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1  |  INTRODUC TION

Biogeographic range boundaries are highly visible outcomes of ecosys-
tem functionalities due to spatial variations in climate and other limiting 
resources. However, the fundamental mechanisms controlling tree spe-
cies distributions and range boundaries are still poorly understood, de-
spite over two centuries of study (Anderegg & HilleRisLambers, 2019; 
Colwell et al.,  2008; Louthan et al.,  2015; MacArthur,  1984; Von 
Humboldt & Bonpland, 2010). Understanding the mechanisms regu-
lating forest range dynamics is urgent, given that climate change has 
already caused widespread shifts in tree species' geographic extents 
across multiple biomes (Chen et al., 2011; Colwell et al., 2008; Esquivel-
Muelbert et al., 2019; Lenoir et al., 2008), and it is expected that hot-
ter droughts with further climate change have the potential to cause 
widespread declines in forest productivity and increases in mortality 

(Park Williams et al.,  2013). A continuation or escalation of the ob-
served trends could cause drastic range shifts or biome collapses (Cano 
et al., 2022; Cox et al., 2000) and flip the terrestrial carbon sink to a 
carbon source (Adams et al., 2010; Kurz et al., 2008).

There are several mechanisms by which tree species and for-
ested communities can compensate for intensifying water stress 
associated with climate change. At the species level, one such mech-
anism that can mitigate stress is the coordinated adjustments in 
plant biomass allocation, such as adjustments in root or leaf alloca-
tion (Barton & Montagu, 2006; Mackay et al., 2020). Here, we focus 
on widely documented adjustments of leaf area relative to sapwood 
area (referred to subsequently as “adjustment in leaf area”) within 
the same species across climate gradients such that individuals 
within a species decrease water demand (leaf area) relative to supply 
(sapwood area) in drier locations or seasons (Anderegg et al., 2021; 
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Abstract
The extent to which future climate change will increase forest stress and the amount 
to which species and forest ecosystems can acclimate or adapt to increased stress is 
a major unknown. We used high-resolution maps of hydraulic traits representing the 
diversity in tree drought tolerance across the United States, a hydraulically enabled 
tree model, and forest inventory observations of demographic shifts to quantify the 
ability for within-species acclimation and between-species range shifts to mediate 
climate stress. We found that forests are likely to experience increases in both acute 
and chronic hydraulic stress with climate change. Based on current species distribu-
tions, regional hydraulic trait diversity was sufficient to buffer against increased stress 
in 88% of forested areas. However, observed trait velocities in 81% of forested areas 
are not keeping up with the rate required to ameliorate projected future stress with-
out leaf area acclimation.
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Martínez-Vilalta et al.,  2009; Mencuccini & Grace,  1995; Piñol & 
Sala, 2000; Rosas et al., 2019). Various other physiological adjust-
ments can buffer against drought stress within a species (e.g., local 
adaptation or acclimation of more embolism-resistant xylem or leaf 
tissue, deeper roots, etc.), but we focus on adjustments in leaf area 
here because allocation traits generally show much larger within-
species variation than most other drought-related traits (Anderegg, 
Griffith, et al., 2022; Trugman, Anderegg, Sperry, et al., 2019).

At the community or stand level, there can be shifts in com-
position toward species with more drought-resistant plant hy-
draulic traits that can buffer a forest against water stress (Allen & 
Breshears, 1998; García-Valdés et al., 2021; Trugman et al., 2020). 
Finally, it is possible for biogeographic shifts to occur where more 
drought-resistant species expand their ranges to new stands over 
longer time horizons, provided that sufficient hydraulic trait reser-
voirs are available from proximal seed sources (Peters et al., 2015). 
These species shifts may take decades during which ecosystem ser-
vices and forest carbon storage will decline (Seidl & Turner, 2022).

Trait-based vegetation models simulate the physiological pro-
cesses hypothesized to be fundamental in governing terrestrial 
ecosystem responses to the variation of climate across space and 
climate change in the future, while being able to connect organ-level 
hydraulic traits measured in the field to organism- and ecosystem-
level function. Yet few vegetation models incorporate the appro-
priate processes to test the extent to which shifts in leaf allocation 
within a species (Trugman, Anderegg, Wolfe, et al., 2019) or biogeo-
graphic changes in species composition may ameliorate climate-
induced changes in forest stress. Here, we tested the extent to which 
changes in species biogeographic ranges, shifts in species relative 
abundance, and adjustment in leaf area within a species can compen-
sate for increases in water stress with climate change. We used an 
optimization-based model of tree gas exchange, hydraulic transport, 
and leaf carbon allocation (Figure S1). The model was parameterized 
with current forest hydraulic trait distributions for the continental 
United States based on US Forest Inventory and Analysis data, tree 
height, and canopy efficiency (Trugman et al., 2020; Figures S2–S5) 
and forced with historical (1995–2014) and future (2081–2100) daily 
climate data (Figures S6 and S7).

We developed a new method for representing species diversity 
and within-species acclimation in a parsimonious plant functional 
type framework applicable to large-scale terrestrial biosphere mod-
els (see Section 2) and tested the extent to which trait acclimation 
and biogeographic shifts in community trait composition can amelio-
rate climate stress. Specifically, we asked: (i) How do hydraulic traits 
mediate plant stress and productivity across biogeographic and cli-
mate gradients of US forests? (ii) Are there systematic changes in 
stress with projected changes in climate and increased atmospheric 
CO2 across forest biogeographies and climates? (iii) Where do pro-
jected stress levels increase or decrease with climate change in US 
forests? (iv) To what extent do within-species adjustments in leaf 
area alter the effects of climate stress? (v) To what extent and where 
can current trait reservoirs help forests avoid increases in water 
stress through biogeographic shifts in species compositions?

2  |  MATERIAL S AND METHODS

We used the HOTTER model (the Hydraulic Optimization Theory 
for Tree and Ecosystem Resilience model; Mathias & Trugman, 2022; 
Trugman, Anderegg, Wolfe, et al.,  2019; Figure  S1), a physiologically 
based tree model with a realistic representation of gas exchange (Eller 
et al., 2018) and a detailed representation of plant hydraulics (Trugman 
et al., 2018) to quantify spatial variations in tree water status, hydraulic 
stress, and carbon gain across gradients in climate and plant traits in the 
continental United States. Our model experiments combined hydraulic 
trait maps based on high-resolution species distribution and abundance 
data derived from the US Forest Service Forest Inventory and Analysis 
Program with a large hydraulic trait database (Trugman et al., 2020), 
tree height measured remotely by satellite, and daily historical and fu-
ture climate forcing data (see Section 2). This combination of physiolog-
ical traits and climate shaped the geographical distribution of hydraulic 
stress and carbon gain in trees for present-day conditions (1995–2014) 
and their response to future conditions (2081–2100).

2.1  |  HOTTER model description

HOTTER combines key physiological processes of photosynthe-
sis, autotrophic respiration, and plant hydraulics to simulate plant 
water status, carbon gain, and hydraulic stress. Here, we updated 
previous versions of the model (Mathias & Trugman, 2022; Trugman 
et al.,  2018), to include a new stomatal optimization, the Stomatal 
Optimization Based on Xylem Hydraulics (SOX) (Eller et al., 2018). In 
this new version, stomatal behavior is governed by a leaf scale trade-
off between the carbon gain of assimilation and a cost function based 
on the percent loss of conductivity in the tree xylem. The stomatal 
model was chosen to allow investigation of the response of the tree 
hydraulics to variations in traits and under future climate conditions.

HOTTER model meteorological forcings include atmospheric CO2 
concentrations (CO2, ppm), temperature (T, C°), vapor pressure deficit 
(VPD, Pa), and soil water potential (ψsoil, MPa). In addition, the tree model 
requires inputs or allometric equations for the state of the tree, leaf area 
(al, m2), height (h, m), and diameter at breast height (dbh, cm2). In these 
experiments, we use an observed dataset of height as an input, deter-
mine dbh via allometry, and determine leaf area through an optimiza-
tion that maximizes net primary productivity (NPP) over a given time 
period (Figures S4, S5, S8; see Section 2.1.3 for details). The hydraulic 
dynamics of the model are primarily controlled by three plant physi-
ological traits: the water potential and 50% loss of conductivity (P50, 
MPa); a slope parameter (b2 in the model) which governs how plant 
conductivity decreases with increased water stress (e.g., more negative 
plant water potentials); and the conductivity of the roots, xylem, and 
petioles (Kmax, mmol H2O m−1 s−1 MPa−1). In our experiment, we set the 
P50 values based on the maps (Trugman et al., 2020, p. 20) (Figure S2), 
kept the slope parameter fixed for parsimony, and determine the Kmax 
using an empirical function representing a safety versus efficiency trade-
off where higher conductivity values are associated with less negative 
(i.e., more vulnerable to hydraulic stress) P50 values (Figure S3). For the 
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entire experiment, we used an observed relationship between P50 and 
Kmax derived from Liu, Ye, et al. (2021) for angiosperms, which included 
the most observations and was broadly similar to gymnosperms.

HOTTER represents a tree canopy as a single leaf layer without 
shading and assumes that under average growth conditions, the two 
limiting photosynthetic rates should be equal resulting in a “maximum 
canopy efficiency” (Figure S5; Smith et al., 2019; Trugman, Anderegg, 
Wolfe, et al., 2019; Walker et al., 2014; see Section 2.1.2 for further 
details). The canopy efficiency is sensitive to temperature through a 
fixed Q10 response to temperature (Mathias & Trugman, 2022).

Finally, each tree organ, including leaf area, xylem, phloem, and 
roots, includes respiration that is also sensitive to temperature through 
a fixed Q10 response to temperature (Mathias & Trugman, 2022). The 
combination of these respiration terms, a 30% growth respiration, 
and carbon assimilation through photosynthesis allowed the model 
to predict gross primary productivity (GPP), autotrophic respiration 
(Rh), and the difference between the two—net primary productivity 
(NPP)—in different climates and for different traits and states of trees. 
Additionally, HOTTER diagnostic outputs include tree-level transpira-
tion (Tr), and the water potential (ψ) and percent loss of conductivity 
(PLC) for all of the tree's conductive elements: roots, xylem, and leaves. 
Model outputs are daily level and assume 12 h of daylight for carbon 
assimilation during the growing season and 24 h of respiration. See 
Table S1 for a summary of HOTTER parameterizations and outputs.

2.1.1  |  Incorporation of a cost–gain stomatal 
representation

The SOX stomatal model has shown skill in simulating stomatal re-
sponses to drought (Eller et al., 2018, p. 202) and cost–gain models 
have been developed to represent the hydraulic changes observed in 
the field (Anderegg et al., 2018; Sabot et al., 2022; Sperry et al., 2016, 
2017; Venturas et al., 2017, 2018; Wang et al., 2020). Our implemen-
tation of the SOX model uses the PLC of the xylem to represent the 
cost function (kxylem) and the assimilation rate (A) in the tree model to 
represent the gain function. Then for each daily time step, the optimal 
internal CO2 concentration, and thus stomatal conductance, to maxi-
mize the gain–cost function is determined (Equation 1).

to capture the dynamics from “leaky stomata” (Machado et al., 2021), 
we have included a minimum stomatal conductance of 0.002 mol m−2 s−1 
(Bonan,  2002, p. 246). Optimization was performed using the Scipy 
minimize function “fmin” (Virtanen et al., 2020).

2.1.2  |  Canopy efficiency

As a simplification, a tree canopy in HOTTER is comprised of a sin-
gle leaf layer and it is assumed that two limiting photosynthetic rates 
(i.e., the photosynthetic rate limited by the maximum rate of Rubisco 

carboxylation and the photosynthetic rate limited by the electron 
transport rate for the regeneration of ribulose-1,5,-bisphosphate) 
should be equal according to Smith et al. (2019), resulting in a “maxi-
mum canopy efficiency” under average growing conditions. For the 
calculation of canopy efficiency, we used a spatially varying clima-
tology during the growing season of insolation created from daily 
data (Figure S6d). Canopy efficiency is sensitive to temperature as in 
Mathias and Trugman (2022). Scaling productivity from the leaf to the 
canopy scale is accomplished by multiplying leaf scale productivity by 
total leaf area (Figure S5). Note that this scaling includes the simplify-
ing assumption of zero shading between leaves in the canopy.

2.1.3  |  Leaf area optimized for maximizing 
carbon gain

In all model experiments, the leaf area of the model tree in each cli-
mate grid cell was determined through optimizing tree carbon gain 
(i.e., the NPP) to maximize integrated NPP over the 20-year simula-
tion period (either 20-year historical or future climate period). As 
leaf area increased so did productivity (through the increased can-
opy size) but the carbon loss through respiration from leaves, stem, 
and roots (determined as proportional to canopy size) also increased. 
In addition, greater leaf areas increase transpiration, which increases 
hydraulic stress for a given ψsoil, triggering stomatal closure. The bal-
ance of these opposing mechanisms led to a unique (i.e., determina-
ble through optimization) leaf area for maximizing carbon gain. The 
optimization was performed using the SciPy optimization package in 
Python (Virtanen et al., 2020). The optimization method used was 
the “Nelder–Mead” with maximum iterations of 20 and a leaf area 
tolerance of 0.2.

2.2  |  Data sources

2.2.1  |  Daily meteorology (1995–2014)

Daily mean meteorology, including soil water potential, tem-
perature, and vapor pressure deficit, from the NASA Global Land 
Data Assimilation System Version 2 (GLDAS-2) was used as model 
forcing for the tree model (specifically, GLDAS Catchment Land 
Surface Model L4 daily 0.25 × 0.25-degree GRACE-DA1 V2.2 
[GLDAS_CLSM025_DA1_D_2.2] Li et al.,  2019, 2020; Figure  S6). 
The GLDAS-2 data are a combination of satellite and ground-based 
observations assimilated into land surface models. The data were 
primarily chosen because of a track record of use in modeling the 
land surface, relatively high spatial resolution (0.25°), and a daily 
time resolution which enabled model predictions for day-to-day 
variations in water stress. While the uncertainty due to meteorol-
ogy is not explored here, previous work predicting carbon fluxes has 
shown that the choice of driving meteorology can lead to variations 
of 9% in global gross primary productivity (Wu et al., 2017). The data 
can be downloaded from https://disc.gsfc.nasa.gov/.

(1)
�
(

A ⋅ kxylem
)

�
(

ci
) = 0
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The vapor pressure deficit was calculated from daily mean values 
of temperature and specific humidity. Soil water potential was calcu-
lated from root zone soil water content based on Campbell (1974) as 
implemented in Mathias and Trugman (2022).

2.2.2  |  Tree height

We determined tree height as a model input from remote-sensed 
observations of tree height from the Global Ecosystem Dynamics 
Investigation (GEDI) instrument and processed by the Global Land 
Analysis and Discover team at the University of Maryland (Potapov 
et al., 2021). The data are a snapshot of tree height from April to 
October 2019. The native resolution was 0.00025 × 0.00025 de-
gree and we re-binned the data to the 0.25 × 0.25-degree grid of the 
meteorology. Re-binning was performed through an area-weighted 
mean of the higher resolution observations to the coarser grid 
(Figure  S4). Note that while the coarsened mean values are rep-
resentative of each larger pixel, the native high resolution of the 
dataset shows there is also variability in height. This variability rep-
resents another dimension of uncertainty and potential acclimation 
not directly investigated in this paper (Figure S4b). In addition, abso-
lute uncertainty is likely to increase in tall dense forests such as the 
Pacific Northwest and Northeast (Liu, Cheng, & Chen, 2021). Data 
are available from https://glad.umd.edu/datas​et/gedi/.

2.2.3  |  CMIP6 downscaled future meteorology

To create a future climate scenario, the monthly changes in tempera-
ture and relative humidity from the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) (Eyring et al., 2016) climate models run for 
the SSP 3-7.0 emissions scenario (the medium to high end of the 
range of future forcing pathways in CMIP6) were combined with the 
daily GLDAS-2 meteorological data to create daily values for the fu-
ture. The CMIP6 models included in the analysis were ACCESS-CM2, 
ACCESS-ESM1-5, CanESM5-CanOE, MIROC-ES2L, MPI-ESM1-
2-LR, and MRI-ESM2-0THE. Downscaled model products publicly 
available (Anderegg, Chegwidden et al., 2022) were used.

Monthly climatology of each CMIP6 model's temperature mean 
and relative humidity were calculated for each grid cell for a his-
torical period (1985–2014) and for the SSP 3-7.0 future scenario 
(2081–2100). The median values of these climatology were then cal-
culated across the suite of six models to reduce biases represented 
in any one model. We employed the “delta” method to bias correct 
the climate data (Navarro-Racines et al., 2020) such that the differ-
ence between these future and historical periods was added to the 
daily values from GLDAS-2 to create daily data with mean monthly 
changes reflective of monthly average conditions during 2081–2100. 
For temperature, the new data were created through a simple addi-
tion of the monthly temperature delta to each daily value of tem-
perature. To better account for the nonlinearity of vapor pressure 
deficit in creating a future dataset, the relative humidity for each 

time period was first converted to specific humidity before calculat-
ing a delta between the time periods. This monthly delta in specific 
humidity was then added to the daily specific humidity derived from 
GLDAS-2. Finally, a new daily vapor pressure deficit was calculated 
from the new daily values of future temperature and specific humid-
ity. Note that while this method allows us to investigate changes in 
mean climate variables along SSP 3-7.0, it does not account for po-
tential changes in climate variability with climate change. While this 
work focuses on decadal trends in climate, future work on increases 
in variance and the frequency of extreme drought events could ex-
plore the impact of changes to water stress events.

2.2.4  |  Atmospheric concentrations of CO2

A constant atmospheric concentration of CO2 was used for both 
the present-day (1995–2014) and future (2081–2100) experiments. 
The constant values were averages of the observations at Mauna 
Loa (370 ppm) (Keeling et al., 2009, 2017) for the present day and 
taken from the CMIP6 SSP 3-7.0 emissions scenario for the future 
(753 ppm; O'Neill et al., 2016).

2.2.5  |  Hydraulic traits

The P50 maps used to parameterize the tree model across the conti-
nental United States are derived from Trugman et al. (2020), who used 
the USDA Forest Inventory and Analysis program (FIA) plot inventory 
data and a global database of species-level P50 measurements. For this 
study, the maps from Trugman et al. (2020) were gridded to 0.25° to 
reflect the same spatial scale as that of the meteorological forcing. We 
calculated several metrics of ecosystem diversity at the grid cell level 
designed to be reflective of commonly used diversity metrics in ecosys-
tem ecology representing alpha, beta, and gamma diversity. First, we 
calculated the grid-level mean community-weighted (CW) mean P50 
(weighted in each plot by species basal area, see Trugman et al. (2020)) 
based on all plots within a grid cell. We also calculated minimum and 
maximum plot CW P50 observed in the grid cell (CW least/most vul-
nerable). In addition, for each plot, we calculated the minimum and 
maximum P50 of species present in the plot and then calculated the 
grid-average min/max P50 across plots (plot least/most vulnerable). 
This was intended to characterize the maximum trait change that could 
be accomplished by changes in species relative abundance within a 
plot, without colonization of new species. Finally, we calculated the 
min/max P50 values using any species occurring in any plot within the 
grid cell (region least/most vulnerable; Figure S2) to represent the total 
possible trait diversity of species present in a grid cell that could plau-
sibly disperse to plots. Collectively, HOTTER model experiments with 
these complementary metrics of trait diversity enabled us to quantify 
the extent to which shifts in forest composition toward species with 
more drought-resistant species can accommodate climate stress and 
the extent to which range expansion of drought-resistant species may 
mitigate forest loss due to increased climate stress.
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The P50 values were used to determine the maximum conductivity 
value of the tree (Kmax) through observations of the safety versus effi-
ciency trade-off where lower values of P50 are accompanied by lower 
values of maximum conductivity (Figure S3). Here, we used the trade-
off fit to angiosperm observations determined in Liu, Ye, et al. (2021) 
which had the most observations and were similar to gymnosperm.

2.2.6  |  SPEI drought index

The Standardized Precipitation Evapotranspiration Index provides 
an integrated drought index for comparison with modeled predic-
tions (Vicente-Serrano et al., 2010). SPEI indicates a departure from 
a baseline climate and is thus relative to climate at each spatial point. 
The relative nature of SPEI can capture the water stress in trees 
caused by an abnormally dry year. The growing season (June, July, 
August) from the years 2000–2015 were used in this analysis and 
interpolated to the model resolution of 0.25° latitude longitude with 
a linear interpolation. The data were downloaded from https://spei.
csic.es/datab​ase.html on 11.18.2023.

2.2.7  |  Climatological water deficit

Climatological water deficit was used to determine dry regions 
(greater than 100 mm average monthly deficit during the growing 
season (June, July, August)) and wet regions (<100 mm average 
monthly deficit during the growing season (June, July, August)). 
We used the climatology of climatological water deficit from 
TerraClimate calculated between 1981 and 2010 and regridded 
through linear interpolation to the 0.25 degree HOTTER resolution 
(Abatzoglou et al., 2018). The data were downloaded as a netCDF 
from http://thred​ds.north​westk​nowle​dge.net:8080/thred​ds/catal​
og/TERRA​CLIMA​TE_ALL/summa​ries/catal​og.html on 02/13/2023.

2.2.8  |  HOTTER model validation

HOTTER has been validated against observational data of leaf area 
adjustment (Trugman, Anderegg, Wolfe, et al., 2019) and plant carbon 
balance (Mathias & Trugman,  2022). In addition, we find that present 
hydraulic stress in our runs with HOTTER (as represented by the 90th 
percentile of PLC and the stressed seasons experienced from 1995 to 
2014) show skill in separating regions with high tree mortality for both 
dry and wet regions (Figure  3). To test this separation, we performed 
the Mann–Whitney U-test (test for difference in distributions) (Mann & 
Whitney, 1947) and the t-test (difference in mean values) (Yuen, 1974) 
between the observed mortality in two bins of HOTTER hydraulic stress. 
The SciPy package in python was used to perform both tests (Virtanen 
et al., 2020; see Table S2). This relationship between modeled hydraulic 
stress and mortality, along with previous model validation, supports the 
utility of HOTTER in exploring the present-day and future hydraulic stress 
of forests in the contiguous United States. In addition, HOTTER shows 

an increased ability to separate areas of mortality versus other points 
when compared with the purely climate-driven SPEI index (Figure 3).

2.2.9  |  Change in percent loss of hydraulic 
conductivity

Where the percent loss in hydraulic conductivity (PLC) is reported, we 
use the 90th percentile calculated on the time series of days to highlight 
the days with higher stress as well as the difference between 90th per-
centiles in the present and future. To match this, we also report the 10th 
percentile (most stressed) days of the leaf water potential in Figure 1. 
For the present-day histograms, we present only the days more nega-
tive (greater) than the 10th (90th) percentile for water potential (PLC) 
(Figure 1; Figure S9). For the difference with the future, we present the 
difference between days that are more negative (greater) than the 10th 
(90th) percentile for water potential (PLC) (Figure 1; Figure S9).

2.2.10  |  Defining a hydraulically stressed season

Here, we defined a season with potentially damaging hydraulic 
stress as a season with any 1 day exceeding a PLC >50%. In the 
present-day runs, we found that points that had at least one stressed 
season had more mortality (as measured in (Anderegg, Chegwidden, 
et al.,  2022)) than points with zero stressed seasons (Figure  3). 
The distributions of mortality separated in this way were signifi-
cantly different (p ≪ .001) by both a Mann–Whitney U test (Mann & 
Whitney, 1947) and t-test (Yuen, 1974) as implemented in the Scipy 
package in Python (Virtanen et al., 2020) (see Table S2).

2.2.11  |  Uncertainty analysis of future differences

We performed a bootstrap analysis to estimate the uncertainty in the 
difference of the 90th percentile PLC values (and 10th percentile leaf 
water potential values), as well as their differences. To perform the 
bootstrap analysis, we randomly selected 50% of the modeled days 
from the present, future, and both when doing a difference. We did this 
100 times with replacement of days and calculated the 90th percentile 
each time for the present and future, as well as 100 times before calcu-
lating the difference between them. Uncertainty is reported as the 5–
95th range of this ensemble of estimates. The 5–95th range is reported 
in Figure S10. Stippling was provided in Figures 1e–g and 5a,b where a 
difference had more than 5% of the distribution less than zero.

2.3  |  Experimental setup

2.3.1  |  Present-day runs 1995–2014

HOTTER experiments for the present day were run at a daily time 
step over the growing season (June, July, August) for the 20 years 
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F I G U R E  1  Climate change increases chronic hydraulic stress while geographic gradients in aridity and hydraulic traits mediate patterns 
of plant water status and stress. Model-predicted most stressed (10th percentile) daily leaf water potential (a) and most stressed (90th 
percentile) daily plant percent loss in conductivity (PLC) (c) calculated from 1995 to 2014 growing seasons. Change (future—historical) in 
the percentile of most stressed daily water potential (e) and the percentile of most stressed daily difference in PLC (g). Negative values in 
(e) indicate future decreases in plant water availability and positive values in (g) indicate future increases in stress. Maps show results for 
simulations parameterized with community mean hydraulic traits (CW mean). Histograms (b, d) include the 10% most stressed days, (f, h) 
include the difference between the 10% most stressed days in the present and those days in the future for each grid cell for hydraulic trait 
maps ranging from most drought vulnerable to least drought vulnerable species in a grid cell; “regional” corresponds with the most extreme 
trait values in a 0.25° grid cell, “plot” corresponds with average within-plot trait extremes, “CW” represents the min/mean/max community-
weighted means across all forested plots in a grid cell. (e, g) Black stippling notes areas where the points are where the 5–95th percentile 
overlaps zero. Map lines delineate study areas and do not necessarily depict accepted national boundaries.

 13652486, 2023, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16847, W

iley O
nline Library on [20/09/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    |  5421QUETIN et al.

from 1995 to 2014 and across the continental United States at a res-
olution of 0.25 × 0.25 degrees latitude and longitude. The continen-
tal United States was chosen for the availability of daily estimates 
of soil water content and the mapped observations of P50 trait 
values. HOTTER forcings include temperature, vapor pressure defi-
cit, soil water potential, height, and the average CO2 for the period 
(370 ppm). In addition, the P50 values were taken from the mapped 
observations of P50 trait values. Seven separate experiments were 
done for each of the seven sets of P50 values (Figure S2; Table S3). 
For each experiment, tree leaf area is adaptively acclimated to maxi-
mize NPP for the entire 20-year simulation.

We ran sensitivity tests with different trait distributions used to 
parameterize the model, including community-weighted hydraulic 
traits weighted by species basal area within a forest plot, as well as 
the least and most vulnerable hydraulic traits co-located both within 
a plot and within a 0.25° climate grid cell (Figures S2 and S3). These 
sensitivity tests represent the range of scenarios where there may 
be shifts in plot composition toward species with more drought-
resistant plant hydraulic traits or expansion of drought-resistant 
species to new stands within a region (i.e., a 0.25° climate grid cell 
where seed dispersal may be possible).

2.3.2  |  Future runs 2081–2100

For the future runs, daily meteorology for temperature and vapor 
pressure deficit were created using the median values of the change 
in climate predicted by six models participating in CMIP6 for the 
“medium” SSP3-7.0 scenario that we chose to best match expec-
tations for the trajectory of CO2 emissions (see Data Sources). In 
addition to changing temperature and vapor pressure deficit, we 
applied a mean value of the change in atmospheric CO2 concentra-
tions (753 ppm). For these future experiments, we left the soil water 
potential unchanged from the present day as there is large uncer-
tainty in soil water content change across models and the general 
prediction is that there will be relatively small changes (Mathias & 
Trugman, 2022). For future runs, we ran a number of different sce-
narios: with and without leaf acclimation, and attributing change 
to each of temperature, vapor pressure deficit, and atmospheric 
concentrations of CO2. Collectively, these experiments enabled us 
to quantify the impact of individual future climate factors on for-
est stress and the extent to which adaptive acclimation in leaf area 
within a species may mitigate increased climate stress. See Table S3 
for the experimental summary.

2.3.3  |  Leaf acclimation

Future runs were performed using both the leaf area determined 
from the optimization in the present (“Fixed Leaf Area”) and for leaf 
area that was optimized to maximize NPP over the future (2081–
2100) period where temperature, vapor pressure deficit, and atmos-
pheric concentrations of CO2 change to expected future conditions 

consistent with the SSP 3-7.0 scenario in CMIP6 (“Acclimated Leaf 
Area”) (Figure 4; Figures S8 and S12).

2.3.4  |  Factorial runs

We quantified the effect of individual future climate factors, the 
adjustment of leaf area, and hydraulic trait diversity with a set of 
factorial experiments using the tree hydraulic model. We systemati-
cally included individual future forcings in isolation for the follow-
ing climate factors combined with historical climate variables for the 
rest of the model forcing: VPD, atmospheric CO2, and temperature 
(which impacted tree respiration and photosynthetic chemical reac-
tions according to Mathias and Trugman (2022), but not VPD). We 
also tested the effect of adjustments in leaf area with experiments 
where leaf area remained optimized to historical conditions (“fixed 
leaf area”) rather than being able to adjust to the future climate (“ac-
climated leaf area”) (Figure S8).

2.4  |  Software

The numerical modeling and analysis were performed in Python 
with the support of Anaconda installation with particularly heavy 
use of the following open-source modules: NumPy, Scipy, Xarray, 
Matplotlib, Cartopy (Hoyer & Hamman,  2017; Hunter,  2007; Met 
Office, 2010; van der Walt et al., 2011; Virtanen et al., 2020).

3  |  RESULTS AND DISCUSSION

We first generated continental-scale maps of plant water status for 
the historical period for two widely used diagnostics of plant water 
status and water stress (respectively), leaf water potential, and per-
cent loss in hydraulic conductivity (PLC). PLC characterizes the ex-
tent to which tree xylem transport vessels or tracheids are blocked 
by air bubbles formed by hydraulic stress which can be induced 
either by low water availability, high evaporative demand, or both 
(Venturas et al., 2017). Elevated PLC values have been linked to el-
evated tree mortality (Anderegg et al., 2015; Venturas et al., 2018). 
To capture the period of maximum stress in trees, we focus on days 
when leaf water potential was in the 10th percentile (e.g., the most 
negative leaf water potentials) and PLC was in the 90th percentile 
(e.g., PLC was highest) in each forested grid cell (see Material and 
Methods). We found that historical leaf water potential varied sub-
stantially across space due both to variations in aridity and hydraulic 
traits. The drier areas in the western United States had much more 
negative leaf water potentials, both because of drier soils and higher 
vapor pressure deficits (VPDs), and also because of the biogeo-
graphic ranges of more drought-tolerant tree populations that have 
more resistant hydraulic traits which allow trees to continue func-
tioning at more negative water potentials without risking hydraulic 
damage (Figure 1a). Regions already experiencing elevated hydraulic 
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stress in historical simulations included dry regions such as the US 
Mountain West where many species are resistant to water stress 
but climate change has increased drought frequency and severity 
(Diffenbaugh et al., 2015; Marvel et al., 2021). Despite wetter base-
line conditions, parts of the Midwest and eastern United States also 
saw elevated PLCs because of more hydraulically vulnerable trait 
compositions (Figure 1c). This may be due in part to microsite varia-
tions in water availability that are not captured by our climate forc-
ing, resulting in overprediction of stress in some midwestern areas 
where forest cover is sparse and restricted to riparian areas. Also, 
note that parts of the Midwest that show large stress in the present 
day are also some of the most uncertain regions (Figure S10).

With projected increases in temperatures and VPDs circa 
2081–2100 for an intermediate climate change scenario (shared 
socio-economic pathway (SSP) 3-7.0 emissions scenario), we found 
increases in the 90th percentile of daily PLC, indicating system-
atic increases in chronic stress throughout the United States 
(Figure 1e,g). However, with leaf area acclimation, the northeastern 
United States showed reduced chronic stress due to tree model ad-
justments to lower leaf area associated with warmer temperatures 
(Figures S7–S10). In regions of the South and Mountain West, the 
systematic increases in stress are occurring under novel combina-
tions of temperature and VPD not represented in the present-day 
climate (Figure  S11). Such novel climates make it particularly im-
portant to understand the fundamental mechanistic trade-offs that 
trees face with increasing climate stress. Interestingly, warmer fu-
ture temperatures increased the respiratory cost of leaves relative 
to their carbon gain potential, reducing leaf area enough to amelio-
rate hydraulic stress (Materials and Methods). Depending on spe-
cies' drought vulnerability, some increases in PLC were mediated 
by more drought-resistant traits either within local forest plots or 
the regional climate grid cell (Figure  1b,d,f,h). However, locations 
throughout the Mountain West, Midwest, and Southeast were 
found to be already experiencing potentially lethal levels of stress 
(Figures 1c and 2a). Climate stress in these regions is expected to 
accelerate under future climates (Figures 1e–g and 2b,c), a pattern 

that has been documented in numerous observational studies of 
widespread tree mortality (Anderegg et al.,  2012; Anderegg, Wu, 
et al., 2022; Breshears et al., 2005, p. 20015; Hammond et al., 2022; 
Figure 3a–d).

Model-predicted hydraulic stress, either through elevated PLC 
or stressed seasons, corresponded well with forest inventory-
observed elevated mortality (Figure 3a–d). While tree mortality has 
proven difficult to predict, we find that high values of present-day 
PLC or stressed seasons in the model relate to higher levels of ob-
served mortality and offered substantial improvements over stan-
dard drought metrics such as SPEI (Figure 3e,f; Kolb, 2015; Mathias 
& Trugman,  2022; Venturas et al.,  2021). Specifically, we find sig-
nificantly elevated rates of mortality at grid points where the 90th 
percentile of daily PLC is greater than 25% or where there has been 

F I G U R E  2  US forests are already experiencing growing seasons 
with potentially lethal levels of hydraulic stress, a trend which will 
likely continue with future climate change. The number of stressed 
historical growing seasons (a). Change in stressed growing seasons 
between historical and future climates with adaptive acclimation in 
tree leaf area (b) and difference (e.g., leaf acclimation effect) in the 
future with and without leaf area acclimation (c). Maps show results 
for simulations parameterized with community mean hydraulic 
traits. Gray coloration indicates no seasons with PLC >50%. For 
(a), redder colors indicate more seasons with PLC >50% with a 
maximum of 20 seasons over the 20-year historical simulation 
period. For (b, c), redder colors indicate an increase in the number 
of seasons with PLC >50% (e.g., an increase in potentially lethal 
stress), yellow indicates the same number of seasons with PLC 
>50% (e.g., no change in potentially lethal stress, but lethal stress 
predicted), blue indicates a decrease in seasons with PLC >50% or 
(b) between future climates with and without adaptive acclimation 
in leaf area. Map lines delineate study areas and do not necessarily 
depict accepted national boundaries.

 13652486, 2023, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16847, W

iley O
nline Library on [20/09/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License
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at least one stressed season in the study period—this is true for both 
dry and wet regions (Figure  3a–d). In addition, we find no signifi-
cant difference or a negative response (less mortality with stronger 
drought) when dividing the mortality observations with the SPEI 
drought index (Figure 3e,f; Vicente-Serrano et al., 2010). The ability 
of the physiologically based model using observed hydraulic traits 
to identify points with a higher risk of mortality supports the utility 
of the model in predicting change in plant hydraulic stress beyond 
climate alone (as represented by the SPEI drought index).

Model projections indicate that most of the stressed daily PLC 
values will increase by ~1–2% with future climate change. While this 
increase in PLC appears small in comparison to the measurement 
precision of current hydraulic techniques (Venturas et al., 2017), this 
across-the-board increase in chronic stress is concerning for long-
term forest health because it represents a shift in baseline stress 
conditions during times of already high stress (related to tree mor-
tality (Figure  3)), which feedback to further decrease plant health 

through “cavitation fatigue” (Hacke et al., 2001), or legacy effects on 
growth (Anderegg et al., 2015). Our results show that the majority 
of US forests may face elevated chronic stress moving forward that 
will be compounded when trees experience expected increases in 
acute stress due to higher frequency droughts associated with novel 
climate extremes (Diffenbaugh et al., 2015). This means that even 
drought-resistant species may become more vulnerable to drought 
events over time due to chronic mechanical stress in hydraulic tis-
sues that results in higher conductivity losses at less negative water 
potentials (e.g., at higher water availability) for the same tree due to 
cavitation fatigue (Hacke et al., 2001).

Projected stress effects varied by region due to the wide cli-
mate and trait gradients across the United States. We compared 
the effects of future climate factors, traits, and leaf acclimation in 
the diverse regions of the cool and wet Pacific Northwest (PNW) 
with projected more moderate changes in temperature and VPD, 
the cool and wet Northeast (NE) with projected larger changes in 

F I G U R E  3  The plant hydraulic model substantially increases predictive skill for drought mortality compared to standard drought metrics 
in both dry and wet climates across United States. Comparison of the mortality with 90th percentile of daily PLC modeled for the present 
for unstressed (PLC <25%) or stressed (PLC >25%) for (a) dry regions, (b) wet regions. Comparison mortality and the occurrence of a stressed 
season for (c) dry regions and (d) wet regions. Comparison of mortality and the driest 10% of SPEI drought index for the growing season in 
(e) dry regions and (f) wet regions. (g) Dry and wet regions of the United States determined by climate water deficit. Mortality is measured as 
the distribution of the percent basal area mortality observed in the US Forest inventory for climate grid cells. For (a, b, e, f), the point shading 
represents the density of points. For (a–f), center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range. (a–f) 
If distributions represented by boxplots pass the Mann–Whitney test plot brown diamond or t-test (purple plus), see Table S2.
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temperature and VPD (Figure S7), the hot and dry Mountain west 
(MW), and the hot and wet South (Figure 4; Figure S12). Across all 
locations, all else equal, elevated CO2 levels had an ameliorating ef-
fect on water stress due to increased water use efficiency (Walker 
et al., 2021). Projected increases in VPD increased stress across all 
regions, though the magnitude of this effect varied widely depend-
ing on the region. Temperature change did not have a large effect 
with fixed leaf area. We also found that both traits and adjustment in 
leaf area had the potential to alter future forest stress. In particular 
and depending on location, adjustment in leaf area to maximize car-
bon gain could reduce the increase in the 90th percentile of PLC be-
tween historical and future by >5.4%, even reversing the sign so that 
some locations saw a decrease in stress with future climate. Note 
that leaf area acclimation had little impact on stress in the Pacific 
northwest, while the stress reversal effect occurred in locations 
where high temperature drove declines in leaf area—particularly the 
NE. Potential range expansions of drought-resistant species within 
a grid cell that changed community hydraulic trait values also ame-
liorated PLC stress, though the effect was more moderate (>2.1%, 
between the least and most drought vulnerable traits at a grid point).

We calculated the extent to which biogeographic shifts and 
changes in community trait composition are required to avoid pro-
jected future increases in chronic (90th percentile daily PLC) stress 
and compared these values to observed shifts in community-weighted 
traits (i.e., trait velocities or the change in community-weighted trait 
values over time) derived from the US Forest Inventory and Analysis 
database. We found that across the United States, almost all loca-
tions required some shift in forest hydraulic traits to avoid increased 
stress (Figure 5). In instances where leaf area adjustment was not 

possible, 72.5% of forested grid cells required a shift in composition 
comparable to the community mean of the most drought-resistant 
forest plot within the grid cell (51.7% with leaf area adjustment) 
(Figure 5a,b). Furthermore, 12.3% (10.0% with leaf area adjustment) 
of grid cells did not have sufficiently drought-resistant traits to 
mitigate increases in stress. Finally, only 2.2% of cells (33.6% with 
leaf area adjustment) required no shift in composition whatsoever 
to avoid future climate stress. Although we found substantial over-
lap in the distributions of the observed trait velocities and model-
required trait velocities to maintain historical levels of PLC stress, 
mean velocities required to maintain historical stress were an order 
of magnitude higher than what was quantified from the observations 
based on forest inventory data (−0.0143 MPa year−1 needed without 
leaf area acclimation vs. −0.0022 MPa year−1 observed) (Trugman 
et al., 2020) and 81% of grid cells had observed trait shifts that were 
slower than required in the model to avoid increased stress (47% 
with leaf area acclimation). The mismatch between required and 
observed trait velocities indicates that current shifts in forest trait 
composition are not sufficient to avoid increased hydraulic stress 
from climate change.

The size of the effect of leaf area allocation on our projections 
of stress in the future highlights the power of acclimation for for-
ests under future conditions. However, carbon allocation strategies 
under future climate conditions and increased atmospheric CO2 
remain uncertain (De Kauwe et al.,  2014). While we assume that 
carbon will be allocated to leaves to maximize carbon gain in this 
study—the tree balances water stress with carbon gain through its 
impact on photosynthesis—it is possible that trees will instead allo-
cate carbon for other reasons (e.g., competition for water and light 

F I G U R E  4  Projected stress effects of climate change on forests varies by region due to large gradients in aridity and traits across the 
continental United States. Regional (shown in panel a in blue) changes in the most stressed 10% of the daily percent loss of conductivity for 
the Pacific Northwest (PNW) (b), North East (NE) (c), Mountain West (MW) (d), and South East (e). Individual bars show changes attributed to 
the full combined climate change effect (Full), future vapor pressure deficits (VPD), temperature (Temp), and CO2 (eCO2) with fixed leaf area 
and the full combined effect with adaptive acclimation of leaf area to maximize carbon gain. Values are for the community-weighted (CW) 
P50 map, the rest of the permutations in trait values are shown in Figure S12. Map lines delineate study areas and do not necessarily depict 
accepted national boundaries.
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[Farrior et al., 2013]). The ability to avoid some future stress through 
acclimation highlights the need to incorporate leaf area allocation 
strategies in response to plant water stress in prognostic terrestrial 
biosphere models along with the demographic changes in the eco-
system (Fisher et al., 2015; Trugman, Anderegg, Wolfe, et al., 2019).

Predicting biogeographic transitions in forest species across cli-
mate gradients from first principles has been an unsolved problem 
in the ecological and vegetation modeling communities for over a 
decade (Fisher et al.,  2015). Here, we use a hydraulically enabled 
vegetation model parameterized with a hydraulic trait database and 
high-resolution surveys of species distribution and abundance to di-
agnose current and future projected climate stress of US forests. 
We find that climate change will likely increase chronic water stress 

in US forest, potentially resulting in shifts in the composition and 
biogeography of forests toward more drought-tolerant trees, even 
with within-species leaf area acclimation. Without shifts in forest 
composition or acclimation, increased water stress may acceler-
ate tree mortality, offsetting potential carbon sink gains from CO2 
fertilization.
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F I G U R E  5  Species range shifts could buffer against future climate-induced hydraulic stress in a majority of locations, but observed 
trait velocities are not currently keeping pace with the required compositional shifts to mitigate increases in stress. Shift in P50 under 
future climates relative to current community mean P50 required to avoid increased hydraulic, without (a) and with (b) adaptive leaf area 
acclimation in future climates. Gold, orange, and brown indicate at least some shift toward more drought-resistant (more negative) P50s is 
required to avoid increased chronic daily stress. Dark gray values are areas where no P50 values within the region are sufficient to avoid 
increased hydraulic stress. Turquoise indicates that no shift in P50 is required to avoid increases in stress. Purple, green, and pink indicate 
that shifts toward more drought vulnerable P50 values (less negative) are possible without increasing stress. Circles indicate the relative 
abundance of grid cells associated with each color. (c) The distribution of P50 velocities observed (gray) from the US Forest Inventory across 
the continental United States compared to model required values in (a, b) for predictions with a fixed leaf area (blue) and acclimated leaf area 
(red). (a, b) White stippling notes areas where the points are where the 5–95th percentile overlaps zero. Map lines delineate study areas and 
do not necessarily depict accepted national boundaries.
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