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Abstract—Logic reasoning represents a new class of artificial 

intelligence. This work presents the first hardware 

implementation of the Differentiable Neural Computer 

accelerator based on brain inspired “working memory” concept 

for reasoning tasks. A special near-memory computing 

architecture is developed achieving high scalability and over 

90% utilization of computing resources. Sparsity based 

enhancements such as zero skipping, data compression are 

applied with 30% speedup of the computing latency.  A 65nm 

test chip was fabricated with demonstrations on a variety of 

logic reasoning tasks showing 700X and 46X speedup compared 

with CPU and GPU and up to 1.28TOPS/W power efficiency. 

I. INTRODUCTION 

Despite the recent success in image and voice recognition 

applications, a missing capability from the current deep 

learning based artificial intelligence (AI) is realizing human 

like logic reasoning. Fig. 1 shows several common cognitive 

reasoning tasks such as deductive/abstract/sequential 

reasoning, algorithm deduction, graphic traverse, etc. where 

sequential relationships are being inferred from context of 

graphs or texts.  While exhaustive or sophisticated heuristic 

search algorithms are traditionally used to solve such 

problems, applying deep neural network (DNN) to reasoning 

tasks allows a differentiable solution, e.g. learning through 

back-propagation without human intervention. However, 

existing CNN or LSTM architectures suffer from limited 

memory space due to the entanglement of computing and 

memory elements leading to poor performance in long 

sequential reasoning tasks. Recently, models of differentiable 

neural computer (DNC) or Memory-augmented Neural 

Network (MANN) were developed for reasoning tasks [1-2]. 

As shown in Fig. 1, DNC incorporates content memory 

operations through special “read/write heads” to infer logical 

information from content memory contents overcoming 

limited memory space issues of CNN or LSTM. Such a 

capability resembles human brain’s “working memory” 

which uses an “attention” based controller to access vocal or 

visual memory of the brain [3]. This work implemented an 

end-to-end logical inference processor based on DNC 

algorithm with offline trained models [4]. As highlighted in 

Fig. 1, the challenges of ASIC acceleration of DNC include 

(1) large amount of memory access from the attention 

mechanism with 10.6X more memory request than 

conventional CNN, (2) highly sparse input and memory 

contents and (3) complex model with eight operating phases 

making the ASIC acceleration very challenging. In this work, 

for the first time, an ASIC logic reasoning processor was 

designed to accelerate cognitive reasoning tasks with 

700X/46X improvement over commercial CPU/GPU. The 

contributions include (1) A scalable near-memory 

architecture is developed to overcome the memory bandwidth 

challenges of the algorithm; (2) Special input zero skipping 

and data compression techniques are applied to exploit 

sparsity of the data; (3) Efficient transpose multiplication is 

introduced to avoid large data exchange among computing 

tiles; (4) Reconfigurable MACs are designed to support the 

eight operating phases with above 90% PE utilization rate for 

the challenging mapping of the software model.  
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Fig. 1. Logic reasoning tasks with different computing architectures and 

main contributions of this work. 

II. ARCHITECTURE AND ALGORITHM 

Fig. 2 shows the top-level DNC algorithm. A LSTM 
serves as a central controller which preprocesses sequential 
input data and manages the access of various memory banks 
through memory controllers. The memory controllers include 
“write head” and “read head” which realize an “attention” 
mechanism to select a region of “focus” from the large content 
memory, similar to human brain’s memory retrieval 
mechanism. For “read head”, the “attention” includes cosine 
similarity and matrix/dot operations where the entire contents 
of content memory are scanned for “related” information. A 
special “attention memory” is used to keep the “linkage”     This work is supported in part by NSF grant CCF-2008906. 
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information, i.e. logical/sequential relationship among the 
contents of content memory. For “write head”, a usage 
memory is added to keep track of the content memory usage 
for efficient recall, e.g. allocation of new memory for 
incoming information. Each iteration passes through a 
sequence of control/update/attention/recall/result operations 
and after hundreds of iterations, the final result is obtained 
from a fully connected network (FCN).  
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Fig. 2. Differentiable Neural Computer Algorithm. 
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Fig. 3. DNC Chip Top-level Architecture, PE utilization, arithmetic and 

power breakdown.  

As shown in the arithmetic operation breakdown in Fig. 3, 
besides extensive memory operation, DNC needs to support a 
variety of operations using PE units including MAC 
operations (38.9%) from LSTM and FCN, dot and vector 
multiplication (30.2%) and matrix addition/subtraction 
(21.1%) for memory similarity calculation. This leads to 
challenges in utilization of PE and high memory bandwidth 
required from memory banks, i.e. weight memory for 
LSTM/FCN, main content memory, usage memory and 
attention memory. To overcome the challenges, as shown in 
Fig. 3, a distributed near-memory computing (NMC) 
architecture is developed where the chip is divided into 
computational tiles connected by a global bus. Each tile 
embeds a small processing element (PE) array with 8 MACs, 
distributed memories, a register file and special function 
modules, e.g. SoftMax. For fitting into a small chip budget, 8 
tiles were implemented and can be proportionally scaled up. 

Fig. 3 also shows the PE utilization of this design with over 
90% on average. Power breakdown is also shown in Fig. 3 
with 43% from PEs and 50% from memory.  

III. NEAR-MEMORY COMPUTING ARRAY 
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Fig. 4. Comparison between conventional systolic array and near-memory 

computing architectures. 
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Fig. 5. Reconfigured dataflow for tile-level conflicts. 

Fig. 4 compares the proposed NMC architecture with  a 
conventional systolic array (SA). The required access from 
many different types of memory in DNC causes low 
efficiency, data collision, large travel distance and poor 
scalability from SA. NMC allows data to stay locally 
broadcasting only processed data with 8X reduction of 
memory bandwidth. In addition, NMC is scalable in 
throughput with computing tiles in contrast with SA. 
Optimization of dataflow for different computing phases, e.g. 
LSTM, attention, etc. are performed at tile level. As shown in 
Fig. 5, a data mapping conflict between similarity and recall 
operation with transposed matrix calculation is observed. A 
reconfigurable flow is used to pass accumulation results in 
different directions with significant latency enhancement.  

IV. ZERO-SKIPPING AND DATA COMPRESSION 

Fig. 6 shows a reconfigurable MAC unit which was 
developed to deal with a variety of operations including MAC, 
dot multiplication and addition/subtraction. In addition, 
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extensive clock gating and a configurable hybrid precision of 
8 bits (LSTM) and 16 bits (Read/Write Head) are used for PE 
array with minor accuracy loss (3~4% from 32 bits).  
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Fig. 6. PE Reconfiguration, multi-precision, clock-gating. 
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Fig. 7. Data compression and zero-skipping techniques used in this work 

leveraging sparsity of DNC accelerator. 

Fig. 7 shows the sparsity and compression techniques used 
in this work. In write/read head operations, non-zero weights 
are compressed in a global bus before sending to each 
computing tile with preset threshold to prune the write/read 
weights to enhance sparsity. The data compression technique 
results in 28% speedup for the attention calculation with 
negligible overhead and minimal accuracy loss. Due to high 
sparsity of incoming data stream, input zero-skipping with 
associated detection and decoder logic as shown in Fig. 7 is 
also implemented to skip large amount of related MAC 
operations and weight loading in LSTM for frequent one-hot 
input. As a result, 96% of FCN operations or 37% of total 
LSTM operations are being bypassed. 

V. MEASUREMENT RESULTS AND DEMONSTRATION CASES 

A 65nm test chip was fabricated running at 350MHz at 
nominal 1V supply. Different reasoning tasks using DNC 
models trained offline was sent into the chip for evaluation 
with end-to-end operations.  Fig. 8 to 10 show detailed 
description of four examples of reasoning tasks implemented 
in the test chip including copy task, finding family relationship 
based on family tree, graph traversal task for traversing 
London underground stations within a given number of steps 
and context-based Q&A using bAbI database [5]. Attention 
mechanism from attention memory is highlighted to show the 
sequential relationship discovered by the chip. Performance 
comparison with CPU and GPU and accuracy comparison 
with floating point model are also shown.  

As in the copy task in Fig. 8, DNC receives a sequence of 
vectors as input data and generate the same vector pattern in 
as the output. The attention memory is used to store the 
relationship, i.e. the sequence, between the different addresses 
of the content memory. For example, the large value in the 
coordinate (1,2) of the attention memory represents the 
address 1 and 2 (blue circle) are highly related in relationship 
enabling “copying” the sequence of the vectors.  As shown in 
Fig. 9 for the family tree example, relationships for immediate 
family, i.e. father, mother, son, daughter are encoded as 
vectors sent into DNC to build the family tree graph. The 
attention memory represents family relationship. As an 
example, “Amy, David, Father” and “Mary, Amy, Mother” 
are inputs that include family relationships to be recorded by 
the attention memory. By performing inference, DNC can 
generate any relationship between 2 people in the family tree. 
In this task, the DNC accelerator can achieve about 693X 
speedup than CPU (Ryzen 5 2600X) with 4% accuracy loss. 
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Fig. 9. Detailed demonstration of family tree task. 

Finding the logic relationship between two objects in the 
sequential context or graph is another important application of 
DNC. As the Q&A task shown in Fig. 10, DNC receives the 
text contents and is able to give the answer about the questions 
on the relationship of the objects. The speedup compared with 
CPU is around 709X. The London underground traversal task 
is also shown in Fig. 10, DNC can find the traversal path back 
to the starting station after receiving the information from 
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London underground map in advance. The speedup compared 
with CPU is 697X with about 4% accuracy degradation. 
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Fig. 10. Details of Q&A task and London underground traversal task. 

In total, eight different logic reasoning tasks spanning 
across diversified jobs including sorting, copying, repeated 
copy, recall, sort, context Q&A, graphic traversal and shortest 
path, were tested to verify the functionality and performance 
against commercial CPU and GPU. Fig. 11 shows the 
measurement results on power and latency. An average of 
above 90% utilization has been observed among computing 
phases. The test chip achieved over 640X and 46X speedup 
over CPU and GPU processors across the eight test cases. 
End-to-end speedup of 30% was also achieved from the 
applied sparsity enhancement techniques.  

The comparison table was shown in Fig. 12. As this work 
is the first implementation of a reasoning processor, 
comparison was made mainly to prior DNN accelerators 
specially for LSTM/FCN in similar technology. A maximum 
efficiency of 1.28TOPS/W is observed for 8-bit LSTM. 
Compared with a prior simulation-based work using a related 
but different computation model of MANN [6], a 21X 
improvement of efficiency is observed from this work. Fig. 13 
shows the chip micrograph. 

VI. CONCLUSION 

A 65nm test chip using Differentiable Neural Computer 
model was implemented to perform logic reasoning tasks for 
the first time. A special NMC architecture was developed 
rendering lower requirement of SRAM bandwidth with better 
scalability. Input zero-skipping and data compression 
techniques are applied to achieve 28% reduction on attention 
calculation and 37% reduction of LSTM operations. Eight 
different logic reasoning tasks are demonstrated using the test 
chip. 700X and 46X speedup compared with commercial CPU 
and GPU are observed on the logic reasoning tasks with a 
power efficiency of up to 1.28TOPS/W and over 90% 
utilization of PE units in all the eight computing phases. 
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Fig. 11. Measurement results 

TABLE I.  COMPARISON TABLE 

MICRO2019[6] DNPU[7] Eyeriss[8] This Work

Core MANN CNN,FC,LSTM CNN DNC

Num. of PE 3*256 768(16bit) 168 64

Process(nm) 15nm Nangate Open 
Cell Library

65nm 65nm 65nm

Area(mm2) 40 16 12.25 7.75
Supply Vdd - 1.1V 1.0V 1.0V

Power 16W (TDP) 279mW 278mW 230mW

Freq. (MHz) 500 200 200 350
Data 
Type FP32 INT1~16 INT16 INT8(LSTM) 

INT16(Read/Write Head)

Memory 39.8MB - 181KB 200KB

Power
Efficiency

18GOPS/W
(Simulated Results)

3.9TOPS/W (4b)
1.0TOPS/W (16b)

0.241TOPS/W 
(1V,16b)

389.6GOPS/W (1V,8b)
1.28GOPS/W (0.5V,8b)  

Fig. 12. Comparison Table with prior work. 

Tile1 Tile2 Tile3Tile0

Tile1 Tile2 Tile3Tile0

Bus TOP Control

In
p

u
t 

M
e

m

DCO

Technology 65nm CMOS

Area 7.75mm2

Power 230mW

PE Number 64

Tile Number 8

PE/Tile 8

Bit Precision INT8, INT16

Frequency 350MHz

Supply Vdd 0.5~1V

SRAM 200KB

Efficiency

(TOPS/W)

0.39(1V, 8bit)
1.28(0.5V, 8bit)

 

Fig. 13. Micrograph of the test chip. 
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