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Abstract— While neural network (NN) accelerators are being
significantly developed in recent years, CPU is still essential
for data management and pre-/post-processing of accelerators
in a commonly used heterogeneous architecture, which usually
contains an NN accelerator and a processor core with data
transfer performed by direct memory access (DMA) engine. This
work presents a special neural processor, referred to as a systolic
neural CPU processor (SNCPU), which is a unified architecture
combining deep learning and general-purpose computing for
fifth-generation of reduced instruction set computer (RISC-V)
to improve end-to-end performance for machine learning (ML)
tasks compared with a common heterogeneous architecture with
CPU and accelerator. With 64%–80% processing elements (PEs)
logic reuse and 10% area overhead, SNCPU can be configured
into ten RISC-V CPU cores. Special bi-directional dataflow and
four different working modes are developed to enhance the
utilization of deep NN (DNN) accelerator and eliminate the
expensive data transfer between CPU and DNN accelerator
in existing heterogeneous architecture. A 65-nm test chip was
fabricated demonstrating a 39%–64% performance improvement
on end-to-end image classification tasks for ImageNet, Cifar10,
and MNIST datasets with over 95% PE utilization and up to
1.8TOPs/W power efficiency.

Index Terms— Bi-directional dataflow, CPU, deep neural net-
work (DNN) accelerator, end-to-end performance, heterogeneous
architecture, machine learning (ML), general-purpose comput-
ing for fifth-generation of reduced instruction set computer
(RISC-V).

I. INTRODUCTION

ACCELERATORS designed for machine learning (ML)
tasks, especially for DNN, are being rapidly developed

in recent years. Because of the broad application space of
DNN and its tremendous computing workload, improving
energy efficiency for DNN accelerator has become a dominant
effort for accelerator design. Cross-layer approaches have been
explored at the software level such as quantization [1], archi-
tecture level such as flexible dataflows [2], and bit-precision
[3], [4], micro-architecture level such as adaptive clock [5],
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and circuit level such as compute-in-memory techniques [7],
[8], [9], [10]. However, very few works have focused on
improving the end-to-end performance of deep learning tasks
for the system-on-chip (SoC) level considering the cooperation
of the accelerator and other digital modules.

In an end-to-end ML task, besides DNN computing using
the accelerator, pre-processing, and post-processing also con-
sume significant latency and power [11], [12], especially
for edge computing on Internet-of-Things (IoT) devices with
real-time processing applications where data streaming is
performed from sensory device to the digital backend. For
example, in [11], the DNN inference accelerator is served
as an “edge-gateway-cloud” which achieves on-the-fly visual
recognition and classification of insect blobs. Preprocessing
in [11], including image capture, segmentation, extraction,
and loading DNN configuration settings, takes over 70% of
run-time for the end-to-end procedure. In [12], the SoC is
implemented for a vision artificial intelligence (AI) solution
with the DNN accelerator and image sensor on one single
chip. Neural network (NN) results need to pass through a
digital signal processing (DSP) sub-system, a result-selector,
and interfaces for post-processing. Before DNN processing,
image readout and image signal processing (ISP) are necessary
for the accelerator as preprocessing work. Overall, pre/post-
processing and data management take around 60% of the total
run time.

Even for commonly used neural processing units (NPUs),
accelerators are only in charge of the multiplication-
accumulation (MAC) operations for different layers of NNs.
As for inter-layer data preparation such as padding, batch
normalization, data alignment, and duplication, the accel-
erator needs cohesive cooperation with another CPU core
and highly efficient core-to-core communication. Fig. 1 illus-
trates a typical heterogeneous configuration that has a DNN
accelerator and a CPU pipeline core that handles the data
preparation and pre-/post-processing [6], [11], [12], [13],
[14], [15]. Direct memory access (DMA) engine is developed
to perform data transfer between the CPU core and the DNN
accelerator. Interface and global MEM provide the capability
for data streaming with off-chip DRAMs. Within the DNN
accelerator, the systolic array is a popular architecture for
2-D convolution with data being piped through PE units
for easier dataflow management and less SRAM bandwidth
requirements.

0018-9200 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northwestern University. Downloaded on September 21,2023 at 03:57:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2509-400X
https://orcid.org/0000-0003-2912-7294


JU AND GU: SNCPU COMBINING DEEP LEARNING AND GENERAL-PURPOSE COMPUTING 217

Fig. 1. Conventional heterogeneous architecture with a CPU pipeline core
and a DNN accelerator.

Fig. 2. (a) Challenges for heterogeneous architecture of the CPU and the
accelerator. (b) Example of workload breakdown from the recent demonstra-
tion from meta [6].

There are several critical challenges for the existing hetero-
geneous architecture of CPU and accelerator to process end-to-
end ML tasks. The challenges include: 1) large run time cost
due to data movement across CPU and accelerators; 2) high
latency for data preparation and pre-/post-processing using
CPU; and 3) low utilization of accelerator due to imbalance of
workload and waiting time on CPU and data transfer across
processing cores [6], [11], [12], [13], [14], [15]. As shown
in Fig. 2(a), for an end-to-end ML task, the accelerator is
utilized for only 30%–50% of the total run time. The rest of
the time is to wait for CPU processing and data movement
between CPU and accelerator cores, which causes the stall of

Fig. 3. Block diagram for the architecture of the proposed SNCPU.

the accelerator. Only 46.2% of utilization is reported from the
tensor processing unit (TPU) [13].

Another detailed example is given in Fig. 2(b) for a test chip,
which is recently published by Meta on AR/VR applications
[6]. The SoC contains an NN accelerator with an general-
purpose computing for fifth-generation of reduced instruction
set computer (RISC-V) CPU pipeline core and a powerful
DMA engine for data movement. For the first layer of the
convolutional NN (CNN) model for eye gaze tracking in this
SoC, the total latency is 5.36 ms with only 0.18 ms used by
accelerator computing. Data movement to different cores and
initial data preparation using im2col take more than 60% of the
execution (EX) time. A similar story is for the second layer of
CNN. Without initial image preprocessing, the data movement
still takes more than 1 ms in terms of 3.16 ms total latency,
which is over 30% of the total run time. NN accelerator
only takes 0.05 ms for CNN processing. The rest of the EX
time is for CPU processing such as casting, ReLU, batch
normalization, and quantization.

To improve the efficiency of core-to-core communication,
prior works have considered compressing data, accelerating
data transfer, and increasing MEM bandwidth. As an example
of [16], an accelerator coherency port (ACP) was designed
to request data directly from the last level cache of the
CPU instead of using the DMA engine to control the data
transfer.

To address the challenges discussed above, in this work,
we developed a new architecture, which is shown in Fig. 3,
referred to as a systolic neural CPU processor (SNCPU),
which combines an RISC-V CPU and a systolic CNN accelera-
tor in one unified core. The contributions of this work include:
1) the flexible configuration for a multi-core RISC-V CPU or a
systolic DNN accelerator with over 95% PE utilization for the
end-to-end operation; 2) significant throughput improvement
for CPU work because of ten-core CPU reconfiguration with
10% area overhead compared with a heterogeneous archi-
tecture for one CPU and one accelerator; 3) avoidance of
expensive data movement across cores by using a special
bi-directional dataflow for latency reduction; and 4) the
demonstration of SNCPU through a 65-nm test chip with the
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Fig. 4. Top-level architecture of SNCPU.

39%–64% latency improvement and the 0.65–1.8TOPS/W
energy efficiency for end-to-end image-classification tasks.

The rest of this article is organized as follows. The
overview of the top-level architecture of SNCPU is discussed
in Section II. Section III shows the details for PE logic reuse
and MEM reconfiguration supporting both CPU and accel-
erator functions. Special bi-directional dataflow is introduced
in Section IV. The implementation and measurement results
obtained by the test chip are shown in Section V, which also
includes the test cases. Conclusions are in Section VI. This
article is a detailed extension of the conference publication in
ISSCC 2022 [22].

II. TOP-LEVEL ARCHITECTURE OF SNCPU

A. Design Overview

Fig. 4 shows the top-level architecture of SNCPU. A recon-
figurable 10 × 10 PE array serves as the central computing
tiles. This 2-D systolic array can be utilized as a baseline
DNN accelerator or a ten-core five-stage RISC-V processor
by reusing PE logic and MEM.

As shown in Fig. 4, the baseline DNN accelerator supports
INT8 MAC operations with weight stationary dataflow. Mem-
ories are evenly separated and mapped to each row or column
of the accelerator to enhance the flexibility and convenience of
CPU mode reconfiguration. Each row or column of ten PEs has
one reconfigurable “activation, output and data cache memory”
(AOMEM), which can be reconfigured as an activation (ACT)
SRAM bank, an output SRAM bank, or a data cache in
different reconfigurations or dataflows. In addition, the ACT
module is implemented for each row or column to deal with

Fig. 5. Different configuration modes of SNCPU. (a) Multi-core CPU mode.
(b) DNN mode. (c) Hybrid mode.

simple processing functions that DNN needs, such as partial
sum accumulation, pooling, ReLU, and scaling. Furthermore,
each row/column of 10 PEs owns a small controller to control
the SRAM data arbitration and cohesive cooperation with
different reconfiguration modes (DNN/CPU) and dataflows.
A global digital controller oscillator (DCO) provides a tunable
global clock. A top-level controller is designed to control the
mode switching and dataflow switching. Each PE in the 2-D
array is reconfigurable to satisfy the requirement of typical
DNN operation and CPU operation. Additional SRAM banks
are used to support multi-core CPU functionalities, such as
the instruction SRAM bank of each row/column and two L2
SRAM banks for core-to-core communication in CPU mode.

B. Reconfiguration Modes and Dataflow Overview

Reconfiguration modes are shown in Fig. 5 where each lane
of the PE array, i.e., each row or each column of PEs, can be
configured as either systolic MAC operations for the DNN
accelerator or CPU pipeline stages. Associated SRAM banks
are also reconfigured for both purposes. Each mode contains
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Fig. 6. Reconfiguration of rows of PE array for a single RISC-V pipeline
core.

bi-directional dataflows and will be introduced in Section IV
in detail. Fig. 5(a) illustrates two multi-core CPU modes as
each row/column is utilized as one five-stage RISC-V pipeline
core. Fig. 5(b) demonstrates DNN modes supporting DNN
using MAC operation for convolutions. A special hybrid mode
is also supported for imbalanced workload for end-to-end ML
tasks between the CPU and the accelerator. In the hybrid mode,
as shown in Fig. 5(c), half number of PEs are configured as
DNN accelerators while the rest are configured into a five-
core RISC-V CPU providing additional flexibility in workload
assignment between the DNN accelerator and the CPU.

III. PE LOGIC REUSE AND MEMORY RECONFIGURATION

A. PE Logic Reuse for CPU Reconfiguration

Fig. 6 shows the construction of a 32-b five-stage RISC-V
CPU pipeline core from a lane of systolic PE array. Similar
to a typical accelerator design, each PE in SNCPU contains
a simple pipelined MAC unit with 8-b input and weight and
maximum 32-b accumulation output. Fig. 6 also shows the
logic reuse methodology for one row of ten PEs to realize
pipeline functions. One column of ten PEs also supports CPU
mode reconfiguration by using the same strategy of logic reuse.
Based on the CPU mode reconfiguration for one row and one
column, each PE needs to support two different pipeline stages
of CPU mode, which means PE design is not unified in the 2-D
PE array. While the design complexity has increased for the PE
unit, the additional design efforts were managed by creating
templates of pipeline stages and re-distribute them to the
specific PE based on its location in the 2-D array. Besides one
row/column PE reconfiguration, additional CPU-only SRAM
banks were added to support complete CPU functions such as
instruction caches and register files (RFs). CPU-only SRAM
banks are gated for DNN modes.

Details of PE logic reuse for row reconfiguration are shown
in Fig. 7, the very first PE in a row or column reuses the
MAC’s adder and 32-b registers as program counter (PC) to
provide the instruction cache access for each pipeline core.
Two PEs are used as the instruction fetch (IF) stage for
instruction fetch with a reuse of the internal 32-b register
and 8-b input registers. Two PEs are reconfigured into the
instruction decoding (ID) stage, where the logic in the 8-b
multiplier and 32-b adder are reconstructed to generate com-
puting control signals by performing numerical/logical opera-
tions with the op-code or func-code of instructions. The next
three PEs are combined into the EX stage, including one
PE serving as an arithmetic logic unit (ALU) with additional

Fig. 7. PE logic reuse details of five pipeline stages for RISC-V ISA of
CPU mode reconfiguration.

Fig. 8. Area and power overhead for CPU support and PE logic reuse rate.

logic for Boolean operations and a shifter, one PE supporting
ALU branch calculation for new address from the instruction
cache, and one PE used only for the registers to pass the EX
results. The next PE is reconfigured into the CPU MEM stage
for sending the ALU results to the data cache (Dcache) or
bypassing the Dcache read/write. The last PE is utilized as the
write-back (WB) stage to fetch the readout data from Dcache
and send it to the RF by reusing registers with additional
MUX logic. Several forwarding paths are also implemented
to support CPU data dependency. Multipliers are also reused
to realize multiplication instructions for RISC-V instruction
set architecture (ISA). The multiplication instruction may take
several cycles to finish in CPU modes.

B. Area, Power Overhead, and Utilization

As shown in Fig. 8, with an emphasis on logic sharing, the
pipeline core reconfiguration utilizes 64%–80% of the original
PE logic for CPU construction including the reconfiguration
for multiplication instruction. The logic reuse rate is 69% at
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Fig. 9. Different implemented power gating techniques and their power
benefits on DNN modes.

the PC and IF stages, 80% at the ID stage, 77% at the EX
stage, and 64% at MEM/WB stage. The logic reuse rates
are the average values for both row and column pipeline
reconfigurations which differ slightly. For example, adders in
PE are not reused in MEM/WB stage for row reconfiguration
but are reused in column pipeline reconfiguration. Compared
with the original systolic DNN accelerator, the area overhead
to include CPU functions is 3.4% in the PE-array, 6.4% in the
MEM, e.g., instruction and RF, and overall 9.8% for the whole
SNCPU processor. Extensive clock gating is implemented to
eliminate redundant power consumption from the additional
logic and unused memories for DNN modes. As shown in
Fig. 8, in two different accelerator modes of SNCPU, power
overhead is about 15% compared with the baseline systolic
array DNN accelerator.

Fig. 9 shows the improvement of different clock gating
techniques for the DNN modes. Gating unused SRAM banks
for the DNN modes such as instruction caches, L2 caches, and
RFs can achieve 15% power saving. RTL-level optimization
for better support of the gating function from the synthesis
tool provides another 8% power saving. CPU reconfiguration
with RV32I has 32-b precision while the DNN configuration
only needs 26-b precision at most without overflow for
the accumulator of each PE. Hence, unused flip-flops are
gated for DNN modes achieving another 11% power saving
with two different reconfigured precisions (20 b, 26 b) for
different models. Special input gating is also used to eliminate
the power consumption of unused CPU-only combinational
logic leading to a 6% power saving. Overall, nearly 40%
of energy saving for DNN modes is achieved by power
gating.

Fig. 10 shows the power overhead for different CPU
instructions from the reconfigurable PEs implemented in this
work in comparison with baseline RISC-V pipelines excluding
MEM power. The CPU operation from the reconfigurable PE
array incurs around 14% power overhead compared with the
scalar baseline RISC-V design (RV32I).

C. Customized Extension of RISC-V ISA for SNCPU

Customized instructions added into baseline RISC-V ISA
as extension instructions are developed to support a smooth
mode switching between CPU and DNN modes as shown in
Fig. 11(a). Several control and status registers (CSRs) are used
to store and configure the parameters required by the DNN
accelerator mode processing. Accelerator setup instruction

Fig. 10. Simulated power overhead from the reconfigurable PE array for
RV32I instructions.

Fig. 11. (a) Customized RISC-V ISA extension for CSR, mode switching,
and multi-core communication for CPU modes. (b) Detailed mode switching
process from CPU to accelerator.

(ASI) is utilized to save values to those CSRs before the
DNN accelerator starts to run. Mode switching instruction
(MSI) is used to switch from CPU mode to DNN accelerator
mode with holding the PC for future processing. Store L2
instruction (SL2) and load L2 instruction (LL2) provide a
direct communication method to store/reload data from L2 for
multi-core CPU data sharing.

The switching process from CPU to DNN accelerator is
shown in Fig. 11(b). CSR configuration takes 6 cycles to save
required configuration parameters for DNN running, such as
input vector numbers, output vector numbers, scaling factor,
and convolution/fully-connected (FC) calculation selection,
2–3 cycles are needed to set up the flow direction, i.e., row-
based or column-based flow. The 3–4 cycles are used for
“AOMEM” SRAM bank selection and configuration. It also
takes two additional cycles to set up initial values for the DNN
controller and initialize input gating. The total switching time
is 13–15 clock cycles for switching from CPU to DNN config-
uration. On the other hand, when the DNN accelerator finishes
the work, a trigger signal is generated to switch back into CPU
modes from accelerator modes consuming only 3 cycles.
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D. Reconfiguration Modes and Memory Reuse

The SNCPU architecture allows the majority of data to be
retained inside the SRAM banks of the processor core even
when operation modes change. It can eliminate the expensive
data movement and the DMA engine in the heterogeneous
architecture. To achieve high data locality, a special dual-mode
bi-directional dataflow is developed resulting in four differ-
ent reconfiguration modes. The four reconfiguration modes
include two different operations, i.e., CPU and DNN, two
directional dataflows, i.e., row-based dataflow and column-
based dataflow.

Fig. 12 shows the detailed four different operation modes
with activated modules highlighted in this figure. As shown in
Fig. 12(a), column accelerator mode is the typical accelerator
mode with weight stationary dataflow. The “AOMEM” SRAM
bank in each row is used as input MEM to provide input
data from right to left. Bottom “AOMEM” SRAM banks are
used for output MEM for the accumulation results from top
to bottom. Instruction caches and L2 SRAM banks are gated
in this mode. As for the row CPU mode, which is shown in
Fig. 12(b), each row of ten PEs can be configured as a CPU
pipelined core, with each “AOMEM” SRAM bank on the right
serving as a data cache for each CPU core. Instructions caches
on the left are activated to pass instructions through every
pipeline stage from left to right.

In the other directional scenario, as shown in Fig. 12(c),
the PEs in row accelerator mode receives the input data
from the bottom AOMEM banks and store the results in the
right AOMEM banks. Bottom “AOMEM” banks are reused
as input MEM for each column. Right “AOMEM” banks are
utilized as output MEM. The accumulation dataflow for row
accelerator mode is from left to right, which is an orthogonal
direction compared to the column accelerator mode. All CPU-
only SRAM banks are gated in this mode. The last mode,
column CPU mode, is introduced in Fig. 12(d). It receives the
instructions from the top instruction caches and the bottom
AOMEM banks are reconfigured to data caches, which allows
one column of ten PEs to be reconfigured to one RISC-V
pipeline core.

IV. DUAL-MODE BI-DIRECTIONAL DATAFLOW FOR

ENHANCED DATA LOCALITY

Fig. 13(a) shows the diagram of a special four-step dataflow
with the four different configurations from Fig. 12 using the
image classification task as an example. The four-step dataflow
is designed to avoid data movement across MEM banks at
different operation phases. In step 1 and step 3, different
CPU modes are responsible for the pre/post-processing and
inter-layer data preparation. Step 2 and Step 4 are used for
DNN operations. In image classification tasks, preprocessing
includes reshape, grayscale, rotation, and normalization. The
inter-layer data processing for some commonly used DNN
model contains data alignment, padding, duplication, and batch
normalization.

Details are shown in Fig. 13(b). First, the SNCPU operates
in row CPU mode to perform image preprocessing to generate
the input data for the DNN operation of the first layer of the

Fig. 12. Four different reconfiguration modes for two directions of SNCPU.
(a) Column accelerator mode. (b) Row CPU mode. (c) Row accelerator mode.
(d) Column CPU mode.

DNN model. Finished input data is stored in the “AOMEM”
SRAM banks on the right, which are utilized as data caches
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Fig. 13. (a) Block diagram and (b) architecture level illustration for four-step
dual-mode bi-directional dataflow in SNCPU using image classification as an
example.

for row CPU mode. Second, the SNCPU operates in column
accelerator mode which reuses the right “AOMEM” banks as
input MEM for the DNN accelerator. The DNN accelerator
can directly use the data from the right “AOMEM” SRAM
banks as input data, which is also the result of row CPU mode.
Considering the same scenario in heterogeneous architecture,
the DMA engine has to be engaged to transfer preprocessed
data from the CPU data cache to the input scratchpad of the
accelerator. Moreover, after the column accelerator finishes
the entire first layer of the DNN model, the SNCPU is
reconfigured to column CPU mode to perform data preparation
work such as data alignment, padding, duplication, and batch
normalization by directly using the data in the output MEM
from the previous accelerator mode. Finally, the SNCPU
switches to row accelerator mode to process the second
layer of the CNN by directly using the data cache from the
previous CPU mode as input MEM. The four-step operation
repeats until all CNN layers are finished. All the data can
stay either in the bottom “AOMEM” SRAM banks or right

Fig. 14. Chip micrograph and specifications.

Fig. 15. Measured power trace and PE utilization during processing of the
VGG16 model for CIFAR10 dataset.

“AOMEM” SRAM banks without any data transfer between
CPU modes and DNN modes. Multi-core CPU improves the
CPU throughput because of the parallel processing.

V. CHIP IMPLEMENTATION, MEASUREMENT

RESULTS, AND CASE STUDY

A. Chip Implementation

A 2-D 10 × 10 SNCPU processor was designed and
fabricated using a 65-nm CMOS process. The chip micrograph
and implementation details are shown in Fig. 14. The active
die area is 4.47 mm2 (2.07 × 2.16 mm) with 1.0-V nominal
supply voltage and 400-MHz operating frequency. The chip
can support 8-b integer bit precision for DNN accelerator
modes and RISC-V 32-b integer ISA for CPU modes with
several customized ISA extensions. The chip was tested with a
supply voltage scaled down to 0.5 V. The total on-chip SRAM
is around 150 kB. This chip provides a scan IO interface
to load and read out all on-chip SRAM content. A field-
programmable gate array (FPGA) board is engaged in chip
testing for data streaming in and out of the test chip through
scan IO ports for verification and measurement.

B. Performance Measurement Results

Fig. 15 shows the measured first a few hundred microsec-
onds of power trace on different modes using an image
classification task. The row CPU mode starts to work at around
80 µs for ten cores running together to perform preprocessing
work, such as image reshape, rotation, and normalization.
After that, the SNCPU switches to column accelerator mode

Authorized licensed use limited to: Northwestern University. Downloaded on September 21,2023 at 03:57:05 UTC from IEEE Xplore.  Restrictions apply. 



JU AND GU: SNCPU COMBINING DEEP LEARNING AND GENERAL-PURPOSE COMPUTING 223

Fig. 16. Measured power and frequency with voltage scaling.

Fig. 17. Energy efficiency of SNCPU for DNN operation with voltage
scaling.

to process the first layer of the DNN model for about 60 µs.
Then the SNCPU switches to column CPU mode to prepare the
input data for the next layer with padding and data alignment.
Starting from 380 µs, the SNCPU does the DNN operations
of the second layer with row accelerator mode for ten cores.
Only the starting of the second layer is shown for the row
accelerator mode in Fig. 15.

The PE utilization of each mode is also shown in Fig. 15.
The average PE utilization for DNN modes is around 99% and
the average PE utilization for CPU modes is around 96%. Total
average PE utilization is 97% which is significantly higher than
the conventional heterogeneous architectures [11], [12].

Fig. 16 shows the measured power and frequency with the
voltage scaled down to 0.5 V. The nominal supply voltage for
both DNN modes and CPU modes is 1.0 V with 589-mW
ten-core CPU power and 116-mW DNN accelerator power at
400-MHz frequency. Fig. 17 shows the energy efficiency with
a scaled supply voltage down to 0.5 V. The results are based on
the INT8 bit precision. The DNN modes achieve 655GOPS/W
at 1.0 V and increase to 1.8TOPS/W at 0.5 V.

As shown in Fig. 18, there are three reasons for elevated
power in CPU modes compared with DNN modes. First, there
are several CPU-only memories such as instruction caches,
L2 caches, and RFs which added significantly more power
consumption. Second, although extensive power gating for
DNN modes was performed, the same level of optimization for
CPU modes was not carried out due to the stringent tapeout
time. Many unused SRAM banks and logic are ungated in CPU
mode causing a power waste of about 45% in CPU mode.
Third, additional power saving was achieved in DNN mode
through programmable clock gating in the design by adjusting
the required bit precision. For example, the accumulator in
each PE only utilizes 20-b precision (based on the VGG16

Fig. 18. Power breakdown for column CPU and DNN.

Fig. 19. Description of Gemmini architecture [14].

model evaluated) out of 32-b available logics for DNN modes.
Hence, unused bits are gated off through the chip global
setting.

C. Benchmark Results

The open-source RISC-V-based heterogeneous architecture,
Gemmini [14], is utilized as the reference for comparison with
SNCPU. Image classification tasks are evaluated with three
different datasets, MNIST, CIFAR10, and ImageNet, using
three different NN models, i.e., VGG16, ResNet18, and a
simple ELU network. The ELU network with the MNIST
database is a much smaller workload which helps to evaluate
the performance of our design under a different model setting.

Fig. 19 shows a brief description of Gemmini SoC [14]
for comparison. The Rocket core is one open-source in-order
scalar processor with RISC-V ISA and five pipeline stages.
Here, we use a Rocket core with a two-level MEM system with
32-b RISC-V ISA. RoCC is a RISC-V-based interface con-
necting the Rocket core with extensional modules. As shown
in Fig. 19, by utilizing the RoCC interface, a 2-D systolic
PE array with scratchpads and an accumulator is physically
connected to the Rocket CPU core as a DNN accelerator. DMA
engine is used to control the data transfer between the caches
of the Rocket core and the scratchpads or accumulators of the
accelerator.

We implemented end-to-end image classification operation
using an 8-b quantized model for all three datasets and models.
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Fig. 20. Performance improvement compared with Gemmini [14]. (a) Expla-
nation for the reasons of benefit for SNCPU. (b) Improvement details for
CIFAR10, ImageNet, and MNIST datasets using VGG16, ResNet18, and
simple ELU models.

As shown in Fig. 20(a), for each model, certain preprocessing
works such as image processing, normalization, and inter-
layer data preparation work between layer 1 processing (L1)
and layer 2 processing (L2), are needed to be performed
by CPU. For conventional heterogeneous architecture, there
are two different parts of data transfer. First of all, input
data prepared by the CPU needs to be transferred to the
input scratchpad of the accelerator. In addition, finished data
from the accelerator needs to be sent back to the CPU for
general-purpose computation such as batch normalization, data
alignment, and padding. The data transfer is controlled by
the DMA engine with extra power consumption and takes
around 30% of the run cycles in total. It also needs to pay
extra run cycles for setting up the data transfer and the
initialization of the accelerator before the work starts. Data
transfer between different cores and the imbalance of CPU
workload and accelerator workload cause the idle time for both
the accelerator and CPU pipeline core. Especially for the DNN
accelerator, it can reduce the core utilization rate and sacrifice
the end-to-end latency of the image classification tasks.

In SNCPU, dual-mode bi-directional dataflow can keep data
locally for both CPU and DNN processing avoiding data
transfer effort compared with conventional architecture. Also,
the unified architecture of the CPU and DNN accelerator
eliminates the idle time for the SNCPU core leading to
improvement of the core utilization. Because of the ten-
core configuration, SNCPU can provide parallel processing
capability for CPU work, which is much faster than the single-
core CPU in Gemmini. As shown in Fig. 20, a 39%–64%
total latency improvement was observed throughout image
classification tasks. By processing identical programs for the
same DNN model and the same dataset for both SNCPU
and Gemmini design, the detailed improvement for image

Fig. 21. Benchmark accuracy in this work.

classification is shown in Fig. 20(b). As for the Cifar10 dataset,
SNCPU shows 62.3% latency improvement for VGG16 and
59.2% for ResNet18. The SNCPU achieves 64.1% latency
improvement for VGG16 and 62.5% for ResNet18 for Ima-
geNet. The average latency benefit is around 61% due to
30% from the removal of data transfer and 31% from par-
allel processing by multi-core CPU. The workload of CPU
processing impacts the latency improvement from SNCPU.
Benefits drop from 61% to 39.1% with the three-layer FC ELU
network on the simple MNIST dataset. The dropped benefit
is due to the less CPU workload for preprocessing and less
inter-layer data movement on the FC layers and in the simpler
MNIST dataset. Because of the limitation of the test chip,
MB level on-chip SRAM size which is enough for one layer
processing of well-known DNN model such as VGG cannot
be afforded. The benefit results assume that SNCPU and the
heterogeneous architecture have the same SRAM size and the
data reload latency from off-chip MEM such as DRAM is
ignored. The reason is that off-chip data reload is necessary
and similar for both architectures if the on-chip SRAM size
is the same. SNCPU can only save on-chip data transfer as
well as CPU processing acceleration. If considering off-chip
data reload time, it may dominate the end-to-end latency for
both architectures which is beyond the scope of chip design
and make the discussion really complicated.

As shown in Fig. 21, the VGG16 and ResNet18 for the
Cifar10 dataset can achieve around 91% accuracy with INT8
bit precision by using SNCPU. VGG16 for ImageNet dataset
has 71.01% top 1 accuracy and 90.04% top 5 accuracy.
ResNet18 can reach 68.92% top 1 accuracy and 88.14% top
5 accuracy on the ImageNet dataset on SNCPU.

D. Comparison Results

The comparison results are shown in Table I. Compared
with prior reconfigurable binary NN (BNN) accelerator-based
design [17], SNCPU achieves much higher throughput and
can support the most commonly used DNN models. Compared
with regular accelerator design [2], [3], SNCPU can support
general-purpose computing which is important for real-time
embedded applications. Table I also shows the comparison
with three prior RISC-V-based heterogeneous SoC works,
SamurAI [23] (1 × RISC-V + 1 × accelerator), Vega
[24] (9 × RISC-V + 1 × accelerator) and Dustin [25]
(16 × RISC-V). Compared with those SoC works, the DNN
efficiency for 8 b is compatible with existing SoC demon-
stration at 0.66GOPS/W at 1 V and 1.8TOPS/W at 0.5 V.
Compared with the 16-core RISC-V design in Dustin, the
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TABLE I

COMPARISON WITH PRIOR WORK

TABLE II

COMPARISON WITH EXISTING CPUS

performance of CPU mode of SNCPU achieves 16GOPS
at 1 V which is similar to the performance of Dustin. The
power of SNCPU is higher than Dustin due to the lack of
optimization in CPU mode in SNCPU.

Since one CPU core in CPU modes of SNCPU is an
in-order scalar processor, Table II lists the comparison of
the CPU performance of SNCPU with four similar types
of low-cost embedded commercial processors [18], [19],
[20], [21]. In order to support the related general-purpose
computing for DNN, complicated MEM system and pipeline
optimizations are not very critical compared with commercial
processors, which also provide competitive performance and
power efficiency for CPU modes of SNCPU.

VI. CONCLUSION

This article presented a unified architecture, i.e., SNCPU,
combining the systolic DNN accelerator and the RISC-V CPU
core. SNCPU is designed based on a 10 × 10 2-D systolic
array which can be reconfigured to a ten-core 32 b in-order
RISC-V CPU. The design achieves over 95% PE utilization for

ML tasks. It is implemented by using logic sharing inside the
PE array and MEM reuse with 9.8% area overhead and 15%
power overhead for DNN modes. A test chip was fabricated
using 65-nm CMOS technology under 1.0-V supply voltage
and 400-MHz frequency. The SNCPU achieves an energy
efficiency of 655GOPS/W to 1.8TOPS/W from 1.0 to 0.5 V.
Based on the evaluation using popular DNN datasets and
models, the SNCPU achieves a 39%–64% speedup for end-to-
end image classification tasks due to the enhanced data locality
and parallel data processing.
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