy
∫

Rd

e−V ′(x) dP(x) < +∞,
dµ′

dP
= e−V ′

∫

Rd e−V ‘′ dP(x)
.

Then infV ∈Φ Loss1(V ) > −∞ and

H(µ|µ′) ≤ 2DΦ(µ, ν) + Loss1(V ′) − inf
V ∈Φ

Loss1(V ).

Assume additionally that P has a compact support

K = max{∥x − y∥, x, y ∈ supp(P)} < +∞,
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then

W
2
1 (µ, µ′) ≤ K 2

2
[2DΦ(µ, ν) + Loss1(V ′) − inf

V ∈Φ
Loss1(V )].

(b) Assume the target distribution µ ∈ P1(Rd ) satisfies the density model Ð that is, there

exists q∗ ∈ Φ such that q∗ = dµ

dP
. Let ν ∈ P1(Rd ) be an accessible probability measure,

define

Loss2(q) = sup
f ∈F

|
∫

Rd

f dν −
∫

Rd

f q dP|,

for q ∈ Φ. Let q ′ ∈ Φ and µ′ ∈ P(Rd ) satisfy q ′ = dµ′
dP

. Then

inf
q∈Φ

Loss2(q) ≤ DΦ(µ, ν),

and

∥µ − µ′∥2
T V ≤ 2[DΦ(µ, ν) + Loss2(q ′)].

Assume additionally that P has a compact support

K = max{∥x − y∥, x, y ∈ supp(P)} < +∞,

then

W
2
1 (µ, µ′) ≤ 2K 2[DΦ(µ, ν) + Loss2(q ′)].

Proof. For the claim (a), first noticing that Loss1(V ) is lower bounded for V ∈ Φ using

|V (x)| ≤ A1∥x∥ + A2, one know that

inf
V ∈Φ

Loss1(V ) ≥ −
∫

Rd

[A1∥x∥ + A2] dν(x) + log(

∫

Rd

e−[A1∥x∥+A2] dP(x))

≥ −
∫

Rd

[A1∥x∥ + A2] dν(x) + log(

∫

∥x∥≤M

e−[A1∥x∥+A2] dP(x))

≥ −
∫

Rd

[A1∥x∥ + A2] dν(x) + log(e−M A1−A2 P(∥x∥ ≤ M))

= −
∫

Rd

[A1∥x∥ + A2] dν(x) − (M A1 + A2) + log(P(∥x∥ ≤ M)) > −∞,

where M is large enough such that P(∥x∥ ≤ M) > 0. It is then easy to compute

H(µ|µ′) =
∫

Rd

(V ′ − V ∗)(x) dµ(x) − log

(∫

Rd

e−V ∗(x) dP(x)

)

+ log

(∫

Rd

e−V ′(x) dP(x)

)

≤ 2DΦ(µ, ν) + Loss(V ′) − Loss(V ∗) ≤ 2DΦ(µ, ν) + Loss(V ′) − inf
V ∈Φ

Loss(V ).

To estimate the Wasserstein metric between µ and µ′, first notice the Pinsker’s inequality

[16,51]:

∥µ − µ′∥2
T V ≤ 1

2
H(µ|µ′).
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Recalling the definition of the 1-Wasserstein metric (3) and supp(µ), supp(µ′) ∈ supp(P), we

have

W1(µ, µ′) = inf
γ∈Γ (µ,µ′)

∫

Rd×Rd

∥x − y∥ dγ (x, y)

≤ K inf
γ∈Γ (µ,µ′)

∫

Rd×Rd

1x ̸=y dγ (x, y) = K∥µ − µ′∥T V , (5)

which concludes the proof. For the claim (b), first noticing that

DΦ(µ, ν) = Loss2(q∗) ≥ inf
q∈Φ

Loss2(q).

By the triangular inequality,

DΦ(µ, µ′) ≤ DΦ(µ, ν) + DΦ(ν, µ′) = DΦ(µ, ν) + Loss2(q ′).

Noticing that

DΦ(µ, µ′) = sup
f ∈Φ

|
∫

Rd

f (q∗ − q ′) dP| ≥ 1

2

∫

Rd

|q∗ − q ′|2 dP

≥ 1

2
[

∫

Rd

|q∗ − q| dP]2 = 1

2
∥µ − µ′∥2

T V ,

as 1
2
(q∗ − q ′) ∈ Φ. The rest of claim (b) follows (5). □

Theorem 2.8 shows that if one knows that the target distribution satisfies a bias potential

model or density model and can access to a distribution which is close to the target distribution

with respect to a IPM (usually the empirical distribution by Theorem 2.7), one can then solve

the optimization problem

inf
V ∈Φ

Loss1(V ) or inf
q∈Φ

Loss2(q),

and the resulting distribution is close to the target distribution with respect to the Wasserstein

metric, total variation distance or relative entropy. Besides the bias potential model and density

model we study here, another important form of distribution representation is the generative

adversarial network (GAN) [1,28], which assumes µ = φ ◦ P (this notation stands for the mea-

sure P push-forwarded by φ) with a known base distribution P ∈ P(Rd ) and φ lies in certain

function classes. In practice, GAN has shown astonishing power in learning distribution [10,19].

However, how to establish similar theoretical results with respect to GAN is far from clear.

2.2. Convergence analysis for stochastic processes

Theorems in the previous subsection focus on the measure µ on Rd . When dealing with em-

pirical measures of a stochastic process such as discussing the convergence of the n-particle dy-

namics to the McKean±Vlasov system (see Section 4 for details), i.e., µ ∈ P(C([0, T ];Rd )), we

need to extend Theorems 2.7 to 2.11. The results are similar, except for an additional term φ(n)

coming from the regularity of the process. To this end, we introduce the following assumption.

Assumption 2.9 (Modulus of Continuity). Given a probability measure µ on C([0, T ];Rd ),

there exist constants Q, α, β > 0, such that for any h > 0,
∫

C([0,T ];Rd )

∆(x, h) dµ(x) ≤ Qhα logβ

(

2T

h

)

, (6)
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where ∆( f, h) denotes the modulus of continuity of f ∈ C([0, T ];Rd ):

∆( f, h) = sup
t,s∈[0,T ],|t−s|≤h

∥ f (t) − f (s)∥.

Remark 2.10. The condition (6) is satisfied by many kinds of processes. For instance, see

[26, Theorem 1] for results for Brownian motion and Itô diffusion processes with α = β = 1
2
,

under quite generic conditions on the drift and diffusion coefficients. Note that the constant Q

derived therein may depend on the dimension d , while the result in our Theorem 2.13 does

not.

Theorem 2.11. Under Assumptions 2.2 and 2.9,

(a) Let µ be a probability distribution on C([0, T ];Rd ) such that
∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) < +∞.

Denote by X1, . . . , Xn i.i.d. random processes drawn from µ, and

µ̄n
t = 1

n

n
∑

i=1

δX i
t

as the empirical measure of X1
t , . . . , Xn

t . Define µt = L(X1
t ), then

E

[

sup
0≤t≤T

DΦ(µt , µ̄
n
t )

]

≤ φ(n), (7)

where

φ(n) = 2

[

A3 + 8 max{A1, A2}√
n

+ 8 max{A1, A2}
√

log(22αn)

2αn

]

×
(∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) + 1

)
1
2

+ 2
A1 QT α

√
n

(

log(24αn)

2α

)β

= O(n− 1
2 (log n)max{β, 1

2
}).

In addition,

E

[

sup
0≤t≤T

D2
Φ

(µt , µ̄
n
t )

]

≤ A2
1

n

∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) + φ2(n).

(b) If µ satisfies the T1 inequality, that is,

W
2
1 (µ, µ̃) ≤ 2κ2

H(µ̃|µ) ∀µ̃ ≪ µ,

where H is the relative entropy defined in Theorem 2.7(d), then

P

(

sup
0≤t≤T

DΦ(µt , µ̄
n
t ) − φ(n) ≥ a

)

≤ exp

(

− na2

2A2
1κ

2

)

.
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Remark 2.12. The logarithmic term in φ(n) can be removed for many kinds of function

classes Φ, in particular for the function classes discussed in Section 3. We defer the proof of

this claim to Appendix B.

Proof. The proof can be reduced to establishing (7). The estimate of E
[

sup0≤t≤T D2
Φ

(µt , µ̄
n
t )
]

and (b) can be indeed derived from (7), and by following the proof arguments of Theorem 2.7.

The class Φ in Assumption 2.2 is invariant up to an additive constant and so without loss of

generality, E
[

sup0≤t≤T DΦ(µt , µ̄
n
t )
]

can be reduced to

1

n
E sup

t∈[0,T ]

sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
t )

⏐

⏐

⏐,

where ξ1, . . . , ξn are i.i.d. random variables drawn from the Rademacher distribution and are

independent of the processes X1, . . . , Xn .

To this end, given any y1, . . . , yn ∈ Rd , we define F(ξ ) for ξ = (ξ1, . . . , ξn) ∈ {−1, 1}⊗n

by

F(ξ ) := 1

n
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (yi )

⏐

⏐

⏐.

By Assumption 2.2(c), we immediately have

EF(ξ ) ≤ A3

n







√

n
∑

i=1

(∥yi∥2 + 1). (8)

By definition, for any ξ and ϵ > 0, there exists a function f ξ ∈ Φ such that

F(ξ ) ≤ 1

n

⏐

⏐

⏐

n
∑

i=1

ξi f ξ (yi )

⏐

⏐

⏐+ ϵ.

Note that, for any 1 ≤ j ≤ n, one has

D j F(ξ ) := F(ξ ) − min
z∈{0,1}

F(ξ1, . . . , ξ j−1, z, ξ j+1, . . . , ξn)

≤ ϵ + 1

n

⏐

⏐

⏐

n
∑

i=1

ξi f ξ (yi )

⏐

⏐

⏐− min
z∈{0,1}

F(ξ1, . . . , ξ j−1, z, ξ j+1, . . . , ξn)

≤ ϵ + 1

n

⏐

⏐

⏐

n
∑

i=1

ξi f ξ (yi )

⏐

⏐

⏐− min
z∈{0,1}

1

n

⏐

⏐

⏐

∑

i ̸= j

ξi f ξ (yi ) + z f ξ (y j )

⏐

⏐

⏐

≤ ϵ + 2

n
| f ξ (y j )|.

Taking the square and summing the above inequality over j and next taking the supremum

over all ξ gives,

sup
ξ

n
∑

j=1

|D j F(ξ )|2 ≤ sup
ξ

n
∑

j=1

(

ϵ + 2

n
| f ξ (y j )|

)2

≤ sup
f ∈Φ

n
∑

j=1

(

ϵ + 2

n
| f (y j )|

)2

,

holding true for arbitrary ϵ, which implies

sup
ξ

n
∑

j=1

|D j F(ξ )|2 ≤ 4

n2
sup
f ∈Φ

n
∑

j=1

| f (y j )|2 ≤ 8

n2

n
∑

j=1

(A2
1∥y j∥2 + A2

2).
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Therefore, by the bounded difference inequality ([59, Theorem 3.18]), we obtain

P(F(ξ ) − EF(ξ ) ≥ a) ≤ exp

(

− n2a2

64
∑n

j=1(A2
1∥y j∥2 + A2

2)

)

. (9)

Given n′ ∈ N+, x1, . . . , xn ∈ C([0, T ];Rd ) and t1, . . . , tn′ ∈ [0, T ], we define the constant

M :=







√ max
1≤p≤n′

n
∑

i=1

(∥x i
tp

∥2 + 1),

based on the deterministic values {x i
tp

}n′
p=1, for i = 1, . . . , n. By (8), we have

E

[

1

n
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (x i
tp

)

⏐

⏐

⏐

]

≤ A3

n
M, ∀ p = 1, . . . , n′. (10)

Using the Boole’s inequality and (9)±(10), we have the following estimation of the tail

probability, for any a > 0,

P

(

1

n
max

1≤p≤n′
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (x i
tp

)

⏐

⏐

⏐−
A3

n
M ≥ 8

√

log n′ max{A1, A2}
n

M + a

)

≤ n′ max
1≤p≤n′

P

(

1

n
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (x i
tp

)

⏐

⏐

⏐−
A3

n
M ≥ 8

√

log n′ max{A1, A2}
n

M + a

)

≤ n′ max
1≤p≤n′

P

(

1

n
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (x i
tp

)

⏐

⏐

⏐− E

[

1

n
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (x i
tp

)

⏐

⏐

⏐

]

≥ 8
√

log n′ max{A1, A2}
n

M + a

)

≤ n′ exp

⎛

⎝−
n2[

8
√

log n′ max{A1,A2}
n

M + a]2

64 max{A2
1, A2

2}M2

⎞

⎠

≤ n′ exp(− log(n′)) exp

(

− n2a2

64 max{A2
1, A2

2}M2

)

≤ exp

(

− n2a2

64 max{A2
1, A2

2}M2

)

.

Therefore,

1

n
E max

1≤p≤n′
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (x i
tp

)

⏐

⏐

⏐

≤ A3

n
M + 8

√

log n′ max{A1, A2}
n

M +
∫ +∞

0

exp

(

− n2a2

64 max{A2
1, A2

2}M2

)

da

≤ A3 + 8(
√

log n′ + 1) max{A1, A2}
n

M

= A3 + 8(
√

log n′ + 1) max{A1, A2}
n







√ max
1≤p≤n′

n
∑

i=1

(∥x i
tp

∥2 + 1).
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The above estimate is for deterministic functions in C([0, T ];Rd ) evaluated at time points

t1, . . . , tn′ . Applying it to i.i.d. continuous stochastic processes {X i
· }n

i=1 with the law µ and

independent of ξ1, . . . , ξn , we obtain

1

n
E max

1≤p≤n′
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
tp

)

⏐

⏐

⏐

= 1

n
E

{

E

[

max
1≤p≤n′

sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
tp

)

⏐

⏐

⏐

⏐

⏐ X1
· , . . . , Xn

·

]}

≤ A3 + 8(
√

log n′ + 1) max{A1, A2}
n

E







√ max
1≤p≤n′

n
∑

i=1

(∥X i
tp

∥2 + 1)

≤ A3 + 8(
√

log n′ + 1) max{A1, A2}√
n

(∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) + 1

)
1
2

.

Using the above estimate and letting t0, t1, . . . , tn define a partition of [0, T ], that is, tp = (p−1)T

n′

for p = 1, . . . , n′, by Assumption 2.9, and with the notation Π (t) = ⌊ n′t
T

⌋ T
n′ , one can deduce

⏐

⏐

⏐

⏐

⏐

1

n
E sup

t∈[0,T ]

sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
t )

⏐

⏐

⏐−
1

n
E sup

1≤p≤n′
sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
tp

)

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

≤ 1

n
E sup

t∈[0,T ]

sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi

(

f (X i
t ) − f (X i

Π (t))
)

⏐

⏐

⏐

≤ A1E sup
t∈[0,T ]

∥X1
t − X1

Π (t)∥ ≤ A1 Q(
T

n′ )
α logβ(2n′).

Choosing n′ = ⌊n
1

2α ⌋ + 1 gives

1

n
E sup

t∈[0,T ]

sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
t )

⏐

⏐

⏐

≤
[

A3 + 8 max{A1, A2}√
n

+ 8 max{A1, A2}
√

log(22αn)

2αn

]

×
(∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) + 1

)
1
2

+ A1 QT α

√
n

(

log(24αn)

2α

)β

.

Therefore we have proved (7). □

The next theorem shows that the law of the stochastic differential equation (SDE) satisfies

the condition of Theorem 2.11, i.e., Assumption 2.9.

Theorem 2.13. Given a constant T > 0, a complete filtered probability space (Ω ,F,F =
{Ft }0≤t≤T ,P) supporting an m-dimensional Brownian motion W as well as an F0-measurable

Rd -valued random variable η. We consider the following SDE

dX t = B(t, X t ) dt + Σ (t, X t ) dWt , X0 = η,
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where B : [0, T ] × Rd → Rd and Σ : [0, T ] × Rd → Rd×m satisfy: ∀t ∈ [0, T ], x, x ′ ∈ Rd ,

∥B(t, x) − B(t, x ′)∥2 + ∥Σ (t, x) − Σ (t, x ′)∥2
F ≤ K 2∥x − x ′∥2,

∥B(t, 0)∥ + ∥Σ (t, 0)∥F ≤ K ,

with K being a positive constant and ∥ · ∥F denoting the Frobenius norm on Rd×m . It is well-

known that the above SDE admits a unique strong solution (cf. [65, Theorem 3.3.1]). We denote

by µ0 := L(η), µ := L(X ) the laws of η and X, respectively.

(a) Assume that E∥η∥2 ≤ K 2, then there exists a positive constant C depending only on K

and T , such that

E sup
0≤t≤T

∥X t∥2 ≤ C,

and
∫

C([0,T ];Rd )

[∆(x, h)]2 dµ(x) ≤ Ch log

(

2T

h

)

.

(b) Assume that

W
2
1 (µ0, µ̃) ≤ 2K 2

H(µ̃|µ0), ∀µ̃ ≪ µ0,

and

sup
t∈[0,T ],x∈Rd

∥Σ (t, x)∥F ≤ K .

Then, there exists a positive constant C depending on K and T , such that

W
2
1 (µ, µ̃) ≤ CH(µ̃|µ), ∀µ̃ ≪ µ,

where H is the relative entropy defined in Theorem 2.7(d).

Proof. We defer the proof to Appendix A as it is less relevant to the main object of this paper.

As mentioned in Remark 2.10, the second part of claim (a) has been established in [26] for

more general Itô processes. However, our estimates show that the constant C does not depend

on the dimensions d and m. □

3. Examples of classes of functions satisfying Assumption 2.2

3.1. The Reproducing Kernel Hilbert spaces (RKHSs)

RKHS has developed into an essential tool in many areas, especially statistics and machine

learning [33]. We first recall its definition: a Hilbert space of functions f : Rd → R, is said to

be an RKHS if all evaluation functionals are bounded and linear. A more intuitive definition

is through the so-called reproducing kernel.

A symmetric function k : Rd × Rd → R is called a positive kernel function on Rd , if

n
∑

i=1

n
∑

j=1

ai a j k(x i , x j ) ≥ 0 (11)
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holds for any n ∈ N, x1, . . . , xn ∈ Rd , and a1, . . . , an ∈ R. We then define the inner product

space

{ f (x) =
m
∑

i=1

αi k(x, xi ) : m ∈ N
+, {αi }m

i=1 ⊂ R
m, {xi }m

i=1 ⊂ R
dm}

with the inner product

⟨ f, g⟩Hk
=

m f
∑

i=1

mg
∑

j=1

α
f

i α
f

j k(x
f

i , x
g

j ), ∀ f (x) =
m f
∑

i=1

α
f

i k(x, x
f

i ), g(x) =
mg
∑

i=1

α
g

i k(x, x
g

i ).

The reproducing kernel Hilbert space Hk is the completion of the inner product space with

respect to ∥ · ∥Hk
=
√

⟨·, ·⟩Hk
. Moreover, Hk satisfies the reproducing property:

f (x) = ⟨ f, k(x, ·)⟩Hk
, ∀x ∈ R

d , f ∈ Hk .

In particular, the function k, called the reproducing kernel of Hk , satisfies

k(x, y) = ⟨k(x, ·), k(y, ·)⟩Hk
.

We refer the interested readers to [2] for more properties of RKHSs. Theorem 3.1 guarantees

that RKHSs associated with Gaussian kernels, Laplacian kernels and neural tangent kernels

satisfy Assumption 2.2. We remark that the choice in Theorem 3.1 reproduces the maximum

mean discrepancy in [7].

Theorem 3.1. Assume the reproducing kernel k(·, ·) satisfies:

(a) There exist constants K1, K2 > 0, such that ∀x, y ∈ Rd , k(x, x) + k(y, y) − 2k(x, y) ≤
K 2

1 ∥x − y∥2 and K2 =
√

k(0, 0);

(b) If µ is a signed measure on Rd ,
∫

Rd

k(x, y) dµ(y) = 0, ∀x ∈ R
d ⇒ µ ≡ 0.

Then for any µ ∈ P1(Rd ), Φ = { f ∈ Hk, ∥ f ∥Hk
≤ 1} satisfies Assumption 2.2 with A1 = K1,

A2 = K2 and A3 =
√

2 max{K1, K2}.

Proof. By definition, k(x, ·) ∈ Hk for all x ∈ Rd . Hence, Assumption 2.2(a) is implied by

item (b) above. For Assumption 2.2(b), ∀ f ∈ Hk such that ∥ f ∥Hk
≤ 1, we compute

| f (x) − f (y)| = |⟨ f, k(x, ·) − k(y, ·)⟩Hk
| ≤

√

⟨k(x, ·) − k(y, ·), k(x, ·) − k(y, ·)⟩Hk

=
√

k(x, x) + k(y, y) − 2k(x, y) ≤ K1∥x − y∥,
for any x, y ∈ Rd , which implies that the Lipschitz constant is K1.

For Assumption 2.2(c), we first derive an estimate for k(x, x). To this end, let n = 2, x1 = x ,

x2 = 0 in inequality (11), we have

a2
1k(x, x) + a2

2k(0, 0) + 2a1a2k(x, 0) ≥ 0,

for any a1, a2, implying |k(x, 0)| ≤
√

k(x, x)k(0, 0). Therefore,

(
√

k(x, x) −
√

k(0, 0))2 = k(x, x) + k(0, 0) − 2
√

k(x, x)k(0, 0)

≤ k(x, x) + k(0, 0) − 2k(x, 0) ≤ K 2
1 ∥x∥2,
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and k(x, x) ≤ (
√

k(0, 0) + K1∥x∥)2 = (K2 + K1∥x∥)2 ≤ 2(K 2
2 + K 2

1 ∥x∥2). Now we estimate

the Rademacher complexity of Φ = { f ∈ Hk, ∥ f ∥Hk
≤ 1}:

Radn(Φ,X ) = 1

n
E sup

∥ f ∥Hk
≤1

⏐

⏐

⏐

n
∑

i=1

ξi f (x i )

⏐

⏐

⏐ = 1

n
E sup

∥ f ∥Hk
≤1

⏐

⏐

⏐

n
∑

i=1

ξi ⟨ f, k(x i , ·)⟩Hk

⏐

⏐

⏐

= 1

n
E sup

∥ f ∥Hk
≤1

|⟨ f,

n
∑

i=1

ξi k(x i , ·)⟩Hk
| ≤ 1

n
E







√

n
∑

i=1

n
∑

j=1

ξiξ j k(x i , x j )

≤ 1

n







√E

n
∑

i=1

n
∑

j=1

ξiξ j k(x i , x j ) = 1

n







√

n
∑

i=1

k(x i , x i )

≤ 1

n







√2

n
∑

i=1

(K 2
1 ∥x i∥2 + K 2

2 )

≤ A3

n







√(

n
∑

i=1

∥x i∥2 + 1). □

3.2. The Barron space

Barron space was firstly introduced in [22,23], which is designed to analyze the approxi-

mation and generalization properties of two-layer neural networks. It can be considered as the

continuum analog of two-layer neural networks. See [23, Section 2.1] for a detailed discussion

on Barron space.

Definition 3.2. We say f : Rd → R is a Barron function, if f admits the following

representation:

f (x) =
∫

Sd

σ (ω · x + b) dρ(ω, b), (12)

where σ (x) = max{x, 0} is the ReLU function, and ρ is a finite signed measure on Sd =
{(ω, b) ∈ Rd+1, ∥ω∥2 + |b|2 = 1} with ∥ · ∥ being the Euclidean norm. We will use the Barron

space B to denote the collection of all Barron functions and define a norm ∥ ·∥B on the Barron

space as follows:

∥ f ∥B = inf
ρ

∥ρ∥T V ,

where the infimum is taken over all ρ for which (12) holds for all x ∈ Rd , and ∥ · ∥T V is the

total variation of ρ.

The following theorem reveals some useful properties of Barron space and shows that the

unit ball of Barron space, denoted by B1 := { f ∈ B, ∥ f ∥B ≤ 1}, can serve as a good choice

of the test function class Φ. Although Theorem 3.3 is stated when the activation function σ is

the ReLU function, all claims except (d) hold if σ is any 1-Lipschitz, nonlinear function and

hence B1 corresponding to such σ is also a good choice of the test function class Φ. The proof

of claim (e) for general activation functions can be found in [50] while other claims (a), (b),

(c) and (f) follow the same proof presented below.
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Theorem 3.3.

(a) The Barron space is a Banach space.

(b) For any f ∈ B, f is Lipschitz continuous with the Euclidean norm in Rd and Lip( f ) ≤
∥ f ∥B.

(c) Denote by P(Sd ) all probability measures on Sd . For any π ∈ P(Sd ), let kπ (x, x ′) :
Rd × Rd → R be

kπ (x, x ′) =
∫

Sd

σ (ω · x + b)σ (ω · x ′ + b) dπ (ω, b),

and Hπ be the RKHS associated with kπ . Then,

B = ∪
π∈P(Sd )

Hπ ,

and

∥ f ∥B = inf
π∈P(Sd )

∥ f ∥Hπ ,

with ∥ · ∥Hπ being the norm in Hπ .

(d) Let f be a measurable function in L2(Rd ) and

γ ( f ) =
∫

Rd

(1 + ∥ω∥2)| f̂ (ω)| dω < +∞,

where f̂ (ω) =
∫

Rd f (x)e−iω·x dx is the Fourier transform of f. Then f ∈ B and

∥ f ∥B ≤ 4γ ( f ).

(e) For any compact set K ⊂ Rd , the restriction of B on K is dense in C(K ).

(f) Let X = {x1, . . . , xn}, where x i ∈ Rd and Φ = B1. Then the empirical Rademacher

complexity satisfies

Radn(Φ,X ) ≤ 2

n







√

n
∑

i=1

(∥x i∥2 + 1),

and Φ = B1 satisfies Assumption 2.2 with A1 = A2 = 1 and A3 = 2.

Remark 3.4. In [3, Section 9], examples of functions with bounded γ ( f ) are provided

(e.g., Gaussian, positive definite functions, linear functions, radial functions and functions in

fractional Sobolev spaces H s(Rd ) with s > d
2
+ 1). By claim (d), they all belong to the Barron

space.

Proof.

(a) Let M be the set of all signed measures on Sd . With ∥ρ∥M := ∥ρ∥T V , M is a Banach

space. Let N = {ρ ∈ M :
∫

Sd σ (ω · x + b) dρ(ω, b) = 0, ∀x ∈ Rd}, then N is a

closed subspace of M. It is evident that B ∼= M/N , thus we obtain the desired result

[55, Theorem 1.41].

(b) For any (ω, b) ∈ Sd , Lip(σ (ω·x +b)) ≤ 1. Then our result follows from the subadditivity

of Lip.

(c) See [23, Theorem 3].
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(d) Our proof is similar to that in [39, Theorem 6]. By the property of Fourier transform,

one has

f (x) = x · ∇ f (0) + f (0) +
∫

Rd

(eiω·x − iω · x − 1) f̂ (ω) dω. (13)

For |z| ≤ c, the following identity holds

−
∫ c

0

[σ (z − u)eiu + σ (−z − u)e−iu] du = ei z − i z − 1.

The above two equations can be found in [39, Theorem 6]. Now let c = ∥ω∥, z = ω · x ,

α(ω) = ω/∥ω∥ and u = ∥ω∥t , we have:

− ∥ω∥2

∫ 1

0

√

1 + t2

[

σ

(

α(ω) · x − t√
1 + t2

)

ei∥ω∥t + σ

(−α(ω) · x − t√
1 + t2

)

e−i∥ω∥t

]

dt

= eiω·x − iω · x − 1.

In other words,

eiω·x − iω · x − 1 =
∫

Sd

σ (ω′ · x + b) dρω(ω′, b),

where

ρω = −∥ω∥2

∫ 1

0

√

1 + t2[ei∥ω∥tδ
(

α(ω)√
1+t2

,− t√
1+t2

)
+ e−i∥ω∥tδ

(− α(ω)√
1+t2

,− t√
1+t2

)
] dt.

Hence, eiω·x − iω · x − 1 is in the Barron space B with ∥ρω∥T V ≤ 2
√

2∥ω∥2. Recall

that Eq. (13) gives

f (x) = ∥∇ f (0)∥
[

σ

(∇ f (0) · x

∥∇ f (0)∥

)

+ σ

(

−∇ f (0) · x

∥∇ f (0)∥

)]

+ f (0)σ (0 · x + 1)

+
∫

Rd

∫

Sd

σ (ω′ · x + b) dρω(ω′, b) f̂ (ω) dω,

and one concludes

∥ f ∥B ≤ 2∥∇ f (0)∥ + | f (0)| + 2
√

2

∫

Rd

∥ω∥2| f̂ (ω)| dω

≤
∫

Rd

[1 + 2∥ω∥ + 2
√

2∥ω∥2]| f̂ (ω)| dω ≤ 4γ ( f ).

(e) For any f ∈ C∞
0 (Rd ), we know that f is a Schwartz function. Therefore, f̂ is also a

Schwartz function and we have γ ( f ) < +∞. Hence, f ∈ B; see e.g. [58, Section 6].

Because the restriction of C∞
0 (Rd ) on K is dense in C(K ), we easily conclude.

(f) Our proof here is similar to the one in [23, Theorem 6].

Radn(Φ,X ) = 1

n
E sup

f ∈Φ

n
∑

i=1

ξi f (x i )

= 1

n
E sup

∥ρ∥T V ≤1

⏐

⏐

⏐

∫

Sd

n
∑

i=1

ξiσ (ω · x i + b) dρ(ω, b)

⏐

⏐

⏐

= 1

n
E sup

(ω,b)∈Sd

⏐

⏐

⏐

n
∑

i=1

ξiσ (ω · x i + b)

⏐

⏐

⏐
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≤ 1

n

[

Emax
{

sup
(ω,b)∈Sd

n
∑

i=1

ξiσ (ω · x i + b), 0
}

+Emax
{

sup
(ω,b)∈Sd

−
n
∑

i=1

ξiσ (ω · x i + b), 0
}

]

= 2

n
E sup

(ω,b)∈Sd

n
∑

i=1

ξiσ (ω · x i + b),

where the last equality holds due to sup(ω,b)∈Sd

∑n
i=1 ξiσ (ω·x i +b) ≥ 0 and the symmetry

of ξ1, . . . , ξn . Then Lemma 26.9 in [56] gives

Radn(Φ,X ) ≤ 2

n
E sup

(ω,b)∈Sd

n
∑

i=1

ξiσ (ω · x i + b) ≤ 2

n
E







n
∑

i=1

ξi ((x
i )

T
, 1)

T






≤ 2

n







√E







n
∑

i=1

ξi ((x i )
T
, 1)

T






2

≤ 2

n







√

n
∑

i=1

(∥x i∥2 + 1).

Finally, Assumption 2.2(a) is fulfilled by claim (e) above, and claims (b) and the above

estimate together imply that Φ satisfies Assumption 2.2(b)±(c) with A1 = A2 = 1 and

A3 = 2. □

Remark 3.5. As the Barron space serves as the continuum analog of two-layer neural

networks, the generalized Barron space or the Banach space associated with multi-layer

networks introduced in [25] serves as the continuum analog of multi-layer neural networks.

By the fact that the unit ball of the Barron space B1 is a Polish space, one can define a signed

Radon measure ρ on the Borel σ -algebra of B1, and then define

fρ(x) =
∫

B1

σ (g(x)) dρ(g),

∥ f ∥B2 = inf{∥ρ∥T V : f = fρ on R
d},

B
2 = { f ∈ C(Rd ), ∥ f ∥B2 < +∞},

where the integral is in the sense of Bochner integrals. B2 can be interpreted as the Banach

space associated with three-layer neural networks. We can then repeat this process and define

BL for any L ≥ 2, which is associated with (L +1)-layer neural networks. Naturally we denote

by B1 the Barron space B defined via (12). It can be proven that the unit ball of the generalized

Barron space is also a suitable test function class. For more technical issues and intuition about

BL , we refer to [25, Section 2.2].

3.3. Flow-induced Function Spaces2

Flow-induced function spaces introduced in [23] can serve as a continuum analog as

the residual neural networks (ResNet, [32]). Our definition here is slightly different from

2 It is a class of function mimicking the limiting behavior of residual neural networks. And the name ªflow-

induced function classº would be more appropriate as the terminology ªspaceº implies linearity, which we currently

are not able to prove. Nevertheless, we keep the title as it is, following the terminology introduced in [23].
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the original definition in [23]. Such an alteration will enable us to bound the Rademacher

complexity by

1

n







√

n
∑

i=1

(∥x i∥2 + 1)

as requested by Assumption 2.2, while the choice in [23] yields a bound
√

1 + max1≤i≤n ∥x i∥∞
n

.

Given an integer D ≥ d + 1, let ρ = {ρτ }0≤τ≤1 be a class of vector signed measures from

SD−1 = {ω ∈ RD, ∥ω∥ = 1} to RD such that the following ordinary differential equation

(ODE)

dZτ

dτ
=
∫

SD−1

σ (ω · Zτ ) dρτ (ω), ∀ 0 ≤ τ ≤ 1, Z0 = z0 (14)

with σ being the ReLU function, is well-posed for any initial condition z0, i.e., the solution

exists, is unique, and is continuous with respect to the initial condition z0. Let us denote by

Ψ the collection of all admissible ρ satisfying this well-posedness condition. If the ODE (14)

is discretized by the Euler scheme in time and ρτ is discrete, then the system gives the same

structure as ResNet, a widely used deep neural network architecture.

For any x ∈ Rd , let Zρ(τ, x) be the solution of (14) with the initial condition z0 =
(xT, 1, 0(D−d−1))

T, where 0(D−d−1) denotes a vector of zeros of length D − d − 1. And for

any ρ = {ρτ }0≤τ≤1 ∈ Ψ , we define

Λ(ρ, τ ) =







√

D
∑

i=1

∥ρi
τ∥2

T V ,

where ρi
τ is the i th component of ρτ . To simplify the discussion, we in addition require that

Λ(ρ, τ ) is continuous with respect to τ for any ρ ∈ Ψ . Then, we can define the flow-induced

function spaces as the space D given by the class of functions f admitting the representation

f = fρ,α where

fρ,α(x) := αT Zρ(1, x), ∀ρ ∈ Ψ , α ∈ R
D,

∥ f ∥D := inf

{

∥α∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

, f = fρ,α on R
d

}

,

D := { f ∈ C(Rd ), ∥ f ∥D < +∞}.

The following theorem gives some useful properties of the flow-induced function spaces and

indicates that the unit balls of the flow-induced function spaces are also appropriate test function

classes Φ.

Theorem 3.6. Fix an integer D ≥ d + 1.

(a) For any f ∈ D, Lip( f ) ≤ ∥ f ∥D and | f (0)| ≤ ∥ f ∥D.

(b) If D ≥ d+2, then for any f ∈ B, f ∈ D and ∥ f ∥D ≤ e∥ f ∥B. Hence, by Theorem 3.3(e),

the restriction of D on any compact set K ⊂ Rd is dense in C(K ).
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(c) Let X = {x1, . . . , xn}, where x i ∈ Rd and Φ = { f ∈ D, ∥ f ∥D ≤ 1}. Then, the empirical

Rademacher complexity satisfies

Radn(Φ,X ) ≤ e2

n







√

n
∑

i=1

(∥x i∥2 + 1),

and Φ satisfies Assumption 2.2 with A1 = A2 = 1 and A3 = e2.

Proof. For claim (a), given ρ ∈ Ψ , let Zτ , Z ′
τ be the solutions to the ODE (14) with the initial

conditions z0, z′
0 ∈ RD , respectively. Then,

d

dτ
∥Zτ − Z ′

τ∥2 = 2

∫

SD−1

[σ (ω · Zτ ) − σ (ω · Z ′
τ )] d[Zτ − Z ′

τ ]Tρτ (ω)

≤ 2

∫

SD−1

|ω · (Zτ − Z ′
τ )| d|[Zτ − Z ′

τ ]Tρτ (ω)|

≤ 2Λ(ρ, τ )∥Zτ − Z ′
τ∥2,

where | · | is obtained by taking element-wise absolute values of a vector. Integrating both sides

from τ = 0 to 1 gives

∥Z1 − Z ′
1∥ ≤ ∥z0 − z′

0∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

.

Taking z0 = (xT, 1, 0(D−d−1)) and z′
0 = ((x ′)T, 1, 0(D−d−1)), we deduce

|αT Zρ(1, x) − αT Zρ(1, x ′)| ≤ ∥α∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

∥x − x ′∥,

and by taking z0 = (0d , 1, 0(D−d−1))
T and z′

0 = 0T
D , we have

|αT Zρ(1, 0)| ≤ ∥α∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

.

Now by the definition of f in D and ∥ f ∥D, we easily conclude.

For claim (b), without loss of generality, assume D = d + 2. For any f ∈ B and ϵ > 0, let

f (x) =
∫

Sd

σ (ω · x + b) dρ̃(ω, b)

with 0 < ∥ρ̃∥T V ≤ ∥ f ∥B + ϵ. Define ρ̃:

ρ̂i
τ = 0, 1 ≤ i ≤ d + 1, and ρ̂d+2

τ = ρ̃

∥ρ̃∥T V

, for 0 ≤ τ ≤ 1.

Then it is easy to check that Z ρ̂(τ, x) = (xT, 1,
τ f (x)

∥ρ̃∥T V
)T. and hence f (x) = ∥ρ̃∥T V 1T

d+2 Z ρ̂(1, x)

where 1d+2 = (0d+1, 1)T. Combining with the fact that

Λ(ρ̂, τ ) ≡ 1, 0 ≤ τ ≤ 1,

we know that

∥ f ∥D ≤ e∥ρ̃∥T V ≤ e[∥ f ∥B + ϵ],

for any ϵ > 0, which concludes our proof.
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For claim (c), we first prove that for any f ∈ Φ = { f ∈ D, ∥ f ∥D ≤ 1} and ϵ > 0, there

exist ρ ∈ Ψ and α ∈ RD such that f (x) = αT Zρ(1, x) with

∥α∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

≤ 1 + ϵ, ∥α∥ sup
0≤τ≤1

Λ(ρ, τ ) exp

(∫ τ

0

Λ(ρ, τ ′) dτ ′
)

≤ 1 + ϵ.

(15)

First, we choose α ∈ RD and ρ ∈ Ψ satisfying that

f (x) = fρ,α(x) = αT Zρ(1, x), and ∥α∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

≤ 1 + ϵ

2
.

Given a strictly increasing and continuously differentiable function F(τ ) : [0, 1] → [0, 1]

satisfying that F(0) = 0, F(1) = 1, we define

ρτ := F ′(τ )ρF(τ ).

Then, from Eq. (14) one has

dZρ(F(τ ), x)

dτ
=
∫

SD−1

σ (ω · Zρ(F(τ ), x)) dρτ (ω).

In addition, Zρ(τ, x) = Zρ(F(τ ), x) and fρ,α = fρ,α = f on Rd . Note that the wellposedness

of the above ODE can be deduced from the fact that F is an isomorphism on [0, 1]. Noticing

that
∫ 1

0

Λ(ρ, τ ) dτ =
∫ 1

0

F ′(τ )Λ(ρ, F(τ )) dτ =
∫ 1

0

Λ(ρ, τ ) dτ,

we have

∥α∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

= ∥α∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

≤ 1 + 1

2
ϵ,

∥α∥ sup
0≤τ≤1

Λ(ρ, τ ) exp

(∫ τ

0

Λ(ρ, τ ′) dτ ′
)

= ∥α∥ sup
0≤τ≤1

F ′(τ )Λ(ρ, F(τ ))

× exp

(∫ F(τ )

0

Λ(ρ, τ ′) dτ ′
)

.

Next, assume without loss of generality that exp(
∫ τ

0
Λ(ρ, τ ′) dτ ′) strictly increases in τ . Then,

there exists a continuous and strictly increasing function F∗ : [0, 1] → [0, 1] with F∗(0) = 0,

F∗(1) = 1 and

exp

(

∫ F∗(τ )

0

Λ(ρ, τ ′) dτ ′

)

= 1 − τ + τ exp

(∫ 1

0

Λ(ρ, τ ′) dτ ′
)

, ∀τ ∈ [0, 1],

which gives (by implicit function theorem), when Λ(ρ, F∗(τ )) ̸= 0,

(F∗)′(τ )Λ(ρ, F∗(τ )) exp

(

∫ F∗(τ )

0

Λ(ρ, τ ′) dτ ′

)

= exp

(∫ 1

0

Λ(ρ, τ ′) dτ ′
)

− 1.

Then Eq. (15) is obtained by approximating F∗ through a continuously differentiable isomor-

phism on [0, 1].
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Return to the proof of claim (c), for any ϵ > 0, we define

Pϵ =
{

(α, ρ) ∈ R
D × Ψ :

∥α∥ exp

(∫ 1

0

Λ(ρ, τ ) dτ

)

≤ 1 + ϵ, ∥α∥ sup
0≤τ≤1

Λ(ρ, τ )

× exp

(∫ 1

0

Λ(ρ, τ ′) dτ ′
)

≤ 1 + ϵ

}

,

and

Rϵ
τ = 1

n
E sup

(α,ρ)∈Pϵ

n
∑

i=1

ξiα
T Zρ(τ, x i ).

With (15), we have Radn(Φ,X ) ≤ Rϵ
1 for any ϵ. So it suffices to deduce an upper bound for

Rϵ
1 .

A straightforward calculation gives

|Rϵ
τ − Rϵ

τ ′ | ≤ sup
(α,ρ)∈Pϵ

max
1≤i≤n

|αT[Zρ(τ, x i ) − Zρ(τ ′, x i )]

≤ sup
(α,ρ)∈Pϵ

max
1≤i≤n

∫ τ ′

τ

∫

SD−1

|σ (ω · Zρ(u, x i ))| d|αTρu |(ω) du

≤ |τ − τ ′| sup
(α,ρ)∈Pϵ

max
1≤i≤n

sup
0≤τ≤1

∥Zρ(τ, x i )∥∥α∥ sup
0≤τ≤1

Λ(ρ, τ )

≤ |τ − τ ′| sup
(α,ρ)∈Pϵ

∥α∥ sup
0≤τ≤1

Λ(ρ, τ ) exp

(∫ 1

0

Λ(ρ, τ ′) dτ ′
)

max
1≤i≤n

(1 + ∥xi∥)

≤ (1 + ϵ) max
1≤i≤n

(1 + ∥xi∥)|τ − τ ′|,

where we use

sup
0≤τ≤1

∥Zρ(τ, x i )∥ ≤ exp

(∫ 1

0

Λ(ρ, τ ′) dτ ′
)

(1 + ∥xi∥),

which can be proved using the same argument in the proof of claim (a). Hence Rϵ
τ is continuous.

Next we fix τ ∈ (0, 1) and compute

lim
h→0

Rϵ
τ+h − Rϵ

τ

h
≤ 1

n
E lim

h→0

1

h

[

sup
(α,ρ)∈Pϵ

n
∑

i=1

ξiα
T Zρ(τ + h, x i ) − sup

(α,ρ)∈Pϵ

n
∑

i=1

ξiα
T Zρ(τ, x i )

]

≤ 1

n
E lim

h→0

1

h
sup

(α,ρ)∈Pϵ

[

n
∑

i=1

ξiα
T Zρ(τ + h, x i ) −

n
∑

i=1

ξiα
T Zρ(τ, x i )

]

≤ 1

n
E sup

(α,ρ)∈Pϵ

n
∑

i=1

ξiα
T d

dτ
Zρ(τ, x i )

= 1

n
E sup

(α,ρ)∈Pϵ

n
∑

i=1

ξi

∫

SD−1

σ (ω · Zρ(τ, x i )) dαTρτ (ω)

≤ 1

n
sup

(α,ρ)∈Pϵ

∥α∥Λ(ρ, τ ) exp

(∫ τ

0

Λ(ρ, τ ′) dτ ′
)
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× E

[

sup
∥ω∥≤1,ρ∈Ψ

⏐

⏐

⏐

n
∑

i=1

ξiσ
( ω · Zρ(τ, x i )

exp(
∫ τ

0
Λ(ρ, τ ′) dτ ′)

)⏐

⏐

⏐

]

≤ 2(1 + ϵ)

n
E sup

∥ω∥≤1,ρ∈Ψ

n
∑

i=1

ξi

( ωT Zρ(τ, x i )

exp(
∫ τ

0
Λ(ρ, τ ′) dτ ′)

)

.

For any ρ ∈ Ψ , using a similar argument to the proof of Eq. (15), we can find another ρ ∈ Ψ

such that Zρ(τ, x) = Zρ(τ, x) and

exp

(∫ τ

0

Λ(ρ, τ ′) dτ ′
)

≤ (1 + ϵ) exp

(∫ τ

0

Λ(ρ, τ ′) dτ ′
)

,

sup
0≤u≤τ

Λ(ρ, u) exp

(∫ u

0

Λ(ρ, τ ′) dτ ′
)

≤ (1 + ϵ) exp

(∫ τ

0

Λ(ρ, τ ′) dτ ′
)

.

We can then find another ρ̂ ∈ Ψ such that ρ̂τ ′ = ρτ ′ for all 0 ≤ τ ′ ≤ τ and

exp

(∫ 1

0

Λ(ρ̂, τ ′) dτ ′
)

≤ (1 + ϵ)2 exp

(∫ τ

0

Λ(ρ, τ ′) dτ ′
)

,

sup
0≤u≤1

Λ(ρ̂, u) exp

(∫ u

0

Λ(ρ̂, τ ′) dτ ′
)

≤ (1 + ϵ)2 exp

(∫ τ

0

Λ(ρ, τ ′) dτ ′
)

.

Hence, Z ρ̂(τ, x) = Zρ(τ, x), and for any ω with ∥ω∥ ≤ 1,
(

ω

(1 + ϵ)2 exp(
∫ τ

0
Λ(ρ, τ ′) dτ ′)

, ρ̂

)

∈ Pϵ .

Therefore,

lim
h→0

Rϵ
τ+h − Rϵ

τ

h
≤ 2(1 + ϵ)3

n
E

[

sup
(α,ρ)∈Pϵ

n
∑

i=1

ξiα
T Zρ(τ, x i )

]

= 2(1 + ϵ)3 Rϵ
τ ,

which means

lim
h→0

exp{−2(1 + ϵ)3(τ + h)}Rϵ
τ+h − exp{−2(1 + ϵ)3τ }Rϵ

τ

h
≤ 0.

For any ϵ′ > 0, let Pτ = exp{−2(1 + ϵ)3τ }Rϵ
τ − ϵ′τ , then Pτ is continuous in τ and satisfies

lim
h→0

Pτ+h − Pτ

h
≤ −ϵ′ < 0,

which means that Pτ is decreasing. Therefore,

exp{−2(1 + ϵ)3}Rϵ
1 − ϵ′ ≤ Rϵ

0,

or Rϵ
1 ≤ e2(1+ϵ)3

Rϵ
0 by letting ϵ′ → 0. We can conclude our proof by computing

Rϵ
0 = 1

n
E sup

∥α∥≤1+ϵ

n
∑

i=1

ξi ((x
i )T, 1, 0D−d−1)α = 1 + ϵ

n
E







n
∑

i=1

ξi ((x
i )T, 1, 0D−d−1)







≤ 1 + ϵ

n







√

n
∑

i=1

(∥x i∥2 + 1),

and letting ϵ → 0 in Radn(Φ,X ) ≤ Rϵ
1 ≤ e2(1+ϵ)3

Rϵ
0 .
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Finally, claims (a) and (c) together imply that Φ satisfies Assumption 2.2(b)±(c) with

A1 = A2 = 1 and A3 = e2 and claim (b) implies Φ satisfies Assumption 2.2(a) when

D ≥ d + 2. □

4. Application to the McKean±Vlasov SDE

This section presents an application of our proposed IPM to McKean±Vlasov Stochastic

Differential Equation (SDE). Throughout this section, we fix a complete filtered probability

space (Ω ,F,F = {Ft }0≤t≤T ,P), supporting n + 1 independent m-dimensional Brownian

motions {W i }n
i=1 and W , as well as i.i.d. F0-measurable Rd -valued random variables {ηi }n

i=1

with law η and E∥η∥2 < +∞. We are interested in the rate of convergence as n → ∞ of an

n-interacting particle system satisfying:

dXn,i
t = B(t, Xn,i

t , µ̄n
t ) dt + Σ (t, Xn,i

t , µ̄n
t ) dW i

t , X
n,i
0 = ηi , i ∈ I := {1, . . . , n},

µ̄n
t := 1

n

n
∑

i=1

δ
X

n,i
t

. (16)

More precisely, let X t solve the McKean±Vlasov stochastic differential equation:

dX t = B(t, X t , µt ) dt + Σ (t, X t , µt ) dWt , X0 = η,

µt := L(X t ), (17)

where L(X t ) denotes the law of X t , we are interested in quantifying E
[

sup0≤t≤T D2
Φ

(µt , µ̄
n
t )
]

.

To this end, we consider the following assumption.

Assumption 4.1. The functions B : [0, T ] × Rd × P2(Rd ) → Rd and Σ : [0, T ] × Rd ×
P2(Rd ) → Rd×m are Lipschitz in (x, µ) in the sense:

∥B(t, x, µ) − B(t, x ′, µ′)∥2 +∥Σ (t, x, µ) −Σ (t, x, µ′)∥2
F ≤ K 2(∥x − x ′∥2 + D2

Φ
(µ, µ′)),

(18)

for all t ∈ [0, T ], x, x ′ ∈ Rd and µ, µ′ ∈ P2(Rd ). Here DΦ denotes a integral probability

metric with the test function class Φ satisfying Assumption 2.2, ∥ · ∥F denotes the Frobenius

norm on Rd×m , and K is a positive constant.

Also, assume that

sup
t∈[0,T ]

∥B(t, 0, δ0)∥ + ∥Σ (t, 0, δ0)∥F ≤ K .

Remark 4.2. Inequality (18) is satisfied, for instance, when B and Σ are of the form

(B,Σ ) = (B,Σ )

(

t, x,

∫

Rd

f 1(x, y) dµ(y),

∫

Rd

f 2(x, y) dµ(y), . . . ,

∫

Rd

f k(x, y) dµ(y)

)

,

and are Lipschitz in their second and third arguments with f i (x, ·) in the class of test functions

Φ satisfying Assumption 2.2, for any 1 ≤ i ≤ k and x ∈ Rd .

Theorem 4.3. Under Assumptions 2.2 and 4.1, and the assumption that E|η|2 ≤ K 2, we

have:
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(a) There exist unique adapted L2-solutions for the n-body SDE (16) and the McKean±

Vlasov SDE (17).

(b) There exists a constant C > 0, depending only on K and T , such that

E sup
0≤t≤T

∥Xn,1
t ∥2 ≤ C, E sup

0≤t≤T

∥X t∥2 ≤ C.

(c) There exists a constant C > 0, depending only on K , T , A1, A2 and A3, such that

E sup
0≤t≤T

D2
Φ

(µt , µ̄
n
t ) ≤ C

log n

n
.

Remark 4.4. As will seen in the proof, Theorem 4.3(c) relies on the estimates in Theorem 2.11,

about which we have mentioned in Remark 2.12 that the logarithm term can be removed from

φ(n) for all the examples of Φ mentioned in Section 3. Consequently, claim (c) in Theorem 4.3

can be further improved to be bounded by C/n when using test functions in Section 3.

Proof. Throughout the proof, we will use C as a generic positive constant depending only on

K , T , A1, A2 and A3, which may vary from line to line.

By the relation between DΦ and W2 stated in Theorem 2.7(a), Claim (a) follows from

Lemma 3.2 and Theorem 3.3 in [40].

For claim (b), define x = [x1, . . . , xn]T, Ln(x) = 1
n

∑n
i=1 δx i and

B(t, x) = [B(t, x1, Ln(x)), . . . , B(t, xn, Ln(x))]T,

Σ (x) =

⎡

⎢

⎢

⎢

⎣

Σ (t, x1, Ln(x))

Σ (t, x2, Ln(x))

. . .

Σ (t, xn, Ln(x))

⎤

⎥

⎥

⎥

⎦

,

where Σ has zero entries except for the n blocks of size d × m on the main diagonal. Then

we can rewrite the n-body SDE (16) as

dXn
t = B(t, Xn

t ) dt + Σ (t, Xn
t ) dW t , (19)

where Xn
t = [X

n,1
t , . . . , X

n,n
t ]T and W t = [W 1

t , . . . , W n
t ]T. Following Lemma 3.2 in [40], we

obtain that B and Σ are 2L-Lipschitz. Standard SDE estimates (cf. [65, Theorem 3.2.2]) give

sup
0≤t≤T

E

n
∑

i=1

∥Xn,i
t ∥2 ≤ Cn.

Notice that X
n,1
t , . . . , X

n,n
t are symmetric, one has

sup
0≤t≤T

E∥Xn,1
t ∥2 ≤ C.

Then, using the Burkholder±Davis±Gundy inequality (cf. [65, Theorem 2.4.1]), we have

E sup
0≤t≤T

∥Xn,1
t ∥2 ≤ C

[

E∥η∥2 + E

∫ T

0

|B(t, Xn,1
t , µ̄n

t )|2 dt

+E sup
0≤u≤T

∥
∫ T

0

Σ
i (t, Xn,1

t , µ̄n
t ) dWt∥2

]

≤ C

[

E∥η∥2 + E

∫ T

0

|B(t, Xn,1
t , µ̄n

t )|2 dt + E

∫ T

0

∥Σ (t, Xn,1
t , µ̄n

t )∥2
F dt

]
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≤ C[1 + sup
0≤t≤T

E∥Xn,1
t ∥2 + sup

0≤t≤T

D2
Φ

(µ̄n
t , δ0)] ≤ C[1 + sup

0≤t≤T

E∥Xn,1
t ∥2]

≤ C.

By [40, Theorem 3.3], we know that, as n → ∞,

Xn,1 ⇒ X, in distribution in C([0, T ];Rd ).

We then obtain the second inequality in claim (b) through the Fatou’s Lemma.

For claim (c), let

dY n,i
t = B(t, Y n,i

t , µt ) dt + Σ (t, Y n,i
t , µt ) dW i

t , Y
n,i
0 = ηi .

Then, {Y n,i
t }n

i=1 are n i.i.d. copies of X t . Following [65, Theorem 3.2.4], we obtain, ∀t ∈ [0, T ],

E

[

sup
0≤s≤t

∥Xn,i
s − Y n,i

s ∥2
]

≤ CE

∫ t

0

[∥B(s, Xn,i
s , µ̄n

s ) − B(s, Y n,i
s , µs)∥2 + ∥Σ (s, Xn,i

s , µ̄n
s ) − Σ (s, Y n,i

s , µs)∥2
F ] ds.

Using the Lipschitz condition (18) in Assumption 4.1, we deduce

E

[

sup
0≤s≤t

∥Xn,i
s − Y n,i

s ∥2
]

≤ CE

∫ t

0

[

sup
0≤u≤s

∥Xn,i
u − Y n,i

u ∥2 + D2
Φ

(µ̄n
s , µs)

]

ds.

Then Gronwall’s inequality gives

E

[

sup
0≤s≤t

∥Xn,i
s − Y i

s ∥2
]

≤ CE

[

∫ t

0

D2
Φ

(µ̄n
s , µs) ds

]

.

Let µ̂n
t be the empirical measure of {Y n,i

t }n
i=1, i.e.,

µ̂n
t := 1

n

n
∑

i=1

δ
Y

n,i
t

.

With sup0≤t≤T DΦ(µt , δ0) ≤ A1 sup0≤t≤T E∥X t∥ ≤ C , we obtain

sup
0≤t≤T

[∥B(t, 0, µt )∥ + ∥Σ (t, 0, µt )∥F ] ≤ C.

Viewing µt as a given function of t , the McKean±Vlasov SDE (17) satisfies the conditions in

Theorem 2.13. Thus, combining results in Theorems 2.11 and 2.13, we have

E sup
0≤t≤T

D2
Φ

(µt , µ̂
n
t ) ≤ C

log n

n
.

By the definition of DΦ , one has

D2
Φ

(µ̄n
t , µ̂

n
t ) ≤

[ A1

n

n
∑

i=1

∥Xn,i
t − Y n,i

t ∥
]2

≤ A2
1

n

n
∑

i=1

∥Xn,i
t − Y n,i

t ∥2.

Therefore

E

[

sup
0≤s≤t

D2
Φ

(µs, µ̄
n
s )
]

≤ 2E
[

sup
0≤s≤t

D2
Φ

(µ̄n
s , µ̂

n
s ) + sup

0≤s≤t

D2
Φ

(µs, µ̂
n
s )
]

≤ CE

[

∫ t

0

D2
Φ

(µs, µ̄
n
s ) ds

]

+ C
log n

n
.

With Gronwall’s inequality, we can obtain the desired result. □
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We can furthermore establish a concentration inequality for sup0≤t≤T DΦ(µt , µ̄
n
t ).

Theorem 4.5. Under Assumptions 2.2 and 4.1, and assume that

W
2
1 (µ0, µ̃) ≤ 2K 2

H(µ̃|µ0) ∀µ̃ ≪ µ0, and E∥η∥2 ≤ K 2,

and

sup
0≤t≤T,x∈Rd

∥Σ (t, x)∥F ≤ K .

Then, there exists a constant C > 0, depending only on T , K and A1, such that

P( sup
0≤t≤T

DΦ(µt , µ̄
n
t ) − E sup

0≤t≤T

DΦ(µt , µ̄
n
t ) ≥ a) ≤ exp(−na2

C
).

Combining with Theorem 4.3, we obtain that for any δ ∈ (0, 1), with probability at least 1 − δ

sup
0≤t≤T

DΦ(µt , µ̄
n
t ) ≤ C(

√

log n +
√

− log δ)n− 1
2 ,

where C may depend on K , T , A1, A2 and A3.

Proof. Throughout this proof, we will still use C as a positive constant depending only on

some constants clearly mentioned in the above theorem, which may vary from line to line.

Recall that the n-particle system can be rewritten as in (19), and the results from

[17, Theorem 5.5]: there exists a constant C > 0, depending only on K and T , such that

P(F(Xn) − EF(Xn) ≥ a) ≤ exp(− a2

nM2C
), (20)

for any function F : C([0, T ];Rd×n) → R being M-Lipschitz in the sense that

|F(x) − F( y)| ≤ M

n
∑

i=1

sup
0≤t≤T

∥x i
t − yi

t ∥,

for any x := (x1, . . . , xn), y := (y1, . . . , yn) with x i , yi ∈ C([0, T ];Rd ).

Now, for any x = (x1, . . . , xn) with x i ∈ C([0, T ];Rd ), we define

G(x) = sup
0≤t≤T

sup
f ∈Φ

⏐

⏐

⏐

1

n

n
∑

i=1

f (x i
t ) − E f (X t )

⏐

⏐

⏐,

then G(Xn) = sup0≤t≤T DΦ(µt , µ̄
n
t ), and

|G(x) − G( y)| ≤ 1

n
sup

0≤t≤T

sup
f ∈Φ

⏐

⏐

⏐

n
∑

i=1

f (x i
t ) −

n
∑

i=1

f (yi
t )

⏐

⏐

⏐

≤ A1

n

n
∑

i=1

sup
0≤t≤T

∥x i
t − yi

t ∥.

Then, our conclusion follows from the last equation and Eq. (20). □

5. Application to mean-field games

In this section, we shall show that, for a homogeneous n-player game, the strategy derived

by its mean-field counterpart produces an ε-Nash equilibrium, where ε is free of the dimension

of the state processes.
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Following the setup in [11], we consider a homogeneous n-player stochastic differential

game

dX i
t = b(t, X i

t , ν̄
n
t , αi

t ) dt + σ (t, X i
t , ν̄

n
t , αi ) dW i

t , 0 ≤ t ≤ T, i ∈ I ≡ {1, . . . , n},
(21)

where each player i controls her private state X i
t ∈ Rd through an Rk ⊇ A-valued action αi

t ,

W i
t = (W i

t )0≤t≤T are m-dimensional independent Brownian motions, b and σ are deterministic

measurable functions, (b, σ ): [0, T ] ×Rd ×P(Rd ) × A → (Rd ,Rd×m), and ν̄n
t is the empirical

measure of (X1
t , . . . , Xn

t ) defined by

ν̄n
t (dx) := 1

n

n
∑

i=1

δX i
t
(dx).

Each player aims to minimize the expected cost over the period [0, T ] by taking her action

αi ∈ A:

J i (α) := E

[∫ T

0

f (t, X i
t , ν̄

n
t , αi

t ) dt + g(X i
T , ν̄n

T )

]

, (22)

where A denotes the set of all admissible strategies:

A =
{

A-valued progressively measurable processes (αt )0≤t≤T :

E

[∫ T

0

|αt |2 dt

]

< ∞
}

,

and f and g are deterministic measurable functions, f : [0, T ] × Rd × P(Rd ) × A → R,

g : Rd × P(Rd ) → R. Since the players interact through their empirical measure ν̄n
t , which

depends on all players’ strategy α = (α1, . . . , αn) ∈ An , so does the cost functional for player

i , J i (α). Here An is the product space of n copies of A.

To solve such games, we are interested in the concept of Nash equilibrium. That is a tuple

α
∗ = (α1,∗, . . . , αn,∗) ∈ An such that

∀i ∈ I, and αi ∈ A, J i (α∗) ≤ J i (α1,∗, . . . , αi−1,∗, αi , αi+1,∗, . . . , αn,∗).

For homogeneous games with large n, if the system lacks tractability and needs to rely on

numerical methods for Nash equilibrium, the conventional algorithms soon lose their efficiency,

and one may resort to recently developed machine learning tools [30,31,34]. On the other

hand, one could utilize its limiting mean-field strategy to approximate the Nash equilibrium.

More precisely, one can first obtain the optimal control α from the mean field games using the

following steps:

(i) Fixed a deterministic measure µt ∈ P(Rd ), ∀t ∈ [0, T ];

(ii) Solve the standard stochastic control problem:

inf
α∈A

E

[∫ T

0

f (t, X t , µt , αt ) dt + g(XT , µT )

]

subject to: dX t = b(t, X t , µt , αt ) dt + σ (t, X t , µt , αt ) dWt , X0 = x0;

(iii) Determine the flow of measures µt such that ∀t ∈ [0, T ], L(X
∗,µt
t ) = µt , where X

∗,µt
t

denotes the state process associated to the optimal control given µt in step (ii).
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Then one can construct an ε-Nash equilibrium from it if the optimal control α given by the

fixed-point argument (step (iii)) is in a feedback form. We will make this statement rigorous

in Theorem 5.4.

Throughout this section, the following assumptions are in force.

Assumption 5.1.

(a) The drift b is an affine function of α and x :

b(t, x, µ, α) = b0(t, µ) + b1(t)x + b2(t)α,

where b0 ∈ Rd , b1 ∈ Rd×d , b2 ∈ Rd×k are measurable functions and bounded by K .

Moreover, for any µ, µ′ ∈ P2(Rd ):
⏐

⏐b0(t, µ′) − b0(t, µ)
⏐

⏐ ≤ K DΦ(µ, µ′). The volatility

σ (t, x, µ, α) ∈ Rd×m is a constant matrix.

(b) There exist two constants λ and K , such that for any (t, µ) ∈ [0, T ] × P2(Rd ), the

function f (t, ·, µ, ·) ∈ R is once continuously differentiable with Lipschitz-continuous

derivatives, with the Lipschitz constants being bounded by K . Moreover, it satisfies the

convexity assumption:

f (t, x ′, µ, α′)− f (t, x, µ, α)−
⟨

(x ′ − x, α′ − α), ∂(x,α) f (t, x, µ, α)
⟩

≥ λ
⏐

⏐α′ − α
⏐

⏐

2
.

The functions f, ∂x f , and ∂α f are locally bounded. The functions f (·, 0, δ0, 0), ∂x

f (·, 0, δ0, 0) and ∂α f (·, 0, δ0, 0) are bounded by K , and for all t ∈ [0, T ], x, x ′ ∈ Rd ,

α, α′ ∈ Rk and µ, µ′ ∈ P2(Rd ), it holds:
⏐

⏐( f, g)(t, x ′, µ′, α′) − ( f, g)(t, x, µ, α)
⏐

⏐

≤ K
[

1 +
⏐

⏐(x ′, α′)
⏐

⏐+ |(x, α)| + M2(µ) + M2(µ′)
]

×
[⏐

⏐(x ′, α′) − (x, α)
⏐

⏐+ DΦ(µ′, µ)
]

.

(c) The function g(·, ·) is locally bounded, and for any µ ∈ P2(Rd ), the function g(·, µ) is

once continuously differentiable, convex, and has a K -Lipschitz-continuous first order

derivative.

(d) For all (t, x, µ) ∈ [0, T ] × Rd × P2(Rd ), |∂x f (t, x, µ, 0)| ≤ K .

(e) For all (t, x) ∈ [0, T ] × Rd , ⟨x, ∂x f (t, 0, δx , 0)⟩ ≥ −K (1 + |x |), ⟨x, ∂x g(0, δx )⟩ ≥
−K (1 + |x |).

In the sequel, a constant C will frequently appear in the theorems and proofs. It may depend

on the bounds that appear in the above assumption (λ, K , b0, b1, A1, A2, A3, etc.) and possibly

vary from line to line. But it will be independent of the dimension d of the state process X i
t

and the number of players n in the game.

Remark 5.2. Let H be the Hamiltonian associated to the problem, with uncontrolled volatility,

it reads

H (t, x, µ, p, α) = ⟨b(t, x, µ, α), p⟩ + f (t, x, µ, α). (23)

Items (a)±(b) in Assumption 5.1 ensure the uniqueness of minimizer α̂ of H , the measura-

bility, local boundedness, Lipschitz-continuity of α̂(t, x, µ, y) in (x, y) uniformly in (t, µ) ∈
[0, T ] × P2(Rd ). Moreover, the Lipschitz constant is free of d . A repeatedly used estimate is
⏐

⏐α̂(t, x, µ, y)
⏐

⏐ ≤ λ−1(|∂α f (t, x, µ, 0)| + |b2(t)| |y|). For detailed proof, see [11, Lemma 1].
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The probabilistic approach of (i)±(iii) results in solving the following McKean±Vlasov

forward backward stochastic differential equations (FBSDEs):

dX t = b(t, X t ,L(X t ), α̂(t, X t ,L(X t ), Yt )) dt + σ dWt ,

dYt = −∂x H (t, X t ,L(X t ), Yt , α̂(t, X t ,L(X t ), Yt )) dt + Z t dWt ,
(24)

with the initial condition X0 = x0 ∈ Rd and the terminal condition YT = ∂x g(XT ,L(XT )).

More precisely, the following result holds.

Theorem 5.3. Under Assumption 5.1, the FBSDE system (24) has a solution (X t , Yt , Z t ), and

there exists the FBSDE value function u : [0, T ] × Rd → Rd such that it has linear growth

and Lipschitz in x:

|u(t, x)| ≤ C(1 + |x |),
⏐

⏐u(t, x) − u(t, x ′)
⏐

⏐ ≤ C
⏐

⏐x − x ′⏐
⏐ , (25)

for some constant C ≥ 0, and such that Yt = u(t, X t ) P-a.s., ∀t ∈ [0, T ] and x, x ′ ∈ Rd .

Moreover, for any ℓ ≥ 1, E[sup0≤t≤T |X t |ℓ] < ∞, and the optimal cost J of the limiting

mean-field problem (i)±(iii) is given by

J = E

[

g(XT ,L(XT )) +
∫ T

0

f (t, XT ,L(X t ), α̂(t, X t ,L(X t ), Yt )) dt

]

, (26)

where α̂ is the minimizer of H defined in (23).

Proof. The existence of solution to (24) and related estimates follow from [11, Theorem 2],

because the assumptions therein are satisfied using Theorem 2.7(a) based on the Wasserstein

metric and our proposed IPM. The statement on J is a consequence of the stochastic maximum

principle when the frozen flow of measures is L(X t ), for instance see [11, Theorem 1]. □

Theorem 5.4. Let (X t , Yt , Z t ) be a solution of (24), u be the corresponding FBSDE value

function, and µt = L(X t ) be the marginal probability measure, then

ᾱn,i
t = α̂(t, X i

t , µt , u(t, X i
t )), i ∈ I, (27)

where X i
t follows (21) with strategy ᾱ

n,i
t :

dX i
t = b(t, X i

t , ν̄
n
t , α̂(t, X i

t , µt , u(t, X i
t ))) dt + σ dW i

t , ν̄n
t = 1

n

n
∑

i=1

δX i
t
, (28)

is an εn-Nash equilibrium of the n-player problem (21)±(22) with ϵn = C/
√

n, i.e., for any

progressively measurable strategy β i such that E[
∫ T

0
|β i

t |
2

dt] < ∞, we have

J n,i (ᾱn,i , . . . , ᾱn,i−1, β i , ᾱn,i+1, . . . , ᾱn,n) ≥ J n,i (ᾱn,1, . . . , ᾱn,n) − εn. (29)

Proof. We first claim that the SDE (28) is well defined, by the Lipschitz property and linear

growth of α̂ in (x, y) and u in x (cf. Remark 5.2 and (25)). With Assumption 5.1(a), we also

have

sup
n≥1

max
1≤i≤n

[

E[ sup
0≤t≤T

⏐

⏐X i
t

⏐

⏐

2
] + E

∫ T

0

⏐

⏐ᾱn,i
t

⏐

⏐

2
dt

]

≤ C. (30)

The proof of (29) consists of two steps, and by symmetry we only need to prove it for i = 1.
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Step 1: MFG vs. N -player game using (ᾱn,1, . . . , ᾱn,n). To this end, we introduce n

independent copies of the mean-field states X t in (24):

dX̄ i
t = b(t, X̄ i

t , µt , α̂(t, X̄ i
t , µt , u(t, X̄ i

t ))) dt + σ dW i
t , t ∈ [0, T ], and i ∈ I.

Note that L(X̄ i
t ) = µt , and we have similar estimates for (X̄ i

t , α̂
i
t ) as in (30). Let µ̄n

t be the

empirical measure of X̄ i
t and define,

α̂i
t = α̂(t, X̄ i

t , µt , u(t, X̄ i
t )),

we then compute, by the regularity of b, u and α̂, that for t ∈ [0, T ]:

E

[

sup
0≤s≤t

⏐

⏐X i
s − X̄ i

s

⏐

⏐

2
]

≤ E

[∫ t

0

⏐

⏐b(s, X i
s, ν̄

n
s , ᾱn,i

s ) − b(s, X̄ i
s, µs, α̂

i
s)
⏐

⏐

2
ds

]

≤ CE

[∫ t

0

⏐

⏐X i
s − X̄ i

s

⏐

⏐

2 + D2
Φ

(ν̄n
s , µs) +

⏐

⏐ᾱn,i
s − α̂i

s

⏐

⏐

2
ds

]

≤ CE

[∫ t

0

⏐

⏐X i
s − X̄ i

s

⏐

⏐

2 + D2
Φ

(ν̄n
s , µs) ds

]

.

Then Gronwall’s inequality gives

E

[

sup
0≤s≤t

⏐

⏐X i
s − X̄ i

s

⏐

⏐

2
]

≤ CE

[∫ t

0

D2
Φ

(ν̄n
s , µs) ds

]

, ∀i ∈ I and t ∈ [0, T ].

A similar proof as in Theorem 2.7 gives

ED2
Φ

(µt , µ̄
n
t ) ≤ C

n
, ∀t ∈ [0, T ], (31)

and by the definition of DΦ we have

D2
Φ

(ν̄n
t , µ̄n

t ) ≤ A2
1

n

n
∑

i=1

⏐

⏐X i
t − X̄ i

t

⏐

⏐

2
, ∀t ∈ [0, T ].

Thus one deduces

E[D2
Φ

(µt , ν̄
n
t )] ≤ 2E[D2

Φ
(µt , µ̄

n
t )] + 2E[D2

Φ
(µ̄n

t , ν̄
n
t )]

≤ C

n
+ CE

[

1

n

n
∑

i=1

⏐

⏐X i
t − X̄ i

t

⏐

⏐

2

]

≤ C

n
+ CE

[∫ t

0

D2
Φ

(ν̄n
s , µs) ds

]

.

Applying Gronwall’s inequality again yields

E[D2
Φ

(µt , ν̄
n
t )] ≤ C

n
, ∀t ∈ [0, T ], (32)

and consequently

E

[

sup
0≤s≤t

⏐

⏐X i
s − X̄ i

s

⏐

⏐

2
]

≤ C

n
, ∀i ∈ I, ∀t ∈ [0, T ]. (33)

We are now ready to compare J n,i (ᾱn,1, . . . , ᾱn,n) with the mean-field problem value J

defined in (26), which coincide with E[
∫ T

0
f (t, X̄ i

t , µt , α̂
i
t ) dt + g(X̄ i

T , µT )], as X̄ i
t

D= X t . By

Assumption 5.1(b), the Cauchy±Schwarz inequality, the boundedness of (X i
t , X̄ i

t , ᾱ
n,i
t , α̂i

t ) in
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expectation (cf. Theorem 5.3 and estimate (30)), the Lipschitz property of α̂ and u, we have

⏐

⏐J − J n,i (ᾱn,1, . . . , ᾱn,n)
⏐

⏐ ≤ CE

[

⏐

⏐X̄ i
T − X i

T

⏐

⏐

2 + D2
Φ

(µT , ν̄n
T )
]1/2

+ C

(∫ T

0

E

[

⏐

⏐X̄ i
t − X i

t

⏐

⏐

2 + D2
Φ

(µt , ν̄
n
t ) dt

]

)1/2

,

and then conclude

J n,i (ᾱn,1, . . . , ᾱn,n) = J + C/
√

n, (34)

by the estimates (32) and (33). This suggest that, in order to prove (29), we only need to

compare J n,i (β1, ᾱn,2, . . . , ᾱn,n) with J .

Step 2: MFG vs. N -player game using (β1, ᾱn,2, . . . , ᾱn,n). Denote by (U 1
t , . . . , U n

t ) the so-

lution to (21) using strategy (β1, ᾱn,2, . . . , ᾱn,n), and ν̂n
t the empirical measure of (U 1

t , U 2
t , . . . ,

U n
t ), and ν̂n−1

t the empirical measure of (U 2
t , . . . , U n

t ). By the boundedness of b0, b1 and

b2, the admissibility of (β1, ᾱn,2, . . . , ᾱn,n), and Gronwall’s inequality, we have the following

estimates:

E[ sup
0≤t≤T

|U 1
t |2] ≤ C(1 + E

∫ T

0

|β1
t |2 dt), E[ sup

0≤t≤T

|U j
t |2] ≤ C, j ∈ I \ {1}, (35)

1

n

n
∑

j=1

E[ sup
0≤t≤T

|U j
t |2] ≤ C(1 + 1

n
E

∫ T

0

|β1
t |2 dt).

Step 2.1: Controlling DΦ(ν̂n
t , µt ). By triangle inequality of the IPM, one has

E[D2
Φ

(ν̂n
t , µt )] ≤ C

{

E[D2
Φ

(ν̂n
t , ν̂n−1

t )] + E[D2
Φ

(ν̂n−1
t , µ̄n−1

t )] + E[D2
Φ

(µ̄n−1
t , µt )]

}

, (36)

and the last term is O(1/n) by (31). For the first term, we have

E[D2
Φ

(ν̂n
t , ν̂n−1

t )] ≤ C

n(n − 1)

n
∑

j=2

E[|U 1
t − U

j
t |2],

and is O(1/n) using the estimate (35). By definition, the second term in (36) is bounded by

E[D2
Φ

(ν̂n−1
t , µ̄n−1

t )] ≤ C

n − 1

n
∑

j=2

E[|U j
t − X̄

j
t |

2
].

For 2 ≤ j ≤ n, we deduce that

E[|U j
t − X̄

j
t |

2
] ≤ 2E[|U j

t − X
j
t |

2
] + 2E[|X j

t − X̄
j
t |

2
] ≤ C

n
,

by (33), the estimates (following the derivation of (58) in [11]):

sup
0≤t≤T

E[|U i
t − X i

t |
2
] ≤ C

n
E

∫ T

0

|β1
t − ᾱn,i

t |2 dt, 2 ≤ i ≤ n,

and boundedness of moments of β1 and ᾱn,i .

Step 2.2: MFG using β1 vs. N-player game using (β1, ᾱn,2, . . . , ᾱn,n). To compare J n,1

(β1, ᾱn,2, . . . , ᾱn,n) with the mean field cost J given in (26), we define the process Ū 1
t

associated with the mean-field flow µt = L(X t ) and strategy β1:

dŪ 1
t = b(t, Ū 1

t , µt , β
1
t ) dt + σ dW 1

t , 0 ≤ t ≤ T .
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Comparing it with U 1
t , and using the boundedness of b1, Assumption 5.1(a), the estimate of

ED2
Φ

(ν̂n
t , µt ) and Gronwall’s inequality, we deduce

sup
0≤t≤T

E[|U 1
t − Ū 1

t |2] ≤ C

n
.

Therefore, a similar derivation as in Step 1 gives (replacing X by U and ν̄ by ν̂)

⏐

⏐J (β1) − J n,1(β1, ᾱ2,n, . . . , ᾱn,n)
⏐

⏐ ≤ C√
n
,

where J (β1) is the mean-field cost using β1:

J (β1) = E

[

g(Ū 1
T , µT ) +

∫ T

0

f (t, Ū 1
t , µt , β

1
t ) dt

]

.

As J is the optimal cost of the mean-field game, any strategy β1 other than α̂(t, X t , µt , u(t, X t ))

will produce a higher cost, i.e., J (β1) ≥ J . Therefore, one has

J n,i (β1, ᾱ2,n, . . . , ᾱn,n) ≥ J (β1) − C√
n

≥ J − C√
n
. (37)

Combining (34) and (37) gives the desired result (27). □

6. Conclusion

A new class of metrics, in the form of integral probability metrics, is proposed in this paper

to study the convergence of empirical measures in high-dimensional spaces. We generalize the

standard definition of maximum mean discrepancy by imposing specific criteria for selecting

the test function space to guarantee the property of being free of the CoD. Examples of test

function spaces include reproducing kernel Hilbert spaces, Barron function space, and flow-

induced function spaces. Under the proposed metrics, we can show the following three cases

of convergence are dimension-free: 1. The convergence of empirical measure drawn from a

given distribution; 2. The convergence of n-particle system to the solution to McKean±Vlasov

stochastic equation; 3. The construction of an ε-Nash equilibrium for a homogeneous n-player

game by its mean-field limit. We also generalize the results in [63,64] and show that, given a

distribution close to the target distribution measured by the newly proposed metric and a certain

representation of the target distribution, we can generate a distribution close to the target one

in terms of the Wasserstein metric and relative entropy.

As future work, we shall deepen the study of our metric by investigating the mean-field limit

of the n-player stochastic differential games in high dimensions, whose Nash equilibria can be

given by the deep fictitious theory and algorithms [30,31,34,62]. Besides, we are interested

in developing a similar theory (cf. Theorem 2.8) for models other than the bias potential type

and density type, for instance, the generative adversarial network models, which are useful

and important in the machine learning community. We also plan to apply Theorem 2.8 to the

solution of the McKean±Vlasov SDE (17) to study whether one can construct a distribution

based on the solution of the n-particle system (16), which is close to the distribution of the

solution of McKean±Vlasov SDE (17) in the sense of the Wasserstein metric, total variation

distance, or relative entropy. The technical difficulty therein is to analyze when the distribution

of (17) satisfies a bias potential model or density model. Finally, it is of interest to apply this

class of metrics to analyze the convergence rates in other problems, for example, McKean±

Vlasov models, MFGs, and stochastic gradient descent for two-layer neural networks or

multi-layer neural networks [15,48,57].

278



J. Han, R. Hu and J. Long Stochastic Processes and their Applications 164 (2023) 242±287

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Appendix A. Proof of Theorem 2.13

The first part of claim (a) is from Theorem 3.2.2 in [65]. Claim (b) follows from Theorem

5.1 and 5.5 in [17].

Below we prove the second part of claim (a). We denote by C a generic constant that only

depends on K and T , whose value may change from line to line when there is no need to

distinguish. We first observe
∫

C([0,T ];Rd )

[∆(x, h)]2 dµ(x)

= E

[

sup
s,t∈[0,T ],|s−t |≤h







∫ t

s

B(u, Xu) du +
∫ t

s

Σ (u, Xu) dWu







2

]

≤ Ch2
E

[

1 + sup
0≤t≤T

∥X t∥2

]

+ CE sup
s,t∈[0,T ],|s−t |≤h







∫ t

s

Σ (u, Xu) dWu







2

≤ Ch2 + CE sup
s,t∈[0,T ],|s−t |≤h







∫ t

s

Σ (u, Xu) dWu







2

. (A.1)

Thus, it suffices to estimate the second term in (A.1). In the sequel, we will use short notations

Σt := Σ (t, X t ) and Yt :=
∫ t

0
Σu dWu .

We first work on the case η = δx0
for a fixed x0 ∈ Rd . Fixing s ∈ [0, T ], one has

d∥Yt − Ys∥2 = 2(Yt − Ys)T
Σt dWt + ∥Σt∥2

F dt.

Hence, for any λ > 0, exp
(

λ[∥Yt − Ys∥2 −
∫ t

s
∥Σu∥2

F du] − 2λ2
∫ t

s
∥(Yu − Ys)T

Σu∥2 du
)

is a

nonnegative local martingale for t ∈ [s, T ], thus a supermartingale. Fix a > 0 and let τ be a

stopping time defined by

τ = inf{u ∈ [s, t] : ∥Yu − Ys∥ ≥ a} ∧ t, inf{∅} = +∞.

Then E
[

exp
(

λ[∥Yτ − Ys∥2 −
∫ τ

s
∥Σu∥2

F du] − 2λ2
∫ τ

s
∥(Yu − Ys)T

Σu∥2 du
)]

≤ 1. Noticing that

for any u ∈ [s, τ ], we have ∥Yu − Ys∥ ≤ a, and
∫ τ

s

∥(Yu − Ys)T
Σu∥2 du ≤ a2

∫ τ

s

∥Σu∥2
F du ≤ Ca2(1 + sup

0≤u≤T

∥Xu∥2)(t − s).

Consequently,

E[exp(λ[∥Yτ −Ys∥2 −C(1+ sup
0≤u≤T

∥Xu∥2)(t − s)]−Cλ2a2(1+ sup
0≤u≤T

∥Xu∥2)(t − s))] ≤ 1.

Now, let SX be the maximum of X t on [0, T ], i.e., SX := sup0≤u≤T ∥Xu∥. For a fixed constant

M > 0, one deduces

E[exp(λ∥Yτ − Ys∥2)1SX ≤M ] ≤ exp(Cλ(1 + M2)(t − s) + Cλ2a2(1 + M2)(t − s)).
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Hence,

P(∥Yt − Ys∥ ≥ a, SX ≤ M) ≤ P(∥Yτ − Ys∥ ≥ a, SX ≤ M)

≤ exp(−λa2 + Cλ(1 + M2)(t − s)

+ Cλ2a2(1 + M2)(t − s)).

Picking λ = [2C(1 + M2)(t − s)]−1, we know that

P(∥Yt − Ys∥ ≥ a, SX ≤ M) ≤ C exp

(

− a2

C(1 + M2)(t − s)

)

, ∀s, t ∈ [0, T ].

Therefore, for any (t1, s1), . . . , (tm, sm) ∈ [0, T ]× [0, T ], using Exercise 2.5.10 and Proposition

2.5.2 in [60], we obtain

E

[

max
1≤i≤m

∥Yti − Ysi
∥41SX ≤M

]

≤ C log2(m)(1 + M4) max
1≤i≤m

|ti − si |2. (A.2)

For any t ∈ [0, T ] and any integer k, define

Πk(t) = h2−k⌊2k t

h
⌋.

The continuity of Yt together with inequality (A.2) gives

(

E

[

sup
s,t∈[0,T ],|s−t |≤h

∥Yt − Ys∥41SX ≤M

]

)
1
4

≤ C

(

E

[

sup
t∈[0,T ]

∥Yt − YΠ0(t)∥41SX ≤M

]

)
1
4

≤ C

∞
∑

k=0

(

E

[

sup
t∈[0,T ]

∥YΠk+1(t) − YΠk (t)∥41SX ≤M

]

)
1
4

≤ C(1 + M)

∞
∑

k=0

(

h2

4k
log2

(2k+2T

h

)

)

1
4

≤ C(1 + M)

√

h log

(

2T

h

)

.

Then by the Cauchy±Schwarz inequality, one has

(

E

[

sup
s,t∈[0,T ],|s−t |≤h

∥Yt − Ys∥2
]

)
1
2

≤
+∞
∑

k=1

(

E

[

sup
s,t∈[0,T ],|s−t |≤h

∥Yt − Ys∥21k−1≤SX ≤k

]

)
1
2

≤
+∞
∑

k=1

(

E

[

sup
s,t∈[0,T ],|s−t |≤h

∥Yt − Ys∥41SX ≤k

]

P

(

SX ≥ k − 1
)

)
1
4

≤ C

√

h log

(

2T

h

) +∞
∑

k=1

(k + 1)P
1
4 (SX ≥ k − 1).
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Using claim (b) and Theorem 5.1 in [17], we know that

P( sup
0≤u≤T

∥Xu∥ ≥ n) ≤ 2 exp

(

− n2

C(1 + ∥x0∥2)

)

.

Therefore,

+∞
∑

k=1

(k + 1)P
1
4 (SX ≥ k − 1) ≤ C + C

+∞
∑

k=1

(k + 2) exp

(

− k2

C(1 + ∥x0∥2)

)

≤ C
[

1 +
∫ +∞

0

(a + 2) exp

(

− a2

C(1 + ∥x0∥2)

)

da
]

≤ C(1 + ∥x0∥),

which means

(

E

[

sup
s,t∈[0,T ],|s−t |≤h

∥Yt − Ys∥2
]

)
1
2

≤ C(1 + ∥x0∥)

√

h log

(

2T

h

)

.

For general η, we use the above inequality to deduce

E

[

sup
s,t∈[0,T ],|s−t |≤h

∥Yt − Ys∥2
]

≤ E

(

E

[

sup
s,t∈[0,T ],|s−t |≤h

∥Yt − Ys∥2
⏐

⏐

⏐ X0 = x0

]

)

≤ C(1 + E∥η∥2)h log

(

2T

h

)

≤ Ch log

(

2T

h

)

.

With inequality (A.1), we obtain the desired result.

Appendix B. Discussion on Theorem 2.11

We show in this section that, under a slightly stronger condition (B.1) compared to (6), the

logarithm term in φ(n) defined in Theorem 2.11 can be removed, for all the examples of the

test function classes discussed in Section 3.

Throughout this Appendix, we assume µ to be a distribution on C([0, T ];Rd ) such that
∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) < +∞,

and
∫

C([0,T ];Rd )

[∆(x, h)]2 dµ(x) ≤ Qhα logβ

(

2T

h

)

, (B.1)

for any h > 0, where Q, α, β > 0 are positive constants. Still, we will use C to denote a

positive constant depending only on α and β, which may vary from line to line.

The first result is established for the reproducing kernel Hilbert spaces (RKHSs).

Proposition B.1. Assume the kernel k satisfies the condition (a) in Theorem 3.1 and Φ is the

unit ball of Hk , then

E sup
t∈[0,T ]

DΦ(µt , µ̄
n
t ) ≤ 2

√

2

n

[

K 2
1

∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) + K 2
2

]

+ C K1

√

QT α

n
.
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Proof. Let X1, . . . , Xn be i.i.d. processes drawn from the distribution µ. Following

[56, Lemma 26.2], we immediately have

E sup
t∈[0,T ]

DΦ(µt , µ̄
n
t ) ≤ 2

n
E sup

t∈[0,T ]

sup
∥ f ∥Hk

≤1

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
t )

⏐

⏐

⏐.

For a fixed integer n′ ≥ 2 and any tp, sp ∈ [0, T ], p = 1, . . . , n′, we first compute

1

n
E max

1≤p≤n′
sup

∥ f ∥Hk
≤1

⏐

⏐

⏐

n
∑

i=1

ξi [ f (X i
tp

) − f (X i
sp

)]

⏐

⏐

⏐

=1

n
E max

1≤p≤n′
sup

∥ f ∥Hk
≤1

⏐

⏐

⏐⟨ f,

n
∑

i=1

ξi (k(X i
tp

, ·) − k(X i
sp

, ·))⟩Hk

⏐

⏐

⏐

≤1

n
E max

1≤p≤n′







√

n
∑

i=1

n
∑

j=1

ξiξ j [k(X i
tp

, X
j
tp

) + k(X i
sp

, X
j
sp ) − k(X i

tp
, X

j
sp ) − k(X i

sp
, X

j
tp

)].

(B.2)

Let S be a nonnegative-definite matrix, then there exists a nonnegative-definite n × n matrix

F such that S = FT F . Let ξ = (ξ1, . . . , ξn)T, then there exists a universal constant C > 0

(cf. [54, Theorem 2.1] and [60, Example 2.5.8]), such that for any a ≥ 0,

P(
√

ξTSξ −
√

Trace(S) ≥ a) = P(∥Fξ∥ − ∥F∥HS ≥ a) ≤ 2 exp(− a2

CTrace(S)
), (B.3)

where ∥F∥HS =
√

Trace(FT F). Therefore, for any positive definite matrices S1, . . . , Sn′ ,

[60, Exercise 2.5.10] gives

E sup
1≤p≤n′

√

ξTSpξ ≤ C max
1≤p≤n′

√

Trace(Sp) log n′.

Since for any a1, a2, . . . , an ∈ R,

n
∑

i=1

n
∑

j=1

ai a j [k(X i
tp

, X
j
tp

) + k(X i
sp

, X j
sp

) − k(X i
tp

, X j
sp

) − k(X i
sp

, X
j
tp

)]

=⟨
n
∑

i=1

ai [k(X i
tp

, ·) − k(X i
sp

, ·)],
n
∑

i=1

ai [k(X i
tp

, ·) − k(X i
sp

, ·)]⟩Hk
≥ 0,

using (B.2) and (B.3) with (K p)i, j = k(X i
tp

, X
j
tp

) + k(X i
sp

, X
j
sp ) − k(X i

tp
, X

j
sp ) − k(X i

sp
, X

j
tp

),

we deduce

1

n
E max

1≤p≤n′
sup

∥ f ∥Hk
≤1

⏐

⏐

⏐

n
∑

i=1

ξi [ f (X i
tp

) − f (X i
sp

)]

⏐

⏐

⏐

≤ C

n

√

log n′E max
1≤p≤n′







√

n
∑

i=1

k(X i
tp

, X i
tp

) + k(X i
sp

, X i
sp

) − 2k(X i
tp

, X i
sp

)
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≤ C

√

log n′

n
E max

1≤p≤n′
[k(X1

tp
, X1

tp
) + k(X1

sp
, X1

sp
) − 2k(X1

tp
, X1

sp
)]

≤ C K1

√

log n′

n
E max

1≤p≤n′
∥X1

tp
− X1

sp
∥2, (B.4)

where K1 is the constant defined in Theorem 3.1.

We now use the chaining method to estimate the Rademacher complexity. For any t ∈ [0, T ]

and integer k, we define

Πk(t) = T 2−k⌊2k t

T
⌋.

We first compute
⏐

⏐

⏐

⏐

1

n
E sup

t∈[0,T ]

sup
∥ f ∥Hk

≤1

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
t )

⏐

⏐

⏐−
1

n
E sup

t∈[0,T ]

sup
∥ f ∥Hk

≤1

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
Π (t))

⏐

⏐

⏐

⏐

⏐

⏐

⏐

≤1

n
E sup

t∈[0,T ]

sup
∥ f ∥Hk

≤1

⏐

⏐

⏐

n
∑

i=1

ξi [ f (X i
t ) − f (X i

Π (t))]

⏐

⏐

⏐

≤K1E sup
t∈[0,T ]

∥X1
t − X1

Π (t)∥ ≤ C K1 Q

(

T

2k

)α/2

(k + 1)β/2 → 0,

as k → +∞. We have also derived in Theorem 3.1 that

1

n
E sup

∥ f ∥Hk
≤1

|
n
∑

i=1

ξi f (X i
0)| ≤

√

2

n

[

K 2
1

∫

C([0,T ];Rd )

∥x0∥2 dµ(x) + K 2
2

]

.

Together with (B.4), we finally achieve

1

n
E sup

t∈[0,T ]

sup
∥ f ∥Hk

≤1

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
t )

⏐

⏐

⏐

≤1

n
E sup

∥ f ∥Hk
≤1

⏐

⏐

⏐

n
∑

i=1

ξi f (X i
0)

⏐

⏐

⏐+
+∞
∑

k=0

1

n
E sup

t∈[0,T ]

sup
∥ f ∥Hk≤1

⏐

⏐

⏐

n
∑

i=1

ξi [ f (X i
Πk+1(t)) − f (X i

Πk (t))]

⏐

⏐

⏐

≤
√

2

n

[

K 2
1

∫

C([0,T ];Rd )

∥x0∥2 dµ(x) + K 2
2

]

+ C K1

+∞
∑

k=0

√

log(2k+1)

n
E sup

t∈[0,T ]

∥X1
Πk+1(t) − X1

Πk (t)∥2

≤
√

2

n

[

K 2
1

∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) + K 2
2

]

+ C K1

+∞
∑

k=0

√

k + 1

n
Q

(

T

2k

)α

(k + 1)β

≤
√

2

n

[

K 2
1

∫

C([0,T ];Rd )

sup
0≤t≤T

∥xt∥2 dµ(x) + K 2
2

]

+ C K1

√

QT α

n
,

where we have used
∑+∞

k=0

√

(k+1)β+1

2αk < +∞. □
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To establish results for the Barron space and flow-induced function spaces, we first present

the following lemma.

Lemma B.2. Let X1, . . . , Xn be i.i.d. processes drawn from µ ∈ P2(C([0, T ];Rd )) and

ξ1, . . . , ξn be i.i.d. Rademacher variables which are independent of X1, . . . , Xn . Then,

1

n
E sup

0≤t≤T







√

n
∑

i=1

n
∑

j=1

ξiξ j [(X i
t )

T X
j
t + 1]

≤
√

2

n

∫

C([0,T ];Rd )

sup
0≤t≤T

[∥xt∥ + 1]2 dµ(x) + C

√

QT α

n
.

Proof. Taking k(x, x ′) = xTx ′ + 1 for any x, x ′ ∈ Rd , this lemma can be derived using the

proof of Proposition B.1. □

Proposition B.3.

1. Let Φ = B1 be the unit ball of Barron space B, then

E sup
0≤t≤T

DΦ(µt , µ̄
n
t ) ≤ 4

√

2

n

∫

C([0,T ];Rd )

sup
0≤t≤T

[∥xt∥2 + 1] dµ(x) + C

√

QT α

n
.

2. Let Φ = { f ∈ D, ∥ f ∥D ≤ 1} be the unit ball of flow-induced function spaces D, then

E sup
0≤t≤T

DΦ(µt , µ̄
n
t ) ≤ 2e2

√

2

n

∫

C([0,T ];Rd )

sup
0≤t≤T

[∥xt∥2 + 1] dµ(x) + C

√

QT α

n
.

Proof. The proof of these arguments is quite similar with the proof of claim (f) in Theorem 3.3

and claim (c) in Theorem 3.6 with Lemma B.2.

With [56, Lemma 26.2], and following the proofs of claim (f) in Theorem 3.3 and claim (c)

in Theorem 3.6, we obtain

E sup
0≤t≤T

DΦ(µt , µ̄
n
t ) ≤ KΦ

1

n
E sup

0≤t≤T







√

n
∑

i=1

n
∑

j=1

ξiξ j [(X i
t )

T X
j
t + 1],

where KΦ = 4 in case 1, and KΦ = 2e2 in case 2. Then we conclude our results by applying

Lemma B.2. □
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