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Many proofs of interactive cryptographic protocols (e.g., as in Universal Composability) operate by proving
the protocol at hand to be observationally equivalent to an idealized specification. While pervasive, formal tool
support for observational equivalence of cryptographic protocols is still a nascent area of research. Current
mechanization efforts tend to either focus on diff-equivalence, which establishes observational equivalence
between protocols with identical control structures, or require an explicit witness for the observational
equivalence in the form of a bisimulation relation.

Our goal is to simplify proofs for cryptographic protocols by introducing a core calculus, IPDL, for cryp-
tographic observational equivalences. Via IPDL, we aim to address a number of theoretical issues for cryp-
tographic proofs in a simple manner, including probabilistic behaviors, distributed message-passing, and
resource-bounded adversaries and simulators. We demonstrate IPDL on a number of case studies, including a
distributed coin toss protocol, Oblivious Transfer, and the GMW multi-party computation protocol. All proofs
of case studies are mechanized via an embedding of IPDL into the Coq proof assistant.
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1 INTRODUCTION

An important area in the design of secure systems is the use of computer-aided proofs for certifying
the design of cryptographic protocols [Barbosa et al. 2021a]. As new and complex cryptographic
mechanisms become deployed, it becomes increasingly important to mechanize security proofs in
order to rule out unforeseen attacks not captured in on-paper proof developments.

While a number of sophisticated protocols have been proven secure using existing tools [Barthe
et al. 2011, 2015; Blanchet 2006, 2013; Lochbihler and Sefidgar 2018; Meier et al. 2013; Petcher and
Morrisett 2015], work to mechanize proofs for distributed message-passing protocols in the style
of Universal Composability (UC) [Canetti 2000] is only in its initial stages [Barbosa et al. 2021b;
Canetti et al. 2019; Lochbihler et al. 2019]. Since UC provides an extremely expressive and general
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framework for defining the security of protocols in a modular way;, it has the potential to serve as a
common framework for verified security proofs across cryptographic domains.

Challenge for Verification: Observational Equivalence. In UC and related frameworks [Maurer
2012], cryptographic protocols are judged secure when they are judged observationally equivalent
to an idealization which guarantees security using a trusted third party. Observational equivalence
of protocols is ubiquitous in cryptography, as it provides a uniform framework for a broad spectrum
of security properties, easily capturing privacy, integrity, and availability.

However, message-passing protocols pose semantic challenges for proving observational equiva-
lence, due to the presence of distributed computations and interactivity. Distributed protocols raise
issues of nondeterminism if two parties wish to concurrently send messages, while interactivity
requires observational equivalence to be established using bisimulations on the protocol states,
drastically raising the proof effort.

To date, these added complexities have not yet been fully addressed by verification methods. Prior
verification efforts are either libraries [Canetti et al. 2019; Lochbihler et al. 2019] based on sequential
program logics [Barthe et al. 2011; Lochbihler and Sefidgar 2018; Petcher and Morrisett 2015], which
require explicit bisimulation witnesses, or are based on symbolic model checking [Blanchet 2013;
Meier et al. 2013], or specialized security-preserving program transformations [Blanchet 2006],
lacking enough expressivity to encode observational equivalences for general classes of message-
passing systems.

Equational Reasoning for Protocols. In this paper, we address this gap in the literature by in-
troducing a core language, IPDL (standing for Interactive Probabilistic Dependency Logic), for
mechanizing observational equivalences between message-passing protocols. By designing an
equational proof system for equivalences of interactive protocols, we deliver new, simplified proofs
of protocol security in a style similar to UC without requiring hand-written bisimulation relations.

The core idea of IPDL is that while distributed message-passing can in general introduce a
number of complexities due to scheduling, these issues do not typically arise in cryptographic
protocols. Accordingly, we restrict our attention to the well-behaved (but still expressive) subset of
confluent protocols, which are guaranteed to not introduce races due to scheduling. By restricting
our attention to confluent protocols, we obtain equational proof principles which would not be
sound in the more general setting.

We mechanize the equational logic of IPDL and demonstrate it on a number of case studies,
including secure communication protocols employing encryptions and Diffie-Hellman key ex-
change, protocols for Oblivious Transfer [Goldreich et al. 1987], the GMW protocol for secure
two-party computation [Goldreich et al. 1987], and a multi-party protocol for secure randomness
generation [Blum 1983]. All proofs are written in a purely equational style, without requiring
explicit bisimulation relations. Our proof developments are open-source.!

While we present IPDL through a stand-alone formalization and mechanization, we do not
intend for IPDL to capture all desirable proof strategies in cryptography. Indeed, our confluent
semantics and equational proof techniques are likely to excel “on top” of a lower-level probabilistic
program logic, such as EasyCrypt [Barthe et al. 2011]. Indeed, EasyCrypt could be used to validate
lower-level probabilistic reasoning steps currently out of scope for IPDL, while IPDL could handle
all high-level equational reasoning for message passing.

https://github.com/ipdl/ipdl
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1.1 Contributions

e We introduce IPDL, a core language for distributed, interactive message-passing in crypto-
graphic protocols. IPDL is packaged with an equational logic for protocols, enabling simple,
high-level proofs without explicit bisimulations.

e We prove the equational logic of IPDL sound in the computational model: informally, whenever
the logic proves that two families of protocols (indexed by the security parameter) are
approximately equivalent, then no probabilistic polynomial-time distinguisher can distinguish
them with greater than negligible error.

e We mechanize the core logic IPDL in Coq, and demonstrate it on a number of case studies,
including basic communication and authentication protocols, a multi-party protocol for
secure randomness generation [Blum 1983], and the GMW protocol for two-party computa-
tion [Goldreich et al. 1987].

2 RELATED WORK

EasyCrypt [Barthe et al. 2011], CryptHOL [Lochbihler and Sefidgar 2018], and FCF [Petcher and
Morrisett 2015] are all probabilistic program logics for sequential programs. While very expressive for
probabilistic reasoning, these tools by design provide no built-in support for interactive protocols
with distributed message-passing behaviors. While a number of interactive protocols have been
proven secure in these tools [Butler et al. 2020; Defrawy and Pereira 2019], these proof efforts
employ ad-hoc techniques for reasoning about message passing.

To make message passing less ad-hoc, EasyUC [Canetti et al. 2019] for EasyCrypt, and the
Constructive Cryptography effort for CryptHOL [Lochbihler et al. 2019] both encode general forms
of interactive message passing into their ambient program logics. However, neither tool provides
sophisticated proof techniques for conducting equivalence proofs, requiring the user to hand-write
tedious bisimulation relations, which does not scale for larger protocols. Additionally, [Barbosa et al.
2021b] work to encode UC proofs in a modular fashion in EasyCrypt, but still rely on bisimulations
for basic proof steps. The purpose of IPDL is, in part, to eliminate such hand-written bisimulations.

CryptoVerif [Blanchet 2006] is a tool for equivalence-based computational reasoning for security
protocols in which parties communicate over fully untrusted networks asynchronously. While
excellent at semi-automated proofs for privacy and authentication properties, CryptoVerif cannot
express observational equivalences between dissimilar protocols, nor reason compositionally in the
sense of embedding security proofs for subprotocols into larger proof developments. In contrast,
IPDL directly encodes observational equivalences in a modular way.

Squirrel [Baelde et al. 2021] and its associated BC logic [Bana and Comon-Lundh 2014] proves
similar properties to CryptoVerif and related symbolic tools [Blanchet 2013; Meier et al. 2013]
through a first-order logic sound against polynomial time adversaries. While Squirrel does allow
for diff-equivalence, which establishes observational equivalence between protocols with identical
control structures, it cannot establish modular observational equivalences between dissimilar
protocols. Indeed, both Squirrel and CryptoVerif assume that the prover knows the entire protocol
all at once, which is incompatible with modular proofs.

Both Squirrel and CryptoVerif assume that protocol participants only communicate through
the adversary, who controls the untrusted network. Through arbitrary manipulation of channels,
IPDL can express many more kinds of dataflow in protocols, such as ideal communication channels
between parties and functionalities. Indeed, our main case studies (such as the GMW protocol [Gol-
dreich et al. 1987]) cannot even be expressed in Squirrel or Cryptoverif, due to a lack of generality
in communication topology. We believe that IPDL sits in a sweet spot of modularity between
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expressive tools requiring explicit bisimulations (EasyUC and the CryptHOL-based framework)
and tools for easy whole-protocol analyses (CryptoVerif and Squirrel).

Tamarin [Meier et al. 2013], Proverif [Blanchet 2013], and others [Bhargavan et al. 2021; Cremers
2008] are symbolic [Dolev and Yao 1983] protocol analysis tools, which abstract cryptographic
mechanisms into term algebras. As described by Squirrel [Baelde et al. 2021], symbolic tools
enumerate what actions attackers may do, while computational tools (including IPDL) state what
the attacker cannot do. Thus, the computational model subsumes the symbolic one, and does not
carry a risk that the attacker is not modeled with enough computational power. While a significant
line of work has proven that the symbolic model is sufficient to guarantee computational soundness
under certain conditions [Abadi and Rogaway 2002; Backes et al. 2012; Cortier and Warinschi 2011],
such arguments require intricate completeness arguments not required by IPDL.

IPDL rests upon a long lineage of using observational equivalences to model cryptographic
protocol security, both in the symbolic setting [Abadi and Rogaway 2002; Blanchet 2013; Lowe
1996; Meier et al. 2013; Schneider 1996] and in the computational one [Backes et al. 2007; Baelde
et al. 2021; Canetti 2000]. The main novelty of IPDL is enabling computationally sound formal
proofs of observational equivalence between cryptographic protocols without any explicit use of
bisimulation relations.

ILC [Liao et al. 2019] uses programming language techniques such as affine typing to capture
the semantics of Universal Composability [Canetti 2000] faithfully. Through two restrictions —
processes may only send a single message after receiving a single message, and no two processes
may listen on the same channel - ILC guarantees confluence, as is claimed by the native semantics
of Universal Composability. ILC’s main contribution is its core language, and does not deliver any
proof methods for establishing observational equivalences. In contrast, IPDL makes a different set
of restrictions to guarantee confluence (blocking reads, rather than single messages), and is attached
to an equational proof system for protocol equivalence. Additionally, via its “choice” construct,
protocols in ILC may make use of nontrivial timing information, such as deciding what to do next
based on which channel receives input. IPDL explicitly rules out dependence on timing information
in order to achieve simple equational rules.

Pirouette [Hirsch and Garg 2022] is a language for higher-order choreographies, which give a
similarly concise syntax for specifying distributed protocols. Additionally similar to IPDL, Pirouette
contains an equational proof system for reasoning about protocol behaviors. While the focus
for Pirouette is higher-order programming of distributed protocols with endpoint projections to
individual components, the focus for IPDL is using the proof system to conduct computationally
sound reasoning for cryptographic protocols.

3 OVERVIEW OF IPDL

Before we turn to the formal details of IPDL, we outline the main ideas behind expressing security
of protocols and proofs in IPDL.

3.1 Background on Simulation-Based Security

To motivate our setting of distributed cryptographic protocols, we give some details about UC-style
security modeling independent of any formal framework. Simulation-based security in the style
of UC [Canetti 2000] and Constructive Cryptography [Maurer 2012] provides an expressive and
general way to model security for distributed cryptographic protocols, such as secure multi-party
computation (MPC) [Lindell 2020]. The core idea is that cryptographic protocols 7 are modeled as
open, message-passing systems of parties and functionalities, i.e., services assumed by the protocol
to be secure, such as an authenticated communication channel.
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Interfaces. Virtually all protocols have two disjoint interfaces with the external world: an en-
vironmental interface, and an attacker interface (also called the backdoor in UC [Canetti 2000]).
The environmental interface is used to model the high-level I/O of the protocol, and is used by the
parties; e.g., the inputs and outputs of a particular circuit for MPC, or the input votes and output
decision of a secure voting protocol. In contrast, the attacker interface specifies how an attacker
may subvert specific implementation details of the protocol, such as interacting with corrupted
parties, or eavesdropping on communication channels.

Protocol Security. We define security for protocols 7 by comparing them to idealizations Ideal
in which all computations are replaced by a trusted functionality that provides security by fiat.
The external interfaces of 7 and Ideal are identical, but the attacker interfaces are not. Typically,
the attacker may corrupt parties and eavesdrop on intermediate communications in 7, while in
Ideal the attacker is severely limited, such as only deciding whether or not the computation may
complete. To compare the two protocols, we ask for a simulator Sim which converts the attacker’s
interface of Ideal to that of . The simulator’s role is to demonstrate that attacks in 7 are no more
powerful than attacks in Ideal; indeed, this is the case if no attacker can tell the difference between
interacting with 7 and Sim + Ideal, where + connects subcomponents by interface composition.
We formalize this idea by stating that 7 realizes Ideal if 7 =qps Sim + Ideal, where ~ps expresses
observational equivalence. Following the Dummy Adversary Theorem in UC [Canetti 2000], it is
fully general to allow the environment (supplying high-level inputs and outputs to 7 and ldeal)
to coincide with the attacker (attacking either 7 or Sim + Ideal). In the cryptographic domain,
observational equivalence is expressed through resource-bounded, probabilistic machines that output
a decision Boolean.

Proof Strategies. Proofs of security for complex protocols are rarely conducted in one single step.
Instead, cryptographers use hybrids, or intermediate protocol equivalences, which allow the proof
to be written modularly. Prototypically, proofs of security appear as chains of exact equivalences
and approximate congurence steps:

7=R +H ~R +H| =+ =Ry +Hi ~ R + H_ = Ideal, (1)

where each R; is an intermediate reduction, and each pair (H;, H) is an indistinguishability as-
sumption of the form H; ~ H!. In this format, each exact equivalence = is semantic equivalence
of the two protocols, while each approximate equivalence ~ is simply an application of a single
indistinguishability assumption, using the fact that ~ is a congruence for +. Crucially, the above
proof strategy does not involve any cryptographic reasoning other than proper identification of
the reductions R; and assumptions H; ~ H;. All nontrivial proof effort is discharged in proving
semantic equivalences =, which in general require bisimulations, i.e., relational invariants across
the states of the two protocols in question.

3.2 Key Ideas of IPDL

Motivated by UC-style security, the purpose of IPDL is to enable cryptographers to state and prove
observational equivalences, such as those in Equation 1, as easily as possible.

Channels and Reactions. As discussed in Section 3.1, UC-style proofs typically require hand-
written bisimulations to prove one protocol semantically equivalent to another. While expressive,
bisimulations are tedious to write and too low-level for serious proof efforts, thus diverting the proof
effort away from the high-level security proof. We eliminate the need for hand-written bisimulations
by choosing a language for protocols which is simultaneously expressive and well-behaved enough
to admit equational reasoning principles.
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A A A
protocol P[{Ini : {0, l}L(’\)}?:(l), {Out; : {0, 1}L(’1)}?:(1), {Leak; : {0, l}C(A)}?:(l)] =
new Key : {0, 1}lenc ) in
new {Ctxt; : {0, l}c(’\)}?:(f) in

(Key := samp (unifieng (1)) ||

q(4)

|| (Ctxt; := x « read In;; k < read Key; samp (enc(k, x))) [|
i=1

q(4)

|| (Out; = ¢ « read Ctxt;; k « read Key; ret (dec(k,c))) |
i=1

q(A)

| (Leak; := read Ctxt;)
i=1

Fig. 1. Simple encryption protocol in IPDL.

At its core, IPDL is a process calculus for describing networks of interacting probabilistic compu-
tations, communicating via write-once channels. The basic computational unit in IPDL is channel
assignment (¢ = R), which assigns the reaction R to channel c. Reactions are simple monadic
programs which may read from other channels, perform probabilistic sampling, and branch with if
statements. We enforce through typing that channels in IPDL carry one unique reaction.

Reactions interact through protocols P, which, other than channel assignment, are built out of
parallel composition P || Q and local channel generation, new c : 7 in P, where 7 is a data type. To
ensure parity with semantics for computational cryptography, all data types represent bitstrings of
a given length.

Protocol Families. Throughout, we make extensive use of protocol families, i.e., structured families

of protocols {Pi}f:’ |» indexed by natural numbers. Given a family of protocols {P;};, we write | |i P;

for the protocol Py || ... || Py. Similarly, we write new {c; : T}fil in P for the protocol given by
new c; : 7in ... new cy : 7 in P. We do not give explicit syntax for protocol families, instead
deferring their construction to the meta-language through the above abbreviations.

IPDL does not have an explicit construct for unbounded recursion. Since cryptographic protocols
are typically constrained to run in polynomial time, virtually all candidate uses of recursion can be
unfolded into a protocol family bounded by a polynomial in the security parameter.

Similarly, IPDL’s assumption that all channels are write-once is not a practical restriction, since
any channel o that carries multiple succesive messages can be split into a family {o0;} of channels,
again bounded by a polynomial in the security parameter.

3.3 Example: Secure Message Communication

We demonstrate IPDL on a simple example using encryption to communicate q secret messages
over an authenticated (but not private) communication network. Assuming that a key for symmetric
encryption has been distributed ahead of time, the sender may send encrypted messages over the
network, which the receiver will be able to decrypt correctly. We assume the attacker may view
the in-flight (encrypted) messages.

We model this protocol (simplified for brevity) in Figure 1, where all channel names are uppercase
to enhance readability. Throughout, A € N is the security parameter, used to define computational
soundness. The protocol operates as follows: it is parameterized by three collections of free channels,
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{In;},{Out;}, and {Leak;}. The channels In; and Out; are the inputs and outputs of the sender
and receiver respectively, while channels Leak; carry the in-flight messages observable by the
adversary. Through typing, we will obtain that Out; and Leak; are outputs of the protocol, while In;
are inputs. All channels are typed with a length of values they carry. First, the protocol generates
local channels: Key for key and the family {Ctxt;} for ciphertexts. We choose the key uniformly by
assigning Key the reaction that samples from unifien, (1), Where leng (1) is the length of the key.
To generate a ciphertext, we assign Ctxt; the reaction enc(k, x), where k is read from Key, and x
is read from In;. We leak the value of Ctxt; to the adversary along channel Leak;, and output the
decryption of Ctxt; under k along channel Out;.

While the protocol in Figure 1 is written monolithically, realistic developments in IPDL define
the code for each party separately. This is easy to do using the parallel composition operator || that
supports arbitrary interleaving of protocols. Indeed, Figure 1 is derived from a simplification of
the corresponding case study in Section 5, which is specified via two parties, the sender and the
receiver, and two functionalities: an authenticated network and a trusted key distribution service.

Confluence via Blocking Reads. Crucially, the semantics of read(c) in reactions is to block until a
value is available along c. This is in contrast to UC [Canetti 2000], which operates under an actor
model: in UC, protocol code can check for the absence of a message, which is disallowed in IPDL.
This subtle difference in expressiveness has large consequences for the semantics of protocols.
Since protocols in UC may make decisions based on the absence of a message, the order in which
messages are scheduled may influence party state; in turn, any presence of nondeterminism in
scheduling is a potential security leak, and has to be ruled out by enforcing a programming model
that only allows one in-flight message to exist at a time. While well-understood formally [Canetti
et al. 2019; Liao et al. 2019], this programming model introduces subtle complexities around timing
that complicate both protocol design and security proofs.

In IPDL, we instead prove a confluence theorem, guaranteeing that the order in which messages
are delivered (e.g., whether Out; or Leak; fires first) cannot affect any data present in the protocol.
Through confluence, we are able to express protocols in a precise, simple way, avoiding all low-level
issues around the sensitivity of timing in the semantics.

While our case studies in Section 5 show that IPDL is expressive enough to capture a wide variety
of cryptographic protocols, there are other protocols which are currently out of scope. Consensus-
like protocols such as PBFT [Castro et al. 1999] exhibit threshold behaviors (do X if n out of m
messages are received), which do not currently fit into the protocol formalism of IPDL. However, it
is likely possible to expand the confluence theorem of IPDL to include theshold behaviors.

Equational Reasoning. The unique structure of protocols in IPDL is designed to enable easy
equational proofs of observational equivalence. In line with the proof skeleton in Equation 1, we
have two judgments for observational equality. First is exact equivalence, A F P = Q, where A is a
channel context, specifying free channels common to both P and Q. Intuitively, A + P = Q holds
when P and Q coincide semantically, guaranteeing that no observer, regardless of resources, may
distinguish them. To establish exact equivalences, we additionally use the judgment A, T'+ Ry = R,
for reactions, where T is a type context for variables.?

Approximate equivalence is captured through comparing two families of IPDL protocols, {P)},
and {Q; },. Informally, we say that {P,}, ~) {Q,},1 when no polynomial time distinguisher can
distinguish P, from Q, with probability greater than a negligible function of A. Formally, we express
this through the judgment A + P, z;k’l) Q,- Here, k and [ are used to bound the size of the proof,

2Formally, we attach extra typing information to the judgments for both exact and approximate equivalences. We suppress
them here for readability.
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used for computational soundness: k bounds the number of approximate steps used, while I bounds
the size of contexts used for approximate equivalences. As noted in Section 3.1, the bulk of security
proofs establish exact equivalences, while approximate equivalences are mostly used to apply
indistinguishability assumptions.

We will now demonstrate equational reasoning in IPDL by proving that the protocol in Figure 1
does not induce any dataflow from In; to Leak;. We do so by establishing an approximate equivalence
to another protocol where this is guaranteed syntactically.

Decryption Soundness. The first step of the proof is to appeal to the decryption soundness assump-
tion, which guarantees that encrypted values always decrypt correctly: dec(k, enc(k, x)) = x. We
express this assumption in IPDL as the following exact equivalence axiom (with types suppressed):

K.LC,OF (7 || (O = (c « read C; k « read K; ret (dec(k,c)))) = (7 || (O := read 1)),
where 7 is the protocol
(K := samp (unifieng (1)) Il (C == x « read I; k « read K; samp (enc(k, x))).

Intuitively, the above equivalence states that whenever the key K is correctly sampled, any reaction
which decrypts an encryption of message | may be replaced with a reaction which reads directly
from I.

Since in IPDL protocol equivalence is a congruence for the connectives || and new, we apply the

. s . A
above axiom to Figure 1 g times to replace the definitions of Out; with | |;I:(1 ) (Out; := read In;).

Structural Rules. We may now apply some equational simplifications to the protocol. Since the
channel Out; no longer refers to encryption, the locally generated channel Ctxt; that performs
the ciphertext sampling is only used in one place: the leakage channel Leak;. In this case, we are
allowed to fold the definition of Ctxt; into Leak;, thereby removing this intermediate computation:

q(4)
|| (Leak; := x « read In;; k « read Key; samp (enc(k, x))).
i=1
Inlining channel definitions in this way is only permitted in certain special circumstances: e.g., if
the channel being inlined is not used in the rest of the protocol, as in this case, or if it does not use
any probabilistic sampling.

Semantic Security. In the next step we employ a standard variant of semantic security: if the key
K is secret, observing g encryptions of arbitrary messages is equivalent to observing g encryptions
of a fixed message, e.g., the all-zero message of length L. We express this in IPDL through the
axiom for approximate equivalence in Figure 2. To use this axiom, we move the composition

A
o) | |?:(1 ) (Out; = read In;) out of the scope of the local channel new K : {0, 1}"« () in _: we

can do this since the channels Out; no longer refer to Key. The protocol | |?=<1A) (Out; ::=read In;)
is thus our reduction, and the axiom in Figure 2 is the indistinguishability assumption. Taking
the bottom protocol from Figure 2 and moving the channels Out; back into the scope of new K :
{0, 1}!"« (M) in . yields the protocol in Figure 3. The leaked ciphertexts are now independent of
the values of In;, from which security follows.

4 CORE LANGUAGE AND LOGIC

IPDL is built from two main layers: protocols are networks of interacting channels, each of which is
assigned a reaction: a simple monadic, probabilistic program that may read from other channels.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.



A Core Calculus for Equational Proofs of Cryptographic Protocols 30:9

protocol EncReaI[{l {0, l}L(A)}q(A) {0; : {0, l}c(/l)}q(/l)] =
new K : {0, 1}"« ) jn

(K = samp (uniernK(A))) ||

q(4)

|| (O; = x « read I;; k « read K; samp (enc(k, x)))
i=1

~

~A
A A
protocol EncZero[{I {0, 1}L(A)}q( ) ,{O; : {0,1}C(A)}?:(1>] =
new K : {0, 1}'"« ) jn

(K = samp (Uniflenk(ﬂ))) “

q(1)
|| (O; := x « read l;; k < read K; samp (enc(k, OL)))

Fig. 2. Semantic Security in IPDL.

protocol P[{In; : {0, 1}*M 1D (0ut; : {0, 1PN }ID (Leak; : {0,1}¢D}IV] =

new Key : {0, 1}lenc ) in

(Key := samp (unifieng (1)) ||
q(1)
|| (Out; = read In;) ||
i=1
q(A)
| (Leak; := _ « read In;; k « read Key; samp (enc(k, OL)))
i=1

Fig. 3. The result of applying equational reasoning in IPDL to the encryption protocol in Figure 1. No dataflow
dependency exists between In; and Leak;.

4.1 Core Syntax

The syntax of IPDL is outlined in Figure 4, and is parameterized by a user-defined signature, X:

Definition 4.1 (Signature). An IPDL signature X is a collection of:
e type symbols, t;
e typed function symbols, f : 7 — 7’; and
e typed distribution symbols, d : 7 — 7’.

We let X be implicitly parameterized throughout our formal developments. We assume a minimal
set of data types, including the unit type 1, Booleans, products, as well as arbitrary type symbols t,
drawn from the signature X.

Expressions are used for non-probabilistic computations, and are standard. All values in IPDL
are bitstrings of a length given by data types, so we annotate the operations fst;, x,, and snd;, s,
with the type of the pair to determine the index to split the pair into two.

Function symbols f must appear in the signature ¥, and are assigned a typing X + f : 7 — 7. We
similarly assume a set of typed distribution symbols in %, which at least contains flip, returning
bool.
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Data Types T x= 1] bool | zx7t |t
Expressions e z= () | true | false | fe

| (e e2) | fstryxp € | sndyxy, €
Distributions D x= flip | de
Channels i,o,c
Reactions RS x= ret (e) | samp (D) | readc

| ifethenRielseRy | x:7«R; S
Protocols P,Q = 0:=R|P||Q | newo:7inP
Channel Sets IO w= {cg,...,cn}
Channel Contexts A w= - | Ac:T
Type Contexts r w= - | Lx:r

Expression Typing T're:7r
Distribution Typing T'+D: 7
Reaction Typing ATHFR: I —> T
Protocol Typing A+rP:I1— 0

Fig. 4. Syntax of IPDL.

As mentioned above, reactions are monadic programs which may return expressions, sample
from distributions, read from channels, branch on a value of type bool, and sequentially compose.

Protocols in IPDL are given by a simple but expressive syntax: channel assignment o = R
assigns the reaction R to channel o; parallel composition P || Q allows P and Q to freely interact
concurrently; and channel generation new o : 7 in P creates a new, internal channel for use in P.
We identify protocols up to alpha equivalence of channels created by new.

Typing. We restrict our attention to well-typed IPDL reactions and protocols. In addition to
respecting data types, the typing judgments guarantee that all reads from channels in reactions are
in scope, and that all channels are assigned at most one reaction in protocols.

The two main typing judgments in IPDL are for reactions, A;T' + R : I — 7, and protocols,
A;T + P : I — O.Here, A is a channel context — populated by free, external channels, as well as
internal channels generated by new — while T is a type context, used for sequential computations
inside reactions.

Figure 5 shows the typing rules for reactions. Intuitively, A;T' + R : I — 7 holds when R uses
variables in I', reads from channels in I typed according to A, and returns a value of type 7. The
typing rules for reactions are largely straightforward. We make use of standard typing rules for
expressions, which we omit. Typing rules for distributions are likewise straightforward, with
T + flip : bool.

Figure 6 gives the typing rules for protocols: A P : I — O holds when P uses inputs in I to
assign reactions to the channels in O, all typed according to A. Channel assignment o := R has the
type I — {o} when R is well-typed with an empty variable context, making use of inputs from I as
well as 0. We allow R to read from its own output o to express divergence: the protocol o := read o
cannot reduce, which is useful for (conditionally) deactivating certain outputs.

The typing rule for parallel composition P || Q states that P may use the outputs of Q as inputs
while defining its own outputs, and vice versa. Importantly, the typing rules ensure that the outputs
of P and Q are disjoint so that each channel carries a unique reaction. Finally, the rule for channel
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Tre:7 I'tD:1
\A;ﬂR:I—»r A;Trret(e):I >t A; Trsamp (D) :1—
(i:r)eA iel T+ e: bool ANTrHR (I > 1 ATrFRy: I >t
A;Trreadi:I —> 1 A; TrifethenRielseRy: I —> 1

AN THFR:I—> 1 ATox:trS:I—> o0
ATr(x:T«<R S):I>o0

Fig. 5. Typing for IPDL reactions.

0:T€EA o¢l A; -FR:1U{o} >
ArP:1—>0 A+ (0o=R):1- {o}

A+P:IUO; = Oy AFQ:1UO0; — O, ANo:t+P:1— OU{o}
A+rP||Q:I—>0;UO0; A+ (newo:AinP):1— 0

Fig. 6. Typing for IPDL protocols.

generation allows a protocol to select a fresh channel name o, assign it a type 7, and use it for
internal computation and communication.

Protocol typing plays a crucial role for modeling security. Simulation-based security in IPDL is
modeled by existence of a simulator Sim with an appropriate typing judgment, A + Sim : I — O.
Restricting the behavior of Sim to only use inputs along I is necessary to rule out trivial results
(e.g., Sim simply copies a secret from the specification).

4.2 Semantics

The semantics of IPDL is given in two steps. First, we define an operational semantics for reactions
and protocols. Our operational semantics is used to validate the exact fragment of our equational
logic, which proves perfect observational equivalence.

The second step is to define an interaction, or security game, between an IPDL program and a
resource-bounded, probabilistic distinguisher. The interaction semantics is used to validate approxi-
mate observational equivalences: these are used for cryptographic hardness assumptions, such as
security of encryption schemes or Diffie-Hellman, as well as top-level statements of security for
protocols.

To give semantics to user-defined symbols, we first define interpretations:

Definition 4.2 (Interpretation). An interpretation J for a signature ¥ assigns:

e for each type symbol t, a bitstring length [t]? € N;

e to each function symbol f : ¢ — 7 a function [f] from bitstrings {0, 1}[°]" to bitstrings
0.y

e to each distribution symbol d : ¢ — 7 a function [d]? from bitstrings {0, 1}[[‘7111 to distributions
on bitstrings {0, 1}[[7]]].
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Above, we naturally lift the interpretation [-]? to data types by setting [bool]? = 1, [1]? =0,
and [z x '] = [z]? + [r’]. When the interpretation is clear from context, we omit it and simply
write [-].

4.2.1 Operational Semantics. To define our operational semantics, we first augment the syntax of
protocols and reactions to contain intermediate values, where v is a bitstring:

Expressions e == ... |0
Reactions R == ... | val(v)
Protocols P = ...]lo=v

Throughout this section, we assume an ambient interpretation I for the signature X. Our
semantics builds on a big-step semantics e || v for expressions. The semantics is standard, except
that pairing is given by bitstring concatenation, and the projections fst,,, snd,, unambiguously
split the pair according to [r2] and [z;], respectively. User defined function symbols f are given
semantics through the ambient interpretation 7.

Our semantics uses finitely supported distributions throughout. We let unit(v) be the distribution
assigning unit mass to v. Additionally, given a family of distributions #; and constants ¢; € [0, 1]
fori=1...kwith }};c; = 1, we let 3; ¢;n; be the distribution induced by the linear combination.

We give semantics to reactions in Figure 7. Reactions have a straightforward small-step semantics
of the form R — n, where 5 is a probability distribution over reactions. All sums };; ¢; n; are
implicitly finitely supported. Crucially, there is no semantic rule for stepping read c: we model
communication via semantics for protocols, which substitute all instances of read for values.

Semantics for protocols are given in Figure 8. We give semantics to protocols via two main
small-step rules, and a big-step rule which coordinates the small steps. First is the output relation

Py Q, which is enabled when the reaction for channel o in P terminates, resulting in value o.
When this happens, the value of o is broadcast to all other protocols set in parallel composition
with P, resulting in read o commands in other reactions to be substituted with val(v). Note that
the value of o is not broadcast above a new when the local channel is equal to o.

Secondly, we have the internal stepping relation P — n, specified similarly to the small-step
relation for reactions. The first rule lifts the stepping relation of R to the stepping relation for
(0o = R), while the next three rules simply propagate the stepping relation through parallel
composition and new. The last rule links the output relation with the stepping relation: whenever
P steps to Q, resulting in the output ¢ := v, we have that new c : 7 in P steps with unit mass to
new c¢: 7in Q.

Finally, we have the big-step relation P || n, meaning that P takes as many steps as possible,
resulting in a distribution 7. The big-step relation applies as many output and internal steps as
possible until the protocol cannot perform either.

Note that while the semantics for reactions is sequential, both output and internal step relations
for protocols are nondeterministic. Indeed, any two channels in a protocol may produce outputs in
any order. Ordinarily, this presents a problem for reasoning about cryptography, since nondeter-
ministic choice may present a security leak. However, our language introduces no way to exploit
this extra nondeterminism, essentially due to read commands in reactions being blocking. This is
formalized by a confluence result for IPDL:

LEMMA 4.3 (CONFLUENCE). IfA+ P :1 — O, then:
. IfPriiU% QandPri:—:—oaQ', thenv=0v" AQ=0’;
o IfP o, Qy and P AN Q; with o1 # 0y, then there exists Q such that Q, RANICN Q and

01:=10;
Qy —— 0.
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1

R—n
elo el 1
ret (e) — unit(val(v)) if e then R; else R, — unit(R;)
elo
if e then R; else Ry, — unit(Ry) x : 7« val(v); S — unit(S[x :=v])
D | Z ¢; unit(v;) R— Zc,- unit(R;)
samp (D) — Z c; unit(val(v;)) X:T«—R S— Zci unit(x : 7 < R;; S)
i

Fig. 7. Semantics for reactions.

o IfP A Q and P — n, then there exists ' such that n kN n’ and Q AN = .
e IfP — ny and P — 1y, then either n; = n, or there exists nj such that n; — n and 5, — 1.

In the above definitions, we lift the two stepping relations =% and — to distributions in the
natural way. The confluence result guarantees that the big-step relation for protocols is well-defined:

COROLLARY 4.4 (DETERMINISM OF |}). Suppose A+ P : 1 — O. Then there exists a unique 1 such
that P || n.

When ranging over multiple interpretations 7, we index our operational semantics by 7, obtain-

. 0=0
ing 7, o7, and —— .

4.2.2 Computational Semantics. While the operational semantics is useful for validating exact
observational equivalences between IPDL programs, we need more machinery to validate approxi-
mate equivalences. First, we define distinguishers, or resource-bounded algorithms who interact
with IPDL protocols in a well-defined interaction.

Second, we define a notion of size for protocols, which constraints them to be polynomial time.
Computing sizes for protocol contexts is necessary for soundness, as approximate equivalences are
only sound against polynomial time distinguishers and program contexts.

We distinguish IPDL protocols using general polynomial time algorithms since IPDL protocols
are not fully general. Indeed, IPDL protocols cannot test for the presence or non-presence of a value
along a certain channel, while our distinguishers can. This extra expressivity in our distinguishers
ensures that not only do IPDL protocols not use timing information, but they do not present any
leaks through timing channels either.

Distinguishers and Interactions. Let I be an interpretation for 3. Then, given channel sets I, O
for channel context A, we define the set Query; 5 ; 5 to be:
Query ;o = {Input(i,0) | i € Lo € {0, 1HADI 3y U {Get(0), 0 € O} U {Step).

Definition 4.5 (A-Distinguisher). Given an interpretation 7, A (7, A, I, O)-distinguisher A is a
triple of probabilistic algorithms (Astep, Aout, Adecide) Where:
® Astep : {0,1}" — {0,1}" X Query 5 takes input a state s (encoded as a bitstring), and
returns a new state and a query;
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P 0=0 Q
P 0=0 P,
o = val(v) =% 0 =0 PllQ =% p’ || Q[read o = val(v)]

Q 0=0 Q, P 0=0 Q oic
P||Q»E>P[reado:= val(v)] || O newc:rinP»ﬂ»newc:TinQ
P—ny
R— Zci unit(R;) P— Z ¢; unit(P;) Q- Z c; unit(Q;)

i i

0=R— Zci unito:=R)  P||Q— Zc,. unit(P; | Q) PO — Zc,- unit(P || Q;)

P— Zci unit(P;)
i

P c=0 Q

newc:7rinP — Zci unit(new ¢ : 7 in P;)

; new c: 7in P — unit(new ¢ : 7 in Q)

Pl

P - Z ¢; unit(P;) P | n;
i 0:=0

P/ Yo, v Pt P—Q Qln
P i i
P || unit(P) UZC 1 Pln

Fig. 8. Semantics for protocols

o Agut : {0,1}* X (0: 0O) x (1+{0, 1}[[A(°)]]I) — {0, 1}" takes a state s, a channel o, an optional
value v for o, and returns a new state; and
® Agdecide : {0, 1}* — {0, 1} takes a state and returns a single bit.

We bound the running time of distinguishers by bounding the running time of each algorithm:

Definition 4.6 (k-Bounded Distinguisher). A (I, A, I, O)-distinguisher is k-bounded when its
algorithms (Astep, Aouts Adecide) all run in at most k time steps.

For compositional reasoning, we do not wish to penalize the time bound of A for indexing into
the channel sets I and O. Thus, in the above definitions, our model of computation for distinguishers
consists of probabilistic Turing machines over the alphabet I U O U {0, 1}. Increasing the alphabet
size of A will not introduce unrealistic assumptions about our timing model: asymptotically, the
size of A will be bounded by a polynomial (so will I and O), which allows simulation of the alphabets
I and O using logarithmically many bits.

We then define the interaction of distinguishers and IPDL protocols in Figure 9.
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Definition 4.7 (Interaction). Let I be an interpretation for the ambient signature 3, A+ P : I — O,
and A be a k-bounded (7, A, I, O)-distinguisher. Then, we let Ak (PI ) be the probability distribution
on bits induced by the algorithm given in Figure 9.

In Figure 9, we let the distinguisher interact with the pro-
tocol through a number of rounds, which we also bound by k.

Algorithm A*(P7): The distinguisher maintains a state variable s, which we ini-
si=€ tialize to the empty bitstring ¢. Each round, the distinguisher
For k rounds: outputs a query q € Query, which may optionally deliver

(s',q) — Astep(s) an input or ask for an output If ¢ = Input(i,v) with i € I,
sim ¢ we substitute read i with val(v) in P. (This has no effect if
i already was assigned an input.) If ¢ = Get(0) with o € O,

If g = Input(i,0) : we check whether o has already been computed in P, which
P := P[read i := ret (v)] happens when (0 = v) € P for some v. If such a value v
If g = Get (o) : exists, we output it to the distinguisher as Some(v); other-

wise, we return None. If q is Step, we simply proceed to the

next round. After k rounds, we obtain a decision bit from the
s 1= Aout (s, 0, Some(v)) distinguisher based on its current state.

Else : To define approximate equivalence, we make use of prob-

abilistic polynomial-time (PPT) families of distinguishers:

If (0 := v) € P for some v :

s := Aout (s, 0, None)
P« where P |l 1 Definition 4.8 (PPT Distinguishers). Let {I;} be a fam-
ily of interpretations for ¥, indexed by natural numbers
A. Additionally, let {A}, I}, 0.}, be a family of channel
contexts A, and channel sets for A). Then a PPT distin-
Fig. 9. Interaction of IPDL program A guisher for {A),I),0,} is a family {A,}, such that A, is
P:I— O with k-bounded (1,A,1,0) , (I, Ay, Iy, 05)-distinguisher, along with a polynomial p
distinguisher A. such that A, is p(1)-bounded for all A.

Ensuring PPT for Protocols. To ensure that we apply approx-
imate equivalences soundly, we need to ensure that they are only applied in polynomial-time IPDL
contexts.

To capture probablistic polynomial time (PPT) for IPDL, we first consider PPT families of
interpretations J. Intuitively, the family 7, is PPT when it assigns polynomial lengths to type
symbols t, and PPT computable functions to function symbols f and distribution symbols d.

To give semantics to distribution symbols, we need to allow for probabilistic algorithms which
only succeed with negligible probability. Recall that a negligible function ¢ : N — Q is one that is
eventually smaller than the inverse of any polynomial: VK, 3N, Vn > N, e(n) < an

return Agecide ()

Definition 4.9 (Realizable Distribution). Let D be a map from bitstrings to probability distributions
over bitstrings, and let T be a probabilistic Turing machine. We say that T realizes D with error ¢ if,
for all x and y, | Pr[T(x) = y] - D(x)(y)| < e.

Definition 4.10 (PPT Interpretation). Given an IPDL signature %, a family {; }, of interpretations
is polynomial if there exists a K € N such that:

e for all type symbols t, [t]?* < AX for all sufficiently large ;

e for all function symbols f, that [f]#*(-) is computable by a Turing machine in time at most
MK for all sufficiently large A; and

o for all distribution symbols d, there exists a negligible function ¢ such that for all sufficiently
large A, [d]#* is realizable by a probabilistic Turing machine running in time at most AX with
error £(A).
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Enforcing PPT for Protocols. Since IPDL protocols are finite networks of channels and do not
contain recursion, we ensure polynomial time for protocols by simply counting the number of
function symbols applied in reactions, and the number of channel bindings in protocols. Assuming
that the interpretation 7 is bounded by a reasonable running time, we will obtain that the protocol
is as well.

This count is given by a symbolic size | - |, defined for expressions, reactions, and protocols. Since
we assume that function and distribution symbols are PPT, our symbolic size for expressions and
reactions simply counts the number of variables and function applications present in the syntax.
(For example, |f e| := |e| + 1, while |(e1, e2)| := |e1] + |ez|.) The only subtle rule is for ifs inside of
reactions, where we take the max: |if e then R; else Ry| := |e| + max(|R;|, |Rz|). We formally define
symbolic size in the full version [Gancher et al. 2022].

IPDL Contexts. To support compositional reasoning, we additionally define typed protocol contexts
for IPDL:

Program Contexts C u= o | 0*(C) | C||Q | P|IC | newo:7inC

Contexts are essentially protocols with a single hole. The exception is channel embedding, 6*(C),
where 0 : Ay — A; is an injection from channels in a smaller context to a larger one. Channel
embeddings operate naturally on programs, channel sets, and contexts, forming 6*(I), 0* (P), and
0*(QC), respectively.

Contexts have a straightforward typing judgment C : (A + I — O0) —» (A" + I' — O')
transforming well-typed protocols to well-typed protocols, given in the full version [Gancher et al.
2022]. We write C(P) for the application of P to the context C. Symbolic sizes are lifted to contexts
in a straightforward manner.

Given symbolic sizes for contexts, we say that the family {C; : (Ay + [hH = 03) — (A} + [} —
0})} is PPT when there exists a polynomial p such that |C;| < p(4) for all A, and [A,| < p(A) for
all A.

Approximate Equivalence. Given two families {P;}, and {Q;}, of IPDL programs, we define
them approximately equivalent when no PPT distinguisher can distinguish them up to PPT contexts:

Definition 4.11 (Approximate Equivalence). Let Ay + Py : I} — Oy and Ay + Q) : I} — O, be
two families of IPDL protocols with identical typing judgments. Then, we say that Py and Q, are
indistinguishable under PPT interpretation, written Z7); Ay £ Py =) Q) : I} — O,, when: |Ay] is
bounded by a polynomial in A; and for any PPT family of program contexts {C; : (Ay + [} —
0,) — (A} v I} — 0))}, and for all PPT families of distinguishers {AA,} for {A’, I}, O3} bounded
by p(+), there exists a negligible function ¢ such that

| Pr[ ALY (Ca(P) )] = Pr[A M (C2(Q0) )] < e(M).

4.3 Equational Logic

We now present the equational logic of IPDL. The logic is divided into two halves: exact rules
establish semantic equivalences between protocols, while approximate rules are used to discharge
indistinguishability assumptions.

4.3.1 Exact Equivalences. The bulk of the reasoning in IPDL is done using exact equivalences. We
have rules for reaction equivalence and protocol equivalence.

Reaction Equivalence. Reaction equivalence A;T + Ry = R, : I — 1 states when reactions Ry
and R, behave identically, reading from input channels in I and returning values of type 7. We
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informally highlight select rules here, and defer the formal rules to the full version [Gancher et al.
2022].

Since the nontrivial effects for reactions are reading from channels and probabilistic sampling,
we have that reactions form a commutative monad: that is, (x < Ri; y < Ry; R3 x y) = (y «
Ry; x « Ry; R; x y) holds whenever R, does not depend on x. All expected equivalences for
commutative monads hold for reactions, including the usual monad laws and congruence of
equivalence under monadic bind. The samp-PURE rule allows us to drop an unused sampling:
(_: 7 « samp (D); S) = S. The READ-DET rule allows us to replace two reads from the same
channel by a single one:

(x:7ereadi; y: 7t readi; S) = (x: 7 « read i; S[y := x]).
The rule FLIP-UNTIF states that the distribution flip on Booleans is indeed uniform:
(x « samp (flip); if x then false else true) = samp (flip).

Finally, we have rules which allow us to manipulate conditionals. The rules 1F-LEFT and IF-RIGHT
allow us to rewrite inside of conditionals on either branch, while 1r-exT allows us to expand a
conditional:

R[x := e] = if e then R[x := true] else R(x := false).

Protocol Equivalence. Exact protocol equivalences allow reasoning about communication between
subprotocols, functional correctness, and simplifying intermediate computations. We will see in
Section 4.4 that exact equivalence implies the existence of a bisimulation on protocols, which in
turn implies indistinguishability against an arbitrary distinguisher.

Our proof rules make use of equivalence axioms, which are used to specify user-defined assump-
tions about functional equivalence (e.g., correctness of decryption). We collect such axioms into an
exact theory:

Definition 4.12 (Exact Theory). Given an ambient signature %, an exact theory T- is a finite set of
axioms of the form A+ P=Q:1 - O,where A+ P:I - OandA+Q:1— O.

Our proof rules for protocol equivalence assume an ambient exact theory T-.

The rules for the exact equivalence of protocols are in Figures 10 and 11; we now describe them
informally. The EMBED rule states that exact equivalence is invariant under channel embeddings
0 : Ay — A,. The axiom rule incorporates axioms into the equational theory for exact equivalences.

The remaining equational rules in Figure 11 use red to distinguish the differences between the
left and right hand sides. The comp-NEW rule allows us to permute parallel composition and the
creation of a new channel, and the same as scope extrusion in process calculi [Milner et al. 1992]. The
ABSORB-LEFT rule allows us to discard a component in a parallel composition if it has no outputs;
this allows us to eliminate internal channels once they are no longer used. The symmetric rule
ABSORB-RIGHT (not shown) is derivable. The DIVERGE rule allows us to simplify diverging reactions:
if a channel reads from itself and continues as an arbitrary reaction R, then we can safely discard R
as we will never reach it in the first place.

The (un)folding rules FOLD-IF-LEFT and FOLD-BIND allow us to simplify composite reactions by
bringing their components into the protocol level as separate internal channels. (We also have the
symmetric rule FOLD-1F-RIGHT.) Finally, the three rules sUBSUME, SUBST, and UNUSED allow us to
manipulate channel dependencies. The rule SUBSUME states that dependency is transitive: if we
depend on 0, and o, itself depends on o0y, then we depend on oy and this dependency can be made
explicit.

The sussT rule allows inlining reactions into read commands. Inlining (0; := Ry) into (o2 :=
(x « read o1; Ry)) is only sound when R; is duplicable: observing two independent results
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ArP:1—0 ArP =P,:1—0
REFL S
‘Ai—P:Q:I—>O‘ ArP=P:150 ArP,=P : 150

YM

ArPi=P:1—>0 AFP,=P;:1 >0
A+rPi=P;:1—>0

TRANS

FO:AL > A, A FP=Q:150 (AFP=Q:1—>0)eT-
EMBED AXIOM

Az F 0% (P) = 0*(Q) : 0*(I) — 0*(0) A+rP=Q:I1—>0

0:TEA A;-FR=R :IU{0o} >
Ar(o=R)=(0:=R):1- {o}

CONG-REACT

iglL,O A+rP=Q:I150
ArP=Q:1U{i} >0

INPUT-UNUSED

AFPIP,ZIUOZ—)OI AFQZIU01—>02
ArP|Q=P ||Q:]—>0,U0,

CONG-COMP-LEFT

Ao:trP=P :1— O0U{o}

A+ (newo:7inP)=(newo:7inP):1—> 0

CONG-NEW

ArP:1—> 0O ArPy:1— O,
AI—P1||P2=P2||P11[—)OIUOQ

COMP-COMM

Al—PliIU02U03—>Ol
ArPy:IUO;UO; = Oy ArPy:IUO;UO; — O

A (P || P)||P3=Py || (P || Ps):I— 0 U0, UO03

COMP-ASSOC

Aoy :11,00: 3 FP: T — OU{og,02}

- - - - NEW-EXCH
A+ (newoj:tyinnewoy: 7o in P) = (newoy : pinnewo; : 71 inP) : 1 — O

A+P:1UO; — O ANo:TFQ:ITUO; — O U {o}
A+P|l(newo:7inQ)=newo:7in(P||Q):I—> 0;UO0;

COMP-NEW

ArP:I>0 A+rQ:IUO—>0
ArP||Q=P:I1— O

ABSORB-LEFT

0:TEA A; - FrR:TU{o} > 1

A+ (o=x:7«reado; R) = (0o:=reado) : I — {o}

DIVERGE

Fig. 10. Exact equality for IPDL protocols. Additional rules are given in Figure 11.
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‘AI—P:Q:I—>O‘

0:7T€EAN
A; -FR:TU{o} — bool A; - +S:IU{o} > A, - FS:IU{o} >

FOLD-IF-LEFT
At (newl:7ino :=x:bool « R; if x thenread [ else S, || [ := S;) =

(0 := x : bool « R; if x then S; else S,) : I — {o}
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A+ (01 =Ry || oy =x; «read 01;Ry) = (01 =Ry || 03 := Ry) : I — {01,052}

Fig. 11. Additional rules for exact equality of IPDL protocols. Distinguishing changes of equalities are
highlighed in red.

of evaluating R; is equivalent to observing the same result twice. This side condition is easily
discharged whenever R; does not contain probabilistic sampling.

Finally, the uNUSED rule allows dropping unused reads from channels. Due to timing dependencies
between channels, we only allow dropping reads from (o; := Ry) in the context of (0, := (_ «
read 01; Ry)) when we have that (_ < Ry; R;) = Ry. This side condition is met whenever all reads
present in R; are also present in R;.

4.3.2  Approximate Equivalence. We now turn to approximate equivalence, which establishes indis-
tinguishability between families of protocols {P,} and {Q,} against PPT adversaries. Similar to
exact theories T-, we collect axioms for indistinguishability into an approximate theory, Tx.

Definition 4.13 (Approximate Theory). Let X be a signature. An approximate theory T is a finite
set of axioms of the form {A, + Py =) Q; : [} — 0,}, indexed by natural numbers A.

We establish approximate equivalences between protocol families {P,} and {Q,} by proving an
appropriate equivalence between P, and Q, for each security parameter A.

To maintain soundness, our main approximate equivalence judgment A + P zﬁk’l) Q:1-0
uses two parameters, k and [ to track negligibility and resource-bounded contexts. The axiom
parameter, k, simply counts the number of invocations of axioms applied during the proof: k is 1
when applying a single axiom in T, and the transitivity rule adds the two values of k together.
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Fig. 12. Approximate equality for IPDL protocols.

Our soundness result will bound k by a polynomial in the security parameter to ensure that we do
not apply exponentially many axioms.

The second parameter, [, tracks the largest size of protocol contexts applied to axioms in T. While
our PPT interpretations (Definition 4.10) ensure that each function symbol is PPT, exponentially
large IPDL contexts can encode non-PPT computations. Thus, our soundness result also requires
that [ is polynomial in the security parameter to ensure that all IPDL contexts are PPT.

The top of Figure 12 shows the rules for approximate equivalence. Since most nontrivial reasoning
in IPDL is done in the exact half, the approximate equivalence rules are used mostly to apply
indistinguishability axioms deeply nested inside protocols. Crucially, rule sTRICT allows us to
descend to the exact half of the proof system.

Finally, the bottom of Figure 12 defines when two protocol families {P,} and {Q,} are indis-
tinguishable. This holds when, for each choice of A, A} + P, z/(lk(’l)’lw ) Q) : I — Oy, and the
parameters k(1) and [(A) only grow polynomially with A, as does the size |Aj| of each channel
context.
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4.4 Soundness

Our main result is that our judgment for approximate equivalence is sound. To state soundness, we
first need to introduce our notion of soundness for exact protocol equality:

Definition 4.14 (Protocol bisimulation). Given an interpretation J for a signature X, a protocol
bisimulation ~ is a binary relation on distributions on protocols A + P : I — O satisfying the
following conditions:

e Closure under joint convex combinations: We have ;. rcifli ~ X1 i cCi€ for any
coefficients }};._; _ ¢; = 1 and distributions n; ~ ¢ fori = 1,...,k.

e Closure under input assignment: For any distributions n ~ y, channel i : 7 € A, and value
v € {0, 1}[[7111, we have that n[read i := val(v)] ~ p[read i := val(v)].

o Closure under evaluation: For any distributions n ~ g, if n | " and p |} g/, then n’ ~ p/'.

e Valuation property: For any output channel o and any distributions n ~ p, there exists a joint
convex combination 7 = 3;._;  r¢ifli ~ 2oy g Cifli = p such that for each i = 1,...,k,
the distributions 7; ~ y; have the same value v, or lack thereof, on the channel o.

In the above definition, we write n[read i := val(v)] by applying the corresponding substitution
pointwise to each protocol in the support of 5. Similarly, we write n || n’ by expressing =
2.; ciunit(P;) and evaluating P; || n; to obtain " = 3, ¢;n;.

Given the above notion of protocol bisimulation, we now state when exact and approximate
theories are sound:

Definition 4.15 (Soundness for Exact Theories). The exact theory T- is sound if forall A+ P =Q:
I — O in T, there exists a protocol bisimulation unit(P) ~ unit(Q).

Definition 4.16 (Soundness for Approximate Theories). The approximate theory T~ is sound under
PPT interpretation 7 if, whenever {A) + Py =) Q) : I = O,} € Tx, we have that J;; A} £ P) =,
Oxr: ) = 0,.

Our main result is that if T= and T are sound, then our proof rules for approximate equivalence
are sound:

THEOREM 4.17 (SOUNDNESS THEOREM FOR THE APPROXIMATE EQUALITY OF IPDL PROTOCOLS). Let
> be an IPDL signature, and let T- and T~ be sound exact and approximate theories with respect to a
PPT interpretation {I)}. If - {Ay v+ Py =) Qy : I) = O,}, then Ij; Ay E Py =) Q) : ) — O,.

The proof of Theorem 4.17 relies on the following soundness lemmas for exact equality. First, we

have that exact equality guarantees observational equivalence:

LEMMA 4.18 (OBSERVATIONAL EQUIVALENCE). Suppose unit(P) ~ unit(Q) under interpretation I .
Then, for any A and k, and any well-typed IPDL context C, Pr[AX(C(P)T)] = Pr[AX(C(Q)T)].

Proor. An immediate consequence of the definition of protocol bisimulation. O

Next, we have that our proof system for exact equivalence is sound:

LEmMMA 4.19 (SOUNDNESS OF ExAcT EQUIVALENCE). Suppose T- is sound under interpretation I . If
A+ P=Q:1— O, then unit(P) ~ unit(Q).

We establish Lemma 4.19 by exhibiting a bisimulation for each proof rule. Rules Sym and TrRANS
correspond to symmetry and transitivity lemmas for protocol bisimulation, while the congurence
rules COMP-CONG-LEFT and CONG-NEW require proving corresponding congruence rules for bisimu-
lations. For example, if n ~ y, then n || Q ~ || Q (lifting || to act on distributions).

Rules which manipulate reactions, such as suBsT, BIND, and UNUSED, require a notion of bisimu-
lation of reactions, along with a corresponding soundness lemma for reaction equality.
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Table 1. Case Studies in IPDL. Lines of code are separated into definitions (relevant IPDL axioms, function-
alities, and protocol parties) and proofs. The last column points out nontrivial cryptographic axioms and
functionalities used in the protocol.

Case study LoC (Defs) | LoC (Proof) | Axioms/Primitives Used
A2S: CPA [Maurer 2012] 97 LoC 128 LoC IND-CPA

A2S: DHKE [Barbosa et al. 2021b] 183 LoC 532 LoC DDH

OT: Trapdoor [Goldreich et al. 1987] 131 LoC 517 LoC Hard-core Predicates
OT: 1-out-of-4 [Naor and Pinkas 1999] | 128 835 LoC Underlying OT

OT: Pre-Processing [Beaver 1995] 79 LoC 401 LoC Underlying OT
Two-Party GMW [Goldreich et al. 1987] | 285 Loc 1859 LoC Underlying OT
Multi-Party Coin Flip [Blum 1983] 114 LoC 1905 LoC Commitments

5 IPDL CASE STUDIES

In this section, we briefly describe the case studies we have completed in IPDL, and outline several
key proof steps that conveniently employ equational reasoning. Our case studies range from simple
communication protocols to a two-party GMW protocol and a multi-party coin flip protocol. We
demonstrate through lines of code that the proof effort of IPDL scales well with increasing protocol
complexity, see Table 1. All lines of code count both protocol-specific definitions and proofs.

5.1 Coq Mechanization

We have mechanized the proof system of IPDL along with our case studies in Coq. The embedding
is shallow: we use functions in the metalanguage instead of function symbols derived from a
signature (e.g., xor over bitstrings). Channels are embedded shallowly as well, making use of an
abstract type chan t of channels of type t.

Throughout our developments, we take advantage of the metalanguage to define IPDL protocols
inductively based on parameters. For example, the parallel composition | |;COI P; is written in Coq
as \||_(i < q) P i, using the bigop library from ssreflect [Mahboubi and Tassi 2021].

Due to the shallow embedding, the mechanization has a few differences from the proof rules in
Section 4. The notion of size |P| for protocols does not track the size of reactions, since reactions
are embedded shallowly into Coq (and thus would require runtime analysis of Coq expressions).
In its place, one must check that all protocols used in the approximate congruence rules comp-
CONG-LEFT/COMP-CONG-RIGHT and cONG-NEW only use efficiently computable functions, and use
fixed-size reactions. This check is easily guaranteed by all of our proofs. However, we do capture
the number of reactions used in protocols.

Additionally, we take advantage of channels being shallowly embedded to restrict inputs of
protocols based on scoping in Coq, rather than restricting them via the typing judgment.

Finally, for convenience we add an additional constructor, 0, to IPDL protocols, representing an
inert protocol, serving as an identity for parallel composition. The protocol 0 can easily be encoded
in IPDLas new c: 1in ¢ = ret (()).

5.2 Communication Protocols

We prove secure two different communication protocols that construct a secure communication
channel from an authenticated one. The authenticated channels allow the adversary to observe
in-flight messages and schedule delivery of them; in contrast, the secure communication channels
only allow the adversary to observe the presence of the channel, but none of the message contents.
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5.2.1 Secure Communication from CPA Security. This case study is a generalization of our example
from Section 3 to allow for the adversary to schedule delivery of each message. In line with
Section 3.1, we prove that a CPA-secure encryption scheme may be used alongside an authenticated
channel to achieve a secure one. This case study is similar to one used in other proof frameworks,
such as Constructive Cryptography [Maurer 2012].

5.2.2 One-Time Pad from Diffie-Hellman Key Exchange. We complete a one-time pad example
using Diffie-Hellman key exchange, in comparison with EasyUC [Canetti et al. 2019] and Barbosa
et al. [Barbosa et al. 2021b]. Similar to both, this example constructs a one-time use secure channel
by performing Diffie-Hellman key exchange to establish a shared secret, then using the shared
secret as a one-time pad. Our proof is similarly modular: we first prove the key exchange secure,
then prove the one-time pad protocol secure, assuming an idealized key exchange. The simulator
for the final protocol is naturally the composition of the simulators for the two sub-protocols.

We stress that while the comparable proof by Barbosa et al. [Barbosa et al. 2021b] is also relatively
short, the IPDL proof technique requires a much lower proof density than their formalization. Indeed,
our Coq proof involves one equational rewrite per line (e.g., substitute channel ¢ into channel
d), while their proof requires hand-written explicit bisimulations on states. While succinct once
written, bisimulation relations are quite intricate and error-prone to invent.

5.3 OT Protocols

We next prove several Oblivious Transfer (OT) constructions secure. These examples are proven
in the semi-honest (or honest-but-curious) setting, where we assume the parties operate correctly,
but corrupted parties leak all private data to the adversary. We prove that leaked values reveal no
private information about the uncorrupted parties. To encode semi-honest corruption, we augment
the protocols with leakage functions that send all values visible to the corrupted party to the
adversary. In turn, the simulator must take as input the leakages in the ideal protocol (usually
minimal), and output suitable leakages in the real protocol.

In (1-out-of-2) OT, Bob wishes to obtain exactly one of Alice’s two messages, without revealing his
choice [Goldreich et al. 1987]. Alice doesn’t learn which message Bob asked for, while Bob doesn’t
learn the other of the two messages. The ideal functionality simply receives the two messages
myg, m; from the sender, the choice bit i from the receiver, and outputs m;. In each construction, we
analyze the most interesting case when the Bob is semi-honest and the Alice is honest. Hence, the
real-world leakages are derived solely from the input i coming from the receiver and the output m;
coming from the ideal functionality, with no access to any information about message m;_;.

We prove the security of three main OT constructions from the literature: first, we show that
1-out-of-4 OT, which is used by our GMW example, can be realized from three instances of an ideal
1-out-of-2 OT [Naor and Pinkas 1999]; then, we show a preprocessing result for OT, which allows
Alice and Bob to establish an OT in an offline phase, then use this OT for a fast online phase [Beaver
1995]; finally, we show that 1-out-of-2 OT can be realized using a trapdoor permutation and a
hard-core bit predicate [Goldreich et al. 1987].

To illustrate how IPDL allows us to carry out probabilistic reasoning, we outline here a few key
steps from the second construction. In the pre-processing phase, Alice randomly generates a new
pair of keys (ko, k1), while Bob randomly decides on one of these keys, obtaining a choice bit j.
They then use the underlying (idealized) OT to securely transfer the randomly chosen key k; to
Bob.

In the online phase, Bob encrypts his actual choice bit i by xor-ing it with j, chosen randomly
in the prior phase. He sends his encrypted choice i @ j to Alice, who responds by first swapping
her two keys if i @ j is true, then sending Bob her two keys, xor-ed with their respective messages.
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Bob has enough information to recover his chosen message, but the other one appears uniformly
random.

To prove that Bob does not learn any information about the message he did not ask for, we carry
out two probabilistic arguments. The first, which we call decoupling, observes that selecting two
keys ko, k1 from the same distribution p, and then randomly deciding to return either (ko, k1) or
(k1, ko) is perfectly indistinguishable from just returning (ko, k1). To see this, consider the protocol
below:

KeyPair := f « samp (flip); if f then ko < samp (u); k1 < samp (p); ret ((k1, ko))
else kg « samp (p); ki < samp (p); ret ((ko, k1))

Since the two samplings inside each branch of the if are interchangeable, we may commute
ko < samp (u) with k; < samp (p) inside of the then branch. This shows that the two branches
behave exactly the same, so we may just as well not flip. We emphasize that no complex probabilistic
reasoning is necessary in the argument, but only a few simple application of equational proof rules.

The second probabilistic argument concerns the distribution y, which represents uniform ran-
domness. Rather than modeling uniform randomness intrinsically in Coq, we only need to introduce
the (sound) axiom that y = (x < p; unit(x @ y)) for any bitstring y. We include a full proof of this
case study in our repository [Gancher et al. 2022].

5.4 Two-Party GMW Protocol

Our first large case study for IPDL is the GMW protocol [Goldreich et al. 1987], where two parties
securely compute a function given by an arbitrary Boolean circuit. The protocol utilizes a 1-out-of-4
OT instance for each multiplication gate in the circuit. We analyze the GMW protocol in the
semi-honest setting, with Alice (the sender of the OTs) corrupted.

Taking advantage of Coq as our metalanguage, we prove the GMW protocol secure for arbitrary
circuits. We model circuits in Coq as finitely supported functions from wire IDs [1,...,n] to
operations, where each operation may only reference wires that have been previously defined. Our
model supports multiple circuit outputs and is reactive, in that the protocol does not dictate that all
inputs must come in before starting the computation. Similarly, outputs are shared as soon as they
are available, which may happen before other, unrelated inputs arrive. Our ideal functionality is
similarly reactive.

The simulator for the GMW proof operates by evaluating a censored version of the real protocol
in its head, having access to only Alice’s private data (since she is corrupt), but not Bob’s. The
proof proceeds by establishing an inductive invariant between the real protocol and the ideal
functionality: Bob’s view of wire w in the real protocol is equal to the xor of the true value of w,
along with Alice’s simulated view (coming from the simulator).

5.5 Multi-Party Coin Flip Protocol

Our second large case study is for a protocol that allows an arbitrary number of mutually distrusting
parties to collaboratively generate fair randomness, due to Blum [Blum 1983]. To do so, each
party locally generates randomness, and commits it to all other parties. We assume an idealized
commitment functionality which also bakes in a notion of broadcast, to prevent equivocation. Each
party decommits their randomness once all other commitments have been collected; the output of
the protocol is the Boolean sum of all decommitments.

Unlike previous examples, this example is secure in the malicious model. We model malicious
parties by assigning them a shell, which simply forwards all information between the protocol and
the adversary. The entire worked-out example is available in our repostiroy [Gancher et al. 2022].
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5.6 Proof Effort

We have collected our case studies and their required lines of code in Table 1, in ascending order
of complexity. All proof scripts for the case studies, together with the IPDL Coq library, take less
than five minutes to verify on a 2020 MacBook Pro. Most proofs take only a few seconds to verify,
while some - such as our Multi-Party Coin Flip example, or the 1-out-of-4 OT example — take a
few minutes, due to the use of Coq tactics to aid verification.

We highlight our example of Diffie-Hellman Key Exchange + OTP, which totals 736 lines of code
for definitions and proofs. This compares favorably to EasyUC [Canetti et al. 2019], which performs
a similar case study using 18,000 lines of code in EasyCrypt [Barthe et al. 2011], and Barbosa
et al. [Barbosa et al. 2021b], which takes over 2000 lines of code, also in EasyCrypt (albeit with
reasoning about running time, which we do not explicitly perform). While difficult to compare line
counts exactly, our relative simplicity is derived from the use of a high-level logic for cryptographic
protocols along with a lack of hand-written bisimulations. Achieving similarly concise proofs in
EasyCrypt will likely require further engineering for proof automation.

The largest examples — the Two-Party GMW, and the Multi-Party Coin Flip — are less than 2200
lines of code. While the number of lines is moderate, the complexity of the proof script is low: most
of the lines consist of repetitive tactic invocations and intermediate rewriting steps. These proofs
can be likely condensed further with additional proof engineering.

6 CONCLUSION AND FUTURE WORK

We introduce IPDL, a core language and proof system for equational security proofs of cryptographic
protocols. Our core technical result is that IPDL is computationally sound: approximate equivalences
in IPDL are sound against arbitrary probabilistic polynomial-time adversaries. We demonstrate the
use of IPDL in a number of case studies, including the GMW protocol [Goldreich et al. 1987] for
multi-party computation. All case studies have been mechanized in an embedding of IPDL in Coq.
We now outline a few directions for future work:

Proof Automation. While we explored the use of interactive equational proofs in this work, we
expect IPDL proofs to be amenable to proof automation. Indeed, directed applications of substitution
and channel folding could likely drive a proof engine towards discharging many low-level equational
steps, leaving the user to only specify a high-level outline of the proof.

Integration with Cryptographic Proof Assistants. As described in the introduction, IPDL is not
designed to handle all subtleties of cryptographic proofs, such as rewinding, probabilistic coupling
arguments, or complex cost analysis, all of which are expressible in probabilistic program logics
such as EasyCrypt [Barbosa et al. 2021b; Barthe et al. 2011; Firsov and Unruh 2022]. Combining the
simplicity of IPDL with the expressivity of EasyCrypt is likely to enable new proof developments
which are out of reach of each system individually.
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