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Abstract—Logic reasoning represents a new class of artificial
intelligence. This work presents the first hardware
implementation of the Differentiable Neural Computer
accelerator based on brain inspired “working memory” concept
for reasoning tasks. A special near-memory computing
architecture is developed achieving high scalability and over
90% utilization of computing resources. Sparsity based
enhancements such as zero skipping, data compression are
applied with 30% speedup of the computing latency. A 65nm
test chip was fabricated with demonstrations on a variety of
logic reasoning tasks showing 700X and 46X speedup compared
with CPU and GPU and up to 1.28TOPS/W power efficiency.

I. INTRODUCTION

Despite the recent success in image and voice recognition
applications, a missing capability from the current deep
learning based artificial intelligence (Al) is realizing human
like logic reasoning. Fig. 1 shows several common cognitive
reasoning tasks such as deductive/abstract/sequential
reasoning, algorithm deduction, graphic traverse, etc. where
sequential relationships are being inferred from context of
graphs or texts. While exhaustive or sophisticated heuristic
search algorithms are traditionally used to solve such
problems, applying deep neural network (DNN) to reasoning
tasks allows a differentiable solution, e.g. learning through
back-propagation without human intervention. However,
existing CNN or LSTM architectures suffer from limited
memory space due to the entanglement of computing and
memory elements leading to poor performance in long
sequential reasoning tasks. Recently, models of differentiable
neural computer (DNC) or Memory-augmented Neural
Network (MANN) were developed for reasoning tasks [1-2].
As shown in Fig. 1, DNC incorporates content memory
operations through special “read/write heads” to infer logical
information from content memory contents overcoming
limited memory space issues of CNN or LSTM. Such a
capability resembles human brain’s “working memory”
which uses an “attention” based controller to access vocal or
visual memory of the brain [3]. This work implemented an
end-to-end logical inference processor based on DNC
algorithm with offline trained models [4]. As highlighted in
Fig. 1, the challenges of ASIC acceleration of DNC include
(1) large amount of memory access from the attention
mechanism with 10.6X more memory request than
conventional CNN, (2) highly sparse input and memory
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contents and (3) complex model with eight operating phases
making the ASIC acceleration very challenging. In this work,
for the first time, an ASIC logic reasoning processor was
designed to accelerate cognitive reasoning tasks with
700X/46X improvement over commercial CPU/GPU. The
contributions include (1) A scalable near-memory
architecture is developed to overcome the memory bandwidth
challenges of the algorithm; (2) Special input zero skipping
and data compression techniques are applied to exploit
sparsity of the data; (3) Efficient transpose multiplication is
introduced to avoid large data exchange among computing
tiles; (4) Reconfigurable MACs are designed to support the
eight operating phases with above 90% PE utilization rate for
the challenging mapping of the software model.
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Fig. 1. Logic reasoning tasks with different computing architectures and
main contributions of this work.

II. ARCHITECTURE AND ALGORITHM

Fig. 2 shows the top-level DNC algorithm. A LSTM
serves as a central controller which preprocesses sequential
input data and manages the access of various memory banks
through memory controllers. The memory controllers include
“write head” and “read head” which realize an “attention”
mechanism to select a region of “focus” from the large content
memory, similar to human brain’s memory retrieval
mechanism. For “read head”, the “attention” includes cosine
similarity and matrix/dot operations where the entire contents
of content memory are scanned for “related” information. A
special “attention memory” is used to keep the “linkage”
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information, i.e. logical/sequential relationship among the
contents of content memory. For “write head”, a usage
memory is added to keep track of the content memory usage
for efficient recall, e.g. allocation of new memory for
incoming information. Each iteration passes through a
sequence of control/update/attention/recall/result operations
and after hundreds of iterations, the final result is obtained
from a fully connected network (FCN).
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Fig. 2. Differentiable Neural Computer Algorithm.
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Fig. 3. DNC Chip Top-level Architecture, PE utilization, arithmetic and
power breakdown.

As shown in the arithmetic operation breakdown in Fig. 3,
besides extensive memory operation, DNC needs to support a
variety of operations using PE units including MAC
operations (38.9%) from LSTM and FCN, dot and vector
multiplication (30.2%) and matrix addition/subtraction
(21.1%) for memory similarity calculation. This leads to
challenges in utilization of PE and high memory bandwidth
required from memory banks, ie. weight memory for
LSTM/FCN, main content memory, usage memory and
attention memory. To overcome the challenges, as shown in
Fig. 3, a distributed near-memory computing (NMC)
architecture is developed where the chip is divided into
computational tiles connected by a global bus. Each tile
embeds a small processing element (PE) array with 8 MACs,
distributed memories, a register file and special function
modules, e.g. SoftMax. For fitting into a small chip budget, 8
tiles were implemented and can be proportionally scaled up.
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Fig. 3 also shows the PE utilization of this design with over
90% on average. Power breakdown is also shown in Fig. 3
with 43% from PEs and 50% from memory.
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Fig. 4 compares the proposed NMC architecture with a
conventional systolic array (SA). The required access from
many different types of memory in DNC causes low
efficiency, data collision, large travel distance and poor
scalability from SA. NMC allows data to stay locally
broadcasting only processed data with 8X reduction of
memory bandwidth. In addition, NMC is scalable in
throughput with computing tiles in contrast with SA.
Optimization of dataflow for different computing phases, e.g.
LSTM, attention, etc. are performed at tile level. As shown in
Fig. 5, a data mapping conflict between similarity and recall
operation with transposed matrix calculation is observed. A
reconfigurable flow is used to pass accumulation results in
different directions with significant latency enhancement.

IV. ZERO-SKIPPING AND DATA COMPRESSION

Fig. 6 shows a reconfigurable MAC unit which was
developed to deal with a variety of operations including MAC,
dot multiplication and addition/subtraction. In addition,
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extensive clock gating and a configurable hybrid precision of
8 bits (LSTM) and 16 bits (Read/Write Head) are used for PE
array with minor accuracy loss (3~4% from 32 bits).
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Fig. 7. Data compression and zero-skipping techniques used in this work
leveraging sparsity of DNC accelerator.

Fig. 7 shows the sparsity and compression techniques used
in this work. In write/read head operations, non-zero weights
are compressed in a global bus before sending to each
computing tile with preset threshold to prune the write/read
weights to enhance sparsity. The data compression technique
results in 28% speedup for the attention calculation with
negligible overhead and minimal accuracy loss. Due to high
sparsity of incoming data stream, input zero-skipping with
associated detection and decoder logic as shown in Fig. 7 is
also implemented to skip large amount of related MAC
operations and weight loading in LSTM for frequent one-hot
input. As a result, 96% of FCN operations or 37% of total
LSTM operations are being bypassed.

V. MEASUREMENT RESULTS AND DEMONSTRATION CASES

BUS

A 65nm test chip was fabricated running at 350MHz at
nominal 1V supply. Different reasoning tasks using DNC
models trained offline was sent into the chip for evaluation
with end-to-end operations. Fig. 8 to 10 show detailed
description of four examples of reasoning tasks implemented
in the test chip including copy task, finding family relationship
based on family tree, graph traversal task for traversing
London underground stations within a given number of steps
and context-based Q&A using bAbI database [5]. Attention
mechanism from attention memory is highlighted to show the
sequential relationship discovered by the chip. Performance
comparison with CPU and GPU and accuracy comparison
with floating point model are also shown.
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As in the copy task in Fig. 8, DNC receives a sequence of
vectors as input data and generate the same vector pattern in
as the output. The attention memory is used to store the
relationship, i.e. the sequence, between the different addresses
of the content memory. For example, the large value in the
coordinate (1,2) of the attention memory represents the
address 1 and 2 (blue circle) are highly related in relationship
enabling “copying” the sequence of the vectors. As shown in
Fig. 9 for the family tree example, relationships for immediate
family, i.e. father, mother, son, daughter are encoded as
vectors sent into DNC to build the family tree graph. The
attention memory represents family relationship. As an
example, “Amy, David, Father” and “Mary, Amy, Mother”
are inputs that include family relationships to be recorded by
the attention memory. By performing inference, DNC can
generate any relationship between 2 people in the family tree.
In this task, the DNC accelerator can achieve about 693X
speedup than CPU (Ryzen 5 2600X) with 4% accuracy loss.
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Fig. 9. Detailed demonstration of family tree task.

Finding the logic relationship between two objects in the
sequential context or graph is another important application of
DNC. As the Q&A task shown in Fig. 10, DNC receives the
text contents and is able to give the answer about the questions
on the relationship of the objects. The speedup compared with
CPU is around 709X. The London underground traversal task
is also shown in Fig. 10, DNC can find the traversal path back
to the starting station after receiving the information from
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London underground map in advance. The speedup compared
with CPU is 697X with about 4% accuracy degradation.
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Fig. 10. Details of Q&A task and London underground traversal task.

In total, eight different logic reasoning tasks spanning
across diversified jobs including sorting, copying, repeated
copy, recall, sort, context Q&A, graphic traversal and shortest
path, were tested to verify the functionality and performance
against commercial CPU and GPU. Fig. 11 shows the
measurement results on power and latency. An average of
above 90% utilization has been observed among computing
phases. The test chip achieved over 640X and 46X speedup
over CPU and GPU processors across the eight test cases.
End-to-end speedup of 30% was also achieved from the
applied sparsity enhancement techniques.

The comparison table was shown in Fig. 12. As this work
is the first implementation of a reasoning processor,
comparison was made mainly to prior DNN accelerators
specially for LSTM/FCN in similar technology. A maximum
efficiency of 1.28TOPS/W is observed for 8-bit LSTM.
Compared with a prior simulation-based work using a related
but different computation model of MANN [6], a 21X
improvement of efficiency is observed from this work. Fig. 13
shows the chip micrograph.

VI. CONCLUSION

A 65nm test chip using Differentiable Neural Computer
model was implemented to perform logic reasoning tasks for
the first time. A special NMC architecture was developed
rendering lower requirement of SRAM bandwidth with better
scalability. Input zero-skipping and data compression
techniques are applied to achieve 28% reduction on attention
calculation and 37% reduction of LSTM operations. Eight
different logic reasoning tasks are demonstrated using the test
chip. 700X and 46X speedup compared with commercial CPU
and GPU are observed on the logic reasoning tasks with a
power efficiency of up to 1.28TOPS/W and over 90%
utilization of PE units in all the eight computing phases.
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TABLE L. COMPARISON TABLE
MICRO2019[6] DNPU[7] Eyeriss[8] This Work
Core MANN CNN,FC,LSTM CNN DNC
Num. of PE 3*256 768(16bit) 168 64
Process(nm)|L5nm Nangate Open 65nm 65nm 65nm
Cell Library
Area(mm?2) 40 16 12.25 7.75
Supply vdd - 1.1V 1.0V 1.0V
Power 16W (TDP) 279mW 278mW 230mW
Freq. (MHz) 500 200 200 350
Data - INT8(LSTM)
Type FP32 INT1~16 INT16 INT16(Read/Write Head)
Memory 39.8MB - 181KB 200KB
Power 18GOPS/W 3.9TOPS/W (4b) | 0.241TOPS/W [389.6GOPS/W (1V,8b)
Efficiency |(Simulated Results)|1.0TOPS/W (16b)| (1V,16b) 1.28GOPS/W (0.5V,8b)
Fig. 12. Comparison Table with prior work.
= S — M| Technology 65nm CMOS
Area 7.75mm?
Power 230mW
PE Number 64
Tile Number 8
PE/Tile 8
Bit Precision INTS, INT16
Frequency 350MHz
Supply vdd 0.5~1V
SRAM 200KB
Efficiency 0.39(1V, 8bit)
(TOoPS/w) | 1.28(0.5V, 8bit)

Fig. 13. Micrograph of the test chip.
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