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ABSTRACT 
A novel method based on molecular dynamics (MD) is developed to make the kinetic phase-field 
(PF) model quantitative in predicting non-equilibrium crystal growth during rapid solidification. 
MD-calculated variations of the diffuse solid-liquid (SL) interface width versus interface velocity 
are used to parameterize the kinetic PF model. Two approaches are adopted to study temperature 
independent and temperature dependent interfacial properties on the accuracy of predictions. MD 
simulations of slow and rapid solidification regimes for an fcc metal (Ni) show that the SL interface 
width decreases by increasing the solidification velocity. Fitting the dynamic response of the 
interface width to the traveling wave solution of hyperbolic PF equation determines the target SL 
interfacial properties, namely propagation velocity and diffusion coefficient. Independently, the 
MD calculations of nonlinearity in velocity versus undercooling is used to validate the atomistic-
informed kinetic PF model. Both parabolic and kinetic PF models parameterized by temperature-
independent material properties can accurately simulate the linear portion of near-equilibrium 
crystal growth during solidification. However, they both fail to predict the crystal growth kinetics 
during rapid solidification. The kinetic PF model parameterized with the temperature-dependent 
SL interfacial properties can accurately predict both the equilibrium and non-equilibrium crystal 
growth during slow and rapid solidification. MD simulation results on Ni along with some 
analytical analysis on the variation of interface width versus interface velocity show that for fcc 
metals, in general, {110} interface has a smaller propagation velocity in comparison to {100} 
interface, resulting in a larger non-linear behavior at smaller undercooling. 
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1. INTRODUCTION  
Recent technological advancements in manufacturing processes enable access to cooling rates 

as high as 106-107 (K/s) for processes such as melt spinning and laser melting [1-5]. Obtaining 
such a large cooling rate and the resulting large solidification velocity requires imposing a high 
thermodynamic driving force [6-11]. For temperatures close to the melting point, a linear 
correlation is held between the solidification velocity and undercooling [12]. A larger drop in 
temperature below the melting point decreases the mobility of atoms, which decreases the kinetics 
of solidification and slows down the interface velocity. Various theoretical [13-16] and 
computational models [17, 18] are developed to investigate non-equilibrium crystal growth.  
 
1.1. Kinetic Growth Models 

The diffusion-limited theory (DLT) [13, 14] and the collision-limited theory (CLT) [15, 16] 
provide a quantitative description of the solidification kinetics. Depending on the sort of particles 
and the conditions for their detachment/attachment from/to the solid-liquid (SL) interface, these 
two theories satisfactorily describe the interface velocity with a relatively small driving force, i.e., 
for relatively small values of overheating or undercooling of pure material. Indeed, experimental 
and atomistic modelling data show the existence of a good quantitative description in the narrow 
temperature range around the melting point where the interface velocity linearly depends on 
overheating/undercooling [17, 19, 20]. With the increase of the driving force, the predictions of 
DLT and CLT clearly contradict the data of atomistic modelling [21]. The quantitative 
disagreement between DLT and CLT occurs in the temperature range where the interface velocity 
exhibits non-linearity depending on the increased undercooling at the interface [22, 23]. The non-
linearity presents a maximum at a fixed undercooling [24] and the value of maximum depends on 
saturation [25]. 
 
1.2. Phase-Field Models  

Phase-field (PF) models based on the partial differential equations of the parabolic type (i.e., 
parabolic PF models) have been applied to estimate crystal growth kinetics [26-34]. These models 
provide quantitative predictions of microstructure evolution only at low solidification velocities 
and small driving forces of solidification [35-37], and they are unable to simulate high 
solidification velocities caused by large driving forces. Indeed, the vanishing chemical potential 
gradient jump at the interface, which is a basic theoretical statement of parabolic PF models, 
implies the instant establishment of local thermodynamic equilibrium. This instant-appeared 
fluxes avoid the details of local diffusional changes and microstructural reconstructions, which are 
principally substantial in rapid solidification where non-linearity in the crystal growth kinetics is 
expected. As a result, the parabolic PF models are unable to predict the behavior of the interface 
motion under a wide range of driving forces, specifically, the non-linearity in the velocity-
undercooling relationship obtained in molecular dynamics (MD) simulation of rapid solidification 
[38]. 
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Several modifications have been proposed to improve the predictions of the parabolic PF 
models as they are applied to investigate rapid solidification. Non-linear driving forces at large 
undercooling [39, 40] or temperature-dependent material properties [41] were introduced as an 
alternative method to address the shortcomings of parabolic PF models. However, the accuracy of 
these models drops in the regimes where nonlinearity governs the velocity-undercooling 
relationship. Bragard et al. [39] modified the driving force term in the PF free energy formulation 
from a linear to a power-law dependence on undercooling to manipulate the onset of velocity-
undercooling deviation from linearity. However, this modification was not physics-based, and the 
power-law correlation depended on the 1D solution of the PF model. Attempts to describe non-
linearity in the crystal growth kinetics using the parabolic PF model are limited so far to a small 
interval of driving forces [42] in comparison with the wide range of undercooling attained in 
atomistic simulations [22, 24, 43].  
 
1.3. Rapid Solidification as a Local Non-Equilibrium Process with Violating Ergodicity 

In rapid solidification, the time necessary for freezing of local volumes might have a 
microscopic scale comparable with the time required for establishing local thermalization and local 
thermodynamic equilibrium. In other words, SL interface velocity may become comparable to the 
rate of leveling out of the structural and/or chemical inhomogeneity in the local volume of the 
sample. In this case, the process of solidification is defined as the rapid solidification due to the 
intense attachment of the particles from liquid to solid at a large driving force [9-11]. Similarly, 
the high-frequency nucleation of crystals and their propagation in the volume (for instance, 
through the explosive mechanism) may result in fast freezing of the sample [44].  

In the case of pure substances, the interface velocity should be comparable to the speed of heat 
propagation or to the characteristic maximum speed of the order parameter. Thus, rapid 
solidification is defined by the absence of time for local thermalization, i.e., local relaxation of 
heat, or local chemical/structural relaxation, that leads to the violation of ergodicity [11]. 

To achieve local equilibrium in pure substances at large driving forces, the relaxation of the 
gradient flow as the relaxation of the rate of change of the order parameter (φ) is used in 
consistency with the formalism of irreversible thermodynamics [44].. Therefore, the equation of 
order parameter evolution includes both the temporal change of gradient flow, 
(acceleration: 𝜕𝜕(𝜕𝜕φ 𝜕𝜕𝜕𝜕⁄ ) 𝜕𝜕𝜕𝜕⁄ ), as well as the relaxation of order parameter (velocity: 𝜕𝜕φ 𝜕𝜕𝜕𝜕⁄ ).  

Using the PF relaxation together with the gradient flow relaxation is the key difference between 
the kinetic PF model and the existing parabolic ones [45, 46]. The kinetic PF model is based on 
the transport and interface dynamic equations as the partial differential equations of hyperbolic 
type. This hyperbolic dynamic gradually transforms into parabolic transport and parabolic PF 
dynamics by decreasing the driving force.  
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1.4.The Kinetic Phase-Field Model and Its Parameters 
The kinetic PF model is based on the hyperbolic equations, including the first and second 

derivatives of the order parameter with respect to time. This model allows the process analysis to 
be performed at short time periods comparable with the freezing of local volumes. Thus, one can 
quantitatively evaluate the locally non-equilibrium states [17, 18]. These states are responsible for 
the nonlinearity in the interface velocity as observed in experimental studies of glass formation 
alloys [46] or MD simulations [17, 18, 22, 47-49]. 

In addition to the known capillary and kinetic parameters of the parabolic PF models, such as 
interface mobility and diffusion coefficients, the kinetic PF model depends on an additional 
parameter, namely the relaxation time for the gradient flow. Currently, this parameter is manually 
tuned in such a way that it provides a fit of the kinetic PF model predictions to the MD or 
experimental solidification velocity versus undercooling data [17, 18, 47, 48, 50]. These previous 
studies only showed the potential of the kinetic PF model in predicting the growth and melting of 
crystals. To investigate the efficiency of the kinetic PF model in simulating solidification under 
large driving forces, one needs to first provide a quantitative description of the kinetic model by 
relating the relaxation time to material properties that are obtainable from MD simulation or 
experiments. To the best of our knowledge, there are no reports on experimental measurement of 
these properties. Therefore, an atomically informed kinetic PF model should be developed, starting 
from the previous advancements of the atomically informed parabolic PF models. 

MD simulations can provide SL interfacial properties that are essential for parametrizing 
parabolic PF models of solidification, such as anisotropic SL interface energy [51-53], growth 
kinetic coefficient [54, 55], and diffuse interface velocity [55, 56]. These measurements and 
calculations have led to the development of multi-scale computational frameworks for 
investigating the microstructure evolution during solidification of metals [40, 41] and alloys [57] 
based on parabolic PF models.  

In the present study, we integrate MD simulations with a kinetic PF model to develop a 
computational framework for multiscale modeling of both slow and rapid solidification. We study 
solidification from Ni melt, and we test the kinetic PF model predictions versus MD calculations 
of velocity-undercooling trends. We first develop a method for obtaining the kinetic PF parameters 
using MD calculations of the target material properties, namely the maximum PF propagation 
speed and PF diffusion coefficient. Then, we use independent MD results of nonlinearity in 
velocity versus undercooling to test the kinetic PF model predictions. We show the high accuracy 
of the kinetic PF model in a wide range of solidification rates, which can open up the possibility 
of its application to significant practical problems and phenomena occurring in additive 
manufacturing, atomization, melt spinning, laser annealing, among others [51]. 
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2. METHODOLOGY 
 
2.1. Phase-Field Modeling 

The evolution of order parameter, φ, in the kinetic PF model is described by the partial 
differential equation of the hyperbolic type [58]:  
 

𝜏𝜏φ
𝜕𝜕2φ
𝜕𝜕𝑡𝑡2

+
𝜕𝜕φ
𝜕𝜕𝜕𝜕

= −𝑀𝑀φ �
δ𝐹𝐹
δφ
� (1) 

where 𝐹𝐹 is the free energy, 𝑀𝑀φ is the mobility, and  𝜏𝜏φ is the relaxation time of the gradient flow 
which helps to describe the non-linear behavior of the SL interface velocity at large driving forces 
[17]. The first term in the left-hand side of Eq. (1) describes relaxation of the gradient flow 
(acceleration), and the second term gives the relaxation of the PF itself (velocity). Both relaxations 
proceed under the driving force proportional to δ𝐹𝐹 δφ⁄ , which is given by the right-hand side of 
Eq. (1). With  𝜏𝜏φ → 0, Eq. (1) transforms to the equation of Mandel’sham and Leontovich [59] 
which is also known as the time-dependent Ginzburg-Landau equation [60, 61] in the parabolic 
PF model (see Ref. [62] and references therein). From Eq. (1), in particular, it is easy to obtain an 
equation for the propagation of bacteria (the Fisher-Kolmogorov-Piskunov-Piotrovsky equation of 
diffusion with a delay [63, 64]) or an equation for describing "order-disorder" (the Allen-Сahn 
equation [65, 66]). 

The total free energy of the system can be written in the form of Ginzburg-Landau type free 
energy:  

 
𝐹𝐹 = ��

𝜀𝜀(𝑛𝑛�)2

2
|𝛻𝛻𝛻𝛻|2 + 𝑓𝑓𝑑𝑑𝑑𝑑(𝜙𝜙,𝑇𝑇)� 𝑑𝑑𝑑𝑑 (2) 

 𝑓𝑓𝑑𝑑𝑑𝑑(𝜙𝜙,𝑇𝑇) = 𝑤𝑤𝜙𝜙2(1 − 𝜙𝜙)2 + 𝜙𝜙3(10 − 15𝜙𝜙 + 6𝜙𝜙2)
𝛥𝛥𝛥𝛥𝑚𝑚
𝑇𝑇𝑚𝑚

(𝑇𝑇 − 𝑇𝑇𝑚𝑚) (3) 

The first and second terms in Eq. (2) are the excess free energy due to the interface and bulk free 
energy density (𝑓𝑓𝑑𝑑𝑑𝑑), respectively. 𝑤𝑤 is the height of the double well,  𝛥𝛥𝛥𝛥𝑚𝑚 is the enthalpy of 
fusion, and 𝑇𝑇𝑚𝑚 is the melting point. Quantitative investigations of the kinetic process at the SL 
interface require an accurate estimation of the PF parameters for Eq. (1), namely 𝑀𝑀φ and 𝜏𝜏φ, based 
on the SL material properties. Similar to the thin interface analysis of Ref. [62], 𝑀𝑀φ is correlated 
to the anisotropic kinetic coefficient and the SL interface free energy [40]. Using MD technique 
for study of nickel (Ni) crystal growth, determination of capillary and kinetic properties of the 
diffuse interface between liquid and solid phases facilitates obtaining 𝑀𝑀φ.  

The hyperbolic Eq. (1) has the one-dimensional traveling-wave solution in the steady-state 
regime of the interface motion with the constant velocity, 𝑉𝑉 [67]. The solution is described by the 
hyperbolic tangent function of the following form: 𝜑𝜑(x − Vt)  =  0.5[1 − tanh (x − Vt) ℓ⁄ ], 
which is obtained under the following boundary conditions: 𝜑𝜑 → 1 as the moving coordinate is 
x − Vt → −∞ (crystal) and 𝜑𝜑 → 0 at x − Vt → +∞ (liquid). The crystal growth velocity V 
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(solidification regime) in this solution is given by: 

 
𝑉𝑉 =

𝜇𝜇 
 (𝛥𝛥𝛥𝛥)𝛥𝛥𝛥𝛥

�1 + �𝜇𝜇 
 (𝛥𝛥𝛥𝛥)𝛥𝛥𝛥𝛥 𝑉𝑉𝜑𝜑 (𝛥𝛥𝛥𝛥)⁄ �

2
 (4) 

The kinetic coefficient of growth 𝜇𝜇 
 , the maximum PF propagation speed 𝑉𝑉𝜑𝜑 , and PF diffusion 

coefficient 𝐷𝐷𝜑𝜑  in Eq. (4) are strong functions of the kinetic undercooling 𝛥𝛥𝛥𝛥 at the interface, and 
only 𝜏𝜏𝜑𝜑  is taken independent of temperature, which are given by 
 𝜇𝜇 

 (𝛥𝛥𝛥𝛥) =
𝛥𝛥𝛥𝛥𝑚𝑚
𝛾𝛾𝑇𝑇𝑚𝑚

𝐷𝐷𝜑𝜑 (𝛥𝛥𝛥𝛥) (5) 

 𝑉𝑉𝜑𝜑 (𝛥𝛥𝛥𝛥) = �𝐷𝐷𝜑𝜑 (𝛥𝛥𝛥𝛥) 𝜏𝜏𝜑𝜑 ⁄ �
1 2⁄

 (6) 
 

𝐷𝐷𝜑𝜑 (𝛥𝛥𝛥𝛥) = 𝐷𝐷𝜑𝜑0𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝐸𝐸𝐴𝐴 𝑘𝑘𝐵𝐵⁄
𝑇𝑇𝑚𝑚 − 𝛥𝛥𝛥𝛥

� (7) 

where  𝐷𝐷𝜑𝜑0  is the diffusion pre-factor, 𝐸𝐸𝐴𝐴 is the energetic barrier, and 𝑘𝑘𝐵𝐵 is the Boltzmann constant. 

The sharp-interface limit of the hyperbolic Eq. (1) has the form of an acceleration-velocity 
Gibbs-Thomson-type equation for the isotropic interface and an acceleration-velocity-Herring-
type equation for the anisotropic interface, see Ref. [68] and references therein. These two cases 
also define the second equation for the velocity dependent interface width, given by the following 
equation.   
 

ℓ =

⎩
⎪
⎨

⎪
⎧𝑙𝑙0,                                                                  𝑖𝑖𝑖𝑖  𝑉𝑉 = 0

𝑙𝑙0 �1 −
𝑉𝑉2

𝑉𝑉𝜑𝜑2
  �
1/2

,       𝑖𝑖𝑖𝑖  𝑉𝑉 < 𝑉𝑉𝜑𝜑 

→ 0,                                                            𝑖𝑖𝑖𝑖  𝑉𝑉 → 𝑉𝑉𝜑𝜑 

 (8) 

As Eq. (8) shows, the diffuse interface width ℓ takes a constant value of 𝑙𝑙0 in static equilibrium 
𝑉𝑉 = 0 which is always different from its corresponding value when 𝑉𝑉 ≠ 0. ℓ tends to zero with 
the transition to sharp interface as soon as the interface velocity approaches the maximum speed 
𝑉𝑉𝜑𝜑  for the PF propagation. Such variety in ℓ allows us to quantitatively estimate the interface width 
in dynamics at low and high interface velocities. Therefore, one of the methods to determine the 
relaxation time 𝜏𝜏𝜑𝜑  or the speed 𝑉𝑉𝜑𝜑  is related to the determination of the diffuse interface width ℓ 
as a function of the crystal growth velocity 𝑉𝑉 and equilibrium mean interface width 𝑙𝑙0. 
 
2.2. Simulation of Solid-Liquid Co-existence by Molecular Dynamics  

In our present study, MD simulations are used as a tool to determine the change of interface 
width ℓ with the interface velocity 𝑉𝑉 and to calculate the maximum PF propagation speed 𝑉𝑉𝜑𝜑  and 
relaxation time 𝜏𝜏𝜑𝜑  of the gradient flow. We perform MD simulations using the non-equilibrium 
free solidification method [69], where the driving force of solidification is applied to the system, 
and the behavior of the SL interface under the applied driving force is investigated. With this aim, 
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all the simulations start with the coexistence of solid and liquid at the melting point. In this study, 
the interatomic potential developed by Kavousi et al. [70] is used for the MD simulations. This 
potential is based on the second nearest-neighbor modified embedded-atom method formalism and 
accurately predicts the low temperature properties (e.g., elastic constants, defect formation energy, 
surface energy, etc.) and high temperature properties (e.g., melting temperature, enthalpy of 
melting, etc.) of Ni. 

As shown in Figure 1(a), the orthogonal directions parallel to the x-axis and y axis are chosen 
lateral to the solidification front, and the third direction parallel to the z-axis is chosen along with 
the SL interface normal direction. For {100} crystallographic face, the simulation system is 
initialized with a face-centered cubic (fcc) lattice including 10×10×120 unit-cells (48000 atoms), 
where the system is elongated in the z-direction. The effect of interface curvature is eliminated by 
considering small dimensions in the x and y directions. In order to determine a proper size of the 
simulation system, we investigated the temperature fluctuations during the NPT equilibration 
process at the melting point. A standard deviation smaller than 1 K for the temperature during the 
equilibration process was considered as the desired accuracy. Therefore, we kept the number of 
thermostats constant and changed the system size from 5×5×60 to 20×20×180 unit-cells. The 
standard deviation for temperature variations that we obtained during the equilibration process for 
the system with 10×10×120 unit-cells was 0.80, which met our accuracy criterion. 

The simulation system is equilibrated for 100 ps under a constant Number-Pressure-
Temperature (NPT) ensemble, with the zero pressure, P = 0, and the temperature is set to the 
melting point (1726 K for this interatomic potential [70]). Then, the central three-fourth of the 
simulation system, as presented in Figure 1(a), is melted by heating the system up to 3000 K, under 
a constant Number-Volume-Temperature (NVT) ensemble for 40 ps, while the rest of the system 
remains in the original (solid) state. Then the temperature of the whole system is scaled down to 
the melting point, and the system is equilibrated under NPzzT ensemble for 200 ps. In this 
ensemble, only the normal stress in the z-direction is set to be zero, and the simulation box size 
can be modified in this direction only. This generates a system with SL coexistence at the melting 
temperature, and it is used as the initial configuration for further simulations of the solidification 
process. 

The variation of SL interface velocity with applied undercooling is used to perform non-
equilibrium free solidification simulations. The applied undercooling ranges between 25 K and 
400 K. Performing the solidification simulations requires to have the lattice parameter of the solid 
phase at the undercooled temperature. This is obtained by separate MD simulations on a system 
with 4000 atoms (10×10×10 unit-cells) which is equilibrated for 80 ps at the undercooled 
temperature with an NPT ensemble, followed by an additional 80 ps simulation during which the 
mean lattice parameter is determined.  
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Figure 1. a) Initial configuration of the MD simulation system for the dynamic interface width ℓ 
calculations. The blue and red colors indicate the solid and liquid phases, respectively. The 
dark/light shades demonstrate the slabs that are thermostatted separately. b) The order parameter 
(𝜓𝜓) versus the distance from the interface. The positive and negative signs of distance from 
interface correspond to the liquid and solid phases, respectively c) A snapshot of the simulation 
system used for calculations of SL interface energy. Atoms located at the SL interface are colored 
green. 
 

Starting from the SL coexistence configuration, the temperature of the simulation system is 
scaled down to the target temperature, and the solidification is performed under the NPzzT 
ensemble. Previous studies showed that by using just one global thermostat in the MD simulation, 
the temperature in the region close to the SL interface becomes larger than the rest of the system 
due to the release of latent heat [40, 54]. This problem is resolved by replacing the global 
thermostat in the simulation with multiple local ones [54]. The domain is divided into a set of 
regions along the z direction and each region is thermostated independently. The simulation box 
in the x and y directions is adjusted such that the solid region has the appropriate lattice parameter 
at the target temperature. The simulations are repeated for {110} and {111} SL crystallographic 
faces (including 7×10×84 and 8×7×70 unit-cells, respectively) with approximately similar 
numbers of atoms as the {100} crystallographic face.  

Calculations of maximum PF propagation speed 𝑉𝑉𝜑𝜑   and relaxation time 𝜏𝜏𝜑𝜑  of the gradient flow 
require determination of the interface velocity V and the diffuse interface width ℓ at different 
values of undercooling. Therefore, one should first accurately identify the interface position using 
a local order parameter. The order parameter used in this study was introduced by Sun et al. [71], 
where for each atom, the positions of its neighbors are compared with the perfect crystal. For the 
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jth atom, the order parameter, 𝛽𝛽𝑗𝑗, is calculated from the difference between the position vectors of 
its N neighbors and the same vectors in a perfect crystal, 𝑟𝑟𝑝𝑝𝑝𝑝�����⃗ , and is given by: 
 𝛽𝛽𝑗𝑗 =

1
N
��𝑟𝑟𝚤𝚤��⃗ − 𝑟𝑟𝑝𝑝𝑝𝑝�����⃗ �

2

𝑖𝑖

 (9) 

For Ni with an fcc crystal structure, first and second nearest neighbors are considered in the order 
parameter calculations (N=14). The order parameter calculated by this method exhibits large 
fluctuations. A smoothing procedure is then employed based on the method developed by Asadi 
et al. [72, 73]: 
 

𝜓𝜓(𝑥𝑥, y, 𝑧𝑧) =
∑ 𝑤𝑤𝑑𝑑𝑟𝑟𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖

∑ 𝑤𝑤𝑑𝑑𝑟𝑟𝑖𝑖𝑖𝑖
 (10) 

where 𝑤𝑤𝑑𝑑 = [1 − (𝑟𝑟𝑖𝑖 𝑑𝑑⁄ )2]2, 𝑟𝑟𝑖𝑖 = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2 + (𝑧𝑧𝑖𝑖 − 𝑧𝑧)2, and 𝑑𝑑 is a smoothing distance equal 
2.5𝑎𝑎, and 𝑎𝑎 is the lattice parameter at the target temperature. The xy cross-section of the simulation 
system is divided into grids with a spacing of 0.5𝑎𝑎. For each grid, the position of the interface and 
interface width are estimated from the error function fitting to 𝜓𝜓 as a function of distance from the 
interface, 𝑧𝑧 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖: 
 

𝜓𝜓 =
1
2
��〈𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠〉 + 〈𝜓𝜓𝑙𝑙𝑙𝑙𝑙𝑙〉� − �〈𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠〉 − 〈𝜓𝜓𝑙𝑙𝑙𝑙𝑙𝑙〉� 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑧𝑧 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝜎𝜎√2

�� (11) 

where 〈𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠〉 and 〈𝜓𝜓𝑙𝑙𝑙𝑙𝑙𝑙〉 are the average order parameters in the bulk solid and liquid phases, 
respectively. Although 〈𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠〉 and 〈𝜓𝜓𝑙𝑙𝑙𝑙𝑙𝑙〉 can be obtained from separate bulk solid and liquid 
simulations, we consider them to be adjustable parameters along with 𝜎𝜎 and  𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖. 𝜎𝜎 scales the 
width of the error function, and 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 determines its center. The interface width can be defined as 
the region where the error function ranges between 〈𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠〉 and 〈𝜓𝜓𝑙𝑙𝑙𝑙𝑙𝑙〉, as presented in Figure 1(b). 
The position of the interface is taken by 𝜓𝜓 as a halfway between 〈𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠〉 and 〈𝜓𝜓𝑙𝑙𝑙𝑙𝑙𝑙〉 values. For each 
frame, the mean position of the interface and interface width is estimated by averaging the 
corresponding values for all the grids. The basic idea of introducing an order parameter to identify 
the SL interface in MD simulations is analogous to PF modeling. However, the values of the order 
parameter in each phase and the interface width values are not similar.  

Anisotropic SL interface free energy is another material property that is essential in estimating 
both 𝑀𝑀φ and  𝜏𝜏φ. In this study, we use the capillary fluctuation method (CFM), where the interface 
stiffness is calculated through the fluctuations of the SL interface [51]. Figure 1(c) is a snapshot 
of the simulation system where solid and liquid phases are in full equilibrium. The SL interface is 
a quasi-2D interface, the interface width W along the x-direction is much longer than its thickness 
b along the y-direction, Figure 1(c), and the interface fluctuations are investigated along the x-
direction. Consider h(x) is the position of the interface along the x direction. The deviation from 
the average position of interface, 〈ℎ〉, can be re-written as the summation of Fourier modes: ℎ(𝑥𝑥) −
〈ℎ〉 = ∑ 𝐴𝐴(𝑘𝑘)𝑘𝑘 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, where 𝐴𝐴(𝑘𝑘) is the Fourier amplitude and 𝑘𝑘 is the wave number of Fourier 
modes. In CFM, the  stiffness of interface, 𝛾𝛾 + 𝑑𝑑2 𝛾𝛾 𝑑𝑑⁄ 𝜃𝜃2, is calculated using [51]: 
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𝛾𝛾 + 𝑑𝑑2 𝛾𝛾 𝑑𝑑⁄ 𝜃𝜃2 =

𝑘𝑘𝐵𝐵𝑇𝑇
𝑏𝑏𝑏𝑏⟨|𝐴𝐴(𝑘𝑘)|2⟩𝑘𝑘2

 (12) 

𝛾𝛾 is the interface free energy, and 𝜃𝜃 is the angle between instantaneous local interface normal and 
the average orientation of the face. The slope of Fourier amplitudes versus the reciprocal of Fourier 
modes denoted the stiffness.  

The interface free energy is an anisotropic property depending on the SL crystallographic face. 
The relation between the interface free energy and interface normal, 𝑛𝑛� , is represented as [74]: 
 𝛾𝛾(𝑛𝑛�) = 𝛾𝛾0 [1 + 𝛿𝛿1 �𝑄𝑄 −

3
5
� + 𝛿𝛿2 �3 𝑄𝑄 + 66𝑆𝑆 −

17
7
� + 𝛿𝛿3 �5𝑄𝑄2 − 16𝑆𝑆 −

94
13

𝑄𝑄 +
33
13
� (13) 

 𝑄𝑄 = 𝑛𝑛14 + 𝑛𝑛24 + 𝑛𝑛34 ,  𝑆𝑆 = 𝑛𝑛12𝑛𝑛22𝑛𝑛32 (14) 
where 𝑛𝑛𝑖𝑖(𝑖𝑖 = 1,2,3) are the components of 𝑛𝑛� in x-, y- and z-directions, 𝛾𝛾0 is the mean SL interface 
free energy, δj (j=1,2,3) are the anisotropy parameters, respectively [51]. The mean interface free 
energy and anisotropy parameters are calculated by performing MD simulations for multiple 
crystallographic faces, calculating the stiffness and comparing it to the corresponding expression 
based on Eq. (13) [40]. 

For an [001] crystallographic face, we used a system with 50×4×80 fcc unit cells (6400 atoms) 
with the [001] face along the z-direction. For the {110} crystallographic face, the number of unit 
cells along each spatial direction is modified such that the computational domain is of a similar 
size. Similar to the non-equilibrium free solidification simulations, interface energy calculations 
require a fully equilibrated SL coexistence. The details for SL equilibration are analogous to the 
one discussed previously except for the equilibration time, which is set to 1 ns in this set of 
simulations. After completing the equilibration process, the NPH ensemble is performed for 240 
ps. During this step, the system configuration is saved every 1 ps for further analysis of the 
interface fluctuations. The order parameters given by Eqs. (9)-(11) are used to find the interface 
position. All the MD simulations are performed by the Large-scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS) software [75]. The post-processing of MD simulations is carried 
out using python packages and libraries such as MDTraj [76] and lmfit [77]. We used Ovito [78] 
for visualizing the trajectory files. 

 
3. RESULTS AND DISCUSSIONS  

Several independent solidification simulations have been performed utilizing the same SL 
coexistence at the melting point as the initial condition. Random seed numbers were chosen in 
thermostat settings to replicate independent MD simulations through a different initial velocity 
distribution in the system. Each of the system replicas has a fixed overall temperature of all the 
atoms, but a different set of velocities for atoms on each processor. This ensures, for each 
undercooling, each simulation is independent. To determine the uncertainties of simulated data, 
simulations with undercoolings up to 100 K were repeated four times, and simulations with larger 
undercoolings, corresponding to larger interface velocities, were repeated eight times. 
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3.1. Growth Kinetics  

Figure 2 summarizes the interface velocity–undercooling relationship for the three investigated 
faces. For small values of undercooling, the interface velocity for all three faces follows a linear 
relationship characterized by the kinetic coefficient μ as the slope [25]. The kinetic coefficient is 
the first material property calculated by MD [62] that is used in parameterizing the kinetic PF 
model. As the undercooling increases, the interface velocity gradually deviates from the linear 
behavior. The curves in Figure 2 show that the non-linearity of the velocity is represented by the 
curves with saturation, i.e., curves have a clear tendency to reach maximum value asymptotically, 
as in the previous work of Hoyt et al. [25]. In addition, there is a clear difference between the 
solidification nanostructure obtained by the solidification of each crystallographic face. The rate 
of interface velocity change versus undercooling is higher for the {100} crystallographic face, and 
it decreases as the crystallographic face changes from {100} to {110} and {111}. The kinetic 
coefficients for {100}, {110}, and {111} faces, calculated by fitting MD data to 𝜇𝜇 = 𝑉𝑉 ∆𝑇𝑇⁄ , are 
0.420, 0.277, and 0.175 m/s/K, respectively.  

 
Figure 2. The interface velocity, V, versus the undercooling, ΔT, for solidification of Ni based on 
MD results and their fit to the CLT model. Undercooling is considered as the driving force 
necessary for attachment of atoms to the interface that is usually called as kinetic undercooling. 
 

On the other hand, the CLT model provides an analytical description of the correlation between 
velocity and temperature as follows [16]: 

𝑀𝑀 is the molar mass, and Δ𝐺𝐺 is the free energy change during the solidification, which can be 
estimated as: 

𝑉𝑉 = 𝐶𝐶0�
3𝑘𝑘𝐵𝐵𝑇𝑇
𝑀𝑀

�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛥𝛥𝛥𝛥
𝑘𝑘𝐵𝐵𝑇𝑇

�� (15) 
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Fitting of the linear part of MD results to the CLT model is presented by the dotted lines in Figure 
2. For {100}, {110} and {111} orientations, the maximum deviations of 71.2%, 61.1% and 18.6% 
are observed between the MD and CLT results at 400 K undercooling, respectively. The results 
clearly indicate the deviation of MD results from the CLT model as the undercooling increases, 
suggesting the failure of CLT model in predicting the kinetics of solidification at large 
undercoolings, especially for {100} and {110} interfaces. The fitting parameter (𝐶𝐶0) in Eq. (15) 
for the {100}, {110}, and {111} interfaces are 0.70, 0.40, and 0.26, respectively. Based on the 
CLT model [16], 𝐶𝐶0 depends on the interplanar spacing along the target orientation. Our 
estimations of the ratio for kinetic coefficients 𝜇𝜇{100}/𝜇𝜇{110} ≈ 1.54 is close to √2 (≈ 1.41) 
predicted by CLT [16], which states that the interface velocity is proportional to the interplanar 
spacing. Therefore, one may say, for small undercooling, the growth of {100} and {110} faces 
proceeds by the collision-limited mechanism.  

 
3.2. Anomaly in the Growth of HCP Islands during Solidification of {111} Interface 

When investigating growth of the {111} crystallographic face, the ratio of kinetic coefficients 
is 𝜇𝜇{100}/𝜇𝜇{111} ≈ 2.4 which is much higher than √3 predicted by CLT [16]. This suggests the 
growth of {111} face is definitely not collision limited. The velocities calculated from MD 
simulations of {111} face are smaller than the CLT model predictions, which is typical for most 
fcc alloys [69, 71, 79, 80]. Low stacking fault energy for fcc metal is one reason for the formation 
of hexagonal close packed (hcp) islands in the solidified region. During the growth of the solid 
phase, an atom in the liquid phase can attach to sites belonging to either the fcc or hcp lattice. 
When the stacking fault energies are low or the driving force (undercooling) is high, hcp islands 
form in the solid phase [79]. Figure 3 (c) illustrates a snapshot of MD simulation during the 
solidification of {111} face at ΔT=100 K, where the clusters with stacking faults (hcp, red color) 
are formed inside the fcc phase (colored green). Both the stable and unstable generalized stacking 
fault energies calculated for this interatomic potential [52] are around 150 mJ/m2, which is low 
enough for the formation of both hcp and fcc structures. The stacking fault calculations are 
performed by shearing a perfect crystal along a (1 1 1) plane in the <112�> direction. Details on 
methodology for calculating the stacking fault energy can be found in [81]. In addition, Figure 
3(b) presents a snapshot of MD simulation during the solidification of {110} crystallographic face 
with a higher undercooling of ΔT =400 K. This suggests that large undercoolings can also lead to 
hcp formation during the solidification of interfaces with faces other than {111}. For the {100} 
face in the range of undercooling ΔT<450 K, we did not observe formation of any HCP islands 
(Figure 3 (a)). As discussed in the methodology section, the interface velocity and position are 
identified using the order parameter 𝜓𝜓, where the position of the neighbors is compared with the 
perfect crystal (fcc for Ni). Thus, for the simulations that coincide with the formation of hcp 

 𝛥𝛥𝛥𝛥 ≈
𝛥𝛥𝛥𝛥𝑚𝑚
𝑇𝑇𝑚𝑚

(𝑇𝑇𝑚𝑚 − 𝑇𝑇) (16) 
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islands, calculations of interface velocity are only possible using the energy method [40], where 
the volumetric enthalpy change is used to determine the rate of solid phase formation and 
solidification velocity. Further simulations and analysis on the evolution of stress field during the 
formation of hcp clusters are needed to investigate how the residual stress may alter the mechanical 
response of the material. 

 
Figure 3. Snapshots of MD simulation for solidification of Ni: a) for {100} oriented crystal-melt 
interface and 425K undercooling, b) for {110} oriented crystal-melt interface and 400K 
undercooling, and c) for {111} oriented crystal-melt interface and 100K undercooling. The 
coloring is based on the common neighbor analysis: green atoms have FCC, red atoms have HCP 
and grey atoms have amorphous (solid or liquid) structure. 
 
3.3. Stiffness and Free Energy of the Solid-Liquid Interface 

The second material property that is necessary to parameterize the PF model is the anisotropic 
SL interface free energy. Table 1 summarizes the faces considered along x- and z-directions in the 
MD simulations, which are presented by crystallographic direction <…> and crystal face {…}, 
and the corresponding interface energy and stiffness expressions are determined by Eq. (13). As 
presented in Figure 4, stiffness is estimated by the slope of line fitting 𝑘𝑘𝐵𝐵𝑇𝑇/(𝑏𝑏𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉) versus 
𝑘𝑘2 for each crystallographic face. As observed in our previous studies [40, 70], the (100) oriented 
crystal-melt interface has the lowest stiffness (Table 1) and highest interface energy (Table 2) in 
comparison to the (110) and (111) oriented interfaces. This is also supported by the experimentally 
[82] and computationally [41] observed dendritic morphology and preferred growth direction for 
fcc materials. Then the MD-calculated stiffness values are fitted to the corresponding expressions 
to obtain the mean interface energy and anisotropy parameters. The fitting process results in 
γ0=382.1 mJ/m2, δ1=0.0204, δ2= -0.00025, and δ3= 0.0074. Results of the current MD simulation 
are in good agreement with the previous results using the EAM potential [83] and experiments 
[84]. 
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Figure 4. The variation of 𝑘𝑘𝐵𝐵𝑇𝑇/(𝑏𝑏𝑏𝑏〈|𝐴𝐴(𝑘𝑘)|2〉) versus k2 for different faces as obtained from MD 
simulation of Ni. The dotted lines are linear fits where the color of the line is the same as the 
symbols for the data it was fit to Eq. (12). 

 
Table 1. SL interface free energy and stiffness expressions for various faces as given by Eq. (13) 

faces 
Interface energy expression 

using Eq. (13) 
Interface stiffness expression 

using Eq. (13) 
Interface Stiffness -

MD (mJ/m2) 

〈100〉 {001} γ0 [1+0.4 δ1+0.571 δ2+4.31 δ3] γ0 [1 – 3.6 δ1 – 11.43 δ2 – 6.77 δ3] 336 

〈001〉 {110} γ0 [1-0.1 δ1-0.9286 δ2+4.17 δ3] γ0 [1 +3.9 δ1 + 11.07 δ2 – 4.75 δ3] 398 

〈11�0〉 {110} γ0 [1-0.1 δ1-0.9286 δ2+4.17 δ3] γ0 [1 -2.1 δ1 + 26.07 δ2 +0.635 δ3] 365 

〈11�0〉 {111} γ0 [1-0.267 δ1-3.87 δ2+4.13 δ3] γ0 [1 +1.2 δ1 + 2.97 δ2 +12.667 δ3] 408 
 

Table 2 summarizes the material properties that are essential to parameterize both the 
parabolic and hyperbolic (kinetic) PF models. As discussed previously, the kinetic PF model 
parameterization requires additional material properties, namely maximum PF propagation speed 
𝑉𝑉𝜑𝜑  and PF diffusion coefficient  𝐷𝐷𝜑𝜑 . Section 3.4 provides details of the MD simulations to calculate 
the aforementioned properties. 
 
Table 2. The material properties for Ni obtained from MD simulations compared other studies [17, 
39]. These material properties are used to parameterize both parabolic and kinetic (hyperbolic) PF 
models. 

Property This study Literature  

Kinetic growth coefficient, 𝜇𝜇  (m/s/K) 
{100} 
{110} 

0.420±0.015 
0.277±0.02 

{100} 
{110} 

0.52 [39] 
0.4 [39] 
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Interface energy,  𝛾𝛾 (J/m2) 
{100} 
{110} 

0.397 
0.393 

0.326 [39] 

Melting enthalpy, 𝛥𝛥𝛥𝛥𝑚𝑚 (×109 J/m3) 2.319 2.66 [17] 
Melting temperature, 𝑇𝑇𝑚𝑚 (K) 1728 1706 [17] 

 
3.4. Molecular Dynamics Calculations of Material Properties Specific to the Kinetic PF Model 

Performing quantitative simulations of the kinetic PF model requires accurate calculations of 
two other material properties, namely the maximum PF propagation speed 𝑉𝑉𝜑𝜑  and PF diffusion 
coefficient 𝐷𝐷𝜑𝜑 . The lack of an experimental or computational technique to calculate these material 
properties forces all the studies in the literature to manually modify these material properties such 
that the kinetic PF model predictions fit the MD or experimental solidification velocity versus 
undercooling data [17, 18, 47, 48, 50]. In this study, we proposed a new approach to calculate these 
material properties based on the traveling wave solution of the hyperbolic PF model and use them 
to parameterize the kinetic PF model. Details on the methodology for calculating the 
aforementioned material properties have already been discusses in section 2.1.  

Figure 5 demonstrates the change of interface width with the solidification velocity during the 
growth of {100} and {110} interfaces. As discussed previously, during solidification of {111} 
face (for all the investigated undercoolings) and {110} face (for large undercoolings), the solid 
phase is a combination of HCP and FCC structures. Thus, calculations of interface width for these 
cases would not be accurate and are not considered in this study. In Figure 5, the green circles are 
the data from simulations, and the red circles are the average interface width and velocities for all 
the replica simulations of each undercooling. Data on variations in the average interface width (Å) 
and the average solidification velocity V (m/s) versus undercooling ΔT (K) for {100} and {110} 
SL interfaces are provided in Table A1 in the Appendix. Despite the fluctuations in the MD 
simulation data, the trend of the general behavior of the interface width begins to shrink as the 
solidification velocity increases, which is predicted by the traveling wave solution of the 
hyperbolic PF model and is presented by Eq. (8). The atomic spacing for an element with a perfect 
fcc structure is 𝑎𝑎 and 𝑎𝑎√2/2 along {100} and {110} orientations, respectively. Therefore, it is 
expected to obtain a smaller diffuse interface width for {110} orientation. For the parabolic PF 
model, 𝜏𝜏φ = 0 and the interface width would stay constant as interface velocity increases, which 
is not consistent with MD simulation results. As discussed in the methodology, we will take two 
different approaches to determine the maximum PF propagation speed and the PF diffusion 
coefficient, which are discussed below.  

 
Method I: Temperature-independent material properties 

In this method, the material properties used in parameterizing the PF equations are considered 
to be independent of temperature. Therefore, Eq. (6) reduced to: 

𝑉𝑉𝜑𝜑𝐼𝐼 = �𝐷𝐷𝜑𝜑𝐼𝐼 /𝜏𝜏𝜑𝜑�
1/2

 (17) 
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The dashed lines in Figure 5 are the fit of the MD results to Eqs. (8) and (17), and the maximum 
PF propagation speeds 𝑉𝑉𝜑𝜑  for {100} and {110} faces are calculated as 550±39 and 224±8 m/s, 
respectively. Later, the diffusion coefficient in Eq. (5) is also reduced to a constant number. 𝐷𝐷𝜑𝜑𝐼𝐼  is 
obtained from the reduced form of Eq. (5) [64]: 
 

𝜇𝜇 =
𝐷𝐷𝜑𝜑𝐼𝐼 𝛥𝛥𝛥𝛥𝑚𝑚
𝛾𝛾𝑇𝑇𝑚𝑚

 (18) 

Finally, the target model parameter (𝜏𝜏𝜑𝜑𝐼𝐼 ) is obtained by plugging in 𝑉𝑉𝜑𝜑𝐼𝐼, 𝐷𝐷𝜑𝜑𝐼𝐼  in Eq. (17). Table 3 
summarize all the material properties (𝑉𝑉𝜑𝜑𝐼𝐼, 𝐷𝐷𝜑𝜑𝐼𝐼 ) and model parameters (𝜏𝜏𝜑𝜑𝐼𝐼 ) specific to the kinetic 
PF model-method I. Table 3 also compares the material properties obtained by MD simulations in 
the current study with the ones used in kinetic PF modeling of Ni by Salhoumi and Galenko [17]. 
The way that these material properties are chosen in [16] is simply based on fitting the nonlinear 
region of interface velocity-undercooling correlation predicted by kinetic PF modeling to the MD 
results by Mendelev et al. [20]. This study [17] and other similar ones in the literature [18, 47, 48, 
50] only highlight the potential of kinetic PF model in capturing the nonlinearity during rapid 
solidification. However, the potential of the kinetic PF model is not fully flourished unless we turn 
it into a predictive model. A predictive kinetic PF model is a model in which the nonlinearity in 
kinetics of rapid solidification is predicted by the model instead of being an input in parameterizing 
the model. In Section 3.5, we will investigate the accuracy of the atomistic-informed predictive 
kinetic PF model.  
 

 
Figure 5. The change of interface width versus the solidification velocity for {100} and {110} 
faces. The green circles are the data for individual MD simulations, and the red circles are the 
average of the interface widths calculated for each undercooling. The red dashed and black solid 
lines are the fit of data to Method I and Method II, respectively. 
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Table 3. The comparison of material properties and model parameters specific to kinetic model-
method I (temperature independent) from this study and literature [17, 39]. 

Property This study Literature  

Maximum speed of the PF, 𝑉𝑉𝜑𝜑𝐼𝐼 (m/s) {100} 
{110} 

550±39 
224±8 

185 [17] 

PF diffusion coefficient, 𝐷𝐷𝜑𝜑𝐼𝐼  (×10-7m2/s) {100} 
{110} 

1.242 
0.811 

1.15 [17] 

Equilibrium diffuse interface width, 𝑙𝑙0 (Å) 
{100} 
{110} 

23.41±0.203 
22.81±0.205 

- 

Relaxation time of the PF gradient, 𝜏𝜏𝜑𝜑𝐼𝐼  (s) 4.1×10-13 1.62×10-12 [17] 
 
Method II: Temperature-dependent material properties  

In this method, the material properties used in parameterizing the PF equations are temperature 
dependent. We use the interface width obtained from MD-data to calculate the temperature-
dependent maximum speed of the PF and the PF diffusion coefficient. Indeed, 𝑉𝑉𝜑𝜑𝐼𝐼𝐼𝐼(𝑇𝑇) and 
𝐷𝐷𝜑𝜑𝐼𝐼𝐼𝐼(𝑇𝑇) are calculated by fitting the data in Figure 5 to Eq. (8). The results are presented as 
functions of undercooling Δ𝑇𝑇 for {100}- and {110}-faces in Figure 6. This Figure also compares 
the maximum speed of the PF and the PF diffusion coefficient obtained from both methods I and 
II. The results suggest that the constant mean values for 𝑉𝑉𝜑𝜑𝐼𝐼and 𝐷𝐷𝜑𝜑𝐼𝐼  obtained based on Method I 
(Table 3) are well quantitatively included within temperature dependent 𝑉𝑉𝜑𝜑𝐼𝐼𝐼𝐼and 𝐷𝐷𝜑𝜑𝐼𝐼𝐼𝐼 obtained from 
method II. The parameters in Eq. (7) which describe the temperature-dependence behavior of 
𝐷𝐷𝜑𝜑𝐼𝐼𝐼𝐼(𝑇𝑇), known as 𝐷𝐷𝜑𝜑0  and 𝐸𝐸𝐴𝐴 𝑘𝑘𝐵𝐵⁄ , and the resultant model parameter for method II (𝜏𝜏𝜑𝜑𝐼𝐼𝐼𝐼) are 
summarized in Table 4.  

 
Table 4. The material properties and model parameter specific to the kinetic PF model (Method 
II) for the crystal growth of Ni. 

Parameter  {100}-face {110}-face 
PF diffusion pre-factor, 𝐷𝐷𝜑𝜑0  (×10-6m2/s) 0.57 0.374 
Energetic barrier for PF diffusion, 𝐸𝐸𝐴𝐴 𝑘𝑘𝐵𝐵⁄  (K) 2385 2480 
Relaxation time of the PF gradient, 𝜏𝜏𝜑𝜑𝐼𝐼𝐼𝐼 (s) 2.94×10-13 1.54×10-12 
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Figure 6. The maximum speed of PF propagation, 𝑉𝑉𝜑𝜑, and the PF diffusion coefficient, 𝐷𝐷𝜑𝜑, as a 
function of undercooling obtained from Methods I and II. 
 

To show that the conclusions of this study are not limited to Ni and are applicable to any fcc 
materials, we have performed the following analytical analysis. For velocity range 𝑉𝑉 < 𝑉𝑉𝜑𝜑 , 
reformatting Eq. (8) suggests that this equation is a function of 𝑉𝑉 and 𝐷𝐷𝜑𝜑 , which are both functions 
of 𝛥𝛥𝛥𝛥: 

ℓ = 𝑙𝑙0 �1 −
𝑉𝑉2
𝐷𝐷𝜑𝜑 

𝜏𝜏𝜑𝜑 
  �
1/2

.                                                       (19) 

Therefore, one gets 
 𝑑𝑑ℓ

𝑑𝑑(𝛥𝛥𝛥𝛥)
= 𝜕𝜕ℓ

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕(𝛥𝛥𝛥𝛥)
+ 𝜕𝜕ℓ

𝜕𝜕𝐷𝐷𝜑𝜑 
𝜕𝜕𝐷𝐷𝜑𝜑 

𝜕𝜕(𝛥𝛥𝛥𝛥)
. (20) 

Multiplying both sides in 𝑑𝑑(𝛥𝛥𝛥𝛥) 𝑑𝑑𝑑𝑑⁄  gives: 
 𝑑𝑑ℓ
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. (21) 

Substituting ℓ and 𝐷𝐷𝜑𝜑   from Eqs. (19) and (7) in Eq. (21) is, finally, provides: 
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For a fixed velocity, the results in Figure 2 suggest that both 𝛥𝛥𝛥𝛥 and 𝑑𝑑(𝛥𝛥𝛥𝛥)
𝑑𝑑𝑑𝑑

 for {110} interface are 

much larger than those for {100} interface. This conclusion was observed in other MD simulation 
studies on several fcc elements [35, 69, 71, 85, 86]. Therefore, a2 term for fcc metals is generally 
larger for the {110} interface. On the other hand, the results in Figure 6 suggest that the PF 
diffusion coefficient of {100} interface, over the entire investigated undercooling range, is smaller 
than that of {110} interface. Therefore, a1 term for {110} interface is also much larger than {100} 
interface. In general, the variation of interface width with velocity (𝑑𝑑ℓ 𝑑𝑑𝑉𝑉⁄ ) is much stronger for 
{110} interface than {100} interface. Our MD results (presented in Figure 5) support this 
conclusion, and the parameter controlling the rate, 𝑉𝑉𝜑𝜑 , is smaller for {110} interface in comparison 
to {100} interface. 
 
3.5 Prediction of Interface Velocity versus Undercooling by Kinetic Phase-Field Model  

To test the accuracy of atomistic-informed kinetic PF model in simulating rapid solidification, 
we perform a direct comparison of the interface velocity versus undercooling obtained from MD 
and PF simulations. Figure 7 summarizes the velocity-undercooling correlation obtained by the 
atomistic-informed kinetic PF model (methods I and II) and compares them with the results from 
parabolic PF model and independent MD simulations. The results based on Method I are almost 
close to the predictions of parabolic PF models (zero 𝜏𝜏𝜑𝜑). For small undercooling, there is great 
compatibility between MD results and those from parabolic and hyperbolic (Method I) PF models. 
However, as the undercooling increases, the difference between the MD and PF data sets also 
increases. Despite the slight improvements made by kinetic PF model-Method I, there are still 
considerable deviations in comparison with the MD results, and this model fails to accurately 
predict the kinetics of rapid solidification. 

During the near-equilibrium solidification (which is analogous to the case with 𝑉𝑉𝜑𝜑 → ∞), the 
SL interface velocity and undercooling hold a linear correlation. However, as phase transformation 
enter a strongly non-equilibrium range, one should use Eq. (4) to discuss the velocity-undercooling 
relationship. Eq. (4) suggests that a larger maximum PF propagation speed delays the onset of non-
equilibrium solidification to larger driving forces. This occurs because the square-root in Eq. (4) 
gets closer to 1 for large 𝑉𝑉𝜑𝜑  and, therefore, the linear correlation between velocity and undercooling 
holds for a wider undercooling range. Based on the values reported in Table 3, one expects the 
{100}-face holds the linearity between interface velocity and undercooling for a larger temperature 
range. The MD results, as shown in Figure 7, support this conclusion. The velocity obtained from 
MD simulation of ΔT=200 K still perfectly lies in the linear range for the solidification of {100}-
face. While for the case of {110}-face, the results start deviating from linearity at ΔT≈180 K. 
Despite the inaccuracies of the kinetic PF model-Method I, the results are still consistent with our 
previous statement. Solidification of the {100}-face holds its linearity up to 500 K undercooling, 
while the {110}-face results diverge from the linear behavior when undercooling exceeds 350 K.  

One should especially note an important feature in the solution of the parabolic model. With 
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𝜏𝜏𝜑𝜑 = 0 (𝑉𝑉𝜑𝜑 → ∞) the square root in Eq. (4) becomes equal to unity, but the non-equilibrium 
function 𝐷𝐷𝜑𝜑  given by Eq. (5) still stays in the governing system of algebraic equations. The PF 
diffusion coefficient 𝐷𝐷𝜑𝜑  is inversely proportional to the viscosity function given by the well-known 
Vogel-Fulcher-Tammann [87, 88] expression. This viscosity is not a function of an Arrhenius type, 
but it is derived from a local nonequilibrium theory consistent with the mode-coupling theory [89]. 
Therefore, the non-equilibrium function 𝐷𝐷𝜑𝜑  cannot remain in the solution of the parabolic model, 
which is a model based on the hypothesis of local thermodynamic equilibrium. The 𝐷𝐷𝜑𝜑  function 
in Eq. (7) simply transforms to a constant value in the local equilibrium limit. Taking this constant 
value from Table 3 and using it in the solution of the parabolic model (𝜏𝜏𝜑𝜑 = 0), one gets a natural 
result: the interface velocity depends linearly on undercooling, V ∝ Δ𝑇𝑇𝑘𝑘, see Figure 6. Indeed, as 
is shown in Figure 7, compatibility of the kinetic PF modeling and the MD-data becomes possible 
only if the finite relaxation is taken with temperature-dependent material properties based on 
Method II into account. The comparison shown in Figure 7 states that, first the local 
nonequilibrium contribution relaxation of the gradient flow, 𝜕𝜕2φ/𝜕𝜕𝑡𝑡2, in the kinetic PF model is 
critical for explaining the non-linearity in MD-data for the whole range of investigated 
undercooling. In addition, it validates the accuracy of the developed MD and PF integration 
method based on temperature-dependent material properties.  

 
Figure 7. The interface velocity, V, versus the kinetic undercooling, ΔT, obtained from MD and 
atomistic-informed PF simulations of Ni solidification using the parabolic PF model (zero 𝜏𝜏𝜑𝜑) 
and the hyperbolic (finite 𝜏𝜏𝜑𝜑) PF models parametrized based on Methods I and II. 
 
Conclusion 

In this study, we proposed integrating a novel MD-based method with the kinetic PF model to 
obtain a quantitative prediction of rapid solidification in metals. In simulating the rapid 
solidification, predicting the nonlinearity in velocity-undercooling relationship plays a crucial role. 
The kinetic PF model considers the local nonequilibrium contribution of the solid-liquid interface 
and in bulk phases to capture the nonlinearity in rapid solidification kinetics. However, all the 
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previous studies of the kinetic PF model, instead of predicting the nonlinearity in velocity-
undercooling relationship, parameterized the model such that the simulation output fits the 
target/known nonlinearity. Our goal in this study was to make the kinetic PF model be predictive 
of this nonlinearity by integrating the model with MD simulation data.  

In addition to the SL interface free energy and kinetic coefficient, we need two additional 
material properties to parameterize the kinetic PF model, namely maximum PF propagation 
velocity, 𝑉𝑉𝜑𝜑, and PF diffusion coefficient, 𝐷𝐷𝜑𝜑. We used the traveling wave solution of the 
hyperbolic PF equation to propose two new computational approaches for calculating the mean 
and temperature-dependent 𝑉𝑉𝜑𝜑 and 𝐷𝐷𝜑𝜑. MD calculations provided two independent datasets 
describing the dynamic variations of the diffuse interface width and nonlinearity of velocity-
undercooling relationship. While the former was used to calculate the target material properties 
and determine the model parameters, the latter was used to validate the predictions of the 
multiscale modeling. The SL interface width presents a descending behavior as the solidification 
velocity increases, and the {110} crystallographic face presents a more dramatic change in 
comparison to {100} face at a given undercooling, with the corresponding mean values of 
𝑉𝑉𝜑𝜑=550±39 and 224±8 m/s, respectively. These values suggest that the onset of non-equilibrium 
solidification kinetics for the {110} interface takes place at a smaller undercooling, and this 
observation was also confirmed to be valid for any fcc metals by analytical analysis of the variation 
of interface width versus interface velocity. The results of free solidification simulations by MD 
and atomistic-informed kinetic PF model supported this conclusion. The parabolic PF model 
predicts a linear relationship between interface velocity and undercooling even at high-velocity 
solidification range. The kinetic PF models using the temperature-independent material properties 
predicts a slightly non-linear relationship between interface velocity and undercooling. The kinetic 
PF model parametrized by temperature-dependent material properties leads to a more accurate 
prediction of the velocity-undercooling nonlinear relationship at higher undercoolings.  
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APPENDIX 
Table A1: The variations of undercooling ΔT (K), average of interface width l (Å), and average 
solidification velocity V (m/s) for {100} and {110} crystal faces. 

{100} crystal face {110} crystal face 
ΔT (K) Average V (m/s) Average l (Å) ΔT (K) Average V (m/s) Average l (Å) 

300 92.95674 22.90817 300 56.86198 22.39815 
250 117.6372 22.8 250 53.61786 22.1 
200 83.48153 23.03791 200 46.78239 22.21412 
150 60.18601 23.15211 150 39.67895 22.3209 
100 44.64692 23.17693 100 29.06593 22.43 
50 22.92245 23.32794 50 16.90863 22.58 
25 13.26536 23.3861 0 0 22.81051 
0 0 23.41 
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