
Journal of Computational Physics 509 (2024) 113042

Available online 24 April 2024
0021-9991/© 2024 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

Journal of Computational Physics
journal homepage: www.elsevier.com/locate/jcp

Numerical simulation of an extensible capsule using regularized 

Stokes kernels and overset finite differences
Dhwanit Agarwal ∗, George Biros
Oden Institute, University of Texas at Austin, Austin, TX, 78712, United States

A R T I C L E I N F O A B S T R A C T
Keywords:
Stokesian particulate flows
Integral equations
Numerical methods
Fluid membranes
Extensible capsules
Fast summations methods

In this paper, we present a novel numerical scheme for simulating deformable and extensible 
capsules suspended in a Stokesian fluid. The main feature of our scheme is a partition-of-
unity (POU) based representation of the surface that enables asymptotically faster computations 
compared to spherical-harmonics based representations. We use a boundary integral equation 
formulation to represent and discretize hydrodynamic interactions. The boundary integrals are 
weakly singular. We use the quadrature scheme based on the regularized Stokes kernels by 
Tlupova and Beale 2019 (given in [34]). We also use partition-of unity based finite differences that 
are required for the computation of interfacial forces. Given an 𝜏-point surface discretization, 
our numerical scheme has fourth-order accuracy and (𝜏) asymptotic complexity, which is an 
improvement over the (𝜏2 log𝜏) complexity of a spherical harmonics based spectral scheme 
that uses product-rule quadratures by Veerapaneni et al. 2011 [36]. We use GPU acceleration 
and demonstrate the ability of our code to simulate the complex shapes with high resolution. We 
study capsules that resist shear and tension and their dynamics in shear and Poiseuille flows. We 
demonstrate the convergence of the scheme and compare with the state of the art.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Boundary integral formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Numerical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1. Surface parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Surface discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3. Smooth surface integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4. Singular integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5. Surface derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6. Time stepping and the overall algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1. Integration results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2. Derivative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

* Corresponding author.
E-mail addresses: dhwanit16@gmail.com (D. Agarwal), biros@oden.utexas.edu (G. Biros).

https://doi.org/10.1016/j.jcp.2024.113042
Received 20 October 2023; Received in revised form 7 April 2024; Accepted 19 April 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:dhwanit16@gmail.com
mailto:biros@oden.utexas.edu
https://doi.org/10.1016/j.jcp.2024.113042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113042&domain=pdf
https://doi.org/10.1016/j.jcp.2024.113042


Journal of Computational Physics 509 (2024) 113042

2

D. Agarwal and G. Biros

4.3. Accuracy and convergence of the full numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4. Relaxation of capsule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5. Capsule in shear flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6. Capsule in Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7. Timing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Fast multipole method based acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.1. Transition maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.2. Surface derivative formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.3. The choice of parameter 𝑓0 for the partition of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.4. Effect of the blending process in calculating derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.5. Surface derivative and singular integration errors for shear flow and Poiseuille flow terminal shapes . . . . . . . . . . . . . . . . . 23
A.6. Numerical errors for different reduced volume 𝑢 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.7. Sensitivity of the singular quadrature scheme to the regularization parameter 𝑣 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.8. Wall clock times for our GPU accelerated code vs the spherical harmonics CPU code . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1. Introduction

Capsules suspended in a Stokesian fluid describe complex biological flows and microfluidic devices [11,20,37]. In particular, 
we’re interested in modeling red blood cell (RBC) suspensions. Several previous works [7,12,19,23,31,44] have modeled red blood 
cells as elastic membranes filled with a Newtonian fluid and suspended in a Newtonian fluid, also referred to as “capsules”. In this 
work, we present a numerical scheme for simulating a single deformable three-dimensional capsule suspended in Stokes flow where 
its membrane resists shear and tension [29,32] (see Fig. 1).

The proposed scheme allows for non-uniform discretization and fast evaluations of integral operators. We a singular quadrature 
based on the regularized Stokes kernel introduced in [34]. We use multiple overlapping patches to parameterize the capsule surface 
assuming a spherical topology surface at all times. We use a fourth-order finite difference scheme using an overset grid based 
discretization of the patches to calculate the interfacial elastic forces. For 𝜏 number of discretization points of the surface, our scheme 
has 𝑏(𝜏2) work complexity, which is similar to the lower order boundary element schemes [10]. By choosing the regularization 
parameter in [34] appropriately, our overall scheme becomes fourth-order accurate. As our singular quadrature scheme is not a 
product quadrature, which allows acceleration via fast multipole methods (FMMs) [35]. With FMM acceleration, our numerical 
scheme becomes an 𝑏(𝜏) scheme. In summary our contributions are as follows:

• We describe an overlapping patch based parameterization for capsules that are diffeomorphic to the unit sphere.
• We provide a finite difference scheme based on the overset grid based discretization of these patches to calculate the surface 
derivatives.

• We evaluate a high order singular quadrature scheme based on the regularized Stokes kernels given in [34]; combined with 
FMM it has an 𝑏(𝑎2) cost for evaluating the single layer Stokes kernel.

• We use GPU acceleration for the evaluation of singular quadrature to do high resolution simulations.

Related work: Stokesian flows with deformable capsules involve moving interfaces, fluid-structure interaction, large deformations, 
near and long-range stiff interactions, and often require high-order surface derivatives. Efficient methods for simulating Stokesian 
capsule suspensions include immersed boundary/interface methods [2], lattice-Boltzmann methods [22], and boundary integral 
equations methods [10,27,36,44]. Each of these methods trades-off aspects of accuracy, simplicity of implementation, the ability 
to simulate complex physics, and numerical efficiency. Without advocating a particular approach, we focus on integral equation 
formulations and discuss the related literature in more detail.

A nice feature of boundary integral formulations for Stokes flows is that they require only the discretization of the capsule surface. 
But they require specialized singular quadrature schemes to compute layer potentials. The methods described in [36,44] use spherical 
harmonics representations for the surface and surface fields, e.g., elastic forces, velocity, and shape, to simulate the time evolution 
of the surface. This surface representation is spectrally accurate in the degree 𝑎 of the spherical harmonics that translates to 𝑏(𝑎2)
discretization points. The authors [44] used the Bruno-Kunyansky quadrature [6,43] that uses a floating partition of unity to resolve 
weakly singular points around each global quadrature point. This scheme has 𝑏(𝑎4 log𝑎) work complexity and can be reduced to 
𝑏(𝑎3) using an FFT-based scheme that embeds the surface [6] in a volumetric Cartesian grid. The authors in [36] adapted the 
Graham-Sloan quadrature [17] to the Stokes kernel. Given (𝑎2) global points to represent the capsule, the scheme uses a product 
quadrature rule that requires (𝑎2) spherical harmonics rotations. For small 𝑎, the fastest implementation uses dense linear algebra 
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Fig. 1. A representation of the problem setup. The grey filled region is the interior of the capsule with membrane 𝑐 . Exterior of the capsule is filled with a Newtonian 
fluid and the capsule is suspended freely in it. !∞ is the imposed background fluid velocity.

at a (𝑎6) cost; this becomes prohibitively expensive for large scheme. Fast rotation schemes based on Legendre transforms and FFTs 
or combinations of 1D non-uniform FFTS can lower the cost to 𝑏(𝑎4 log𝑎) [16]. Either way the product-quadrature has excellent 
accuracy, and even for small values of 𝑎 for nearly-spherical shapes it outperforms the Bruno-Kunyansky quadrature. This is due 
to Bruno-Kunyansky’s highly localized floating-partition of unity that increases the resolution requirements. However, the product 
rule is too expensive for large 𝑎 due to the 𝑎4 scaling. For example, resolving shapes with high curvature, like the shapes shown in 
Fig. 13c and Fig. 16c, requires 𝑎 > 128, which is prohibitively expensive for the product rule. The are two alternatives: change the 
surface representation and/or change the integration rule.

The first alternative is to avoid using global polynomials for the surface representation. Several studies [4,5,10,33,45] have used 
triangulation based surface representation to provide more control over local resolution. However, these schemes are only second-
order accurate, which makes the computation of higher order derivatives more difficult and complicate the quadrature rules because 
the most accurate methods require geometry-dependent rule precomputation and this doesn’t work for time evolving geometries.

The second approach is to change the quadrature rule. Indeed a very promising approach is the quadrature by expansion (QBX) 
family of methods [1,18,38]. These methods are also spectrally accurate. Direct implementations scale as 𝑎4 but they can be ac-
celerated with FMM to 𝑎2. Two alternative schemes to QBX are the arbitrary-order weight-corrected trapezoidal rule [41] and the 
regularized Stokes kernel [34]. The former is arbitrary-order accurate but a bit involved to implement. The latter that is ∼fourth-order 
accurate and relatively easy to implement.

Limitations: (i) Our scheme only works for capsules that can be smoothly mapped to the unit sphere. We do not consider the 
bending elastic forces [10,28,36] but our code can be extended to support them as is. (ii) We do not consider the case of viscosity 
contrast, i.e., when the fluid inside and outside the capsule has different viscosity. Our algorithm can be extended to include dif-
ferences in the interior and exterior fluid viscosity by including a double layer Stokes potential term in the problem formulation as 
described in detail in [28,30] combined with the regularized Stokes double layer potential from [34]. (iii) Our scheme has several 
parameters that can affect its accuracy, for example, the configuration of patches, the extent of overlap of the patches, the partition 
of unity functions, and a regularization parameter for the singular quadrature, whose values we set heuristically. (iv) Our scheme 
is not curvature adaptive Instead of a regular grid, we eventually want to switch to a quadtree-based adaptive representation. (v) 
Our current implementation’s accuracy is set by the regularized kernel. We observe the theoretical predictions for smooth shapes. 
For more complex shapes the asymptotic regime is not reached at the resolutions we’re interested in and therefore upsampling is 
needed. Such an upsampling introduces a large constant in the complexity estimate. The QBX and locally corrected trapezoidal rules 
can be used to deliver arbitrary accuracy and they’re also compatible with FMM. The schemes would deliver optimal accuracy and 
complexity. Although the discussion in this paper is about a single capsule, the scheme can be extended using existing techniques to 
simulating an arbitrary number of capsules [36] and confined boundaries.

Outline of the paper: In the next section, we state the force differential operators and the boundary integral formulation of the 
dynamics of an extensible capsule suspended in Stokes flow. In Section 3, we describe the surface parameterization and the numerical 
schemes (differentiation, integration and time stepping) we use to simulate the capsule dynamics. In Section 4, we report the 
numerical results demonstrating the convergence and accuracy of the numerical schemes along with the results of capsule dynamics 
in shear and Poiseuille flow. In Section 5, we discuss the FMM based acceleration of our scheme and show results for the speedup 
obtained via acceleration using a single level FMM. In Section 6, we provide a brief summary of the paper along with the conclusions 
and the future directions that can be taken to improve upon this work.

2. Problem formulation

In this section, we formally describe the mathematical formulation of the problem and introduce the notation. We discuss the 
differential formulation in Section 2.1 and then specify the boundary integral formulation of the problem in Section 2.2. A represen-
tation of the setup is shown in Fig. 1. Our discussion follows the work in [27,36].

2.1. Formulation

Let 𝑐 be the membrane of an extensible capsule filled with a viscous Newtonian fluid of viscosity 𝑚𝑈 and suspended in another 
viscous Newtonian fluid of viscosity 𝑚𝑘. In this work, we assume that the interior and exterior fluids have same viscosity, i.e.,
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𝑚𝑈 = 𝑚𝑘 = 𝑚. The microscopic length scale of the problem implies that the dynamics of the problem can be described by the Stokes 
equation. The boundary value problem is given by [36]:

−𝑚Δ!(") +∇𝑎(") = 0 ∀" (ℝ3)𝑐 , (2.1)
∇ ⋅ !(") = 0 ∀" (ℝ3)𝑐 , (2.2)

[[−𝑎#+ 𝑚(∇!+∇!ℎ )#]] = $ on 𝑐 , (2.3)
!(")⟶ !∞ for "⟶∞, (2.4)
,"
,𝑋

= ! on 𝑐 . (2.5)
Here 𝑚 is the viscosity of the exterior and interior fluid, ! is the velocity of the fluid, 𝑎 is the pressure, [[.]] represents the jump in a 
quantity . across the capsule membrane 𝑐 , # is the unit normal to the capsule membrane, $ is the total force exerted by the capsule 
membrane onto the fluid, !∞ is the imposed background velocity far away from the capsule. Equation (2.1) is the Stokes equation 
representing the conservation of momentum, Equation (2.2) is the conservation of mass, Equation (2.3) is the balance of force on the 
interface between fluid and membrane, Equation (2.4) sets the far field velocity to be the background velocity and Equation (2.5)
enforces the no-slip condition on the capsule membrane.

Interfacial force: Now we discuss in detail the interfacial force $ exerted by capsule membrane onto the surrounding fluid due 
to membrane elasticity. We only consider the elastic forces due to in-plane shear deformations of the capsule. Previous works have 
also included bending forces [10,40,44] but we leave it for future work and focus mainly on the numerical schemes in this paper. 
The in-plane shear force $ 𝑥 is equal to the surface divergence of the symmetric part of the in-plane shear stress tensor denoted by 
Λ [29,44]. Thus, we write,

$ = $ 𝑥 =∇𝑐 ⋅Λ. (2.6)
In-plane shear stress tensor Λ: Our discussion follows the work based on the Skalak model in [27,29]. The in-plane shear stress tensor 
Λ is a function of the surface deformation gradient of the capsule surface relative to the stress-free reference configuration of the 
membrane. Let 𝑐 be the surface in the current configuration and 𝑐𝑓 be the reference configuration of the membrane. If "𝑓 ( 𝑐𝑓 is a 
point that maps to " ( 𝑐 in the current configuration, let 𝑦("𝑓) = " be the bijective map between the configurations. The deformation 
gradient % is defined as % = ,𝑦

,"𝑓
. If #𝑓 is the normal to the reference configuration at "𝑓 ( 𝑐𝑓 and # is the normal to the current 

configuration at " ( 𝑐 , then the relative surface deformation gradient % 𝑧 is defined as % 𝑧 = (& − ##ℎ )% (& − #𝑓#ℎ𝑓 ), where & is the 
identity tensor. It follows from the above equation that % 𝑧 maps the surface tangents '1𝑓 and '2𝑓 in the reference configuration 𝑐𝑓 to 
the tangents '1 and '2 in the current configuration 𝑐 . Also, it maps the reference normal #𝑓 to 0. Thus, the following set of equations 
at every point "𝑓 uniquely determine % 𝑧 at that point on the reference configuration: % 𝑧'1𝑓 = '1, % 𝑧'2𝑓 = '2, % 𝑧#𝑓 = 0. The left 
Cauchy-Green deformation tensor ( 2 and the surface projection tensor ) at point " in the current configuration are then defined as

( 2(") = % 𝑥(𝑦−1("))(% 𝑥(𝑦−1(")))ℎ , ) (") = & − ##ℎ . (2.7)
Following the work in [29,32], if 𝛽21, 𝛽22 are the two non-zero eigenvalues of ( 2, we define two scalar invariants 𝑊1 = 𝛽21 + 𝛽22 −
2 and 𝑊2 = 𝛽21𝛽22 − 1. We now define the shear stress tensor Λ at every point " on the current configuration as

Λ(") =
𝐶𝑥
2𝑙𝑥

(𝑊1 + 1)( 2(") +
𝑙𝑥
2 (𝐶𝐵𝑊2 −𝐶𝑥)) ("), (2.8)

where 𝑙𝑥 = 𝛽1𝛽2, 𝐶𝑥 is the elastic shear modulus of the membrane and 𝐶𝐵 is the dilatation modulus. High values of the shear 
modulus 𝐶𝑥 represent higher membrane shear resistance. The dilatation modulus 𝐶𝐵 controls the local membrane extensibility.

2.2. Boundary integral formulation

Following the work in [27,29], Equations (2.1) to (2.5) can be formulated into integral equations on the capsule membrane 𝑐 . 
This formulation can be written as:

$ (") =∇𝑐 ⋅Λ(") ∀" ( 𝑐 , (2.9)
!(") = !∞(") + 𝑐 [$ ](") ∀" ( 𝑐 , (2.10)

,"
,𝑋

= !(") ∀" ( 𝑐 . (2.11)
Here Λ(") is computed using Equation (2.8). 𝑐 [$ ] represents the single layer potential of layer density $ over the capsule membrane 
𝑐 defined as follows:

𝑐 [$ ](") = ∫
𝑐

(",*)$ (*)𝐹𝑐 , (2.12)
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where  is the Stokes kernel given by (", *) = 1
8𝐺𝑚

(
𝑊

||+|| +
+𝑔+
||+||3

)
with + = " − *. Given the initial position of the capsule and its 

stress-free reference configuration, we will use Equations (2.9) to (2.11) to simulate the time evolution of capsule under the imposed 
background flow !∞.

3. Numerical algorithms

In this section, we describe the numerical algorithms we use to simulate the dynamics of the capsule. We discretize Equations
(2.9) to (2.11) discussed in previous section. In Section 3.1, we discuss our parameterization of capsule surface (assuming it is 
diffeomorphic to the unit sphere) using multiple patches. In Section 3.2, we discuss the discretization of the surface based on our 
parameterization of the surface. In Section 3.3, we discuss the numerical scheme for the surface integration of a smooth function. In 
Section 3.4, we discuss the numerical scheme for the singular integration to compute Stokes single layer potential. In Section 3.5, we 
discuss the numerical scheme for calculating the surface derivatives for the computation of the elastic force. Finally in Section 3.6, 
we discuss the time stepping we use to simulate the capsule dynamics and provide a summary of the overall algorithm.

3.1. Surface parameterization

We assume the capsule membrane 𝑐 to be smooth and diffeomorphic to the unit sphere "2 embedded in ℝ3. Thus, we have 
a smooth bijective map ̃ + "2 ⟶ 𝑐 with the smooth inverse ̃−1. We define 𝜖𝑎 number of overlapping patches {0

𝑈 }
𝑈=𝜖𝑎
𝑈=1 , where 

0
𝑈 < "2 form an open cover of the unit sphere "2, i.e., ⋃𝜖𝑎

𝑈=10
𝑈 = "2. Additionally, we assume each patch 0

𝑈 is diffeomorphic to an 
open set 𝑈 (<ℝ2) via a coordinate chart 𝑜0𝑈 , i.e., 𝑜0𝑈 +𝑈 ⟶ 0

𝑈 is a diffeomorphism. The domain 𝑈 is called the coordinate domain 
for the patch 0

𝑈 . Thus, the set 0 = {(𝑈, 𝑜0𝑈 )}
𝜖𝑎
𝑈=1 forms an atlas for the manifold "2 [9]. We also know such an atlas admits a smooth 

partition of unity subordinate to the open cover {0
𝑈 }

𝜖𝑎
𝑈=1 [39]. We choose a smooth partition of unity {>0

𝑈 }
𝜖𝑎
𝑈=1 where >0

𝑈 + "
2 ⟶ℝ

such that !"##(>0
𝑈 ) < 0

𝑈 for 𝑈 = 1, … , 𝜖𝑎, where !"##(⋅) denotes the support of the function. Thus, for every "0 ( "2, ∑𝜖𝑎
𝑈=1>

0
𝑈 ("0) = 1. 

The precise definition of >0
𝑈 is given in Equation (3.9).

Define 𝑈 += ̃(0
𝑈 ). Now {𝑈}𝜖𝑎𝑈=1 form a set of overlapping patches that cover the surface 𝑐 , i.e., ⋃𝜖𝑎

𝑈=1𝑈 = 𝑐 . We then define 
coordinate maps 𝑜𝑈 +𝑈 ⟶ 𝑈, where 𝑜𝑈 ≡ ̃◦𝑜0𝑈 and therefore, a corresponding atlas  += {(𝑈, 𝑜𝑈)}

𝜖𝑎
𝑈=1 for the capsule surface 𝑐 . A representation of the parameterization is shown in Fig. 2. Since the patches are overlapping, a point " ( 𝑐 can belong to multiple 𝑈. For " ( 𝑐 , let us define the set " = {1 ≤ 𝑈 ≤ 𝜖𝑎| " ( 𝑈}. Thus, " is the collection of indices 𝑈 for which patch 𝑈 contains ". We 

also define 𝑈𝐴 = 𝑈 ∩𝐴 and 𝑈𝐴 = 𝑜−1𝑈 (𝑈𝐴 ) for 𝑈, 𝐴 = 1, … , 𝜖𝑎. We also define transition maps 𝑉𝑈𝐴 +𝑈𝐴 ⟶𝐴 as 𝑉𝑈𝐴 ≡ (𝑜0𝐴 )
−1◦𝑜0𝑈 |𝑈𝐴

. 
Furthermore, the diffeomorphism ̃ allows us to create a partition of unity {>𝑈}

𝜖𝑎
𝑈=1 on 𝑐 by defining it as

>𝑈(") = >0
𝑈 (̃

−1(")), ∀" ( 𝑐 . (3.1)
For any function 𝜌 + 𝑐⟶ℝ𝐹 , we can write

𝜌 (") =
𝜖𝑎∑
𝑈=1

𝜌 (")>𝑈("), ∀" ( 𝑐 . (3.2)

If 𝜌 is smooth, then 𝜌>𝑈 is smooth and compactly supported in 𝑈 for 𝑈 = 1, … , 𝜖𝑎. We use this partition of unity representation to 
compute derivatives and integrals on 𝑐 .

In this paper, we do not consider the adaptive case, and we assume that the patch parameterization remains unchanged through 
the calculation. In our numerical experiments, we used just six patches. Precisely, consider 𝑈 = (0, 𝐺) × (0, 𝐺), 𝑈 = 1, … , 6. The 
coordinate maps {𝑜0𝑈 }6𝑈=1 are given below:

𝑜01(𝑅,𝑌) = (sin𝑅 cos𝑌, sin𝑅 sin𝑌, cos𝑅), (3.3)
𝑜02(𝑅,𝑌) = (− sin𝑅 cos𝑌,− sin𝑅 sin𝑌, cos𝑅), (3.4)
𝑜03(𝑅,𝑌) = (sin𝑅 sin𝑌,− sin𝑅 cos𝑌, cos𝑅), (3.5)
𝑜04(𝑅,𝑌) = (− sin𝑅 sin𝑌, sin𝑅 cos𝑌, cos𝑅), (3.6)
𝑜05(𝑅,𝑌) = (sin𝑅 cos𝑌,− cos𝑅, sin𝑅 sin𝑌), (3.7)
𝑜06(𝑅,𝑌) = (sin𝑅 cos𝑌, cos𝑅,− sin𝑅 sin𝑌). (3.8)

These six charts form six hemispherical patches {0
𝑈 }

6
𝑈=0 that cover the unit sphere as shown in Fig. 3. The computation of the 

transition maps 𝑉𝑈𝐴 is relatively simple and is given in the Appendix A.1. We use the bump function, 𝐻(𝑓) = 𝑘
2𝑘−1∕|𝑓|
|𝑓|−1 for |𝑓| < 1 and 0 

otherwise, to construct the partition of unity functions on each patch. For the particular parameterization we use, for each patch of 
the unit sphere, we define
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Fig. 2. Here we summarize the notation for the atlas construction. The unit sphere "2 is on the left and the capsule 𝑐 is on the right with the diffeomorphism 
̃ + "2 ⟶ 𝑐 . We show two overlapping patches colored in red and blue. The first patch 0

1 is the red colored arc from point 𝐾0 to 𝐻0 on "2 . Its corresponding patch 1 on the capsule surface 𝑐 is shown in red as the arc from points 𝐾1 to 𝐻1 . The second patch 0
2 is the blue colored arc from point ̇ 0 to 𝐹0 on "2 . Its corresponding 

patch 2 on the capsule surface 𝑐 is shown in blue as the arc from points ̇ 1 to 𝐹1 . Their corresponding coordinate domains 1 and 2 are also shown in the red 
and blue color. The coordinate charts 𝑜0𝑈 +1 ⟶ 0

𝑈 , 𝑈 = 1, 2, are shown as dashed lines in the respective colors. The diffeomorphism ̃ also gives the coordinate 
charts 𝑜𝑈 +1 ⟶ 𝑈 , 𝑈 = 1, 2, for the patches on the capsule surface 𝑐 shown as colored dashed lines from 𝑈 to 𝑈 . The corresponding partition of unity functions 
>0
𝑈 , 𝑈 = 1, 2, with !"##(>0

𝑈 ) < 0
𝑈 are drawn over coordinate domains 𝑈 for visual clarity since 0

𝑈 is diffeomorphic to 𝑈 . (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 3. The six hemispherical patches forming an open cover of the unit sphere 2 . Each one is represented by the black grid. a)–f) 0
𝑈 for 𝑈 = 1,2,… ,6.

>0
𝑈 ("0) =

𝐻
(
𝐹("0 ,𝑜0𝑈 (𝐺∕2,𝐺∕2))

𝑓0

)

∑𝜖𝑎
𝐴=1 𝐻

(
𝐹("0 ,𝑜0𝐴 (𝐺∕2,𝐺∕2))

𝑓0

) , ∀"0 ( "2 (3.9)

where 𝐹("0, *0) denotes the great circle distance between "0 and *0 on the unit sphere, and 𝑓0 > 0 determines the support of the 
partition of unity inside the patch. The argument of 𝐻(⋅) is the normalized great circle distance from a point " to the center of the 
patch 𝑜0𝑈 (𝐺∕2, 𝐺∕2), where the normalizing factor 𝑓0 is chosen to be 𝑓0 = 5𝐺∕12 (see Appendix A.3). Now, for a given surface 𝑐 and 
diffeomorphism ̃, we readily have an atlas and the transition maps for the parameterization of 𝑐 . The corresponding partition of 
unity on 𝑐 is available using Equation (3.1) and Equation (3.9).

3.2. Surface discretization

We now describe in detail the discretization of the surface 𝑐 using the parameterization described above in Section 3.1. As 
mentioned above, 𝑈 = (0, 𝐺) × (0, 𝐺) for our parameterization. We use the following 𝛼th-order uniform grid in 𝑈 as follows:

𝐿𝛼,𝑈
𝐴,𝜃 =

(
𝐴𝐺
𝛼

, 𝜃𝐺
𝛼

)
, ∀𝐴,𝜃 ( {1,… ,𝛼− 1}. (3.10)

We use 𝑀𝛼 to denote the 𝛼th-order grid spacing in each 𝑈 space, i.e., 𝑀𝛼 = 𝐺
𝛼 . The discretization points for each patch 0

𝑈 on the 
unit sphere are given by

K0,𝛼,𝑈
𝐴,𝜃 = 𝑜0𝑈 (𝐿

𝛼,𝑈
𝐴,𝜃 ), ∀𝐴,𝜃 ( {1,… ,𝛼− 1}. (3.11)

The discretization points for each patch 𝑈 on 𝑐 are given by
K𝛼,𝑈
𝐴,𝜃 = 𝑜𝑈(𝐿

𝛼,𝑈
𝐴,𝜃 ), ∀𝐴,𝜃 ( {1,… ,𝛼− 1}. (3.12)

Thus, each patch contains (𝛼 −1)2 discretization points for an 𝛼th-order grid leading to a total of 𝜏 = 6(𝛼 −1)2 points for the surface. 
The dynamics of the capsule are represented as the time trajectories K𝛼,𝑈

𝐴,𝜃 (𝑋). The partition of unity values at the discretization points 
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Fig. 4. Representation of discretization of a unit sphere using 𝛼th-order grids for (a) 𝛼 = 8, (b) 𝛼 = 16, (c) 𝛼 = 32.

Fig. 5. Representation of discretization of the ellipsoid L2∕𝐾2 + M2∕𝐻2 + N2∕̇2 = 1 with 𝐾 = 0.5, 𝐻 = 1, ̇ = 1, using 𝛼th-order grids for (a) 𝛼 = 8, (b) 𝛼 = 16, (c) 𝛼 = 32.

>𝛼,𝑈𝐴,𝜃 = >𝑈(K
𝛼,𝑈
𝐴,𝜃 ) can be precomputed and stored to be used later for computing integrals and derivatives (see Equation (3.1)). The 

sample grids for a unit sphere and an ellipsoid are given in Fig. 4 and Fig. 5. To get the diffeomorphism ̃ for an ellipsoid 𝑐 given by 
the level surface L2𝐾2 + M2

𝐻2 + N2
̇2 = 1, we consider the spherical angles parameterization O(𝑅, 𝑌) + [0, 𝐺] × [0, 2𝐺) ⟶ 𝑐 given by

O(𝑅,𝑌) = (𝐾 sin𝑅 cos𝑌,𝐻 sin𝑅 sin𝑌, ̇ cos𝑅),𝑅 ( [0,𝐺],𝑌 ( [0,2𝐺). (3.13)
We also consider the spherical angles parameterization of the unit sphere O0(𝑅, 𝑌) + [0, 𝐺] × [0, 2𝐺) ⟶ "2 given by

O0(𝑅,𝑌) = (sin𝑅 cos𝑌, sin𝑅 sin𝑌, cos𝑅),𝑅 ( [0,𝐺],𝑌 ( [0,2𝐺). (3.14)
The diffeomorphism ̃ + "2 ⟶ 𝑐 is then given as

̃("0) =
⎧
⎪
⎨
⎪⎩

O(O−10 ("0)) if "0 ( "2){(0,0,−1), (0,0,1)},
(0,0,−̇) if "0 = (0,0,−1),
(0,0, ̇) if "0 = (0,0,1).

Remark 1. Given an initial capsule surface 𝑐 , we only use the diffeomorphism ̃ + "2 ⟶ 𝑐 to compute the atlas , the partition of 
unity {>𝑈}

𝜖𝑎
𝑈=1 for 𝑐 and the transition maps 𝑉𝑈𝐴 for the coordinate domains. Once computed, we initialize the surface discretization points (see Equation (3.12)), and track their time trajectories to simulate the dynamics of the capsule. We do not need to use ̃

afterwards for capsule dynamics simulation. We do not change the partition of unity values after initialization. Hence, we have 
>𝛼,𝑈𝐴,𝜃 = >𝑈(K

𝛼,𝑈
𝐴,𝜃 (𝑋0)) = >𝑈(K

𝛼,𝑈
𝐴,𝜃 (𝑋)) where 𝑋0 is the initial time. These partition of unity values are computed at initialization and stored 

for subsequent use. Also, the transition maps between the coordinate domains remain unchanged and are precomputed for usage 
later.

Notation: For brevity, we use ,𝛼 to denote the 𝜏 × 2 matrix containing all the 𝛼th-order grid points, i.e., ,𝛼 =
[{𝐿𝛼,𝑈

𝐴,𝜃 }1≤𝐴,𝜃≤𝛼,1≤𝑈≤𝜖𝑎 ]ℎ . Similarly, we define -𝛼 = [{K𝛼,𝑈
𝐴,𝜃}1≤𝐴,𝜃≤𝛼,1≤𝑈≤𝜖𝑎 ]ℎ to be the 𝜏 × 3 matrix of corresponding discretization 

points on 𝑐 , !𝛼 = [{>𝛼,𝑈𝐴,𝜃 }1≤𝐴,𝜃≤𝛼,1≤𝑈≤𝜖𝑎 ]ℎ to be the 𝜏 × 1 column vector containing the values of partition of unity functions and %𝛼

to be the 𝜏 × 3 matrix containing the interfacial force $ values at discretization points of the 𝛼th-order grid. Further, we use ,𝛼,𝑈 to 
denote the (𝛼 − 1)2 × 2 matrix of grid points belonging to 𝑈. Similarly, we use -𝛼,𝑈, !𝛼,𝑈, %𝛼,𝑈 to denote the values in the patch 𝑈. 
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For the unit sphere, we denote the corresponding discretization points as -0,𝛼. The partition of unity column vector on -0,𝛼 is the 
same as !𝛼.

Remark 2. While we do not need ̃ for simulating capsule dynamics after the initialization of atlas, transition maps and partition of 
unity, we use ||∇"2̃||∞ as a quality metric to gauge the smoothness of the capsule surface 𝑐 during the simulations in this paper 
(see Section 3.6). To compute ||∇"2̃||∞, we will need the discretization points -0,𝛼. Hence, we store these values as well. Note that 
̃(-0,𝛼) =-𝛼.

3.3. Smooth surface integrals

Let 𝜌 + 𝑐 ⟶ ℝ𝐹 be a smooth function. We can write its surface integral as a sum of the integral over all the patches using the 
partition of unity {>𝑈}

𝜖𝑎
𝑈=1. Then, we use the product periodic trapezoidal rule using the function values at the grid points mentioned in Equation (3.12), which gives superalgebraic convergence [6]. We write

∫
𝑐

𝜌𝐹𝑐 =
𝜖𝑎∑
𝑈=1

∫𝑈
𝜌>𝑈𝐹𝑐 =

𝜖𝑎∑
𝑈=1

∫𝑈

𝜌>𝑈P𝑈𝐹𝑈 ≈
𝜖𝑎∑
𝑈=1

( ∑
𝐴,𝜃({1,…,𝛼−1}

𝜌 (K𝛼,𝑈
𝐴,𝜃 )>

𝛼,𝑈
𝐴,𝜃P𝑈(K

𝛼,𝑈
𝐴,𝜃 )𝑀

2
𝛼

)
, (3.15)

where P𝑈 is the surface area element for patch 𝑈 (numerical computation of P𝑈 is discussed in Section 3.5).
Work complexity: The work complexity to compute this integral numerically for 𝛼th-order grid is 𝑏(𝜖𝑎𝛼2). In our specific param-

eterization, 𝜖𝑎 = 6. Hence, the work required is 𝑏(6𝛼2).

3.4. Singular integration

We use the regularized Stokes kernel described in [34] to evaluate Stokes potentials to high-order accuracy using the discretization 
described above in Section 3.2.

Consider a smooth vector-valued function $ + 𝑐⟶ℝ3. The single-layer Stokes potential of $ at " ( 𝑐 as described in Section 2.2
can be written as

𝑐 [$ ](") = 1
8𝐺𝑚 ∫

𝑐

(
$ (*)
𝑓

+ ($ (*) ⋅ ("− *))("− *) 1
𝑓3

)
𝐹𝑐 , (3.16)

where 𝑓 = ||"− *||. The regularized version of Stokes single layer potential [34] is given as

𝑣𝑐 [$ ](") = 1
8𝐺𝑚 ∫

𝑐

($ (*)𝑥1(𝑓∕𝑣)
𝑓

+ ($ (*) ⋅ ("− *))("− *)
𝑥2(𝑓∕𝑣)
𝑓3

)
𝐹𝑐 , (3.17)

where 𝑣 > 0 is the regularization parameter and 𝑥1, 𝑥2 are smoothing factors such that 𝑥1(𝑓∕𝑣)𝑓 and 𝑥2(𝑓∕𝑣)𝑓3 are smooth functions as 
𝑓 ⟶ 0. These smoothing factors ensure that 𝑧𝑣𝑐 [$ ] is an integral involving a smooth kernel and can be evaluated using the periodic 
trapezoidal rule as in Section 3.3. Following [24,34], we choose the smoothing factors 𝑥1 and 𝑥2 to be

𝑥1(𝑓) = Erf(𝑓)− 2
3 𝑓(2𝑓

2 − 5) 𝑘
−𝑓2
√
𝐺
, (3.18)

𝑥2(𝑓) = Erf(𝑓)− 2
3 𝑓(4𝑓

4 − 14𝑓2 + 3) 𝑘
−𝑓2
√
𝐺
, (3.19)

where Erf(⋅) is the error function. Using Taylor expansion, we can show that as 𝑓 ⟶ 0, 𝑥1(𝑓∕𝑣)𝑓 ⟶ 16
3𝑣

√
𝐺
and 𝑥2(𝑓∕𝑣)𝑓3 ⟶ 32

3𝑣3
√
𝐺
. 

This choice of smoothing factors ensures that the regularized Stokes potential is 𝑏(𝑣5) accurate [34]. This regularized integral is 
discretized by the trapezoidal rule for smooth functions. However, the question is what should be the relation between 𝛼 and 𝑣?

Regularization parameter 𝑣: The choice of regularization parameter 𝑣 is crucial. As discussed in [3,34], the chosen 𝑣 should be large 
enough that regularization error dominates the discretization error in computing the integral in Equation (3.17). In our simulations, 
when computing the Stokes potential for a target point K𝛼,𝑈

𝐴,𝜃 in patch 𝑈, we choose a 𝑈-dependent regularization parameter 𝑣𝑈 at 
every time step as the capsule evolves. It is defined by

𝑣𝛼,𝑈𝐴,𝜃 = Q𝑣
∗ where 𝑣∗ =

(
max

R,R0({1,…,𝛼−1}
{𝐹𝑘(K

𝛼,𝑈
R,R0 ,(K𝛼,𝑈

R,R0 )}
)
. (3.20)

Here, we choose the constant Q = 1 (see Appendix A.7 for more details on the choice Q), (K𝛼,𝑈
R,R0 ) = {K𝛼,𝑈

R−𝐾,R0−𝐻 + 𝐾, 𝐻 ( {−1, 0, 1}}
refers to the set of points which are adjacent neighbors of K𝛼,𝑈

R,R0 and 𝐹𝑘(𝐾, S) denotes the maximum Euclidean distance between 𝐾 and 
the points in set S. For brevity, we define .𝛼 = [{𝑣𝛼,𝑈𝐴,𝜃}1≤𝐴,𝜃≤𝛼−1,1≤𝑈≤𝜖𝑎 ]ℎ . We experimentally observed that our choice for 𝑣 improves 
the accuracy the singular quadrature as in our simulations as capsule changes shapes and patches evolve over time, as opposed 
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to using a fixed global regularization parameter 𝑣 = Q 0𝑀𝛼 where Q 0 is a positive constant (like in [34]). We tabulate the relative 
errors for different values of Q 0 in using fixed global regularization parameter 𝑣 = Q 0𝑀𝛼 on a sample ellipsoidal shape in Table 11 to 
illustrate this.

Upsampling: In our experiments, the observed prefactor in our weakly singular quadrature scheme is quite significant. For example 
at small 𝛼, say 𝛼 = 16, we can resolve the surface well but we need more quadrature points to resolve the weakly singular integrals. 
For this reason we use upsampling, especially in the small-𝛼 regime. Using numerical experiments, we determined that a four times 
upsampling works well. Thus, we use an upsampled grid with 𝜏up = 6(4𝛼 − 1)2 grid points for evaluating the single layer potential. 
We use cubic spline interpolation [8] on each patch to upsample the surface discretization points -𝛼 and surface interfacial force 
%𝛼. We define this upsampling operator as &𝛼𝑅 . Thus, the upsampled surface points and surface force vector can be written as

-𝛼
𝑅 = &𝛼𝑅-

𝛼,%𝛼
𝑅 = &𝛼𝑅 %

𝛼. (3.21)
The partition of unity values on the upsampled grid, denoted by !𝛼

𝑅 , can also be precomputed and stored for use. We use the 
upsampled values to compute the Stokes single layer potential ( Equation (3.17)) and then downsample the Stokes potential to get 
the values on 𝛼th-order grid. Note that both &𝛼𝑅 and &𝛼𝐹 are cubic spline based weighted interpolation operators. Their matrices can 
be precomputed and stored for use throughout the simulation. We also compute the .𝛼𝑅 for the upsampled grid using Equation (3.20).

Work complexity: The work complexity for the evaluation of Stokes single layer potential on upsampled grid for a target point 
is 𝑏(96𝛼2). For 𝜏𝑅𝑎 target points in upsampled grid, the total work complexity for computing single layer potential is 𝑏(9216𝛼4). 
The complexity for upsampling and downsampling is 𝑏(𝛼2) since &𝛼𝑅 and &𝛼𝐹 are sparse linear operators. Hence, the total work 
complexity is 𝑏(𝛼4).

GPU acceleration: The evaluation of single layer potential on upsampled grid is the most expensive part of our numerical scheme. 
In order to accelerate this computation, we use a CUDA implementation of computation of Stokes single layer potential computation 
based on the all-pairs 𝑏(𝜏2) calculation using CUDA on GPU (for details refer to [25]).

3.5. Surface derivatives

In this section we discuss in detail our numerical scheme for calculating surface derivatives. The derivatives are needed for 
computing the interfacial force $ and the surface area element P (for Equation (3.15)) at each discretization point. The first step in 
the computation of the interfacial force $ is the computation of the shear stress tensor Λ. The computation of Λ requires the surface 
tangents and normals in the current configuration (see Equation (2.8)). After computing the stress tensor Λ, the second step is to 
compute the interfacial force by calculating the surface divergence of Λ as $ =∇𝑐 ⋅Λ. For the computation of surface area element 
P , we need the coefficients 𝐶, T , U of the first fundamental form of the surface. The formulas for the surface divergence, denoted 
by ∇𝑐 ⋅, and for the surface area element P along with 𝐶, T , U are summarized in the Appendix A.2.

Let 𝑜(𝑅, 𝑌) + ⟶  < 𝑐 be a surface patch of 𝑐 where 𝑜 ( {𝑜1, … , 𝑜𝜖𝑎}. Let 𝑜(𝑅0, 𝑌0) = " (  . Below, we summarize the steps 
required to evaluate the required shape derivatives $ (𝑜(𝑅0, 𝑌0)) and P (𝑜(𝑅0, 𝑌0)).

1. We need to compute the tangents, denoted by "𝑅 and "𝑌, and the unit normal #(") for the current and the reference configuration. 
These quantities are given by "𝑅 = ,𝑜

,𝑅 |(𝑅0 ,𝑌0), "𝑌 =
,𝑜
,𝑌 |(𝑅0 ,𝑌0) and #(") =

"𝑅×"𝑌
||"𝑅×"𝑌||

. Given these derivatives we can then compute 
Λ(𝑜(𝑅0, 𝑌0)).

2. The next step is to compute the surface divergence of Λ(𝑜(𝑅, 𝑌)) at (𝑅0, 𝑌0). This involves computation of 𝐶, T , U and partial 𝑅, 𝑌
derivatives of the components of Λ(𝑜(𝑅, 𝑌)) (see Appendix A.2). The computation of 𝐶, T , U at point " is straightforward using 
"𝑅 and "𝑌. The surface area element is then computed using P ("(𝑅0, 𝑌0)) =

√
𝐶U − T 2.

We note here from the above summary that the computation of both $ and P boils down to multiple computations of the 𝑅 and 
𝑌 partial derivatives of functions like the coordinate chart 𝑜(𝑅, 𝑌) and the components of Λ(𝑜(𝑅, 𝑌)). Now given an arbitrary function 
V + 𝑐 ⟶ℝ, we consider the parametric function Ṽ𝑈 ≡ V(𝑜𝑈(𝑅, 𝑌)) +𝑈 ⟶ℝ for 𝑈 = 1, … , 𝜖𝑎. We denote its partial 𝑅, 𝑌 derivatives as 
Ṽ𝑈𝑅 and Ṽ𝑈𝑌. We describe below the numerical scheme to compute these partial derivatives Ṽ𝑈𝑅 and Ṽ𝑈𝑌. This scheme is then sufficient to 
compute $ and P at the discretization grid ,𝛼 using the formulas mentioned in Appendix A.2. Before we describe the scheme in 
detail, we summarize the three main steps of the scheme below:

1. Patch extension:We intend to use central finite difference stencil to compute Ṽ𝑈𝑅 and Ṽ𝑈𝑌 at the discretization points for 𝑈 = 1, … , 𝜖𝑎. 
To apply central difference at the grid points near the boundary of each coordinate domain 𝑈 , we need function values on 
ghost grid points outside the discretization grid in 𝑈. We call this process of obtaining values on the extended grid points as 
patch extension. We obtain the values of Ṽ𝑈 on these ghost grid points using the patch extension process. Let "1 = 𝑜𝑈(𝑅𝑈1, 𝑌𝑈1) for 
𝑈 = 1, … , 𝜖𝑎, be an extended discretization point (see Fig. 6). The value of the function Ṽ𝑈 at the extended grid point (𝑅𝑈1, 𝑌𝑈1), is given in the continuous form as the weighted average of the values across the patches as follows:

Ṽ𝑈(𝑅𝑈1,𝑌
𝑈
1) =

∑
1≤𝐴≤𝜖𝑎

Ṽ𝐴 (𝑅𝐴1,𝑌
𝐴
1)>𝐴 ("1). (3.22)
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Fig. 6. A 2D representation of a patch extension to apply the central finite difference stencil. The unit sphere "2 is on the left and the capsule 𝑐 is on the right with 
the diffeomorphism ̃ + "2 ⟶ 𝑐 . The discrete points on the patch 0

2 are represented by the blue colored dotted arc from point ̇0 to 𝐹0 on "2 . Its corresponding 
patch 2 on the capsule surface 𝑐 is shown in dotted blue line as the arc from points ̇ 1 to 𝐹1 . Its corresponding coordinate domain 2 is also shown in the blue color. 
The extended grid points are shown in ‘+’ symbol alongside 2 . The extended discretization points are on "2 and 𝑐 are shown with the ‘×’ symbol. The coordinate 
map 𝑜02 we use in our parameterization has a natural extension to the extended domain with extended grid points with the same expression as in Equation (3.8).

Here, the partition of unity values are used as the weights for each patch. In the continuous case, Ṽ𝑈(𝑅𝑈1, 𝑌𝑈1) = Ṽ𝐴 (𝑅
𝐴
1, 𝑌

𝐴
1) for 

𝑈, 𝐴 = 1, … , 𝜖𝑎. Hence, it is easy to see that the Equation (3.22) is valid in the continuous setting by putting Ṽ𝑈(𝑅𝑈1, 𝑌𝑈1) = Ṽ𝐴 (𝑅
𝐴
1, 𝑌

𝐴
1)for 𝑈, 𝐴 = 1, … , 𝜖𝑎 𝑈, 𝐴 = 1, … , 𝜖𝑎 and noting that the partition of unity values add up to unity. In the discrete case, the above 

equation provides a unique definition of discretized function values at every extended grid point since Ṽ𝑈(𝑅𝑈1, 𝑌𝑈1) and Ṽ𝐴 (𝑅
𝐴
1, 𝑌

𝐴
1)are not necessarily the same for 𝑈, 𝐴 ( {1, … , 𝜖𝑎} in the discrete case due to numerical errors.

2. Finite difference: After extension of function values to ghost grid points, we use the standard fourth order central finite difference 
operator on extended grids to obtain Ṽ𝑈𝑅 and Ṽ𝑈𝑌 on the grid points ,𝛼,𝑈 for 𝑈 = 1, … , 𝜖𝑎.

3. Blending: We note that a point " ( 𝑐 can belong to several different patches. We suppose " = 𝑜𝑈(𝑅𝑈0, 𝑌
𝑈
0) for 𝑈 = 1, … , 𝜖𝑎. The 

interfacial force $ (") is intrinsic to the surface 𝑐 and is independent of the local surface parameterization. Using patch pa-
rameterization dependent numerical derivatives Ṽ𝑈𝑅 and Ṽ𝑈𝑌 leads to different discrete derivative values at (𝑅𝑈0, 𝑌𝑈0) for different 
𝑈 = 1, … , 𝜖𝑎. To get unique derivative values consistent across all the patches, we blend the derivatives across all the patches. The 
blending process is taking the weighted average of derivative values across all the patches except that we also have to transform 
the derivatives from, say the domain 𝐴 to the domain 𝑈. This transformation is given by the Jacobian / 𝑉𝑈𝐴 of the transition 
map 𝑉𝑈𝐴 (𝑅, 𝑌) = (𝑉(1)𝑈𝐴 (𝑅, 𝑌), 𝑉(2)𝑈𝐴 (𝑅, 𝑌)) (𝐴 as follows:

[
Ṽ𝑈𝑅
Ṽ𝑈𝑌

]
= / 𝑉𝑈𝐴

[
Ṽ𝐴𝑅
Ṽ𝐴𝑌

]
, (3.23)

where the Jacobian matrix is

/ 𝑉𝑈𝐴 =
[
,𝑉(1)𝑈𝐴 ∕,𝑅 ,𝑉(2)𝑈𝐴 ∕,𝑅
,𝑉(1)𝑈𝐴 ∕,𝑌 ,𝑉(2)𝑈𝐴 ∕,𝑌

]
. (3.24)

Here, 𝑉(1)𝑈𝐴 , 𝑉(2)𝑈𝐴 are defined as the first and second component respectively of the transition map, i.e., 𝑉𝑈𝐴 (𝑅, 𝑌) = (𝑉(1)𝑈𝐴 (𝑅, 𝑌), 𝑉(2)𝑈𝐴 (𝑅, 𝑌))
(𝐴 . Both the RHS and the LHS in Equation (3.23) are evaluated at (𝑅𝑈0, 𝑌𝑈0). Using this Jacobian transformation, we define the blending process as the weighted average using partition of unity values as weights for the patches:

[
Ṽ𝑈𝑅
Ṽ𝑈𝑌

]
=

𝜖𝑎∑
𝐴=1

>𝐴 (")/ 𝑉𝑈𝐴

[
Ṽ𝐴𝑅
Ṽ𝐴𝑌

]
(3.25)

for all 𝑈 = 1, … , 𝜖𝑎, where " = 𝑜𝑈(𝑅𝑈0, 𝑌
𝑈
0). The partition of unity values >𝐴 form the respective weights for the coordinate domain 𝑈 like in the Equation (3.22). Notice that the Equation (3.25) is trivially valid in the continuous case since Equation (3.23)

holds and >𝐴 sum to unity. The above equation can be expanded as follows:

Ṽ𝑈𝑅(𝑅
𝑈
0,𝑌

𝑈
0) = Ṽ

𝑈
𝑅(𝑅

𝑈
0,𝑌

𝑈
0)>𝑈(") +

∑
𝐴≠𝑈,1≤𝐴≤𝜖𝑎

⎛
⎜
⎜⎝
Ṽ𝐴𝑅

,𝑉(1)𝑈𝐴
,𝑅

||||||(𝑅𝑈0 ,𝑌𝑈0)
+ Ṽ𝐴𝑌

,𝑉(2)𝑈𝐴
,𝑅

||||||(𝑅𝑈0 ,𝑌𝑈0)

⎞
⎟
⎟⎠
>𝐴 (") (3.26)
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Ṽ𝑈𝑌(𝑅
𝑈
0,𝑌

𝑈
0) = Ṽ

𝑈
𝑌(𝑅

𝑈
0,𝑌

𝑈
0)>𝑈(") +

∑
𝐴≠𝑈,1≤𝐴≤𝜖𝑎

⎛
⎜
⎜⎝
Ṽ𝐴𝑅

,𝑉(1)𝑈𝐴
,𝑌

||||||(𝑅𝑈0 ,𝑌𝑈0)
+ Ṽ𝐴𝑌

,𝑉(2)𝑈𝐴
,𝑌

||||||(𝑅𝑈0 ,𝑌𝑈0)

⎞
⎟
⎟⎠
>𝐴 ("). (3.27)

The terms inside the parenthesis in Equation (3.26) and Equation (3.27) come from the Jacobian transformation in Equation
(3.23). We list all the transition maps for the specific parameterization we use in Appendix A.1. Equation (3.26) and Equation
(3.27) describe the blending equation we use to get the weighted average of derivatives across all patches.

We now describe in detail all the three steps mentioned above and write the discretized versions of these steps.
Notation: We use 0̃𝛼 to denote the column vector of the values of Ṽ𝑈 at the grid points ,𝛼,𝑈 for all 𝑈 = 1, … , 𝜖𝑎. We use 0̃𝛼,𝑈 to 

denote the column vector of the values at the grid points ,𝛼,𝑈.
Patch extension: As discussed above, for the discretization points near the boundary of 𝑈, 𝑈 = 1, … , 𝜖𝑎, we need function values 

on ghost points lying outside 𝑈 in order to use the central FDM stencil. In our simulation, we use a fifth order 7-point symmetric 
1D-stencil [15] for each of the partial derivatives. Thus, in order to calculate the derivative values on the grid ,𝛼, we need the 
values of Ṽ on the extended grid (including ghost nodes) given by

𝐿𝛼,𝑈,𝑘L𝑋
𝐴,𝜃 =

(
𝐴𝐺
𝛼

, 𝜃𝐺
𝛼

)
, ∀𝐴,𝜃 ( {−2,−1,… ,𝛼+ 1,𝛼+ 2}, (3.28)

where the set of points defined by U𝛼,𝑈 += {𝐿𝛼,𝑈,𝑘L𝑋
𝐴,𝜃 }𝐴,𝜃({−2,−1,…,𝛼+1,𝛼+2}){𝐿

𝛼,𝑈,𝑘L𝑋
𝐴,𝜃 }𝐴,𝜃({1,…,𝛼−1} denotes the ghost discretization 

points for 𝑈. We define the extended coordinate chart domain as  𝛼,𝑘L𝑋
𝑈 = (−3𝐺𝛼 , (𝛼+3)𝐺𝛼 ) × ( −3𝐺𝛼+1 , 

(𝛼+4)𝐺
𝛼+1 ) containing the extended grid 

points as defined in Equation (3.28). The parameterization of unit sphere 𝑜0𝑈 has a natural extension to  𝛼,𝑘L𝑋
𝑈 with the same function 

expressions as given in Equation (3.8). Using the diffeomorphism ̃ , we also have mappings 𝑜𝛼,𝑘L𝑋𝑈 + 𝛼,𝑘L𝑋
𝑈 ⟶ 𝑐 . We define 𝛼,𝑘L𝑋

𝑈 +=
𝑜𝛼,𝑘L𝑋𝑈 ( 𝛼,𝑘L𝑋

𝑈 ). We define the matrix of extended grid points for all the coordinate domains as ,𝛼,𝑘L𝑋 = [{𝐿𝛼,𝑈,𝑘L𝑋
𝐴,𝜃 }−2≤𝐴,𝜃≤𝛼+2,1≤𝑈≤𝜖𝑎 ]ℎ , 

while ,𝛼,𝑈,𝑘L𝑋 refers to the matrix of extended grid points for the coordinate domain 𝑈 . The corresponding discretization points on 
the surface 𝑐 are theoretically given by

K𝛼,𝑈,𝑘L𝑋
𝐴,𝜃 = 𝑜𝑈

(
𝐿𝛼,𝑈,𝑘L𝑋
𝐴,𝜃

)
, ∀𝐴,𝜃 ( {−2,… ,𝛼+ 2}. (3.29)

Let the matrix of all surface discretization nodes on extended patch be -𝛼,𝑘L𝑋 = [{K𝛼,𝑈
𝐴,𝜃}−2≤𝐴,𝜃≤𝛼+2,1≤𝑈≤𝜖𝑎 ]ℎ . Our goal of patch exten-

sion is to find the values of the function Ṽ𝑈 on ,𝛼,𝑈,𝑘L𝑋, denoted by 0̃𝛼,𝑈,𝑘L𝑋, using the known values on ,𝛼,𝑈. The discretized form of 
patch extension is given as

0̃𝛼,𝑈,𝑘L𝑋 =
∑

1≤𝐴≤𝜖𝑎
(
&𝛼,𝑘L𝑋𝑈𝐴 0̃𝛼,𝐴

)
>𝐴

|||-𝛼,𝑈,𝑘L𝑋 . (3.30)

This equation is the discretized version of the Equation (3.22). Here, we additionally use the cubic splines interpolation, denoted by 
the operator &𝛼,𝑘L𝑋𝑈𝐴 , to get the values of Ṽ𝐴 on ,𝛼,𝑈,𝑘L𝑋 using the known values on the discrete grid ,𝛼,𝐴 .

Finite Differences: We use 1𝛼,𝑈
𝑅 and 1𝛼,𝑈

𝑌 to denote the central finite difference operators for computing partial derivative with 
respect to 𝑅 and 𝑌 respectively on the 𝛼th-order grid in coordinate chart domain 𝑈. Thus, we write the partial derivatives on ,𝛼,𝑈 as

0̃𝛼,𝑈𝑅 =1𝛼,𝑈
𝑅 0̃𝛼,𝑈,𝑘L𝑋, 0̃𝛼,𝑈𝑌 =1𝛼,𝑈

𝑌 0̃𝛼,𝑈,𝑘L𝑋, (3.31)
where 0̃𝛼,𝑈,𝑘L𝑋 is calculated using Equation (3.30).

Blending: As discussed above, applying Equation (3.31) can lead to different numerical values of derivatives at the same discretiza-
tion point for different domains 𝑈. Therefore, we use blending to get unique values across all the patches. The discretized versions 
of the blending equations Equation (3.26) and Equation (3.27) are given as follows:

0̃𝛼,𝑈𝑅 = 0̃𝛼,𝑈𝑅 >𝑈||-𝛼,𝑈 +
∑

𝐴≠𝑈,1≤𝐴≤𝜖𝑎

⎛
⎜
⎜⎝

(
&𝛼𝑈𝐴 0̃

𝛼,𝐴
𝑅

) ,𝑉(1)𝑈𝐴
,𝑅

||||||,𝛼,𝑈

+
(
&𝛼𝑈𝐴 0̃

𝛼,𝐴
𝑌

) ,𝑉(2)𝑈𝐴
,𝑅

||||||,𝛼,𝑈

⎞
⎟
⎟⎠
>𝐴

|||-𝛼,𝑈 , (3.32)

0̃𝛼,𝑈𝑌 = 0̃𝛼,𝑈𝑌 >𝑈||-𝛼,𝑈 +
∑

𝐴≠𝑈,1≤𝐴≤𝜖𝑎

⎛
⎜
⎜⎝

(
&𝛼𝑈𝐴 0̃

𝛼,𝐴
𝑅

) ,𝑉(1)𝑈𝐴
,𝑌

||||||,𝛼,𝑈

+
(
&𝛼𝑈𝐴 0̃

𝛼,𝐴
𝑌

) ,𝑉(2)𝑈𝐴
,𝑌

||||||,𝛼,𝑈

⎞
⎟
⎟⎠
>𝐴

|||-𝛼,𝑈 , (3.33)

for 𝑈 = 1, … , 𝜖𝑎, where &𝛼𝑈𝐴 is the cubic splines interpolation operator. It returns approximated function values on ,𝛼,𝑈 grid from the 
known values on the grid ,𝛼,𝐴 .

The three steps, namely the patch extension, the finite differences and the blending of derivatives described above constitute our 
numerical scheme to calculate the interfacial forces using the formulas given in Appendix A.2.

Work complexity: The finite difference operators 1𝛼,𝑈
𝑅 and 1𝛼,𝑈

𝑌 and the inter-patch interpolation operators &𝛼𝑈𝐴 , 𝑈, 𝐴 ( {1, … , 𝜖𝑎}, 
can all be precomputed and stored for application as sparse matrices. The work complexity of patch extension is of the order of 
number of additional points in the extended grid, i.e., 𝑏(𝜖𝑎(𝛼 + 5)2 − 𝜖𝑎(𝛼 − 1)2) ≡ 𝑏(𝜖𝑎𝛼). The work required for applying finite 
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difference operators is 𝑏(𝜖𝑎𝛼2). Finally, the work required for blending derivatives across patches is 𝑏(𝜖𝑎𝛼2). Thus, the total work 
complexity for calculating derivatives is 𝑏(𝜖𝑎𝛼2). In our implementation 𝜖𝑎 = 6, so the work complexity is 𝑏(6𝛼2).

Accuracy: While the finite difference operators we use are fifth order accurate, our numerical scheme is expected to be fourth 
order accurate because we use cubic splines for patch extension and blending. This is confirmed in our numerical experiments as 
tabulated in Table 2a and Table 2b and discussed in later sections.

Remark 3. We mention that the main purpose of blending is to get consistent unique derivative values by taking weighted average 
across different patches since a point " ( 𝑐 can belong to multiple patches. We note here that the blending also improves the accuracy 
of the derivatives as evidenced in the results tabulated in Table 7 and discussed in Appendix A.4.

3.6. Time stepping and the overall algorithm

Here, we describe the time stepping scheme we use to solve the boundary integral formulation given by Equations (2.9) to (2.11). 
The equations can be reformulated into an initial value problem as

,"
,𝑋

= !∞(") + 𝑐 [$ ]("), (3.34)
= (𝑋,"), ∀" ( 𝑐 , (3.35)

where the initial position and initial deformation gradient tensor is known. We use an explicit Runge-Kutta-Fehlberg 4(5) [13,14]
adaptive time stepping scheme to simulate the time evolution of capsules. This scheme is fourth-order accurate in time. We use fixed 
relative tolerance X𝑋YR = 10−6 for adaptive time stepping in our simulations. Below we give the overall algorithm for the evaluation 
of the right hand side of Equation (3.35):

1. Given the initial capsule surface, we first initialize the atlas, the transition maps and its derivatives (for Equation (3.26) and 
Equation (3.27)). We precompute !𝛼, !𝛼

𝑅 , &
𝛼
𝑅 , &

𝛼
𝐹 , &

𝛼
𝑈,𝐴 , &

𝛼,𝑘L𝑋
𝑈𝐴 , 1𝛼,𝑈

𝑅 , and 1𝛼,𝑈
𝑌 for the 𝛼th-order grid. We also precompute the 

reference tangents and normals at the discretization points using the derivative scheme in Section 3.5. Let us denote these 
reference tangents by -𝑓,𝛼

,𝑅 , -
𝑓,𝛼
,𝑌 and the normals by 2 𝑓,𝛼 respectively.

2. At a time instant 𝑋, we have the discretization points -𝛼 on the capsule surface. We compute the tangents and the normals at 
all discretization points in the current configuration using the scheme in Section 3.5. Let us denote these by -𝛼

,𝑅, -
𝛼
,𝑌 and 2𝛼.

3. Given the reference and the current tangents along with the normals, we compute the coefficients of the first fundamental form, 
the surface area element 3 𝛼 and the shear stress tensor "𝛼.

4. We compute the interfacial force %𝛼 =∇𝑐 ⋅"𝛼 using the derivative scheme in Section 3.5.
5. We compute the upsampled quantities -𝛼

𝑅 = &𝛼𝑅-
𝛼, %𝛼

𝑅 = &𝛼𝑅 %
𝛼, 3 𝛼

𝑅 = &𝛼𝑅3
𝛼 and the regularization parameters .𝛼𝑅 .

6. We compute the Stokes single layer potential on the upsampled grid, denoted by 4𝛼
𝑅 , using -𝛼

𝑅 , %
𝛼
𝑅 , !𝛼

𝑅 and 3 𝛼
𝑅 .

7. We downsample the Stokes potential 4𝛼 = &𝛼𝐹4
𝛼
𝑅 and add !∞(-𝛼) to get the discretized version of the RHS of Equation (3.35)

at time instant 𝑋 and position -𝛼.

Accuracy and work complexity of the overall algorithm: Our quadrature scheme, differentiation scheme and the time stepping scheme 
are all fourth order convergent. Hence, our overall scheme is fourth order convergent. We observe this convergence numerically in 
the convergence results in Table 3. The work complexity of our quadrature scheme and the differentiation scheme is 𝑏(𝛼4) and 
𝑏(𝛼2) respectively for 𝛼th-order grid. Thus, the overall work complexity of our algorithm for a single time step is 𝑏(𝛼4).

Computation of ||∇"2̃||∞: In the results section, we monitor the norm of the surface gradient of ̃ + "2 ⟶ 𝑐 with respect to 
the unit sphere "2 which measures the smoothness of the capsule surface during the simulation. It serves as a proxy for measuring 
the stability of capsule dynamics during the simulation. This surface gradient ∇"2̃ is calculated using the surface gradient formula 
given in the Appendix A.2 by using the first fundamental form coefficients 𝐶, T , U for the unit sphere and the surface area element 
P of the unit sphere "2. We use the derivative scheme in Section 3.5 to calculate the first fundamental form using the stored discrete 
points -0,𝛼 on the sphere and noting that ̃(-0,𝛼) =-𝛼.

4. Results

Now we discuss the various results to verify the accuracy and convergence of our numerical schemes. We also present the results 
of simulation of extensible capsule under shear flow and the Poiseuille flow. We validate our simulations with the existing results 
in the literature. We also use the spherical harmonics based numerical scheme used in [36] for quantitative comparisons with our 
simulations. Below we give a quick summary of the spherical harmonics based scheme used in [36].

Spherical harmonics: Spherical harmonics provide an orthonormal basis [26] for the square-integrable functions defined on the 
sphere "2. Hence, they provide a spectral representation of the surfaces and have been used for simulating Stokesian particulate 
flows in [36]. Below we summarize the number of discretization points used and the work complexity for the differentiation and 
singular integration in this scheme.

1. Discretization: We denote by 𝑎 the degree of spherical harmonics used to represent the surface and surface fields. For degree 𝑎, 
the scheme uses 2𝑎(𝑎 + 1) number of discretization points.
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Table 1
Relative error in the computation of Stokes single layer potential (with density $ = (L2, M2, N2) on (a) an ellipsoid and (b) the 4-bump shape 
(as shown in Fig. 7). X[$ ] is relative error with no upsampling and X𝑅𝑎[$ ] is the relative error with 4× upsampling. XZ and X[ are the relative 
errors in computing area and volume respectively. 𝜏 is the number of discretization points. Reference solution is computed using 𝑎 = 64
spherical harmonics (see [36]).
𝛼 𝜏 X[$ ] X𝑅𝑎[$ ] XZ X[

8 294 6 × 10−2 7 × 10−3 5 × 10−3 3 × 10−3
16 1350 8 × 10−3 4 × 10−4 5 × 10−4 4 × 10−4
32 5766 4 × 10−4 2 × 10−5 1 × 10−5 1 × 10−5
64 23814 1 × 10−5 1 × 10−6 1 × 10−6 1 × 10−6

𝛼 𝜏 X[$ ] X𝑅𝑎[$ ] XZ X[

8 294 5 × 10−1 4 × 10−1 2 × 10−1 2 × 10−1
16 1350 2 × 10−1 9 × 10−2 3 × 10−2 4 × 10−2
32 5766 3 × 10−2 8 × 10−3 2 × 10−3 3 × 10−3
64 23814 3 × 10−3 6 × 10−4 2 × 10−4 2 × 10−4

(a) Relative error in Stokes single layer potential on ellipsoid (b) Relative error in Stokes single layer
of reduced volume 𝑢 = 0.9, given L2

𝐾2
+ M2

𝐻2
+ N2

̇2
= 1, potential for the 4-bump shape.

where 𝐾 = 0.6,𝐻 = 1, ̇ = 1.

2. Singular quadrature: The scheme uses Graham-Sloan quadrature [17] to compute the Stokes layer potential which is 𝑏(𝑎5) in 
work complexity.

3. Differentiation: For surface derivatives, the scheme uses spherical harmonics based spectral differentiation which has work com-
plexity 𝑏(𝑎3). Thus, the overall work complexity of the algorithm is 𝑏(𝑎5).

4.1. Integration results

Here, we discuss the numerical accuracy and convergence of our integration schemes discussed in Section 3.3 and Section 3.4. 
We present the relative error in computing Stokes single layer potential with and without upsampling on two different surfaces. First, 
we take an ellipsoid surface given by

L2

𝐾2
+ M2

𝐻2
+ N2

̇2
= 1, (4.1)

where 𝐾 = 0.6, 𝐻 = 1, ̇ = 1. The relative error in a quantity ., denoted by X. , is defined as X. += ||.−.ref ||∞
||.ref ||∞

, where .ref is the reference 
solution. We use spherical harmonic solutions with degree 𝑎 = 64 as the high accuracy reference solutions for the surface deriva-
tives [36]. We report the relative errors in computing single layer Stokes potential with and without upsampling, denoted by X𝑅𝑎[$ ]
and X[$ ] respectively, in Table 1a.

As a second example, we take a 4-bump shape which can be written in standard spherical parameters as

-(𝑅,𝑌) = \(𝑅,𝑌)
⎛
⎜
⎜⎝

sin𝑅 cos𝑌
sin𝑅 sin𝑌
cos𝑅

⎞
⎟
⎟⎠
, ∀𝑅 ( [0,𝐺] × 𝑌 ( [0,2𝐺) (4.2)

where \(𝑅, 𝑌) = 1 + 𝑘−3]𝑘(^R𝛼(𝑅,𝑌)), with R = 3, 𝛼 = 2. This 4-bump shape is shown in Fig. 7. We report the relative errors in Stokes 
single layer potential on this surface in Table 1b.

The upsampling improves the accuracy of the integration scheme and helps us to long time-horizon simulations that we discuss 
in the later sections. As evident from the tabulated results, upsampling for singular quadrature is required to get similar digits 
of accuracy as the derivative accuracy1 (Table 2a and Table 2b). The reference solution is computed using the Graham-Sloan 
quadrature [17,36] for spherical harmonics order 𝑎 = 64. We also present the relative errors in computing area Z and volume [ 2 to 
demonstrate the convergence and accuracy of our integration scheme for smooth functions. For further verification and to study the 
change in relative errors with the reduced volume 𝑢, we provide the error in our upsampled quadrature scheme in Appendix A.6. 
In Appendix A.5, we also tabulate the relative errors demonstrating the convergence of our derivative and integration schemes for 
the complex shapes obtained in actual shear and Poiseuille flow simulations discussed in the later sections. This further verifies the 
correctness of our code.

4.2. Derivative results

Now we discuss the results showing the accuracy and convergence of our numerical differentiation scheme. We report the relative 
errors in derivative calculations on the ellipsoid and the 4-bump shape in Table 2a and Table 2b respectively. The derivatives converge
as the grid length 𝑀𝛼 decreases. Empirically, the convergence is of the fourth order which is what we predicted because of the cubic 

1 The digits of accuracy for mean curvature _ and Gaussian curvature ̀ are lower than the upsampled quadrature but since they are not required in shear force 
calculation, we don’t need upsampling for derivatives. However, since the bending forces [36] require curvature calculations, upsampling for derivatives could be 
desirable if bending force is to be included.
2 Volume [ of surface 𝑐 is given by [ = ∫𝑘𝜖̇(𝑐) 𝐹[ , where 𝑘𝜖̇(𝑐) refers to the volume enclosed by 𝑐 . Using divergence theorem, we can write it as a smooth surface 

integral as [ = ∫𝑐 5(L, M, N) ⋅ #𝐹𝑐 , where 5(L, M, N) = (L, 0, 0).
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Fig. 7. The 4-bump shape with its first three patches shaded with dark mesh.

Table 2
Relative error in the derivative scheme for (a) an ellipsoid and (b) the 4-bump shape (shown in Fig. 7). We report relative error in surface 
normals #, mean curvature _ , Gaussian curvature ` and surface divergence 𝐹𝑈𝑌𝑐 . 𝜏 is the number of discretization points. Spherical 
harmonics results for 𝑎 = 64, using the algorithms in [36], are used as true values and the error is computed relative to those values. Surface 
divergence is computed for the smooth function 0(L, M, N) = (L2, M2, N2) on the surface.
m 𝜏 X# X_ X` X𝐹𝑈𝑌𝑐
8 294 5 × 10−3 4 × 10−3 6 × 10−3 4 × 10−2
16 1350 2 × 10−4 5 × 10−4 1 × 10−4 3 × 10−3
32 5766 1 × 10−5 3 × 10−5 6 × 10−5 1 × 10−4
64 23814 7 × 10−7 2 × 10−6 3 × 10−6 1 × 10−5

m 𝜏 X# X_ X` X𝐹𝑈𝑌𝑐
8 294 2 × 10−1 3 × 10−1 8 × 10−1 6 × 10−1
16 1350 6 × 10−2 1 × 10−1 1 × 10−1 3 × 10−1
32 5766 6 × 10−3 1 × 10−2 2 × 10−2 6 × 10−2
64 23814 5 × 10−4 1 × 10−3 2 × 10−3 5 × 10−3

(a) Relative error in derivatives for an ellipsoid of reduced volume (b) Relative error in derivatives for the 4-bump shape.
𝑢 = 0.9, given by L2

𝐾2
+ M2

𝐻2
+ N2

̇2
= 1, where 𝐾 = 0.6,𝐻 = 1, ̇ = 1.

Table 3
Self-convergence results for an extensible capsule simulation under background (a) shear flow 
(given by !∞(L, M, N) = (M, 0, 0)) and (b) Poiseuille flow (given by !∞(L, M, N) = ((25 − M2 −
N2), 0, 0)). The initial shape is an ellipsoid given by L2∕𝐾2 + L2∕𝐻2 + L2∕̇2 = 1, where 𝐾 =
0.9, 𝐻 = 1.0, ̇ = 1.0. We set the shear modulus to be 𝐶𝑥 = 2 and the dilatation modulus to be 
𝐶𝐵 = 20. We simulate the capsule for a time horizon [0, ℎ ] and report the relative errors in 
area Z, volume [ and moment of inertia tensor 𝑙 of the capsule shape at time ℎ = 0.5. The 
reference solution for the relative error is the numerical solution computed using the 𝛼 = 48
grid. We use Runge-Kutta-Fehlberg time stepping scheme (see Section 3.6) with fixed relative 
tolerance of X𝑋YR = 10−6 .
𝛼 XZ X[ X𝑙
8 2 × 10−2 4 × 10−2 3 × 10−2
16 2 × 10−3 1 × 10−3 2 × 10−3
32 1 × 10−4 1 × 10−4 1 × 10−4

𝛼 XZ X[ X𝑙
8 2 × 10−2 4 × 10−2 2 × 10−2
16 3 × 10−3 1 × 10−3 2 × 10−3
32 2 × 10−4 1 × 10−4 1 × 10−4

(a) Relative errors in the capsule (b) Relative errors in the capsule dynamics
dynamics driven by a shear flow. driven by a background Poiseuille flow.

spline interpolation used in patch extension operators and blending. We also provide verification of derivatives for ellipsoids of 
different reduced volumes and tabulate the results in Appendix A.6.

4.3. Accuracy and convergence of the full numerical scheme

Now, we discuss the accuracy and convergence of our full numerical solver for the extensible capsule simulation. To this end, 
we take an ellipsoidal capsule with an initial surface configuration given by L2𝐾2 + M2

𝐻2 + N2
̇2 = 1, where 𝐾 = 0.9, 𝐻 = 1, ̇ = 1. The initial 

shape is taken to be the stress-free reference configuration. We do the simulations under two different imposed background flows, 
i.e., shear flow and Poiseuille flow. The flows are described mathematically as

!∞(L,M,N) = 𝑐̇(M,0,0), (shear flow) , (4.3)
!∞(L,M,N) = (b(]2

0 − M
2 − N2),0,0) (Poiseuille flow) , (4.4)

where 𝑐̇ is the shear rate of the shear flow, b controls the curvature of the Poiseuille flow and ]0 is the radius of the circular 
cross-section of the Poiseuille flow. We set 𝑐̇ = 1, b = 1 and ]0 = 5 for these simulations. We use the differentiation, integration and 
the time stepping schemes discussed above to simulate these setups for a fixed time horizon [0, ℎ ] using our solver. In Table 3, we 
tabulate the relative errors in area Z, volume [ and moment of inertia tensor 𝑙 of the final capsule shape for different values of 
the discretization order 𝛼. We observe fourth order convergence in the relative errors. The parachute shapes at time ℎ = 0.5 for the 
Posieuille flow simulations for different levels of discretization are given in Fig. 8.
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Fig. 8. The parachute shape under background Poiseuille flow (see Equation (4.4)) obtained after time ℎ = 0.5 for different levels of discretization (a) 𝛼 = 8, (b) 
𝛼 = 16, (c) 𝛼 = 32 and (d) 𝛼 = 48 for 𝐶𝑥 = 2, 𝐶𝐵 = 20. The initial shape is same as the stress-free reference state and is given by L2∕𝐾2 + L2∕𝐻2 + L2∕̇2 = 1, where 
𝐾 = 0.9, 𝐻 = 1.0, ̇ = 1.0.

4.4. Relaxation of capsule

Now, we simulate the relaxation of a capsule to its stress-free reference state to validate our code. We take a capsule with an initial 
shape of a unit sphere. The initial shape is also the stress-free reference configuration of the capsule. We simulate the dynamics of 
the capsule under a background linear shear flow with shear rate 𝑐̇ = 1 for a fixed time horizon [0, ℎ1] followed by a zero background 
flow velocity for [ℎ1, ℎ ]. We report the resulting shapes at different times in Fig. 9. We observe that once the background flow 
diminishes the capsule returns to the stress-free state, i.e., a unit sphere. Using the moment of inertia tensor 𝑙 and volume [ of the 
capsule, we compute the instantaneous Taylor asphericity parameter [21] 𝐵𝐾 of the capsule shape defined as

𝐵𝐾 =
c−𝑧
c+𝑧 , (4.5)

where 𝑧 =

√√√√𝑙LL + 𝑙MM −
√

(𝑙LL − 𝑙MM)2 + 4𝑙 2
LM

2[ , c =

√√√√𝑙LL + 𝑙MM +
√

(𝑙LL − 𝑙MM)2 + 4𝑙 2
LM

2[ . (4.6)

For a sphere, 𝐵𝐾 = 0. We plot the Taylor asphericity as a function of time to monitor the relaxation back to the reference unit sphere 
shape and plot it in Fig. 9d. As expected, we observe that the capsule relaxes back to a unit sphere when the background flow is 
removed as 𝐵𝐾 drops back to zero. Our results agree quantitatively with the results obtained using spherical harmonics based scheme 
used in [36].

4.5. Capsule in shear flow

Now, we present results for steady shapes of extensible capsule under background shear flow (see Equation (4.3)). We start with 
a stress-free spherical capsule. Under linear shear flow, the capsule is known to take a terminal nearly-ellipsoidal shape and exhibit 
a stable tank treading motion [10,21]. The terminal shape and inclination angle of its major axes with the flow direction depends on 
three key parameters, namely, the shear rate 𝑐̇ of the flow, the shear modulus 𝐶𝑥 and the dilatation modulus 𝐶𝐵 of the membrane. 
We simulate these dynamics for different values of these parameters and plot the terminal inclination angles d (with respect to the 
flow direction) in Fig. 10a. We compare our results with the numerical results from [10] and obtain good quantitative agreement. 
We also plot the evolution of Taylor asphericity 𝐵𝐾 with time in Fig. 10b and observe good agreement with the numerical results 
obtained using the spherical harmonics based scheme mentioned in [36]. Figs. 11 to 13 shows the terminal shapes of different 
reduced volumes obtained in shear flows using our code. Our code is able to resolve shapes for different reduced volumes obtained 
for a wide range of ratios of shear modulus 𝐶𝑥 and dilatation modulus 𝐶𝐵 .

To further demonstrate the effectiveness of four times upsampling, we plot the norm of the gradient of mapping ̃ from a unit 
sphere to the capsule surface 𝑐 with time in shear flow simulations for different grid orders 𝛼 in Fig. 14. The gradient norm serves 
as a proxy for the stability of the capsule shape. As evident from the plots, we need high numerical accuracy to do long time 
horizon simulations. We observe that grid order 𝛼 = 16 with four times upsampling is sufficient to do shear flow simulations. Lower 
upsampling factors or lower grid order 𝛼 results in unstable gradients which blow up over long time scales as shown in the Fig. 14.

4.6. Capsule in Poiseuille flow

In Fig. 16, we present the terminal shapes for a capsule under Poiseuille flow (see Equation (4.4)) for different membrane elasticity 
parameters leading to shapes of reduced volume as low as 𝑢 = 0.6. As for the shear flow simulations, we plot the norm of the gradient 
of mapping ̃ from a unit sphere to the capsule surface 𝑐 with time for the Poiseuille flow simulations for different grid orders 
𝛼 in Fig. 15. We observe that grid order 𝛼 = 32 with four times upsampling is sufficient to do Poiseuille flow simulations. Lower 
upsampling factors or lower grid order 𝛼 results in unstable gradients which blow up over long time scales as shown in the Fig. 15.
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Fig. 9. Shapes obtained at different times during simulation of the relaxation of the capsule with initial spherical shape as the stress-free reference state. We impose 
background shear flow !∞(L, M, N) = (M, 0, 0) for time horizon [0, ℎ1]. This is followed by zero background velocity from [ℎ1, ℎ ]. The capsule relaxes back to the stress-
free reference shape as expected. We take 𝛼 = 16, ℎ1 = 1, ℎ = 17.5, 𝐶𝑥 = 2 and 𝐶𝐵 = 20. (a) Shape at time 𝑋 = 0. (b) Shape at time 𝑋 = ℎ1 . (c) Shape at time 𝑋 = ℎ . (d) 
The plot of Taylor asphericity 𝐵𝐾 vs time 𝑋, where 𝐵𝐾 increases till 𝑋 = 1 under background shear flow and then drops to zero during the relaxation phase when the 
background flow is zero. Blue solid lines are the plot using our scheme and red dotted lines denote the plot using spherical harmonics based scheme (with spherical 
harmonic degree 𝑎 = 32).

4.7. Timing results

We compute the GPU wall clock times required for our scheme and give its breakdown over different stages of our scheme. To 
this end, we take an initially spherical capsule in stress free state (with 𝐶𝑥 = 2, 𝐶𝐵 = 20) and simulate its dynamics under shear flow 
with shear rate 𝑐̇ = 1 till time ℎ = 0.1. We do these simulations for different grid order 𝛼 and plot the total time and its breakdown 
for different stages in Fig. 17b. We observe that for 𝛼 ≥ 16, majority of the time is required to compute the singular quadrature. In 
fact, for 𝛼 ≥ 32 virtually all of the time is consumed in computing the quadrature. The wall clock times required to compute the 
singular quadrature once are also plotted separately in Fig. 17a. We also provide a comparison of the wall clock time per time step 
taken by our GPU accelerated scheme with the spherical harmonics CPU code [36] in Appendix A.8.

5. Fast multipole method based acceleration

Our quadrature does not involve a product quadrature and is amenable to acceleration via fast multipole method (FMM) [35]. A 
full FMM acceleration reduces the time complexity of our scheme to 𝑏(𝜏) allowing us to perform high resolution simulations. We 
do not implement a multilevel FMM for the purpose of this work and focus on showcasing the correctness and advantages of our 
numerical scheme using a simple single level FMM acceleration for our scheme. Based on the kernel independent FMM of [42], we 
describe our scheme below.
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Fig. 10. Validation of shear flow simulation results computed using 𝛼 = 16. (a) Plot of terminal inclination angle d for different shear rates and membrane mechanical 
properties (𝐶𝑥 and 𝐶𝐵). We compare our results with results in [10] and obtain good quantitative agreement. (b) We plot the evolution of Taylor asphericity 𝐵𝐾 of 
the capsule vs time and compare our results (solid lines) with the spherical harmonics (𝑎 = 32) based scheme in [36] (dashed lines). We observe good quantitative 
agreement. For 𝐶𝐵 = 200, the spherical harmonics code is unable to resolve the shapes and the surface fields and therefore, we do not provide plots for those.

Fig. 11. Snapshots of capsule shape at different time instants for shear flow simulation with 𝑐̇ = 1, 𝐶𝑥 = 2, 𝐶𝐵 = 200. (a) 𝑋 = 0, (b) 𝑋 = 0.25 and (c) 𝑋 = 7.5. The shape 
shown in (c) is the terminal shape.

Fig. 12. Snapshots of capsule shape at different time instants for shear flow simulation with 𝑐̇ = 0.5, 𝐶𝑥 = 2, 𝐶𝐵 = 1. (a) 𝑋 = 0.5, (b) 𝑋 = 2 and (c) 𝑋 = 15. The shape 
shown in (c) is the terminal shape.
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Fig. 13. Snapshots of capsule shape at different time instants for shear flow simulation with 𝑐̇ = 6, 𝐶𝑥 = 2, 𝐶𝐵 = 1. (a) 𝑋 = 0.0417, (b) 𝑋 = 0.25 and (c) 𝑋 = 1.25. The 
shape shown in (c) is the terminal shape.

Fig. 14. Plots of the ||∇"2̃||∞ vs time 𝑋 in shear flow simulation where ̃  + "2 ⟶ 𝑐 is the mapping from the unit sphere to the capsule 𝑐 . Initial shape is stress-free 
unit sphere with (a) 𝑐̇ = 1, 𝐶𝑥 = 2 and 𝐶𝐵 = 20 and (b) 𝑐̇ = 1.5, 𝐶𝑥 = 2 and 𝐶𝐵 = 1. The plots show the effectiveness of four times upsampling in doing stable long 
time horizon simulations while two times upsampling fails for 𝛼 = 16.

1. We first use a 𝜃-means clustering algorithm to cluster together the discretization points on the capsule surface for a reasonable 
value of 𝜃. We will have 𝜃 clusters. We found that 𝜃 = 100 gives us relative accuracy of 10−5, which is sufficient for the 
simulations in this paper.

2. Each cluster is imagined to be enclosed by a surrounding cubical box, called an equivalent surface, with equivalent sources 
placed on a regular grid on the boundary of this cubical box. Thus, we have 𝜃 equivalent surfaces and let each equivalent 
surface have 𝜏eq number of equivalent sources. We also consider a slightly bigger cube surrounding this enclosing cube which 
will be used as a check surface. The density on the equivalent sources lying on the equivalent surface is estimated by equating 
the potential on the check surface due to the actual point sources (i.e., discretization points) on the part of the capsule surface 
lying inside that box or equivalent surface.

3. We apply direct all pairs single layer potential calculation for the neighboring boxes while the equivalent sources are used 
to calculate the single layer potential for the discretization points in the far field (i.e., the discretization points inside non-
neighboring boxes).

We present convergence and speedup results for calculating single layer on an ellipsoid of reduced volume 𝑢 = 0.9 in Table 4a. 
While we do not see speedup for low values of 𝛼 because of FMM overhead computations, we see about two times speedup for 
𝛼 = 96 using our implementation of the single level FMM on GPU.
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Fig. 15. Plots of the ||∇"2̃||∞ vs time 𝑋 in Poiseuille flow simulation where ̃ + "2 ⟶ 𝑐 is the mapping from the unit sphere to the capsule 𝑐 . Initial shape is 
stress-free unit sphere with (a) b = 1.5, ]0 = 5, 𝐶𝑥 = 2 and 𝐶𝐵 = 200 and (b) b = 1.5, ]0 = 5, 𝐶𝑥 = 2 and 𝐶𝐵 = 20. Plots show that 𝛼 = 32 with four times upsampling 
gives stable simulations for Poiseuille flow while lower values of 𝛼 are not enough to resolves the shapes in Poiseuille flow.

Fig. 16. Terminal parachute shapes of varying reduced volumes 𝑢 under Poiseuille flow. (a) Terminal shape of reduced volume 𝑢 = 0.96 obtained for Poiseuille 
flow simulation with b = 1.5, 𝐶𝑥 = 2, 𝐶𝐵 = 200. (b) Terminal shape of reduced volume 𝑢 = 0.85 obtained for Poiseuille flow simulation with b = 1.5, 𝐶𝑥 = 2, 𝐶𝐵 = 20. 
(c) Terminal shape of reduced volume 𝑢 = 0.6 obtained for shear flow simulation with b = 1.5, 𝐶𝑥 = 2, 𝐶𝐵 = 1. We use grid order 𝛼 = 32 and the Poiseuille flow 
cross-section radius ]0 = 5 in these simulations.

Table 4
Relative error and speedup for FMM accelerated simulation (with 4x up-
sampling) of a capsule suspended in Poiseuille flow as in Fig. 16c. All 
pairs direct calculation for 𝛼 = 32 (with 4x upsampling) is used as the 
reference solution and the relative error is computed in the moment of 
inertia tensor of the capsule at the end of simulation. Time reported is 
wall clock time in seconds taken by one time step of the simulation. 𝑋direct
is direct calculation time and 𝑋FMM is time taken with the FMM accelera-
tion. Number of equivalent surfaces or boxes is fixed at 100. We vary the 
number of equivalent sources for an equivalent surface, denoted by 𝜏𝑘. , 
with 𝛼.
m 𝜏 𝜏eq 𝑋direct 𝑋FMM Speedup XFMM

32 5766 96 10.78 10.66 1.02 6 × 10−3
64 23814 128 163.21 104.20 1.57 4 × 10−5
96 54150 256 905.31 501.76 1.81 5 × 10−6

6. Conclusions

In this work, we described a novel numerical scheme to simulate Stokesian particulate flows. We described an overlapping patch 
based discretization of the surfaces diffeomorphic to the unit sphere. Our numerical scheme uses the regularized Stokes kernels [34]
and finite differences on overset grid to calculate the Stokes layer potential and interfacial elastic forces. We presented a battery of 
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Fig. 17. (a) GPU wall clock times for computing singular layer quadrature with four times upsampling for different grid orders 𝛼 = 8, 16, 32, 48. (b) Breakdown of 
wall clock times for shear flow simulation (with initial shape as unit sphere over time horizon ℎ = 0.1) over different stages (computation of singular quadrature, 
computation of interfacial forces and the rest of the algorithm) for different grid orders 𝛼.

results for the verification of our numerical scheme using results from previous literature. We used our numerical scheme to simulate 
an extensible capsule suspended in Stokes flow and validated our simulations. Our numerical scheme is a fourth order convergent 
scheme that is 𝑏(𝜏2) in work complexity where 𝜏 is the number of discretization points and can be accelerated to run with 𝑏(𝜏)
work complexity using a multilevel FMM. This is much better than the asymptotic work complexity of the spherical harmonics based 
spectral scheme [36]. Our scheme also allows for independent control over local resolution due to patch based parameterization of 
surface. We used GPU acceleration to demonstrate the ability of our code to simulate the complex shapes with high resolution.

In this paper, we implemented a single level FMM to demonstrate FMM based speedup. A GPU based implementation of a 
multilevel FMM will further enable us to do highly accurate simulations in a reasonable time and help us better study the Stokesian 
particulate flows. We leave it as the subject of our future work.
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Appendix A

A.1. Transition maps

Here, we list the expressions for the transition maps 𝑉𝑈𝐴 for 𝑈 = 1, ...6, for the parameterization we use. The expressions are given 
as follows:
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𝑉12(𝑅,𝑌) = (𝑅,𝐺 + 𝑌), 𝑉13(𝑅,𝑌) = (𝑅, 𝐺2 + 𝑌), 𝑉14(𝑅,𝑌) = (𝑅,𝑌− 𝐺
2 ), (A.1)

𝑉15(𝑅,𝑌) =
(
cos−1(− sin𝑅 sin𝑌), cos−1

(
sin𝑅 cos𝑌√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.2)

𝑉16(𝑅,𝑌) =
(
cos−1(sin𝑅 sin𝑌), cos−1

(
sin𝑅 cos𝑌√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
. (A.3)

The transition maps for the next three patches are given below:

𝑉21(𝑅,𝑌) = (𝑅,𝐺 + 𝑌), 𝑉23(𝑅,𝑌) = (𝑅,𝑌− 𝐺
2 ), 𝑉24(𝑅,𝑌) = (𝑅,𝑌+ 𝐺

2 ), (A.4)

𝑉25(𝑅,𝑌) =
(
cos−1(sin𝑅 sin𝑌), cos−1

(
− sin𝑅 cos𝑌√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.5)

𝑉26(𝑅,𝑌) =
(
cos−1(− sin𝑅 sin𝑌), cos−1

(
− sin𝑅 cos𝑌√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.6)

𝑉31(𝑅,𝑌) = (𝑅,𝑌− 𝐺∕2), 𝑉32(𝑅,𝑌) = (𝑅,𝑌+ 𝐺
2 ), 𝑉34(𝑅,𝑌) = (𝑅,𝑌+ 𝐺), (A.7)

𝑉35(𝑅,𝑌) =
(
cos−1(sin𝑅 cos𝑌), cos−1

(
sin𝑅 sin𝑌√

sin2 𝑅 sin2 𝑌+ cos2 𝑅

))
, (A.8)

𝑉36(𝑅,𝑌) =
(
cos−1(− sin𝑅 cos𝑌), cos−1

(
sin𝑅 sin𝑌√

sin2 𝑅 sin2 𝑌+ cos2 𝑅

))
, (A.9)

𝑉41(𝑅,𝑌) = (𝑅,𝑌+ 𝐺∕2), 𝑉42(𝑅,𝑌) = (𝑅,𝑌− 𝐺
2 ), 𝑉43(𝑅,𝑌) = (𝑅,𝑌+ 𝐺), (A.10)

𝑉45(𝑅,𝑌) =
(
cos−1(− sin𝑅 cos𝑌), cos−1

(
− sin𝑅 sin𝑌√

sin2 𝑅 sin2 𝑌+ cos2 𝑅

))
, (A.11)

𝑉46(𝑅,𝑌) =
(
cos−1(sin𝑅 cos𝑌), cos−1

(
− sin𝑅 sin𝑌√

sin2 𝑅 sin2 𝑌+ cos2 𝑅

))
. (A.12)

The transition maps for 0
5 and 0

6 are given as follows:

𝑉51(𝑅,𝑌) =
(
cos−1(sin𝑅 sin𝑌), cos−1

(
sin𝑅 cos𝑌√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.13)

𝑉52(𝑅,𝑌) =
(
cos−1(sin𝑅 sin𝑌), cos−1

(
− sin𝑅 cos𝑌√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.14)

𝑉53(𝑅,𝑌) =
(
cos−1(sin𝑅 sin𝑌), cos−1

(
cos𝑅√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.15)

𝑉54(𝑅,𝑌) =
(
cos−1(sin𝑅 sin𝑌), cos−1

(
− cos𝑅√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.16)

𝑉54(𝑅,𝑌) = (𝐺 − 𝑅,𝑌), (A.17)

𝑉61(𝑅,𝑌) =
(
cos−1(− sin𝑅 sin𝑌), cos−1

(
sin𝑅 cos𝑌√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.18)

𝑉62(𝑅,𝑌) =
(
cos−1(− sin𝑅 sin𝑌), cos−1

(
− sin𝑅 cos𝑌√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.19)

𝑉63(𝑅,𝑌) =
(
cos−1(− sin𝑅 sin𝑌), cos−1

(
cos𝑅√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.20)

𝑉64(𝑅,𝑌) =
(
cos−1(− sin𝑅 sin𝑌), cos−1

(
− cos𝑅√

sin2 𝑅 cos2 𝑌+ cos2 𝑅

))
, (A.21)

𝑉65(𝑅,𝑌) = (𝐺 − 𝑅,𝑌). (A.22)
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Table 5
Formulas used for computing various surface derivative quantities.
Symbol Definition Symbol Definition
𝐶 "𝑅 ⋅ "𝑅 e "𝑅𝑌 ⋅ #
T "𝑅 ⋅ "𝑌 𝜏 "𝑌𝑌 ⋅ #
U "𝑌 ⋅ "𝑌 _ 𝐶𝜏−2Te+Uc

2P 2

P
√
𝐶U − T 2 ∇𝑐 V

U"𝑅−T"𝑌
P 2 V𝑅 +

𝐶"𝑌−T"𝑅
P 2 V𝑌

# "𝑅×"𝑌
P

∇𝑐 ⋅ 0
U0𝑅−T0𝑌
P 2 "𝑅 +

𝐶0𝑌−T0𝑅
P 2 "𝑌

c "𝑅𝑅 ⋅ # ` c𝜏−e2

P 2

Table 6
Relative errors in surface derivatives. We 
compare the relative errors for different val-
ues of 𝑓0 .
𝛼 𝑓0∕𝐺 X# X_
8 5.5/12 2 × 10−4 1.3 × 10−3
8 5/12 2 × 10−4 1.5 × 10−3
8 4/12 4 × 10−4 1.6 × 10−3

16 5.5/12 8 × 10−6 1.7 × 10−5
16 5/12 7 × 10−6 1.8 × 10−5
16 4/12 7 × 10−6 1.9 × 10−5

32 5.5/12 4 × 10−7 1.3 × 10−6
32 5/12 4 × 10−7 1.7 × 10−6
32 4/12 4 × 10−7 1.9 × 10−6

Table 7
Relative error in computing surface normals 𝜖 and the 
mean curvature _ for unit sphere with and without the 
blending. Xb are the errors with blending and Xnb are the 
errors without the blending process in computing deriva-
tives.
𝛼 Xb# Xb_ Xnb# Xnb_
8 2 × 10−4 1.3 × 10−3 3 × 10−3 2 × 10−2
16 8 × 10−6 1.7 × 10−5 9 × 10−5 2 × 10−3
32 4 × 10−7 1.3 × 10−6 3 × 10−6 3 × 10−4

A.2. Surface derivative formulas

Here, we list the formulas for the first fundamental form coefficients 𝐶, T , U, the unit normal #, the second fundamental form 
coefficients c, e , 𝜏 , the mean curvature _ , the Gaussian curvature ` , the surface divergence (of a vector field 0) and the surface 
gradient (of a scalar function V) in terms of the local parameterization "(𝑅, 𝑌) + 𝐵 < ℝ2 ⟶ 𝑐 . We use these quantities in the 
computation of interfacial force and the verification of surface derivatives (see Table 5).

A.3. The choice of parameter 𝑓0 for the partition of unity

Here, we briefly discuss our choice of parameter 𝑓0 in the construction of partition of unity in Section 3.1. We note here that for 
the specific parameterization of the unit sphere we use (see Equation (3.8)), we require 𝑓0 > 3𝐺

12 to ensure that every point on "2

belongs to the support of >0
𝑈 for at least one 𝑈 ( {1, … , 6}. If this is not the case, then {>0

𝑈 }
6
𝑈=1 ceases to be a partition of unity on the 

unit sphere. Additionally, we need 𝑓0 < 𝐺
2 so that the support of each >0

𝑈 is compactly contained in 0
𝑈 . We tabulate some numerical 

results Table 6 for the relative errors in the surface derivatives on the unit sphere for different values of 𝐺 > 𝑓0 >
3𝐺
12 . We find that 

𝑓0 =
5𝐺
12 gives optimal accuracy among the values of 𝑓0 we experimented with.

A.4. Effect of the blending process in calculating derivatives

Here, we provide the relative errors in the computing normals 𝜖 and the mean curvature _ for the unit sphere with and without 
blending process discussed in Section 3.5. The results are tabulated in Table 7. The results show that blending improves the accuracy 
of derivatives.
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Table 8
Relative errors in the derivative scheme and singular quadrature for the shapes in Fig. 13c and Fig. 16c using our scheme (at the top for different grid orders 𝛼 with 
four times upsampling to compute quadrature). The shapes are upsampled to spherical harmonics degree 𝑎 = 64 and the error is computed relative to those values. 
Surface divergence is computed for the smooth function $ (L, M, N) = (L2, M2, N2) on the surface.
m 𝜏 X𝑅𝑎[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 294 5 × 10−2 9 × 10−2 5 × 10−1 1 9 × 10−2
16 1350 2 × 10−2 6 × 10−2 2 × 10−1 2 × 10−1 5 × 10−2
32 5766 5 × 10−3 9 × 10−3 8 × 10−2 9 × 10−2 9 × 10−3
64 23814 5 × 10−4 9 × 10−4 8 × 10−3 1 × 10−2 9 × 10−4

m 𝜏 X𝑅𝑎[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 294 8 × 10−2 9 × 10−2 7 × 10−1 8 × 10−1 9 × 10−2
16 1350 2 × 10−2 5 × 10−2 2 × 10−1 3 × 10−1 6 × 10−2
32 5766 3 × 10−3 8 × 10−3 6 × 10−2 7 × 10−2 9 × 10−3
64 23814 6 × 10−4 9 × 10−4 1 × 10−2 1 × 10−2 8 × 10−4

(a) Relative error in singular quadrature and derivatives (b) Relative error in singular quadrature and derivatives
for the shape in Fig. 13c of reduced volume 𝑢 = 0.6. for the shape Fig. 16c of reduced volume 𝑢 = 0.60.

Table 9
Relative errors in the derivative scheme and singular quadrature for ellipsoids of reduced volume (a) 𝑢 = 0.92 and (b) 𝑢 = 0.78 using our scheme (at the top 
for different grid orders 𝛼 with four times upsampling to compute quadrature) and using spherical harmonics scheme [36] (at the bottom for different spherical 
harmonics degrees 𝑎). Spherical harmonics results for 𝑎 = 64 are used as true values and the error is computed relative to those values. Surface divergence is computed 
for the smooth function $ (L, M, N) = (L2, M2 , N2) on the surface.
m 𝜏 X𝑅𝑎[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 294 7 × 10−3 5 × 10−3 4 × 10−3 6 × 10−3 4 × 10−2
16 1350 4 × 10−4 2 × 10−4 5 × 10−4 1 × 10−3 3 × 10−3
32 5766 2 × 10−5 1 × 10−5 3 × 10−5 6 × 10−5 1 × 10−4
64 23814 1 × 10−6 7 × 10−7 2 × 10−6 3 × 10−6 1 × 10−5

p 𝜏 X[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 144 4 × 10−5 3 × 10−3 2 × 10−3 6 × 10−3 6 × 10−3
16 544 3 × 10−8 1 × 10−5 1 × 10−5 4 × 10−5 2 × 10−5
24 1200 5 × 10−11 4 × 10−8 6 × 10−8 2 × 10−7 1 × 10−7
32 2112 6 × 10−13 5 × 10−11 8 × 10−10 4 × 10−9 3 × 10−9

m 𝜏 X𝑅𝑎[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 294 7 × 10−3 3 × 10−2 2 × 10−2 4 × 10−2 4 × 10−2
16 1350 4 × 10−4 9 × 10−4 3 × 10−3 5 × 10−3 9 × 10−4
32 5766 2 × 10−5 8 × 10−5 3 × 10−4 5 × 10−4 1 × 10−4
64 23814 1 × 10−6 4 × 10−6 1 × 10−5 3 × 10−5 9 × 10−6

p 𝜏 X[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 144 7 × 10−4 2 × 10−2 3 × 10−2 6 × 10−2 4 × 10−2
16 544 2 × 10−6 6 × 10−4 1 × 10−3 3 × 10−3 1 × 10−3
24 1200 3 × 10−8 2 × 10−5 5 × 10−5 1 × 10−4 5 × 10−5
32 2112 5 × 10−10 1 × 10−7 6 × 10−7 9 × 10−6 4 × 10−6

(a) Relative error in singular quadrature and derivatives for an ellipsoid of (b) Relative error in singular quadrature and derivatives for an ellipsoid of
reduced volume 𝑢 = 0.9, given by L2

𝐾2
+ M2

𝐻2
+ N2

̇2
= 1, where 𝐾 = 0.6,𝐻 = 1, ̇ = 1. reduced volume 𝑢 = 0.78, given by L2

𝐾2
+ M2

𝐻2
+ N2

̇2
= 1, where 𝐾 = 0.4,𝐻 = 1, ̇ = 1.

Table 10
Relative errors in the derivative scheme and singular quadrature for ellipsoids of reduced volume (a) 𝑢 = 0.5 and (b) 𝑢 = 0.3 using our scheme (at the top for different 
grid orders 𝛼 with four times upsampling to compute quadrature) and using spherical harmonics scheme [36] (at the bottom for different spherical harmonics 
degrees 𝑎). Spherical harmonics results for 𝑎 = 64 are used as true values and the error is computed relative to those values. Surface divergence is computed for the 
smooth function $ (L, M, N) = (L2, M2, N2) on the surface.
m 𝜏 X𝑅𝑎[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 294 2 × 10−2 2 × 10−1 2 × 10−1 3 × 10−1 4 × 10−2
16 1350 4 × 10−3 9 × 10−3 3 × 10−2 6 × 10−2 3 × 10−3
32 5766 7 × 10−4 8 × 10−4 4 × 10−3 6 × 10−3 1 × 10−4
64 23814 6 × 10−5 9 × 10−5 4 × 10−4 7 × 10−4 1 × 10−5

p 𝜏 X[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 144 9 × 10−3 9 × 10−2 3 × 10−1 4 × 10−1 2 × 10−3
16 544 2 × 10−4 1 × 10−2 6 × 10−2 9 × 10−2 4 × 10−2
24 1200 1 × 10−5 3 × 10−3 1 × 10−2 2 × 10−2 7 × 10−3
32 2112 2 × 10−6 1 × 10−4 1 × 10−3 5 × 10−3 6 × 10−4

m 𝜏 X𝑅𝑎[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 294 4 × 10−2 4 × 10−1 5 × 10−1 6 × 10−1 4 × 10−2
16 1350 1 × 10−2 9 × 10−2 2 × 10−1 3 × 10−1 3 × 10−3
32 5766 4 × 10−3 2 × 10−2 4 × 10−2 7 × 10−2 2 × 10−3
64 23814 1 × 10−3 2 × 10−3 8 × 10−3 9 × 10−3 9 × 10−4

p 𝜏 X[$ ] X# X_ X` X𝐹𝑈𝑌𝑐
8 144 4 × 10−2 2 × 10−1 1 1 4 × 10−1
16 544 3 × 10−3 1 × 10−1 3 × 10−1 4 × 10−1 2 × 10−1
24 1200 5 × 10−4 4 × 10−2 1 × 10−1 1 × 10−1 6 × 10−2
32 2112 4 × 10−5 5 × 10−3 3 × 10−2 4 × 10−2 5 × 10−3

(a) Relative error in singular quadrature and derivatives for an ellipsoid of (b) Relative error in singular quadrature and derivatives for an ellipsoid of
reduced volume 𝑢 = 0.5, given by L2

𝐾2
+ M2

𝐻2
+ N2

̇2
= 1, where 𝐾 = 0.2,𝐻 = 1, ̇ = 1. reduced volume 𝑢 = 0.3 given by L2

𝐾2
+ M2

𝐻2
+ N2

̇2
= 1, where 𝐾 = 0.1,𝐻 = 1, ̇ = 1.

A.5. Surface derivative and singular integration errors for shear flow and Poiseuille flow terminal shapes

To further verify the convergence and accuracy of our derivative and integration schemes, we upsample the low reduced volume 
shapes obtained in Fig. 13c and Fig. 16c to 𝑎 = 64 spherical harmonics and use the spherical harmonics derivatives and Graham-Sloan 
quadrature [36] as the reference values to study the convergence of our schemes. We report the relative errors for these shapes in 
Table 8.

A.6. Numerical errors for different reduced volume 𝑢

Here, we tabulate errors in computing the singular quadrature and surface derivatives using our numerical scheme. We report 
these errors for ellipsoids of varying reduced volumes 𝑢 ( {0.92, 0.78, 0.5, 0.3} in Table 9 and Table 10. The tables demonstrate that 
the accuracy deteriorates with decreasing reduced volumes. In general, it is harder to do long time horizon simulations of capsules 
with lower reduced volumes due to this reason.
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Table 11
Sensitivity of singular quadrature with respect to the regularization parameter 𝑣. 
First three columns show the relative errors for the patch-dependent 𝑣 = Q𝑣∗ where 
Q is a constant. The last three columns show the relative errors for fixed global 
regularization parameter 𝑣 = Q𝑀𝛼 .
𝛼 𝑣 = 0.5𝑣∗ 𝑣 = 𝑣∗ 𝑣 = 2𝑣∗ 𝑣 = 0.5𝑀𝛼 𝑣 = 𝑀𝛼 𝑣 = 2𝑀𝛼
8 2 × 10−2 7 × 10−3 1 × 10−2 2 × 10−2 7 × 10−3 1 × 10−2
16 6 × 10−3 4 × 10−4 1 × 10−3 6 × 10−3 5 × 10−4 5 × 10−3
32 3 × 10−3 2 × 10−5 6 × 10−5 4 × 10−3 1 × 10−4 1 × 10−3
64 2 × 10−4 1 × 10−6 6 × 10−6 7 × 10−4 6 × 10−5 6 × 10−4

(a) Relative error in the computation of Stokes single layer potential (with density 
$ = (L2, M2, N2)) on the ellipsoid L2

𝐾2
+ M2

𝐻2
+ N2

̇2
= 1, where 𝐾 = 0.4, 𝐻 = 1, ̇ = 1, for 

different choices of regularization parameter 𝑣. Reference solution is computed using 
𝑎 = 64 spherical harmonics.

Table 12
Wall clock time per time step (denoted by ℎstep in seconds) for our 
code with 4x upsampling (on the left) vs the spherical harmonics 
scheme (on the right). 𝜏 denotes the number of discretization 
points. 𝜏up is the upsampled number of discretization points used 
for the singular quadrature in our scheme.
𝛼 𝜏 𝜏up ℎstep 𝑎 𝜏 ℎstep
8 294 4704 0.61 8 144 0.75
16 1350 21600 1.26 16 544 1.92
32 5766 92256 10.10 32 2112 10.05
48 13254 381024 46.46 64 8320 87.86

A.7. Sensitivity of the singular quadrature scheme to the regularization parameter 𝑣

Here, we discuss the effect of choice of regularization parameter 𝑣 on the singular quadrature accuracy. We experiment with 
different values of the constant in Q in Equation (3.20). We tabulate the error in singular quadrature for different values of Q in 
Table 11. We find out that Q = 1 works best for the parameterization we have chosen. We also tabulate in the same table the results 
for fixed global regularization parameter 𝑣 = Q𝑀𝛼 and show that our patch-dependent regularization parameter gives better accuracy 
and convergence compared to the fixed regularization parameter.

A.8. Wall clock times for our GPU accelerated code vs the spherical harmonics CPU code

We report the wall clock time per time step required for our GPU-accelerated code compared to the spherical harmonics CPU 
code in Table 12. We note that the spherical harmonics discretization of degree 𝑎 contains 2𝑎(𝑎 + 1) points compared to 6(𝛼 − 1)2
for our scheme with 𝛼th-order grid. Since, we use four times upsampling, the number of discretization points for evaluating singular 
quadrature is even higher at 𝜏up = 6(4𝛼 − 1)2 in our scheme. Even though our discretization has much higher points than the 
spherical harmonics, our scheme has lower runtime for higher order grids and hence, scales better than the spherical harmonics as 
the number of points increase. Since the quadrature scheme requires most of the time in our simulations Fig. 17b, our scheme can 
be further accelerated using fast multipole methods (FMMs) [35] and can be used to do faster simulations at higher resolutions. We 
leave the FMM acceleration as the subject for future work.
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