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COVID-19 and Control Policies
The coronavirus disease 2019 (COVID-19) pandemic has
brought an enormous impact on our lives. Based on data
from the World Health Organization, as of May 2022,
there have been more than 520 million confirmed cases of
infection and more than 6 million deaths globally; In the
United States, there have been more than 83 million con-
firmed cases of infection and more than one million cases
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of death. Needless to say, the economic impact has also
been catastrophic, resulting in unprecedented unemploy-
ment and the bankruptcy of many restaurants, recreation
centers, shopping malls, etc.

Control policies play a crucial role in the alleviation
of the COVID-19 pandemic. For example, lockdown and
work-from-home policies and mask requirements on pub-
lic transport and public areas have been proved to be effec-
tive in stopping the spreading of COVID-19. On the other
hand, governors also have to be aware of the economic ac-
tivity loss due to these pandemic control policies. There-
fore, a thorough understanding of the evolution of COVID-
19 and the corresponding decision-making provoked by
such a virus will be beneficial for future events and in other
interconnected systems around the world.
Epidemiology. Epidemiology is the science of analyzing
the distribution and determinants of health-related states
and events in specified populations. It is also the applica-
tion of this study to the control of health problems. Infec-
tious diseases are one of this kind, including the ongoing
novel coronavirus (COVID-19).

Since March 2020, when the World Health Organiza-
tion declared the COVID-19 outbreak a global pandemic,
epidemiologists have made tremendous efforts to under-
stand how COVID-19 infections emerge and spread and
how they may be prevented and controlled. Many epi-
demiologicalmethods involvemathematical tools, e.g., us-
ing causal inference to identify causative agents and factors
for its propagation, and molecular methods to simulate
disease transmission dynamics.

The first epidemic model concerning epidemic spread-
ing dates back to 1760 by Daniel Bernoulli [Ber60]. Since
then, many papers have been dedicated to this field and,
later on, to epidemic control. Among control strategies,
the quarantine, firstly introduced in 1377 in Dubrovnik
on Croatia’s Dalmatian Coast [GB97], has proven a pow-
erful component of the public health response to emerging
and reemerging infectious diseases. However, quarantine
and other measures for controlling epidemic diseases have
always been controversial due to the potentially raised po-
litical, ethical, and socioeconomic issues. Such complica-
tion naturally calls for the inclusion of decision-making
in epidemic control, as it helps to answer how to take
optimal actions to balance public interest and individual
rights. But not until recent years have there been some re-
search studies in this direction. Moreover, when multiple
authorities are involved in the decision-making process, it
is challenging to analyze how to collectively or competi-
tively make decisions due to the difficulty of solving this
high-dimensional problem.

In this article, we focus on the decision-making de-
velopment for the intervention of COVID-19, aiming
to provide mathematical models and efficient numerical

methods, and justifications for related policies that have
been implemented in the past and explain how the au-
thorities’ decisions affect their neighboring regions from
a game theory viewpoint.
Mathematical models. In a classic, compartmental epi-
demiological model, each individual in a geographical
region is assigned a label, e.g., Susceptible, Exposed,
Infectious, Removed, Vaccinated. Different labels repre-
sent different status – S: those who are not yet infected;
E: who have been infected but are not yet infectious them-
selves; I: who have been infected and are capable of spread-
ing the disease to those in the susceptible category, R: who
have been infected and then removed from the disease due
to recovery or death, and V: who have been vaccinated and
are immune to the infection. As COVID-19 progressed, it
was learned that spread from asymptomatic cases was an
important driving force. More refined models may further
split I into mild-symptomatic/asymptomatic individuals
who are in-home for recovery and serious-symptomatic
ones that need hospitalization. We point to [AZM+20]
which considers a similar problem in the optimal control
setting, which includes asymptomatic individuals and the
effect of impulses.

Individuals transit between these compartments, and
the labels’ order in a model indicates the flow patterns be-
tween the compartments. For instance, in a simple SEIR
model [LHL87] (see also Figure 1a), a susceptible individ-
ual becomes exposed after close contact with infected in-
dividuals; exposed individuals become infectious after a
latency period; and infected individuals become removed
afterward due to recovery or death. Let 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) and
𝑅(𝑡) be the proportion of population of each compartment
at time 𝑡, the following differential equations provide the
mathematical model:

̇𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡),
̇𝐸(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐸(𝑡),
̇𝐼(𝑡) = 𝛾𝐸(𝑡) − 𝜆𝐼(𝑡), 𝑅̇(𝑡) = 𝜆𝐼(𝑡),

(1)

where 𝛽 is the average number of contacts per person per
time, 𝛾 describes the latent period when the person has
been infected but not yet infectious, and 𝜆 represents the re-
covery rate measuring the proportion of people recovered
or dead from infected population.

Many infections, such as measles and chickenpox, con-
fer long-term, if not lifelong, immunity, while others, such
as influenza, do not. As evidenced by numerous epidemi-
ological and clinical studies analyzing possible factors for
COVID reinfections, COVID-19 falls precisely into the sec-
ond category [NBN22]. Mathematically, this can be taken
into account by adding a transition 𝐼 → 𝑆.

Though deterministic models such as (1) have received
more attention in the literature, mainly due to their
tractability, stochastic models have some advantages. The
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Figure 1. (a) A simple SEIR model: susceptible individuals become exposed after close contact with infected ones; those
exposed become infectious after a latency period; and those infected become removed afterward due to recovery or death; (b)
Controlled SEIR model: the planner chooses the level of nonpharmaceutical policies (lockdown or work from home) ℓ and
pharmaceutical policies (effort of vaccination development or distribution) ℎ affecting the transitions such that only (1 − 𝜃ℓ(𝑡)) of
the original susceptible and infectious individuals can contact each other, and affecting the recovery rate 𝜆(ℎ) from infectious
individuals to removed ones, here 𝜃 is used describe the effectiveness of policy ℓ; (c) An illustration of the game-theoretic SEIR
model for two regions.

epidemic-spreading progress is by nature stochastic. More-
over, introducing stochasticity to the system could account
for numerical and empirical uncertainties, and also pro-
vide probabilistic predictions, i.e., a range of possible sce-
narios associated with their likelihoods. This is crucial for
understanding the uncertainties in the estimates.

One class of stochastic epidemic models uses continu-
ous-time Markov chains, where the state process takes dis-
crete values but evolves in continuous time and is Mar-
kovian. In a simple Stochastic SIS (susceptible-infectious-
susceptible) model [KL89] with a population of𝑁 individ-
uals, let 𝑋𝑡 be the number of infected individuals at time
𝑡, 𝛽 the rate of infected individuals infecting those suscep-
tible, and 𝜆 the rate that an infected individual recovers
and becomes susceptible again. The transition probabili-
ties among states 𝑛, 𝑛 + 1, 𝑛 − 1 are

ℙ(𝑋𝑡+∆𝑡 = 𝑛 + 1|𝑋𝑡 = 𝑛) ≈ 𝛽
𝑁 𝑛(𝑁 − 𝑛)Δ𝑡,

ℙ(𝑋𝑡+∆𝑡 = 𝑛 − 1|𝑋𝑡 = 𝑛) ≈ 𝜆𝑛Δ𝑡,

ℙ(𝑋𝑡+∆𝑡 = 𝑛|𝑋𝑡 = 𝑛) ≈ 1 − ( 𝛽𝑁 𝑛(𝑁 − 𝑛) + 𝜆𝑛)Δ𝑡.

Another way to construct a stochastic model is by introduc-
ing white noise 𝑊𝑡 in (1) [TBV05, All08], which we shall
mainly consider in this paper and describe in details in the
later section.

Control of disease spread. After modeling how diseases
are transmitted through a population, epidemiologists
then design corresponding control measures and recom-
mend health-related policies to the region planner.

In general, there are two types of interventions: phar-
maceutical interventions (PIs), such as getting vaccinated
and taking medicines, and nonpharmaceutical interven-
tions (NPIs), such as requiring mandatory social distanc-
ing, quarantining infected individuals, and deploying pro-
tective resources. For the ongoing COVID-19, intervention
policies that have been implemented include, but are not
limited to, issuing lockdown or work-from-home policies,
developing vaccines, and later expanding equitable vac-
cine distribution, providing telehealth programs, deploy-
ing protective resources and distributing free testing kits,
educating the public on how the virus transmits, and fo-
cusing on surface disinfection.

Mathematically, this can be formulated as a control
problem: the planner chooses the level of each policy af-
fecting the transitions in (1) such that the region’s over-
all cost is minimized. Generally, NPIs help mitigate the
spread by lowering the infection rate 𝛽, e.g., a lockdown or
work-from-home policy ℓ(𝑡) implemented at time 𝑡 modi-
fies the transition to

̇𝑆(𝑡) = −𝛽(1 − 𝜃ℓ(𝑡))𝑆(𝑡)(1 − 𝜃ℓ(𝑡))𝐼(𝑡),
meaning that only (1 − 𝜃ℓ(𝑡)) of the original susceptible
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and infectious individuals can contact each other where
𝜃 describes the effectiveness of ℓ [AAL20] (see Figure 1b).
PIs such as taking preventive medicines, if available, will
also lower the infection rate 𝛽, while using antidotes will
increase the recovery rate 𝜆. The modeling of vaccinations
is more complex. Depending on the target disease, it may
reduce 𝛽 (less chance to be infected) or increase 𝜆 (faster
recovery). It may even create a new compartment “Vacci-
nated” in which individuals cannot be infected and which
is an absorbing state if lifelong immunity is gained.

A region planner, taking into account the interventions’
effects on the dynamics (1), decides on policy by weigh-
ing different costs. These costs may include the economic
loss due to decrease in productivity during a lockdown, the
economic value of life due to death of infected individuals,
and other social-welfare costs due to the aforementioned
measurements.

Game-theoretic SEIR Model
Game theory studies the strategic interactions among ra-
tional players and has applications in all fields of so-
cial science, computer science, financial mathematics, and
epidemiology. A game is noncooperative if players can-
not form alliances or if all agreements need to be self-
enforcing. Nash equilibrium is the most common kind
of self-enforcing agreement [Nas51], in which a collective
strategy emerges from all players in the game to which no
one has an incentive to deviate unilaterally.

Nowadays, as the world is more interconnected than
ever before, one region’s epidemic policy will inevitably
influence the neighboring regions. For instance, in the
US, decisions made by the governor of New York will af-
fect the situation in New Jersey, as so many people travel
daily between the two states. Imagine that both state gover-
nors make decisions representing their own benefits, take
into account others’ rational decisions, andmay even com-
pete for the scarce resources (e.g., frontline workers and
personal protective equipment). These are precisely the
features of a noncooperative game. Computing the Nash
equilibrium from such a game will provide valuable, qual-
itative guidance and insights for policymakers on the im-
pact of specific policies.

We now introduce amulti-region stochastic SEIRmodel
[XBH+22] to capture the game features in epidemic con-
trol. We give an illustration for two regions in Figure 1c.
Each region’s population is divided into four compart-
ments: Susceptible, Exposed, Infectious, and Removed.
Denote by 𝑆𝑛𝑡 , 𝐸𝑛𝑡 , 𝐼𝑛𝑡 , 𝑅𝑛𝑡 the proportion of the population
in the four compartments of the region 𝑛 at time 𝑡.
They satisfy the following stochastic differential equations
(SDEs), which have included interventions (PIs and NPIs),

stochastic factors, and game features,

d𝑆𝑛𝑡 = −
𝑁
∑
𝑘=1

𝛽𝑛𝑘𝑆𝑛𝑡 𝐼𝑘𝑡 (1 − 𝜃ℓ𝑛𝑡 )(1 − 𝜃ℓ𝑘𝑡 )d𝑡

− 𝑣(ℎ𝑛𝑡 )𝑆𝑛𝑡 d𝑡 − 𝜎𝑠𝑛𝑆𝑛𝑡 d𝑊
𝑠𝑛
𝑡 , (2)

d𝐸𝑛𝑡 =
𝑁
∑
𝑘=1

𝛽𝑛𝑘𝑆𝑛𝑡 𝐼𝑘𝑡 (1 − 𝜃ℓ𝑛𝑡 )(1 − 𝜃ℓ𝑘𝑡 )d𝑡 (3)

− 𝛾𝐸𝑛𝑡 d𝑡 + 𝜎𝑠𝑛𝑆𝑛𝑡 d𝑊
𝑠𝑛
𝑡 − 𝜎𝑒𝑛𝐸𝑛𝑡 d𝑊

𝑒𝑛
𝑡 ,

d𝐼𝑛𝑡 = (𝛾𝐸𝑛𝑡 − 𝜆(ℎ𝑛𝑡 )𝐼𝑛𝑡 )d𝑡 + 𝜎𝑒𝑛𝐸𝑛𝑡 d𝑊
𝑒𝑛
𝑡 , (4)

d𝑅𝑛𝑡 = 𝜆(ℎ𝑛𝑡 )𝐼𝑛𝑡 d𝑡 + 𝑣(ℎ𝑛𝑡 )𝑆𝑛𝑡 d𝑡, (5)

where 𝑛 ∈ 𝒩 ∶= {1, 2, … , 𝑁} is the collection of 𝑁 regions,
𝑊𝑡 with different superscripts indicate white noise for a
compartment in a specific region, ℓℓℓ𝑡 ≡ (ℓ1𝑡 , … , ℓ𝑁𝑡 ) and
𝐡𝑡 ≡ (ℎ1𝑡 , … , ℎ𝑁𝑡 ) are NPIs and PIs chosen by the region
planners at time 𝑡. The planner of region 𝑛 minimizes its
region’s cost within a period [0, 𝑇]:

𝐽𝑛(ℓℓℓ, 𝐡) ∶= 𝔼[∫
𝑇

0
𝑒−𝑟𝑡𝑃𝑛[(𝑆𝑛𝑡 + 𝐸𝑛𝑡 + 𝐼𝑛𝑡 )ℓ𝑛𝑡 𝑤

+𝑎(𝜅𝐼𝑛𝑡 𝜒 + 𝑝𝐼𝑛𝑡 𝑐)] + 𝑒−𝑟𝑡𝜂(ℎ𝑛𝑡 )2d𝑡].
(6)

We explain the model (2)–(6) in detail:
S. In (2), 𝛽𝑛𝑘 denotes the average number of contacts of
infected people in region 𝑘 with susceptible individuals in
region 𝑛 per time unit. Although some regions may not be
geographically connected, the transmission between the
two is still possible due to air travel, but is still less inten-
sive than the transmission within the region, i.e., 𝛽𝑛𝑘 > 0
and 𝛽𝑛𝑛 ≫ 𝛽𝑛𝑘 for all 𝑘 ≠ 𝑛. The decision for NPIs of
region 𝑛’s planner is given by ℓ𝑛𝑡 ∈ [0, 1]. In particular, it
represents the fraction of the population under NPIs (such
as social distancing) at time 𝑡. We assume that those un-
der interventions cannot be infected. However, the policy
may only be partially effective as essential activities (food
production and distribution, health, and basic services)
have to continue. We use 𝜃 ∈ [0, 1] to measure this effec-
tiveness. The transition rate under policy ℓ thus become
𝛽𝑛𝑘𝑆𝑛𝑡 𝐼𝑘𝑡 (1−𝜃ℓ𝑛𝑡 )(1−𝜃ℓ𝑘𝑡 ). The case 𝜃 = 1means the policy
is fully effective. One can also view 𝜃 as the level of public
compliance.

The planner of region 𝑛 also makes the decision ℎ𝑛𝑡 ∈
[0, 1]. This represents the effort, at time 𝑡, that the planner
puts into PIs. We refer to this term, ℎ𝑛𝑡 , as the health policy.
It will influence the vaccination availability 𝑣(⋅) and the
recovery rate 𝜆(⋅) of this model. 𝑣(ℎ𝑛𝑡 ) denotes the vacci-
nation availability of region 𝑛 at time 𝑡. In this model, we
assume that once vaccinated, the susceptible individuals
𝑣(ℎ𝑛𝑡 )𝑆𝑛𝑡 become immune to the disease, and join the re-
moved category 𝑅𝑛𝑡 . This assumption is not very consistent
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with COVID-19 but reasonable for a short-term decision-
making problem. We model it as an increasing function of
ℎ𝑛𝑡 , and if the vaccine has not yet been developed, we can
define 𝑣(𝑥) = 0 for 𝑥 ≤ ℎ.
E. In (3), 𝛾 describes the latent period when the person is
infected but is not yet infectious. It is the inverse of the av-
erage latent time and we assume 𝛾 to be identical across all
regions. The transition between 𝐸𝑛 and 𝐼𝑛 is proportional
to the fraction of exposed individuals, i.e., 𝛾𝐸𝑛𝑡 .
I and R. In (4) and (5), 𝜆(⋅) represents the recovery rate.
For the infected individuals, a fraction 𝜆(ℎ𝑛)𝐼𝑛 (including
both death and recovery from the infection) joins the re-
moved category 𝑅𝑛 per time unit. The rate is determined
by the average duration of infection 𝐷. We model the du-
ration and the recovery rate related to the health policy ℎ𝑛𝑡
decided by its planner.

Themore effort put into the region (e.g., expanding hos-
pital capacity and creating more drive-thru testing sites),
the more clinical resources the region will have and the
more resources will be accessible by patients, which could
accelerate recovery and slow down death. The death rate,
denoted by 𝜅(⋅), is crucial for computing the cost of the
region 𝑛.
Cost. In (6), each region planner faces four types of cost.
One is the economic activity loss due to the lockdown pol-
icy, where 𝑤 is the productivity rate per individual, and 𝑃𝑛
is the population of the region 𝑛. The second one is due
to the death of infected individuals. Here, 𝜅 is the death
rate which we assume for simplicity to be constant, and 𝜒
denotes the economic cost of each death. The hyperparam-
eter 𝑎 describes how planners weigh deaths and infections
as compared to other costs. The third one is the in-patient
cost, where 𝑝 is the hospitalization rate, and 𝑐 is the cost
per in-patient per day. The last term 𝜂(ℎ𝑛𝑡 )2 quantifies the
grants for health policies. We choose a quadratic form so
that the function is concave in ℎ𝑛𝑡 . This is to account for the
law of diminishing marginal utility: the marginal utility
from each additional unit declines as investment increases.
All costs are discounted by an exponential function 𝑒−𝑟𝑡,
where 𝑟 is the risk-free interest rate, to take into account
the time preference. Note that region 𝑛’s cost depends on
all regions’ policies (ℓℓℓ, 𝐡), as {𝐼𝑘, 𝑘 ≠ 𝑛} appearing in the
dynamics of 𝑆𝑛. Thus we write it as 𝐽𝑛(ℓℓℓ, 𝐡). The above
model (2)–(5) is by no doubt a prototype, and one can
generalize it by considering reinfections (adding transmis-
sion from 𝑅𝑛 to 𝑆𝑛), asymptomatic population (adding
asymptomatic compartment 𝐴𝑛), different control policy
for 𝑆𝑛 and 𝐼𝑛 (using ℓ𝑆 and ℓ𝐼 in (2)–(3)), different fatal-
ity rates for young and elder population (introducing 𝜅𝑌
and 𝜅𝐸 in (6)).
Nash equilibria and the HJB system. As explained above,
the interaction between region planners can be viewed as

a noncooperative game, when Nash equilibrium is the no-
tion of optimality.

Definition 1. A Nash equilibrium (NE) is a tuple
(ℓℓℓ∗, 𝐡∗) = (ℓ1,∗, ℎ1,∗, … , ℓ𝑁,∗, ℎ𝑁,∗) ∈ 𝔸𝑁 such that ∀𝑛 ∈ 𝒩
and (ℓ𝑛, ℎ𝑛) ∈ 𝔸,

𝐽𝑛(ℓℓℓ∗, 𝐡∗) ≤ 𝐽𝑛((ℓℓℓ−𝑛,∗, ℓ𝑛), (𝐡−𝑛,∗, ℎ𝑛)),
where ℓ−𝑛,∗ represents strategies of players other than the
𝑛-th one:

ℓℓℓ−𝑛,∗ ∶= [ℓ1,∗, … , ℓ𝑛−1,∗, ℓ𝑛+1,∗, … , ℓ𝑁,∗] ∈ 𝔸𝑁−1.
Here 𝔸 denotes the set of admissible strategies for each
player and 𝔸𝑁 is the produce of 𝑁 copies of 𝔸. For sim-
plicity, we have assumed that all players take actions in
the same space.

Under proper conditions, the NE is obtained
by solving 𝑁-coupled Hamilton–Jacobi–Bellman
(HJB) equations via dynamic programming
[CD18, Section 2.1.4]. To simplify the notation, we con-
catenate the states into a vector form 𝐗𝑡 ≡ [𝐒𝑡, 𝐄𝑡, 𝐈𝑡]T ≡
[𝑆1𝑡 ,⋯ , 𝑆𝑁𝑡 , 𝐸1𝑡 ,⋯ , 𝐸𝑁𝑡 , 𝐼1𝑡 ,⋯ , 𝐼𝑁𝑡 ]T ∈ ℝ3𝑁 , and denote its
dynamics by

d𝐗𝑡 = 𝑏(𝑡, 𝐗𝑡, ℓℓℓ(𝑡, 𝐗𝑡), 𝐡(𝑡, 𝐗𝑡))d𝑡 + Σ(𝐗𝑡)d𝐖𝑡.
For the sake of simplicity, we omit the actual definition of
𝑏, 𝑓𝑛, and Σ and refer [XBH+22] for further details. Let
𝑉𝑛(𝑡, 𝐱) be the minimized cost defined in (6) if the system
starts at 𝐗𝑡 = 𝑥. Then, 𝑉𝑛, 𝑛 = 1, … , 𝑁 solves

𝜕𝑡𝑉𝑛 + inf
(ℓ𝑛,ℎ𝑛)∈[0,1]2

𝐻𝑛(𝑡, 𝐱, (ℓℓℓ, 𝐡)(𝑡, 𝐱), ∇𝐱𝑉𝑛)

+ 1
2Tr(Σ(𝐱)

THess𝐱𝑉𝑛Σ(𝐱)) = 0, (7)

with 𝑉𝑛(𝑇, 𝐱) = 0, where 𝐻𝑛 is the usual Hamiltonian de-
fined by

𝐻𝑛(𝑡, 𝐱,ℓℓℓ, 𝐡, 𝐩) = 𝑏(𝑡, 𝐱,ℓℓℓ, 𝐡) ⋅ 𝐩 + 𝑓𝑛(𝑡, 𝐱, ℓ𝑛, ℎ𝑛).

Enhanced Deep Fictitious Play
Solving for the NE of the game is equivalent to solving the
𝑁-coupledHJB equations of dimension (3𝑁+1) defined in
Equation (7). Due to the high-dimensionality, this is a for-
midable numerical challenge. We overcome this through
a deep learning methodology we call Enhanced Deep Ficti-
tious Play, being broadly motivated by the method of ficti-
tious play introduced by Brown [Bro51].

Deep Learning. Deep learning leverages a class of com-
putational models composed of multiple processing lay-
ers to learn representations of data with multiple levels
of abstraction [LBH15]. Deep neural networks are effec-
tive tools for approximating unknown functions in high-
dimensional space. In recent years, we have witnessed no-
ticeable success in a marriage of deep learning and com-
putational mathematics to solve high-dimensional differ-
ential equations. Specifically, deep neural networks show
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strong capability in solving stochastic control and games
[HJE18, HL22]. Below, we use a simple example to illus-
trate how a deep neural network is determined for function
approximation.

Suppose we would like to approximate a map 𝑦 = 𝑓(𝑥)
by a neural network 𝒩𝒩(𝑥,𝐰) in which one seeks to ob-
tain appropriate parameters of the network, 𝐰, through a
process called training. This consists of minimizing a loss
function that measures the discrepancies between the ap-
proximation and true values over the so-called training set
{𝑥𝑖}𝑁𝑖=1. Such a loss function has the general form

𝐿(𝐰) = 1
𝑁

𝑁
∑
𝑖=1

𝐿𝑖(𝑓(𝑥𝑖),𝒩𝒩(𝑥𝑖,𝐰)) + 𝜆ℛ(𝐰),

where ℛ(𝐰) is a regularization term on the parameters.
The first term 𝐿𝑖(𝑓(𝑥𝑖),𝒩𝒩(𝑥𝑖,𝐰)) ensures that the predic-
tions of 𝒩𝒩(𝑥𝑖,𝐰) match approximately the true value
𝑓(𝑥𝑖) on the training set {𝑥𝑖}𝑁𝑖=1. Here, 𝐿𝑖 could be a
direct distance like the 𝐿𝑝 norm or error terms derived
from some complex simulations associated with 𝑓(𝑥𝑖) and
𝒩𝒩(𝑥𝑖,𝐰). The hyperparameter 𝜆 characterizes the rela-
tive importance between the two terms in 𝐿(𝐰). To find
an optimal set of parameters 𝐰∗, one solves the prob-
lem of minimizing 𝐿(𝐰) by the stochastic gradient de-
scent (SGD) method [BCN18]. Regarding the architecture
of 𝒩𝒩(𝑥,𝐰), there is a wide variety of choices depend-
ing on the problem, for example fully connected neural
networks, convolutional neural networks, recurrent neu-
ral networks, and transformers. In this work, we chose
fully connected neural networks to approximate the solu-
tion and constructed the loss function by simulating the
backward differential equations corresponding to the HJB
equations.

Note that the HJB system (7) is difficult to solve due
to the high-dimensionality of the 𝑁-coupled equations.
What if we could decouple the system to 𝑁 separate equa-
tions, each of which is easier to solve? This is the cen-
tral idea of fictitious play, where we update our approxi-
mations to the optimal policies of each player iteratively
stage by stage. In each stage, instead of updating the ap-
proximations of all the players together by solving the
giant system, we do it separately and parallelly. Each
player solves for her own optimal policy assuming that
the other players are taking their approximated optimal
strategies from the last stage. Let us denote the opti-
mal policy and corresponding value function of the sin-
gle player 𝑛 in stage 𝑚 as 𝛼𝑛,𝑚 and 𝑉𝑛,𝑚, respectively, and
the collection of these two quantities for all the players
as 𝜶𝑚 = (𝛼1,𝑚, … , 𝛼𝑁,𝑚) and 𝐕𝑚 = (𝑉1,𝑚, … , 𝑉𝑁,𝑚). Fi-
nally, let us denote the optimal policies and correspond-
ing value functions for all the players except for player 𝑛 as
𝜶−𝑛,𝑚 = (𝛼1,𝑚, … , 𝛼𝑛−1,𝑚, 𝛼𝑛+1,𝑚, … , 𝛼𝑁,𝑚) and 𝐕−𝑛,𝑚 =
(𝑉1,𝑚, … , 𝑉𝑛−1,𝑚, 𝑉𝑛+1,𝑚, … , 𝑉𝑁,𝑚), where 𝛼𝑛,𝑚 is a

concatenation of lockdown policies and vaccination poli-
cies, 𝑖.𝑒., (ℓ𝑛,𝑚, ℎ𝑛,𝑚). At stage 𝑚 + 1, we can solve for the
optimal policy and value function of player 𝑛 given other
players are taken the known policies 𝜶−𝑛,𝑚 and the corre-
sponding value𝐕−𝑛,𝑚. The logic of fictitious play is shown
in Figure 2, where players iteratively decide optimal poli-
cies in stage𝑚+1, based on other players’ optimal policies
in stage 𝑚. This is slightly different than the usual simul-
taneous fictitious play, where the belief is described by the
time average of past play and the distinction is further dis-
cussed in [HH20].

Figure 2. Schematic plot of fictitious play: each player derives
optimal policies at stage 𝑚+ 1 assuming other players take
optimal strategies at stage 𝑚.

The Enhanced Deep Fictitious Play (DFP) algorithm we
have designed, built from the Deep Fictitious Play (DFP)
algorithm [HH20], reduces time cost from 𝒪(𝑀2) to 𝒪(𝑀)
and memory cost from 𝒪(𝑀) to 𝒪(1), with 𝑀 as the total
number of fictitious play iterations.

We illustrate one stage of enhanced deep fictitious play
in Figure 3. At the (𝑚 + 1)𝑡ℎ stage, given the optimal poli-
cies 𝜶𝑚 at the previous stage, for 𝑛 = 1, … , 𝑁, the algorithm
solves the following partial differential equations (PDEs),

𝜕𝑡𝑉𝑛,𝑚+1

+ inf
𝛼𝑛∈[0,1]2

𝐻𝑛(𝑡, 𝐱, (𝛼𝑛, 𝜶−𝑛,𝑚)(𝑡, 𝐱), ∇𝐱𝑉𝑛,𝑚+1)

+ 1
2Tr(Σ(𝐱)

THess𝐱𝑉𝑛,𝑚+1Σ(𝐱)) = 0, (8)

with 𝑉𝑛,𝑚+1(𝑇, 𝐱) = 0, and obtains the optimal strategy of
the (𝑚 + 1)𝑡ℎ stage:

𝛼𝑛,𝑚+1 =
argmin
𝛼𝑛∈[0,1]2

𝐻𝑛(𝑡, 𝐱, (𝛼𝑛, 𝜶−𝑛,𝑚)(𝑡, 𝐱), ∇𝐱𝑉𝑛,𝑚+1(𝑡, 𝐱)).
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For simplicity of notations, we omit the stage number
𝑚 in the superscript in the following discussions. The
solution to Equation (8) is approximated by solving the
equivalent backward stochastic differential equations (BS-
DEs) using neural networks [HJE18]:

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝐗𝑛
𝑡 =𝐱0 +∫

𝑡

0
𝜇𝑛(𝑠, 𝐗𝑛

𝑠 ; 𝜶−𝑛(𝑠, 𝐗𝑛
𝑠 ))d𝑠

+∫
𝑡

0
Σ(𝐗𝑛

𝑠 )d𝐖𝑠, (9)

𝑌𝑛
𝑡 =∫

𝑇

𝑡
𝑔𝑛(𝑠, 𝐗𝑛

𝑠 , 𝑍𝑛𝑠 ; 𝜶−𝑛(𝑠, 𝐗𝑛
𝑠 ))d𝑠

−∫
𝑇

𝑡
(𝑍𝑛𝑠 )Td𝐖𝑠. (10)

The nonlinear Feynman–Kac formula [PP92] yields:

𝑌𝑛
𝑡 = 𝑉𝑛(𝑡, 𝐗𝑛

𝑡 ) and 𝑍𝑛𝑡 = Σ(𝐗𝑛
𝑡 )T∇𝐱𝑉𝑛(𝑡, 𝐗𝑛

𝑡 ).
Here 𝜇𝑛 and 𝑔𝑛 are derived by rewriting (8) to
𝜕𝑡𝑉𝑛 + 1

2
Tr(Σ(𝐱)THess𝐱𝑉𝑛Σ(𝐱)) + 𝜇𝑛(𝑡, 𝐱; 𝜶−𝑛) ⋅ ∇𝐱𝑉𝑛 +

𝑔𝑛(𝑡, 𝐱, Σ(𝐱)T∇𝐱𝑉𝑛; 𝜶−𝑛) = 0; see [XBH+22, Appendix
A.2]. Notice that, we parametrized 𝑉𝑛 by neural networks
(denote as 𝑉 -networks) so 𝑌𝑛

𝑡 and 𝑍𝑛𝑡 could all be com-
puted by a function of𝑉 -networks. The loss function to up-
date the 𝑉 -network is constructed by simulating the BSDE
along the time axis and penalizing the difference between
the true terminal value and the simulated terminal value
based on neural networks of 𝑌 .

In Enhanced DFP, we further parameterize 𝛼𝑛 (denote
as 𝛼-networks). In each stage, the loss function with re-
spect to the 𝑉 -network and the 𝛼-network of player 𝑛 is
defined by the weighted sum of two terms: the loss related
to BSDE (9)–(10) to approximate its solution and the error
of approximating the optimal strategy 𝛼𝑛 by 𝛼-networks.
We denote ‖ ⋅ ‖2 as the 2-norm, 𝛼𝑛 and 𝛼̃𝑛 as the derived

Equation 1 BSDE 1 VP 1

Equation 2 BSDE 2 VP 2

Equation N BSDE N VP N

NNs

Figure 3. Illustration of one stage of enhanced deep fictitious
play. At the (𝑚 + 1)𝑡ℎ stage, one needs to solve the PDEs (8),
which is approximated by solving the BSDEs (9)-(10). Then
with the help of neural networks, one solves the variational
problem (VP) given by Equation (11) to get the optimal
strategy.

and approximated optimal control of player 𝑛 in the cur-
rent stage, 𝜶̃−𝑛 = (𝛼̃1,𝑚, … , 𝛼̃𝑛−1,𝑚, 𝛼̃𝑛+1,𝑚, … , 𝛼̃𝑁,𝑚) as the
collection of approximated optimal controls from the last
stage except player 𝑛, and 𝜏 as a hyperparameter balanc-
ing the two types of errors in the loss function. Then the
Enhanced DFP solves

inf
𝑌𝑛
0 ,𝛼̃𝑛,{𝑍𝑛

𝑡 }0≤𝑡≤𝑇
𝔼(|𝑌𝑛

𝑇 |
2

+ 𝜏∫
𝑇

0
‖𝛼𝑛(𝑠, 𝐗𝑛

𝑠 ) − 𝛼̃𝑛(𝑠, 𝐗𝑛
𝑠 )‖

2
2 d𝑠)

s.t. 𝐗𝑛
𝑡 = 𝐱0 +∫

𝑡

0
𝜇𝑛(𝑠, 𝐗𝑛

𝑠 ; 𝜶̃−𝑛(𝑠, 𝐗𝑛
𝑠 ))d𝑠

+∫
𝑡

0
Σ(𝐗𝑛

𝑠 )d𝐖𝑠,

𝑌𝑛
𝑡 = 𝑌𝑛

0 −∫
𝑡

0
𝑔𝑛(𝑠, 𝐗𝑛

𝑠 , 𝑍𝑛𝑠 ; 𝜶̃−𝑛(𝑠, 𝐗𝑛
𝑠 ))d𝑠

+∫
𝑡

0
(𝑍𝑛𝑠 )Td𝐖𝑠,

𝛼𝑛(𝑠, 𝐗𝑛
𝑠 ) = argmin

𝛽𝑛
𝐻𝑛(𝑠, 𝐗𝑛

𝑠 , (𝛽𝑛, 𝜶̃−𝑛)(𝑠, 𝐗𝑛
𝑠 ), 𝑍𝑛𝑠 ).

(11)

In each stage, there are two types of optimal strategies for
player 𝑛: 1. the derived optimal strategy 𝛼𝑛 by solving
argmin𝛽𝑛 𝐻𝑛 in the last equation of (11); 2. the approx-
imated optimal strategy 𝛼̃𝑛 also known as 𝛼-networks for
reducing the non-trivial cost of evaluating 𝛼𝑛. Take stage
𝑚+1 as an example, 𝛼𝑛,𝑚+1 depends on players’ last stage
optimal policies 𝜶−𝑛,𝑚 which in turn depends on 𝜶−𝑛,𝑚−1.
The evaluation of the current stage strategy 𝛼𝑛,𝑚+1 actually
requires the recursive iteration of optimal strategies from
all previous stages. Enhanced DFP unblocks the compu-
tation bottleneck by introducing approximated optimal
strategy 𝛼̃𝑛, which approximates 𝛼𝑛. Although represent-
ing 𝛼𝑛 with a neural network 𝛼̃𝑛 introduces approxima-
tion errors, it allows us to efficiently access the proxy of
the optimal strategy 𝜶−𝑛 in the current stage by calling cor-
responding networks, instead of storing and calling all the
previous strategies 𝜶−𝑛,𝑚−1, … , 𝜶−𝑛,1 due to the recursive
dependence. This is the key factor that Enhanced Deep
Fictitious Play addresses leading to reduction in both time
and memory complexity compared to Deep Fictitious Play.

To implement the loss function defined in (11), we dis-
cretize and simulate the BSDE by Euler’s method with a
partition on a time interval [0, 𝑇]. The expectation in the
loss function is approximated by Monte Carlo samples of
𝐖𝑠 in the stochastic process. Then, we use the stochas-
tic gradient descent method to update 𝑉𝑛 and 𝛼̃𝑛 in the
current stage for player 𝑛. In parallel, we update the 𝑉 -
network and 𝛼-network for each player. The updated net-
works of each player will be observable for other players in
future stages.
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Figure 4. Plots of optimal policies (top-left), Susceptibles (top-right), Exposed (bottom-left) and Infectious (bottom-right) for three
states: New York (blue), New Jersey (orange) and Pennsylvania (green). The shaded areas depict the mean and 95% confidence
interval over 256 sample paths. Choices of parameters are 𝑎 = 100 and 𝜃 = 0.99.

A Regional COVID-19 Study
In this section, we apply the multi-region stochastic SEIR
model (2)–(6) to analyze optimal COVID-19 policies in
three adjacent states: New York, New Jersey, and Pennsyl-
vania. This case study focuses on 180 days starting from
03/15/2020, and solves for the optimal policies of the
three states corresponding to Nash Equilibrium by the En-
hanced Deep Fictitious Play Algorithm. We denote New
York (NY) as region 1, New Jersey (NJ) as region 2, and
Pennsylvania (PA) as region 3, with population 𝑃1 = 19.54
million, 𝑃2 = 8.91 million, and 𝑃3 = 12.81 million during
the case study time range, respectively. We assume that (a)
90% of any state’s population resides in their own state at a
given time; (b) the remaining population(travellers) visit
the other states at an equal chance; (c) there is no travel
outside of the three states, that is, NY-NJ-PA is a closed sys-
tem. The parameters in (2)–(6) are estimated based on the
above assumptions and public information about COVID-
19: 𝛽 = 0.17, 𝜅 = 0.65%

13
, 𝜆 = 1

13
, 𝛾 = 1

5
, 𝑝 = 228.7 × 10−5, 𝑐 =

73300/13. Other parameters in the model are chosen at:
𝑟 = 0,𝑤 = 172.6, 𝜒 = 1.96 × 106. The hyperparameters, 𝜃
and 𝑎, which represent policy effectiveness and planners’
views on the death of human beings will change the op-
timal policies. For results including vaccination controls,
we point to [OS21], which considers an optimal control
problem for vaccines and testing of COVID-19. However,

in the time period we study, vaccination was not available,
so we ignore the health policy ℎ and mainly solve for the
lockdown policy of each state.

Figure 4 shows the Nash equilibrium policies in NY,
NJ, and PA in a setting where the policy effectiveness is
𝜃 = 0.99, i.e., 99% of the residents will follow the lockdown
orders. The weight parameter quantifying each planner’s
view is 𝑎 = 100, i.e., each governor values human life 100
times more than the economic value of a human life. The
resulting Nash equilibrium of this scenario corresponds to
the planners taking action at an early stage by implement-
ing strict lockdown policies and later relaxing the policy as
the infections improve. In the end, the percentage of Sus-
ceptible, Exposed, Infectious, and Removed stays almost
constant. The pandemic will be significantly mitigated in
this scenario of proactive lockdown for both planners and
residents. As a comparison, [XBH+22, Figure 2] illustrates
a scenario of how the pandemic gets out of control if gov-
ernors show inaction or issue mild lockdown policies.

A version of this manuscript in the ArXiv, https://
arxiv.org/abs/2208.08646, contains an extended list
of references which includes more literature on the core
topics of this work and some recent developments.
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[CD18] René Carmona and François Delarue, Probabilistic
theory of mean field games with applications. I, Probabil-
ity Theory and Stochastic Modelling, vol. 83, Springer,
Cham, 2018. Mean field FBSDEs, control, and games.
MR3752669

[GB97] M. D. Grmek and C. Buchet, The beginnings of mar-
itime quarantine, Man, health and the sea, Honoré Cham-
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