
A Differentiable Neural Computer for Logic

Reasoning with Scalable Near-Memory Computing

and Sparsity Based Enhancement
 Yuhao Ju

Electrical and Computer Engineering

Northwestern University

Evanston, IL, United States

Yuhaoju2017@u.northwestern.edu

Tianyu Jia

School of Integrated Circuits

Peking University

Beijing, China

tianyuj@pku.edu.cn

Shiyu Guo

Electrical and Computer Engineering

Northwestern University

Evanston, IL, United States

ShiyuGuo2021@u.northwestern.edu

Jie Gu

Electrical and Computer Engineering

Northwestern University

Evanston, IL, United States

jgu@northwestern.edu

Zixuan Liu

Electrical and Computer Engineering

Northwestern University

Evanston, IL, United States

ZixuanLiu2021@u.northwestern.edu

Abstract—Logic reasoning represents a new class of artificial

intelligence. This work presents the first hardware

implementation of the Differentiable Neural Computer

accelerator based on brain inspired “working memory” concept

for reasoning tasks. A special near-memory computing

architecture is developed achieving high scalability and over

90% utilization of computing resources. Sparsity based

enhancements such as zero skipping, data compression are

applied with 30% speedup of the computing latency. A 65nm

test chip was fabricated with demonstrations on a variety of

logic reasoning tasks showing 700X and 46X speedup compared

with CPU and GPU and up to 1.28TOPS/W power efficiency.

I. INTRODUCTION

Despite the recent success in image and voice recognition

applications, a missing capability from the current deep

learning based artificial intelligence (AI) is realizing human

like logic reasoning. Fig. 1 shows several common cognitive

reasoning tasks such as deductive/abstract/sequential

reasoning, algorithm deduction, graphic traverse, etc. where

sequential relationships are being inferred from context of

graphs or texts. While exhaustive or sophisticated heuristic

search algorithms are traditionally used to solve such

problems, applying deep neural network (DNN) to reasoning

tasks allows a differentiable solution, e.g. learning through

back-propagation without human intervention. However,

existing CNN or LSTM architectures suffer from limited

memory space due to the entanglement of computing and

memory elements leading to poor performance in long

sequential reasoning tasks. Recently, models of differentiable

neural computer (DNC) or Memory-augmented Neural

Network (MANN) were developed for reasoning tasks [1-2].

As shown in Fig. 1, DNC incorporates content memory

operations through special “read/write heads” to infer logical

information from content memory contents overcoming

limited memory space issues of CNN or LSTM. Such a

capability resembles human brain’s “working memory”

which uses an “attention” based controller to access vocal or

visual memory of the brain [3]. This work implemented an

end-to-end logical inference processor based on DNC

algorithm with offline trained models [4]. As highlighted in

Fig. 1, the challenges of ASIC acceleration of DNC include

(1) large amount of memory access from the attention

mechanism with 10.6X more memory request than

conventional CNN, (2) highly sparse input and memory

contents and (3) complex model with eight operating phases

making the ASIC acceleration very challenging. In this work,

for the first time, an ASIC logic reasoning processor was

designed to accelerate cognitive reasoning tasks with

700X/46X improvement over commercial CPU/GPU. The

contributions include (1) A scalable near-memory

architecture is developed to overcome the memory bandwidth

challenges of the algorithm; (2) Special input zero skipping

and data compression techniques are applied to exploit

sparsity of the data; (3) Efficient transpose multiplication is

introduced to avoid large data exchange among computing

tiles; (4) Reconfigurable MACs are designed to support the

eight operating phases with above 90% PE utilization rate for

the challenging mapping of the software model.

Context Sequential
Reasoning

Trajectory Prediction

Logic Reasoning Tasks
Deductive Reasoning

Mary took the milk.

John moved to the bedroom.

John got the football there.

Mary travelled to the hallway.

Where is milk?

Hallway

Sandra went to kitchen.

Algorithm Derivation
4, 8, 7, 1, 3

1, 3, 4, 7, 8

Sorting

GrandfatherGrandmotherGrandmotherGrandfather

UncleMotherFather

SisterBrother

NephewNieceSon Daughter

WifeHusbandCousin

Aunt

?

Human Cognitive

Intelligence

Human Brain with “Working Memory”

Controller

Instruction
Cache

Phonological Loop
(Verbal Memory)

Visuospatial Sketchpad
(Visual-spatial Memory)

Data
Cache

Von-Neumann CPU CNN

External
MemoryLSTM

Attention-based
Memory Controller

Central Controller
(Attentional Control System)

Computing Architecture Comparison

Brain Inspired

Challenges

Contributions
• First Demo. of End-to-end Reasoning Processor

‒ 700X/46X speedup over CPU/GPU

• Distributed Near-memory Architecture

‒ 90% utilization of PEs continuously

‒ 8X improvement of memory bandwidth

‒ Scalable architecture with memory space

• Sparsity and Compression Enhancement

‒ Input zero skipping with 37% performance gain
‒ Data compression with 28% performance gain
‒ Efficient transposed multiplication

• Multiple Memory Access
from Every PE Unit

→ Large Memory
Bandwidth Requirement

• Attention Mechanism
→ Frequent Scan of
Entire Memory

• High Sparsity

• Complex Software
Model / Staged
Operation

0

3

1.5

4.5

N
o

rm
.

M
e

m
o

ry

B
a

n
d

w
id

th
0.375

DNC
(this work)

CNN

4

10.6X

0

200

100

300

1
DNC

(this work)
CNN

200

200X

• Lack of “relationship” tracking 
• Limited memory capacity 
• Compute/Memory Entanglement 

• Un-trainable 

Differentiable
Neural Computer

(this work)

Attention
Region

Network

Fig. 1. Logic reasoning tasks with different computing architectures and

main contributions of this work.

II. ARCHITECTURE AND ALGORITHM

Fig. 2 shows the top-level DNC algorithm. A LSTM
serves as a central controller which preprocesses sequential
input data and manages the access of various memory banks
through memory controllers. The memory controllers include
“write head” and “read head” which realize an “attention”
mechanism to select a region of “focus” from the large content
memory, similar to human brain’s memory retrieval
mechanism. For “read head”, the “attention” includes cosine
similarity and matrix/dot operations where the entire contents
of content memory are scanned for “related” information. A
special “attention memory” is used to keep the “linkage” This work is supported in part by NSF grant CCF-2008906.

978-1-6654-8494-7/22/$31.00 ©2022 IEEE 93

ES
SC

IR
C

20
22

- I
EE

E
48

th
 E

ur
op

ea
n

So
lid

 S
ta

te
 C

irc
ui

ts
 C

on
fe

re
nc

e
(E

SS
CI

RC
) |

 9
78

-1
-6

65
4-

84
94

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
ES

SC
IR

C5
54

80
.2

02
2.

99
11

45
1

Authorized licensed use limited to: Northwestern University. Downloaded on September 21,2023 at 03:41:34 UTC from IEEE Xplore. Restrictions apply.

information, i.e. logical/sequential relationship among the
contents of content memory. For “write head”, a usage
memory is added to keep track of the content memory usage
for efficient recall, e.g. allocation of new memory for
incoming information. Each iteration passes through a
sequence of control/update/attention/recall/result operations
and after hundreds of iterations, the final result is obtained
from a fully connected network (FCN).

Output

Input

LSTM

PE Tasks

Write
Weights

Erase
Write Attention Calculation Read Weights Generation Read

Usage
LSTM FCN

Update Attention RecallControl Result

Memory Write Head

Memory Read Head2

Attention

Prev.
Weights

Memory Read Head1

Memory Usage
Tracking

Empty

Full

Not Full

Empty

Addr 0
Addr 1

Addr N

. . .

Allocation
Region

Cosine
SimilarityMemory

Content

Inputs

Usage
Gate Matrix

Mult.

Write
Weights

Differentiable Compute for Allocation

MAC:

Memory
Content

Inputs

Read
Weights

Differentiable Compute for
Attention

Attention
Region

AA A

Xt-1 Xt Xt+1

ht-1 ht ht+1

End-to-end Sequence with 10~500 Iterations

Matrix Add. :

Dot Mul. :

Cosine
Similarity:

LSTM
Controller

Attention-based Memory
Controller

Memory

Usage Mem

Content Mem

Weight Mem

Attention Mem

A
d

d
re

ss
R

e
la

tio
n

sh
ip

Attention Memory

Operation Phases in a Single Iteration

17.5% 10.2% 23.3% 40.4% 8.7%

. . .

Addr 0
Addr 1

Addr N

Cosine
Similarity

Matrix
Mult.

Algorithm Architecture

Fig. 2. Differentiable Neural Computer Algorithm.

DNC Chip Top-level Architecture

Tile0 Tile1 Tile2 Tile3

Tile4 Tile5 Tile6 Tile7

Scan
Chain

Clk Gen

CLK

Bus Top Control

LSTM/FCN
Weights

Mem

Attention
Mem

RF

Activation
Functions

Square Root
Softmax e^x

Content
Memory

PE Array

Attention
Matrix

Bus and Compression

Tile-level Architecture

PruningThreshold

Input
Mem

Top Control

Memory
Access

Controller

LSTM
Controller

Zero-skipping

Compression
Controller

Top Control

Registers

Bus
Controller

Bus
Accu.

Divider

Bus

Partial
Results

LSTM Recall FCN

Run time

17.5% 10.2% 23.3% 8.6%40.4%
Computing Sequence

M
AC

 U
til

iza
tio

n
(%

)

PE Utilization Rate

LSTM FCNAttentionUpdate Recall
84

88

92

96
100

Dot Mul.
30.2%

Other
9.8%

>90% on Average

Arithmetic Breakdown

PE
43%

Others
2%

Linkage
SRAM
18%

Input
SRAM

1%
RF8%

Weight
SRAM
22%

Bus
5%

Control
1%

Update Attention

MAC
38.9%

Add/Sub
21.1%

Power Breakdown

Fig. 3. DNC Chip Top-level Architecture, PE utilization, arithmetic and

power breakdown.

As shown in the arithmetic operation breakdown in Fig. 3,
besides extensive memory operation, DNC needs to support a
variety of operations using PE units including MAC
operations (38.9%) from LSTM and FCN, dot and vector
multiplication (30.2%) and matrix addition/subtraction
(21.1%) for memory similarity calculation. This leads to
challenges in utilization of PE and high memory bandwidth
required from memory banks, i.e. weight memory for
LSTM/FCN, main content memory, usage memory and
attention memory. To overcome the challenges, as shown in
Fig. 3, a distributed near-memory computing (NMC)
architecture is developed where the chip is divided into
computational tiles connected by a global bus. Each tile
embeds a small processing element (PE) array with 8 MACs,
distributed memories, a register file and special function
modules, e.g. SoftMax. For fitting into a small chip budget, 8
tiles were implemented and can be proportionally scaled up.

Fig. 3 also shows the PE utilization of this design with over
90% on average. Power breakdown is also shown in Fig. 3
with 43% from PEs and 50% from memory.

III. NEAR-MEMORY COMPUTING ARRAY

Compute-Centric Systolic Array

• Long distance access to Mem banks 
• High SRAM bandwidth requirement 
• Difficult for multiple Mem banks 
• Hard to scale up 

• Local access to Mem banks 
• Low SRAM bandwidth demand 
• Easy to handle more Mem banks 
• Easy to scale up 

Usage and RF

A
tt

e
n

ti
o

n
 M

e
m

Content Mem

W
e

ig
h

ts M
e

m

X

X

X

X

Bus

Tile0 Tile1

Tile2 Tile3

Near-memory Computing

4 8 16
Tile Numbers

0x

Near-memory Tiles Scalability

2x

4x

6x

1x
2.1x

4.5x

N
o

rm
a

li
ze

d

S
p

e
e

d
u

p

Systolic Array
NMC

0

N
o

rm
a

li
ze

d

B
a

n
d

w
id

th

SRAM Bandwidth Demand

32 64 128
Computation Unit

1200

600

8x

Fig. 4. Comparison between conventional systolic array and near-memory

computing architectures.

Data Access Conflict
Cosine Similarity

MAC

Recall (Transposed)

..
.

Reconfigured Accumulation Flow

MAC MAC MAC MAC

MAC MAC MAC MAC

Cosine Similarity
Input Vector

MAC MAC MAC MAC

MAC MAC MAC MAC

Recall (Transposed)
Input Vector

Input VectorInput Vector

Tile-level Data Flow for Conflicting Similarity and Transpose
Matrix Calculation

w/ Reconfig.
Accu. Flow

0

3

1.5

4.5

N
o

rm
.

La
te

n
cy

30x

w/o Reconfig.
Accu. Flow

SRAM
Accumulation

MAC

..
.

SRAM
Accumulation

Hard to
Map

Accumulation Accumulation

Reconfigure

Benefit

Fig. 5. Reconfigured dataflow for tile-level conflicts.

Fig. 4 compares the proposed NMC architecture with a
conventional systolic array (SA). The required access from
many different types of memory in DNC causes low
efficiency, data collision, large travel distance and poor
scalability from SA. NMC allows data to stay locally
broadcasting only processed data with 8X reduction of
memory bandwidth. In addition, NMC is scalable in
throughput with computing tiles in contrast with SA.
Optimization of dataflow for different computing phases, e.g.
LSTM, attention, etc. are performed at tile level. As shown in
Fig. 5, a data mapping conflict between similarity and recall
operation with transposed matrix calculation is observed. A
reconfigurable flow is used to pass accumulation results in
different directions with significant latency enhancement.

IV. ZERO-SKIPPING AND DATA COMPRESSION

Fig. 6 shows a reconfigurable MAC unit which was
developed to deal with a variety of operations including MAC,
dot multiplication and addition/subtraction. In addition,

94

Authorized licensed use limited to: Northwestern University. Downloaded on September 21,2023 at 03:41:34 UTC from IEEE Xplore. Restrictions apply.

extensive clock gating and a configurable hybrid precision of
8 bits (LSTM) and 16 bits (Read/Write Head) are used for PE
array with minor accuracy loss (3~4% from 32 bits).

Multi-function Multi-precision PE
Multi-precision

+

W
X

A

OpA

OpB

Multi-function PE

+

W
X

A

OpA

OpB

Dot Multiplication

+

W

X
A

OpA

OpB

MAC Operation

+

W

X
A

OpA

OpB

Addition/Subtraction

Extensive Clock Gating

A1 A2 A3 A4X
8bit 8bit 8bit 8bit

A2*A4
+

+

16bit * 16bit
Results

A2*A3

A1*A4

A1*A3

W

A

O
th

e
r Lo

g
ic

(A
d

d
e

r, e
tc.)

W_in

A_in

CLK

EN

Gating Cell

Accuracy of bAbI

70

75

80

85

90

A
cc

u
ra

cy
 (%

)

4 8 16 20 24 28 3212

LSTM Memory Head

Precision

X

MAC

+

Hybrid Precision

in this work

Fig. 6. PE Reconfiguration, multi-precision, clock-gating.

Input Zero-Skipping

A0, A1, 0, A3

W01,W02,W03,W04

W11,W12,W13,W14

W21,W22,W23,W24

W31,W32,W33,W34

Zero-Skipping Algorithm

Zero-Skipping Implementation

Zero-Skipping Benefit
For LSTM

N
o

rm
a

li
ze

d
 L

a
te

n
cy

W/O W/

Read/Write Heads Compression

N
o

rm
a

li
ze

d
 L

a
te

n
cy

N
o

rm
a

li
ze

d
 L

a
te

n
cyAttention Process Recall Process

Threshold Values

0.5
0.1
0.2
0.4
0.3
0.6
0.9
0.1

0.5
0
0

0.4
0

0.6
0.9
0

Threshold
Value

0.35 0.5
0.4
0.6
0.9

Compress

Head Vector Head Vector

Head
Vector

Threshold Values

Ac
cu

ra
cy

 (%
)

Average Accuracy Tolerance
For Q&A

Tile0 Tile1 Tile2 Tile3 Tile4 Tile5 Tile6 Tile7

Comparator Comparator Comparator Comparator
Threshold

Vector0 Vector1 Vector2 Vector3 Vector4 Vector5 Vector6 Vector7

0-Detecor
BUS

Head Compression Implementation

70

90
85

80

75

0 0.15 0.3

0 0.1 0.2
0

1

2

3

28%

0 0.05 0.10

4

8

19%

Threshold Values

Address-record

32767

0

10

5

37%Attention
Recall

Input Memory

Decoder

0, 0, 1, 0

Address = 2

Weights

Mem

One-hot

Xt = 127
(8bit)

W21,W22,W23,W24

FC

0, 0, 1, 0

W01,W02,W03,W04

W11,W12,W13,W14

W21,W22,W23,W24

W31,W32,W33,W34

One-hot

Sigmoid tanh

XCt-1

Sigmoid

X

+

Sigmoid

tanh

X

ht-1 ht

Ct

A A

LSTM

...

Length-record

Tile

Compressed Head 0

Xt-1 Xt+1

Selected

Fig. 7. Data compression and zero-skipping techniques used in this work

leveraging sparsity of DNC accelerator.

Fig. 7 shows the sparsity and compression techniques used
in this work. In write/read head operations, non-zero weights
are compressed in a global bus before sending to each
computing tile with preset threshold to prune the write/read
weights to enhance sparsity. The data compression technique
results in 28% speedup for the attention calculation with
negligible overhead and minimal accuracy loss. Due to high
sparsity of incoming data stream, input zero-skipping with
associated detection and decoder logic as shown in Fig. 7 is
also implemented to skip large amount of related MAC
operations and weight loading in LSTM for frequent one-hot
input. As a result, 96% of FCN operations or 37% of total
LSTM operations are being bypassed.

V. MEASUREMENT RESULTS AND DEMONSTRATION CASES

A 65nm test chip was fabricated running at 350MHz at
nominal 1V supply. Different reasoning tasks using DNC
models trained offline was sent into the chip for evaluation
with end-to-end operations. Fig. 8 to 10 show detailed
description of four examples of reasoning tasks implemented
in the test chip including copy task, finding family relationship
based on family tree, graph traversal task for traversing
London underground stations within a given number of steps
and context-based Q&A using bAbI database [5]. Attention
mechanism from attention memory is highlighted to show the
sequential relationship discovered by the chip. Performance
comparison with CPU and GPU and accuracy comparison
with floating point model are also shown.

As in the copy task in Fig. 8, DNC receives a sequence of
vectors as input data and generate the same vector pattern in
as the output. The attention memory is used to store the
relationship, i.e. the sequence, between the different addresses
of the content memory. For example, the large value in the
coordinate (1,2) of the attention memory represents the
address 1 and 2 (blue circle) are highly related in relationship
enabling “copying” the sequence of the vectors. As shown in
Fig. 9 for the family tree example, relationships for immediate
family, i.e. father, mother, son, daughter are encoded as
vectors sent into DNC to build the family tree graph. The
attention memory represents family relationship. As an
example, “Amy, David, Father” and “Mary, Amy, Mother”
are inputs that include family relationships to be recorded by
the attention memory. By performing inference, DNC can
generate any relationship between 2 people in the family tree.
In this task, the DNC accelerator can achieve about 693X
speedup than CPU (Ryzen 5 2600X) with 4% accuracy loss.

128

0
8-bit

Input
vectors

output
vectors

Copied Vector

Time

Write
Head

Read
Head

0

8

2

4

6

M
e

m
o

ry
 Lo

ca
tio

n

0

8

2

4

6

M
e

m
o

ry
 Lo

ca
tio

n

Copied Sequence

Access same location Same location Sequence

32767

0
16-bit

Attention
Memory

Trained Sequence in copy task: memory 3 is
followed by 4 during reading

32767

0

Copy Task: DNC Trained to Copy and Paste Input

Fig. 8. Detailed demonstration of copy task.

Family Tree Task

...

Input1:

(Amy, David, Father)

Amy

David

Input2:

(Mary, Amy, Mother)

Time

Answer:
Maternal

Great Uncle

Amy

David

Mary

Step1: Input Step15: Final Answer

Graphic

Building

External

Memory

Attention

Memory

(1,6)

(6,1)

R
e

la
te

d
F

e
a

tu
re

sFeature1

Feature2

Feature1

FCN

CPU

Performance

This WorkGPU

0.001

0.01

0.1

1

10

100

La
te

n
cy

(s
)

FP This Work
0

25

50

75

100

Ac
cu

ra
cy

(%
)

Accuracy

80.2 76.4

Step2: Input

...

...

Feature1

Feature 3

Feature2

.........

............

?

?

0

32767

16-bit

27.1

1.82

0.039

Find relation
between input

features of 1 and 6

Fig. 9. Detailed demonstration of family tree task.

Finding the logic relationship between two objects in the
sequential context or graph is another important application of
DNC. As the Q&A task shown in Fig. 10, DNC receives the
text contents and is able to give the answer about the questions
on the relationship of the objects. The speedup compared with
CPU is around 709X. The London underground traversal task
is also shown in Fig. 10, DNC can find the traversal path back
to the starting station after receiving the information from

95

Authorized licensed use limited to: Northwestern University. Downloaded on September 21,2023 at 03:41:34 UTC from IEEE Xplore. Restrictions apply.

London underground map in advance. The speedup compared
with CPU is 697X with about 4% accuracy degradation.

CPU This WorkGPU FP This Work
0

25

50

75

100

Ac
cu

ra
cy

 (%
) 88.1 84.1

87.9 83.3

0.001
0.01

0.1

1
10

100

La
te

n
cy

 (
s)

Context Q & A Task

Mary took the milk.

John moved to the bedroom.

John got the football there.

Mary travelled to the hallway.

Where is milk?

Hallway

Sandra went to kitchen.

Attention

Memory

35.69
2.34

0.05

65.57
4.38

0.091

Bond
Street

?
Traverse from Bond Street

within 7 steps

Bond
Street

AccuracyPerformance

0.001

0.01

0.1

1

10

100

La
te

n
cy

 (
s)

Performance

CPU This WorkGPU
0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Accuracy

FP This Work

London Underground Traverse

Fig. 10. Details of Q&A task and London underground traversal task.

In total, eight different logic reasoning tasks spanning
across diversified jobs including sorting, copying, repeated
copy, recall, sort, context Q&A, graphic traversal and shortest
path, were tested to verify the functionality and performance
against commercial CPU and GPU. Fig. 11 shows the
measurement results on power and latency. An average of
above 90% utilization has been observed among computing
phases. The test chip achieved over 640X and 46X speedup
over CPU and GPU processors across the eight test cases.
End-to-end speedup of 30% was also achieved from the
applied sparsity enhancement techniques.

The comparison table was shown in Fig. 12. As this work
is the first implementation of a reasoning processor,
comparison was made mainly to prior DNN accelerators
specially for LSTM/FCN in similar technology. A maximum
efficiency of 1.28TOPS/W is observed for 8-bit LSTM.
Compared with a prior simulation-based work using a related
but different computation model of MANN [6], a 21X
improvement of efficiency is observed from this work. Fig. 13
shows the chip micrograph.

VI. CONCLUSION

A 65nm test chip using Differentiable Neural Computer
model was implemented to perform logic reasoning tasks for
the first time. A special NMC architecture was developed
rendering lower requirement of SRAM bandwidth with better
scalability. Input zero-skipping and data compression
techniques are applied to achieve 28% reduction on attention
calculation and 37% reduction of LSTM operations. Eight
different logic reasoning tasks are demonstrated using the test
chip. 700X and 46X speedup compared with commercial CPU
and GPU are observed on the logic reasoning tasks with a
power efficiency of up to 1.28TOPS/W and over 90%
utilization of PE units in all the eight computing phases.

REFERENCES

[1] J. Rae, et al., “Scaling Memory-Augmented Neural Networks with
Sparse Reads and Writes,” NIPS, 2016.

[2] T. Munkhdalai, et al., “Meta Networks”, ICML, 2017.

[3] A. Baddeley, et al., “Working Memory: Theories, Models, and
Controversies,” Annual Review of Psychology, Jan. 2012.

[4] Graves, A., Wayne, G., Reynolds, M. et al., “Hybrid computing using
a neural network with dynamic ex-ternal memory,” Nature, 2016.

[5] Facebook bAbI, https://research.fb.com/downloads/babi

[6] J. Stevens, et al., “Manna: An Accelerator for Memory-Augmented
Neural Networks,” MICRO, pp. 794–806, 2019.

[7] D. Shin, J. Lee, J. Lee and H. -J. Yoo, “14.2 DNPU: An 8.1TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” ISSCC, 2017.

[8] Y. -H. Chen, T. Krishna, J. Emer and V. Sze, "14.5 Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks," ISSCC, 2016.

Power Efficiency

E
ff

ic
ie

n
cy

(T

O
P

S
/W

)

Voltage (V)

F
re

q
u

e
n

cy
 (

M
H

z)

P
o

w
e

r
(m

W
)

Power Tracing and PE Utilization

Write
Attention

Update Read

0

250

200

150

100

50

Time (ms)
0 1.60.80.4 1.2

1000x

100x

10x

1x

100

85

90

95

Ut
ili

za
tio

n
(%

)

Power

PE Utilization

0

100

200

300

400

0

0.4

0.8

1.2

1.6

0

1.6

1.2

0.8

0.4

0

400

300

200

100

0.4 1.10.80.6 1.0

N
o

rm
a

li
ze

d

S
p

e
e

d
 (

lo
g

1
0
)

1 1 1 1 1 1 1 1
3.2 3.2 3.2 3.3

14.7 14.9 15.2 15.2

652 645 648 672 709 693 697 697

Copy RptCopy Recall Sort Context
Q&A

Family
Tree

Traversal Shortest
Path

Speed (Normalized with CPU)

GPU(GTX 1060)CPU (Ryzen 5 2600X) This Work

Sequential Reasoning w/ bAbI Database

8 bit

(Only single
iteration shown)

Power Frequency

46x201x 46x

LSTM FCN

Sparsity Benefits at End-to-end

N
o

rm
.

La
te

n
cy

0

6

12

Int MANN
+Zero-

Skipping
+Write

Compression
+Read

Compression

30%

0

2

4

6

8

10

12

Fig. 11. Measurement results

TABLE I. COMPARISON TABLE

MICRO2019[6] DNPU[7] Eyeriss[8] This Work

Core MANN CNN,FC,LSTM CNN DNC

Num. of PE 3*256 768(16bit) 168 64

Process(nm) 15nm Nangate Open
Cell Library

65nm 65nm 65nm

Area(mm2) 40 16 12.25 7.75
Supply Vdd - 1.1V 1.0V 1.0V

Power 16W (TDP) 279mW 278mW 230mW

Freq. (MHz) 500 200 200 350
Data
Type FP32 INT1~16 INT16 INT8(LSTM)

INT16(Read/Write Head)

Memory 39.8MB - 181KB 200KB

Power
Efficiency

18GOPS/W
(Simulated Results)

3.9TOPS/W (4b)
1.0TOPS/W (16b)

0.241TOPS/W
(1V,16b)

389.6GOPS/W (1V,8b)
1.28GOPS/W (0.5V,8b)

Fig. 12. Comparison Table with prior work.

Tile1 Tile2 Tile3Tile0

Tile1 Tile2 Tile3Tile0

Bus TOP Control

In
p

u
t

M
e

m

DCO

Technology 65nm CMOS

Area 7.75mm2

Power 230mW

PE Number 64

Tile Number 8

PE/Tile 8

Bit Precision INT8, INT16

Frequency 350MHz

Supply Vdd 0.5~1V

SRAM 200KB

Efficiency

(TOPS/W)

0.39(1V, 8bit)
1.28(0.5V, 8bit)

Fig. 13. Micrograph of the test chip.

96

Authorized licensed use limited to: Northwestern University. Downloaded on September 21,2023 at 03:41:34 UTC from IEEE Xplore. Restrictions apply.

