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Abstract. We analyze a stochastic modified method of characteristics (MMOC) model-
ing advective-diffusive transport in randomly heterogeneous porous media. Under the
log-normal assumption of the porous media and the finite-dimensional noise assump-
tion that leads to unbounded diffusivity, we prove an optimal-order error estimate for
the stochastic MMOC scheme. Numerical experiments are presented to substantiate
the numerical analysis.

AMS subject classifications: 65M25, 65M60, 65205, 76M10

Key words: Uncertainty quantification, MMOC, advective-diffusive transport.

1 Introduction

The objective in many applications such as remediation of contaminated aquifers, misci-
ble displacement in enhanced oil recovery, and CO; sequestration is to accurately predict
the moving steep fronts of the concentration of the solute or injected solvent to optimize
the remediation or recovery process [4, 11, 20, 26, 35]. Ideally, with the given informa-
tion on the media (e.g., permeability and porosity) and fluid (e.g., the pressure and the
concentration of the solute or solvent at the injection wells or sources of the contamina-
tions and at the production wells or monitoring wells), one should be able to determine
the movement of the solute or solvent. However, many very difficult mathematical and
numerical obstacles occur. The mapping from the given data to the concentration of
the solute/solvent is a strongly coupled, nonlinear and dynamic process, in which the

*Corresponding author. Email addresses: zhengxch@math.pku.edu.cn (X. Zheng), hwang@math.sc.edu (H.
Wang)

http:/ /www.global-sci.org/csiam-am 172 (©2022 Global-Science Press



X. Zheng and H. Wang / CSIAM Trans. Appl. Math., 3 (2022), pp. 172-190 173

transport of the solute/solvent depends heavily on the Darcy velocity of the fluid while
the viscosity of the fluid may in turn depend on the concentration of solvent. Further-
more, information on subsurface porous media is very limited and available only near
the injection and production (or monitoring) wells. Due to the high spatial variability of
geological properties of porous media and the scarcity of available data, the hydrolog-
ical parameters describing macroscopic properties of porous media, such as the intrin-
sic permeability and porosity, cannot be accurately characterized in detail and are often
modeled as spatially correlated random fields [7,16,45]. These parameters strongly affect
the transport processes, thus rendering the transport processes uncertain and making
the flow and transport equations stochastic. In summary, the mathematical models lead
to strongly coupled nonlinear systems of time-dependent advection-diffusion equations
that present moving steep fronts, where complex physical and chemical phenomena take
place that need to be resolved accurately in applications [4,11,20,27].

Upwind methods are widely used in industrial applications to stabilize the numerical
approximations to these systems in large-scale simulators, but they tend to produce nu-
merical solutions with excessive numerical diffusion and spurious grid orientation effects
[11,33]. On the other hand, Eulerian-Lagrangian methods [2,8,9,12,14,23,31-33,37,39]
combine the advection term with the capacity term in the transport equation and carry
out the temporal discretization through a characteristic tracking. They symmetrize the
transport equation and yield a symmetric and positive definite linear algebraic system.
Moreover, they naturally cancel out the majority of the temporal error in the transport
equation, which most Eulerian methods attempt to reduce via different techniques, by
the spatial error from the advection term. Therefore, Eulerian-Lagrangian methods gen-
erate accurate numerical solutions even if large time steps and coarse spatial grids are
used, and are very competitive with many numerical methods [33, 34]. Furthermore,
they eliminate the excessive numerical diffusion and grid orientation effect present in
upstream-weighted, large-scale numerical simulators in industrial production [11, 36].

In this paper we develop a stochastic MMOC method, an MMOC-based stochastic
Galerkin method [13,44, 46], for a time-dependent advection-diffusion equation model-
ing solute transport in randomly heterogeneous porous media. We follow the treatment
in [3, 18,28, 30,42, 43, 45] to make a physically relevant assumption that the diffusivity
coefficient is log-normal, which is unbounded and violates the conventional assump-
tion that the diffusivity has uniform lower and upper bounds, cf. e.g., [3, Equation 5.2]
and [5, Equation 1.1], that is crucial in the corresponding analysis. Furthermore, the
spatial eigenfunctions and the random variables are coupled in the Karhunen-Loéve ex-
pansion in the random diffusivity coefficient. Thus the developed numerical analysis
frameworks for the MMOC to deterministic problems (cf. e.g., [8,9]), which are based on
the boundedness of the diffusivity coefficients, do not directly apply. Besides, due to the
dependence of the diffusivity coefficient on stochastic variables, which will change their
original joint density function, some estimates of the projection in parametric space are
affected and require unconventional treatments (cf. Lemma 5.2).

The rest of the paper is organized as follows. In Section 2 we formulate the mathe-
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matical model. In Section 3 we present preliminaries to be used subsequently. In Section
4 we present the stochastic MMOC scheme. In Section 5 we prove an optimal-order error
estimate of the stochastic MMOC scheme. In Section 6 we carry out numerical experi-
ments to substantiate the numerical analysis. We present concluding remarks in Section
7.

2 Problem formulation

Let (Q),F,u) be a complete probability space, with () being the sample space, F a o-
algebra of subsets of (), and y a probability measure. Then ¢ = g(x,t,w) represents a
quantity of interest with randomness in the porous medium, where x € G with G C R?
(1<d <3) being the spatial bounded polyhedron domain with smooth boundary, t€[0,T]
for some T >0, and w is the sample point in the sample space ().

Let ¢ be the concentration of the solute in the fluid flow. We consider the following
advection-diffusion equation with randomness modeling the solute transport process in
a porous medium reservoir G over a time period of [0,T] [4,11]

(])M +u(x,t)-Ve(x,t,w)—V-(D(x,w)Ve(x,t,w)) = f(x,t,w). (2.1)

ot

Here 0 < ¢ < ¢(x) <1 for some ¢y >0 is the permeability, u represents the Darcy velocity
of the fluid, D stands for the diffusivity coefficient, f refers to the source or sink term, and
we assume that the transport equation is closed by an initial value ¢y (x) and a periodic
boundary condition or the solution is compactly supported inside the domain G [8,9,11].
We next specify the form of the diffusivity coefficient D. Let Y (x,w) be a second-order
continuous stationary random process with multivariate Gaussian distribution

E[|Y(x,w)|*]<4oc0 and lim E[|Y(x,w)—Y (x1,w)[*]=0.

X2—Xq

Then Y (x,w) can be expanded in terms of the Karhunen-Loéve expansion [18]
Y (x,0) =Y (x)+ ) VAii(@)i(x), (22)
i=1

where Y (x) denotes the mean of Y (x,w), the modulus of which is assumed to be bounded
by a positive constant C(Y). {A;}32, and {¢;(x)}?, are the corresponding sets of eigen-
values and orthonormal eigenfunctions of the following eigenvalue problems

ACy(xl,x2)¢i(x2)dx2 = Ail,b,-(xl), X1 € G, (23)

where Cy (x1,x2) =cov(Y(x1,-),Y (x2,-)) is the symmetric and positive-definite covariance
kernel. {;(w)}%, is the set of mutually uncorrelated random variables with zero mean
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and unit variances given by

gi(w)— —Y(x))lpi(x)dx, 1<i<oo. (2-4)

1
=— [ (Y(x,w
Tk
To ensure the convergence of the series in (2.2), we follow [19, Equation 6] to assume that
Yi2q VA (%) | () < 0. Under this assumption, there exists a constant Qp >0 such
that

max H\/7¢z M (c) < Qo (2.5)

Indeed, under some smoothness assumptions of Cy, [|v/Ajp;(x)]| ~(c) decays very fast
with respect to i, see e.g. [5, Equation 2.18]. Consequently, (2.5) is sat1sf1ed and the
Karhunen-Loéve expansion (2.2) is usually truncated to a finite number of terms in real
applications for some M > 0 [3], which is physically relevant as any measurement can
only keep tracking the fine scale information to certain limit [3,7,26,45]

Yu(xw) +2f Zi(w =Y (x)+Ye(x:0), (2.6)

with Y, (x,0) =Y M, VA;li(w);(x) being a mean zero random function such that the cor-
responding optimal mean-square truncation error

/ E[|Y(xw)—Yu(xw)Pld= Y A, 2.7)

G i=M+1

is sufficiently small, which depends on the decay rate of the eigenvalues {A;}?, that in

turn depends on the regularity of the correlation function and its correlation length.
Consequently, we follow [3,18,42,43,45] to assume a log-normal diffusion coefficient

D depending on finitely many random variables in (2.1), the form of which could be

found in, e.g., [17, Equation 2.6] and [19, Equation 8]

D(x,w)=po(x) +p1(x)eYM("""), (2.8)

where 0<p, <pp<p.i <co and 0<p; <p., for some positive constants 0<p, <p.. represent
the molecule diffusion and mechanical dispersion coefficient, respectively. Since Y} is
normal, D(x,w) may be unbounded, which contradicts the conventional assumption that
D has the positive lower and upper bounds. We follow [19] to denote the coordinate of
giby y; for 1 <i<M and define y=(y1,---,yum). Then the diffusivity coefficient D in (2.8)
may also be written as [19, Equation 8]

D(3x,y) =po(x) +p1(x)exp (¥ (x) +zf yiti(x) ). 29)

In the rest of this paper we follow the convention to assume that the input random field
can be decomposed in the form of (2.6) [3], either because they can be approximated
by, e.g., a truncated Karhunen-Loéve expansion or because they can often be explicitly
defined in terms of a finite number of random variables like (2.6).
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3 Preliminaries

We introduce notations and projections frequently used in the rest of the paper.

3.1 Spaces and norms

Let LP(G) with 1 < p <o be the spaces of pth Lebesgue integrable functions on G and
H"(G) be the Hilbert spaces of functions with derivatives of order m in L*(G). Let HJ'(G)
be the completion of C§°(G), the space of infinitely differentiable functions with compact
supportin G, in H"(G). All the spaces are equipped with the standard norms [1].

For any Banach space X, we introduce Sobolev spaces involving time [10]

W’;(tl,tz;x) = {g: H ?)l_tél)("t)H €LF(ty,1), 0<I<k, 1 §p§oo},

z /tf

maxess su
0<I<k e tI; H ot! ‘

H dt) p’ 1<p<oo,

atl
HgHW’;(tl,tz;X) =
p=00.

For a positive integer M, the weighted L? space on RM for 1< p<co weighted by 7(y) >0
with y = (yy,---,ym) € RM is defined by L} (RM) = {g: ¢ is measurable and 1812 (riy <
oo}, subject to the norm ||| ;» gy == ( [pu Ig(¥) "7 (y)dy) P The weighted Sobolev space

Wk, (RM) consists of functlons w1th derivatives up to order k in L}, (RM) and endowed
with the norm

==

dll‘g p M ; ; ;
- ) , =)0 dyti=dy) - dygy
Y"1l s ) j=1

k
||g||w;;,,T(RM)3: < Z

1=0

In particular, we denote Wé‘ln (RM) by HE(RM) for simplicity.
For the convenience of the error estimates, we introduce discrete norms based on the
temporal partition {t, }nNt:o of [0,T] where t,:=nAt with At=T /N, for some integer N; >0

1801 0 = max gCotin) 1 8]0 (Zug ) lar)”

0<n

We further define the inner product
(81,82 12613 (RM)) = /IRM 7(y) /G 81(x,y)g2(x,y)dxdy, (3.1)
for g1, $2 € L?(G) x LA(RM) and

18112 (G;2 (rM)) = (8,8) ] (ZGLZ(]RM)) (3.2)
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In the rest of the paper we set 71(y) :=e ¥1/2x .. xe¥1/2/(y/271)M and denote the
generic constant by Q that may assume different values at different occurrences.

3.2 L? projection from L2 (RM) to Py(RM)

A natural choice of the finite-dimensional subspace Py (RM) of L2 (RM) is

Py (RM):= {v RM — R

v= Z Z Ciy, e jip 11(y1) im(yM)}/ (3.3)

11 =0 ZM =0
where H;(z) refers to the j-th Hermite polynomial defined by
Ho(z)=1, Hi(z)=z, Hj;1(z)=zH;(z)—jH;-1(z), j=>2,

associated with the weight function e=7/2 [25,29].
Define the weighted L? projection 7 : L% (RM) — Py (RM) by

[ 80 =Tew)oy)a(y)dy=0, Voe Py(RM) 64

For the one-dimensional case, the estimate of g—7 ¢ holds for » >0 [29]
_r N _ 2
lg—=Tgllr2r)y <ON2llgllr(r), V8EHR(R), #(z)=e*/2/V2rm. (3.5)

To bound the projection error for the high dimensional case, we define the identity oper-
ator I and the one-dimensional analogue 7; of 7 on the ith direction for 1 <i <M. Then
we apply the following relation

§—T8=8—TmTm-1---Tig
=(I-T)g+TH(I-T)g+ - +TiT2 Tm-1(I—Tm)g

together with (3.5) and the boundedness of the projection operator 7; to obtain

E

1§ =T 8llr2 (mm) < Z [(I=T)gll 2 mmy <QN™ 2|8l e (RM)- (3.6)

—_

We further note that 7 and V are commutative, i.e.,

al qav i i d
VTg= VZ Z f]RM ) 1(y1) M(yM) yHil(yl)"'HiM(yM)
11=0 ZM 0 ||Hl1|| : HHZMHL%T
N Wt (y)Ve(x,y)Hi, (1) - Hiy, (yn)d

im=0 HHllH HHIMH%%
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Remark 3.1. A more practical choice of Py is the so-called sparse polynomial space, in
which the sum of the orders of polynomials in all directions is up to N

N
{U: RM—>1R U= Z Cilz"'ziMHil (yl)HzM(yM)} (37)

|i|=0

For a fixed N, the degree of freedom of the sparse polynomial space is much smaller than
that of the full polynomial space (3.3), which is known as the “curse of dimensionality”
that requires costly computations for large N. Furthermore, both (3.3) and (3.7) have
similar approximation properties [25]. For this reason, we apply (3.3) in the subsequent
analysis and all results can be directly extended to the case of using (3.7). In numerical
experiments, we apply the sparse polynomial space (3.7) to reduce the computational
costs.

3.3 Elliptic projection from H}(G) to S;,(G)

We define a quasi-uniform partition UG, of G with the maximal diameter & among all el-
ements under the Euclidean norm |||/, defined by h:=maxg,ccmaxy, x,ec, || %2 —*1 || Fuc,
and let S;,(G) be the space of piecewise linear functions on this partition. For any fixed
y € RM, standard elliptic projection £: H}(G) — S;,(G) is defined by

a(g—Eg,up) ::/ D(x,y)V(¢—EQ)Vu,dx=0, Vv, €S5,(G). (3.8)
G
We employ (3.8) to obtain

1DV (Eg=8) 1721y =a(Eg—8,Eg—8) =a(Eg—8,v1—8)
<|D*V(€g-&)l2(c)-ID*V (o =8)l2(c),  Von € Su(G),

which, together with (2.8) and the continuity of 1;(x) (which follows from the continuity
of Cy and [21, Theorem 3.2.5]), yields

VOV (Es—8)l12(6) S IDV?V (E8—9) 126

< inf ||DY2V(v,—
—w,,leréh(c)” (v =) ll12(c)
1/2 .
< £V (op—
<(o(v)) whgéh(c)” (on—&)l12(c)
1/2
<Q(e(y)) "“hlglle(c) 3.9)

where Q is a positive constant depending on d and the mesh parameters (cf. [6, Theorem
4.4.20]), and

_ M
p(y)i=pus+pueVexp (LIl ), (3.10)
i=1
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where Qp is given by (2.5) and Y is defined in (2.6). Then a standard duality argument
yields [6]

1€8—glli2(c) < Qe(w)H* I8 2 c)- (3.11)
Furthermore, selecting v=£g in (3.8) leads to the stability estimate of £¢
IVESIi2(c) < RUe)) 1 V8lliz (). (3.12)
Define
. (y):=7(y)e(y), (3.13)

and we integrate both sides of (3.9) on RM to obtain for g€ L2 (RM;H?(G))

IV (€58 cz oy <O [ 2@y < QP8I qonseiy: G149
A similar operation for (3.11) with 71, (y) :=7(y)p?(y) yields for g€ L2 (RM;H?(G))

1€8—8llr2(crzmmy) < QR N8Nz (mu;m2(c))- (3.15)

4 A stochastic MMOC

We first present the MMOC for the deterministic transport equation

(PaC(E;; 1) +u(x,t)-Ve(x,t) =V-(D(x)Ve(x,t)) = f(x,). (4.1)

Denote T the unit vector in the direction of (#,¢) in G x [0,T] and r=r(t;x,t,) the charac-
teristic curve on t € [t,,_1,t,] defined by
dr u
T b1 <t<tp; rli=t,=x (42)
Then the first two left-hand side terms of transport equation (4.1) can be rewritten in the
following form [9]

x,t
VP ) P2, 49
Numerically, the characteristics is backtracked from x at time step t, to x* at time step
th—1 by

xt=x— ”(;’E;)) At. (4.4)

Subsequently the first term on the left-hand side of (4.3) can be discretized by [9]

V) ) P2 s ) L)) 45
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Substituting (4.5) for the first term on the left-hand side of (4.3) and integrate the resulting
equation against any test functions v;, € S;,(G) yields the MMOC for (4.1): find {c!'}™, C
Si(G) such that

c(x)—c 1 (x*
/G4>(x) (%) Ai‘l ( )vh(x)dx+/c Vo, (x)-D(x)Vep (x) dx
:iquJ@wA@dn VoR €S4(G), 1<n<N. (4.6)

Based on the preceding discussions, we turn to the numerical discretization of the pro-
posed model (2.1). Let &/ (x,y) :==c} *(x*,y) and f"(x,y) := f(x,ts,y). Then a similar
derivation yields a stochastic MMOC for problem (2.1) by taking the inner product (-,-) of
the scheme (4.6) for any test function v, €S;,(G) x Py (RM): find {c/! }anzl CS,(G) x Py(RM)
such that for 1<n <N;

a8 DV, v
<¢ At 'Uh>L2(G;L%(JRM))+< “hs Z)’1>L2(G;L%GRM))
=(f"0n) 22wy YO € Sn(G) X Py (RM). (47)

5 An optimal-order error estimate for the stochastic MMOC

We begin with a useful lemma and prove an optimal-order error estimate for the stochas-
tic MMOC scheme to (2.1).

Lemma 5.1. [9, Lemma 1] Let v€ L?(G) and 6(x) =v(x—g(x)At) with g=(g1,$2). Assume
that ¢1,92 € WL (G). Then there exists a constant Q >0 such that

[0=3-1(6) < Qllvll12()AtL.

Theorem 5.1. Assume ¢,uy,u € WL(G) with ¢ > ¢o >0, c € H' (0, T;H' (G;H,(RM))) N
H'(0,T;L% (RM;H%(G))) NH'(0,T;L%. (RM;H?(G))) for some integer r >0, 9*c/07* €
L%(0,T;L?(G;L2(RM))) and c € LW(O,T;Hl(G;H;,i(JRM))) for 1 <k <2M where {m*}2"
correspond to all possible horizontal shifts of 7, in all directions with the distance Qo/2. Then
the following optimal-order estimate holds for the stochastic MMOC for At small enough

lle=cnllge(0,r12(6;12 My TV (€ =en) l2(0,102(Gi02. (rRMY))

oM 1/2
<QN': [(Z ||c||%w<o,T;Hl(c;ka<RM>>>> el e o160z rM))
k=1 o
+QF (llellin 0.z, ypteon + el oz, ruyie(o))
+Qat| re
072 |l 12(0,7;12(G;L2 (RM)))
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Remark 5.1. There are regularity assumptions on the solution c in this theorem. The as-
sumptions in space and time are roughly c € H'(0,T;H*(G))NH?(0,T;L*(G)), which, in
the case of deterministic problems, could be guaranteed by imposing f€L?(0,T; H>(G))N
H'(0,T;L*(G)) and ¢y € H3(G), in addition to the smoothness assumptions on the coef-
ficients, see e.g., [38,41] and [10, Section 7.1.3, Theorem 6]. Furthermore, it was shown
in, e.g. [19, Lemma 3.1] and [22, Theorem 3.1], that the solutions to elliptic problems with
lognormal diffusivity coefficients could be sufficiently smooth in the parametric space.
Therefore, we further assume some smoothness assumptions on the solutions to the pro-
posed model in the parametric space to achieve some convergence rates. We will carry
out investigations on this regularity issue for a rigorous proof in the near future.

Proof. Let ¢} :=cji(x,y) and " := c(x,t,,y). We perform the inner product (-,-) of the
equation (2.1) and any test function vj, € S,(G) x Py(RM) and subtract it from (4.7) to
obtain the following error equation for e" = cjl —c"

<(])en,’0h>L2(G,.Lgr(RM)) +At<DV€”,V’0h>L2(G;L%(1RM))
=" on) 12(G12 (rMy) +E" (C0n), (5.1)

where ¢"1:=¢""1(x*,y) and

c”—@”_l

E™(c,0n) <<\/‘P2 )+ lu(xt)? Z__¢(x)T>’vh>L2(G;L%(RM))

(x,tn) 9c
2
<<P/ \/ (x—x*)24(T—t,_1) aTsz,vh>L2(G;L%(]RM)).

We split e" =" 45" := (cj = T Ec")+ (T Ec" —c") and choose v;, =" to rewrite the error
equation in terms of ¢"* and 5" as follows
(9",6") 12(G;r2. (rmy) FAHDVE", VE") 121612 (M)
=(pg" L& >L2 GiLz(rM)) —AHDVE", V") 12612 (rM))
+ (" =1"), " 1261z vy FE" (€,8"). (5.2)

where &~ 1:=&~1(x*,y) and 7" :=5""1(x*,y). We bound 5" by splitting it as 1" =
(TE—Tc")+(Tc"—c"). Applying (3.15) and (3.6) we have

17" |2 Gz vy SN T (E¢" =€) [l12(G;2 ry) 1T ="Ml 126,12 (RMY)
< QK| 2, (mM;E2( ))+QN7%chHLZ(G,'H;(]RM))/ (5.3)
and by (3.6) and (3.14)
V" HLz(G;L%T(IRM)) <|IV(TE"=Tc") HLZ(G;L%(IRM)) +IV(Tc"—c") HLZ(G;L%(]RM))
< Qhllc"[| 2, (mm;e2(6)) +ONH Ve |12 ry) - (54)
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By |dx* /dx|=1+O(At), which implies

dx

1 1 At
14 <1+420:At, for AtQ; < =,

= < =
1+O(At> T 1-0Q1At 1—Q1At

the first term on the right-hand side of (5.2) can be bounded similar to [40, Equation 4.4]

(98 18" < Sz + 3 [ [ TONE ) Pty
_Lim . ax* |7
S 18" 1262 o) 2//RM @) P[] vy
1+QAt

= —HC”HLZ G;L2( IRM)) Hgn 1HL2 G;LZ(RM))"

For the second term on the right-hand side of (5.2), we decompose 1" by (T Ec" —Ec")+
(Ec"—c") and apply Lemma 5.2 and (3.8) to bound

AL (DY, VE") 12 Gaa (o)) |
—At[( DV[I—T)SC] V") ez rmy) |

<QAtN" ZHC”HHl GiH —H( v HLz G2 (RM))* (5.5)

We bound the third term on the right-hand side of (5.2) by splitting 7" —#"~! into (1" —
7" )+ ("1 =#""1). Then we apply (5.3) to obtain

1)) | <Q [ / 9)Itlli2(6) 1€ 12 o)ty
< QU NE2(s, 22 cin2mony) + QAHIE" g ony
<QAHIE" T2 1z riy) + Qb et Tagr, a2, M ER(G))
HONNleellTa, | bnzGommrm))-

To bound the second part, we apply (5.3) and Lemma 5.1 to obtain
(o (" =7"1), 8 2z mmy) |
< [ AW =" )12 o)

SQN< 1713 (0,2 Gin2 o) €€ 12 6,02 oy +€1 (D) 2V E 126,02 IRM))>

<QAte(||§”||Lz GiL2(RM)) +||VCH||L2 GL2 ]RM)))

At
+T(N llell oo, ms12(G;m (roy ) F el o 0,712 (RM;H2(G) ) - (5.6)

TUxx
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The last term on the right-hand side of (5.2) can be bounded by the same way in [9,40]

|E”(C,§”)‘§Q(At)3/2/ (WIE ez Harz L2 1tnL2(G))dy

< QMM 2 gy + QU |

L2 tn—1,tn; Lz(G L2 (]RM))
Let e=p?/(4Q) and we combine all the estimates above to obtain

Atp*

HCHHLZ G;L2(RM) ) ||V(;m||L2 G;LZ(RM))

Hgn iz 2(G;L2(RM)) +QN(HCH 1HL2 G;L2(RM)) +|¢" HLZ G2 ]RM)))

+ QAN ZHC”HHlGHr ®my) +Q(AL)

i —

+QN"|c ||H1 b twi2(GEn M) T QI el (s, itz ®ER(G))

+QAH N [lelfw (0,T;L2(G;HL(RM))) 1 lel|7- (O.T12. (RMH(G))))-
Then we sum (5.7) for n=1,---,N;(< N;) and cancel like terms to obtain

Atp*

HCNIHLZ G;L2(RM)) Z HvénHLZ G;LZ(RM))

<QAtZ 18" 17262 (rmy +QN_TZ HC”%OO(O,T;Hl(G;H’k(IRM)))
k=1 Ttk

+ON™ rHCHHIOTLZ(GHr(JRM +Qh4HCHH1 0,T;L2, (RM;H2(G)))

Q(Af) H
oT2

L2(0,T;L2(G;L2 (RM)))

(.7)

(5.8)

Finally we apply the Gronwall’s inequality and incorporate (5.1) and the estimates (5.3)-

(5.4) of " to complete the proof.

Lemma 5.2. Under the conditions of Theorem 5.1, the estimate (5.5) holds.

Proof. We apply the Cauchy’s inequality and the estimate

O

_ M _ M M
0(y) =peeFpere™Vexp (Y1yi1Q0) <2016 Mexp (- 11i1Qo ) < Qexp (L lyil Qo)
i=1 i=1 i=1
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to get
At[(DV [(I-T)EC"],VE") 12612 (rM)) |
<At / YIDY2(1-T)VE | 126 IDV2VE" 1)

<5 [ e [ ((1-T)Vee ardy+ 5 ID2VE oy oy

M
<ont [ () [ oxp (L 1ulQo) (1= T)Vee") dacly

RM

+ 2 1D) 2V a3 vy 59
In each direction y; of y, we split the corresponding integral domain R into the union
of R, :=(—00,0) and R; :=[0,00) in order to remove the absolute value of y; on the
exponential in (5.9). In th1s way the integral on RM are split into a sum of 2M sub-integrals
labeled by k=1,--- 2M and each of them integrates on the union of either Rf or R;” for
1 <i <M. Conventionally, we apply the graded lexicographic ordering of the multi-
index of dimension M on domains of the sub-integrals with R x--- xR}, as the first
element. Then, for the first sub-integral, we replace each |y;| by —y; and apply (3.6) and
the variable substitution z=y+QoI/2 for I:=(1,---,1) as well as the following estimate
for &"(x,z):=c(x,ty,z+Qol/2)

» Alll 2
|VEe HLZ G;HL(RM)) Z// < Vf )> dydx

|1]=0
dll 2
= Z/ —" dy
1[=0 H dy' ) L2(G)
di |
<Q Z/ HV dy (using (3.12))
1]=0 dy 12(G)
dll\ 2
=Q / (2 Q01/2)< > dzdx
io .

= QHVC”HLZ(G;HVI(]RM))/ i (z) 1= (z—Qol/2),

where 7, is defined by (3.13) that includes the p, to obtain
At/ n(y /exp< Zle())( (I— T)VSC”)2dxdy
Ry XX Ry
§At/M7r(y)/exp< Zle()) (I-T)VE ) dxdy
R G
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:Atexp<£(Qo/2)2>/M7T(z)/ ((I—T)VSE”)dedz

i—1 R G
S QAtNir H V&fn ||%2(G,H7'T(]RM)) S QAtNir H VC” ||%2(G,’Hr1(]RM))'

Similarly, we define 7t for 1 <k < 2M according to the aforementioned ordering and
consequently, we bound the first term on the right-hand side of (5.9) by

M oM
n)2 —r n
ot [ w(y) [ exp<;yyi|go> (1= T)vee") dudy < QAN 12 19" [z,

which completes the proof. O

6 Numerical experiments

We carry out numerical experiments to investigate the performance of the stochastic
MMOC scheme. Let G =[-0.5,0.5]%, u(x1,x2) = (—4x2,4x1) and [0,T] = [0,77/2], a time
period of a complete rotation. We set ¢ =0.3, pp=p; =0.3x107%, Y=1x10"2, M=3 and
f =0. The initial condition is given by

_ 2 o 2
)

where (x1,¢,%2,) =(—0.1,0) and o =0.0447 are the center and standard derivation of the
Gaussian pulse, respectively. In the experiments, the sparse polynomial space (3.7) will
be applied combined with the rectangular element with uniform partitions for both space
and time. The numerical solution cy;c of the Monte Carlo method using 5000 samplings
and h=1/128 and At=7/64 serves as the reference solution and the errors are measured
in [|E(cy) —E(cmc) 1 (0,1;12(c)) Where [E(+) denotes the probabilistic expectation [35]. It
is clear that the error can be bounded by Ql|c;, —cpic| fo(0,T;12(G);12 (RM)), Which was esti-
mated in Theorem 5.1. We accordingly measure the convergence rates «, 8, and 7y of the
stochastic MMOC scheme with respect to the spatial mesh size &, time step size At, and
the spectral polynomial degree N

H]E(Ch) _]E(CMC) H[A}O(O,T;LZ(G)) < Q(h“ + (At).B _|_N*"r) .

We expect a second order convergence in space and first order in time. The order 7y
depends on the regularity of the solutions on the stochastic space, the exact value of
which is hard to determine. For this reason, we instead measure the quotients of the
errors under different N as the decay rate.

We present the reference solution E(cpic)(x,T) and the numerical solution ]E(c,i\’ 9(x)
solved under h=1/60, At=71/64 and N =2 in Fig. 1 and Fig. 2, respectively, which show
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Figure 1: E(cpc)(x,T) solved under h=1/128 and At=r7t/64 from the view of top (left) and side (right).
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Figure 2: ]E(chN’)(x) solved under h=1/60, At=7t/64 and N=2 from the view of top (left) and side (right).

that the stochastic MMOC accurately captures the revolving interface of the Gaussian
pulse with small polynomial degrees and thus demonstrate the effectiveness of the pro-
posed method for the advection-dominated problems. In Table 1, the sharp decay rate
indicates the fast convergence of the stochastic MMOC in the stochastic space and the
results in Table 2 are consistent with the error estimates in Theorem 5.1. Furthermore, we
observe from Table 2 that large time steps can be used without loss of accuracy, which

Table 1: Convergence of stochastic MMOC under At=7t/64.

N h=1/40 Decayrate h=1/60 Decay rate
0 8.43E-02 8.58E-02

1 816E-03 1/10.33  8.30E-03 1/10.34
2 1.01E-03 1/8.08 1.03E-03 1/8.06
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Table 2: Convergence of stochastic MMOC under N=2.

h At=7/64 At h=1/40
1/10 6.48E-02 m7/10 3.02E-03
1/20 241E-02 mw/12 2A41E-03
1/30 8.08E-03 m/14 1.87E-03
1/40 2.83E-03 m/16 1.51E-03

1/50 1.75E-03 /18 1.30E-03
1/60 1.60E-03 /20 1.27E-03
Conv. rate x=2.25 p$=1.32

exhibits the advantage of the method of characteristics and demonstrates its strong po-
tential for the long-time simulation.

7 Concluding remarks

In this paper we develop and analyze a stochastic MMOC method for a time-dependent
advection-diffusion equation modeling solute transport in randomly heterogeneous
porous media. Error estimates were rigorously proved and numerical experiments were
performed. Further generalizations of the proposed model may be the coupled miscible
displacement system [11, 15, 24] with non-smooth randomness or noises, which signifi-
cantly increases the difficulties of analysis and simulations due to, e.g., the coupling effect
of the equations and the low regularity of the solutions. Another possible improvement
may lie in the refinement of the estimate in Lemma 5.2 in order that the 2™ multiple of the
errors in (5.5) could be reduced or removed. Currently, we did not find a straightforward
way to remove this exponential dependence, and some significant modifications may be
needed to achieve this goal. We will carry out investigations for these extensions and
improvements in the near future.

A potential alternative approach to derive error estimates in Theorem 5.1 is to firstly
derive the path-wise convergence rate for the MMOC scheme, which may be obtained
from the existing numerical analysis results for deterministic problems, and then take
the expectation for the resulting estimates. The idea leads to an alternative discretization
but may introduce additional numerical analysis difficulties in recovering the results in
Theorem 5.1. Due to the coupling of the stochastic variables and the spatially-dependent
functions in the diffusivity coefficient and its nonlinearity, the proposed Galerkin ap-
proach (4.7) generates a global approximation in a coupling and all-at-once manner with
interactions among different basis. How to accommodate these coupling effects and in-
teractions from path-wise estimates is an interesting but challenging problem and we
plan to investigate this approach in the near future.
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